
ar
X

iv
:0

80
7.

26
77

v4
  [

cs
.N

I] 
 6

 F
eb

 2
01

0
1

Algorithms for Dynamic Spectrum Access with

Learning for Cognitive Radio

Jayakrishnan Unnikrishnan,Student Member, IEEE,

and Venugopal V. Veeravalli,Fellow, IEEE

Abstract

We study the problem of dynamic spectrum sensing and access in cognitive radio systems as a

partially observed Markov decision process (POMDP). A group of cognitive users cooperatively tries

to exploit vacancies in primary (licensed) channels whose occupancies follow a Markovian evolution.

We first consider the scenario where the cognitive users haveperfect knowledge of the distribution

of the signals they receive from the primary users. For this problem, we obtain a greedy channel

selection and access policy that maximizes the instantaneous reward, while satisfying a constraint on

the probability of interfering with licensed transmissions. We also derive an analytical universal upper

bound on the performance of the optimal policy. Through simulation, we show that our scheme achieves

good performance relative to the upper bound and improved performance relative to an existing scheme.

We then consider the more practical scenario where the exactdistribution of the signal from the

primary is unknown. We assume a parametric model for the distribution and develop an algorithm that

can learn the true distribution, still guaranteeing the constraint on the interference probability. We show

that this algorithm outperforms the naive design that assumes a worst case value for the parameter. We

also provide a proof for the convergence of the learning algorithm.
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I. INTRODUCTION

Cognitive radios that exploit vacancies in the licensed spectrum have been proposed as a

solution to the ever-increasing demand for radio spectrum.The idea is to sense times when

a specific licensed band is not used at a particular place and use this band for unlicensed

transmissions without causing interference to the licensed user (referred to as the ‘primary’). An

important part of designing such systems is to develop an efficient channel selection policy. The

cognitive radio (also called the ‘secondary user’) needs toadopt the best strategy for selecting

channels for sensing and access. The sensing and access policies should jointly ensure that the

probability of interfering with the primary’s transmission meets a given constraint.

In the first part of this paper, we consider the design of such ajoint sensing and access policy,

assuming a Markovian model for the primary spectrum usage onthe channels being monitored.

The secondary users use the observations made in each slot totrack the probability of occupancy

of the different channels. We obtain a suboptimal solution to the resultant POMDP problem.

In the second part of the paper, we propose and study a more practical problem that arises

when the secondary users are not aware of the exact distribution of the signals that they receive

from the primary transmitters. We develop an algorithm thatlearns these unknown statistics

and show that this scheme gives improved performance over the naive scheme that assumes a

worst-case value for the unknown distribution.

A. Contribution

When the statistics of the signals from the primary are known, we show that, under our

formulation, the dynamic spectrum access problem with a group of cooperating secondary users

is equivalent in structure to a single user problem. We also obtain a new analytical upper bound

on the expected reward under the optimal scheme. Our suboptimal solution to the POMDP is

shown via simulations to yield a performance that is close tothe upper bound and better than

that under an existing scheme.

The main contribution of this paper is the formulation and solution of the problem studied

in the second part involving unknown observation statistics. We show that unknown statistics of
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the primary signals can be learned and provide an algorithm that learns these statistics online

and maximizes the expected reward still satisfying a constraint on interference probability.

B. Related Work

In most of the existing schemes [1], [2] in the literature on dynamic spectrum access for

cognitive radios, the authors assume that every time a secondary user senses a primary channel,

it can determine whether or not the channel is occupied by theprimary. A different scheme

was proposed in [3] and [4] where the authors assume that the secondary transmitter receives

error-free ACK signals from the secondary’s receivers whenever their transmission is successful.

The secondary users use these ACK signals to track the channel states of the primary channels.

We adopt a different strategy in this paper. We assume that every time the secondary users sense

a channel they see a random observation whose distribution depends on the state of the channel.

Our approach is distinctly different from and more realistic than that in [1], [2] since we do

not assume that the secondary users know the primary channelstates perfectly through sensing.

We provide a detailed comparison of our approach with that of[3] and [4] after presenting our

solution. In particular, we point out that while using the scheme of [4] there are some practical

difficulties in maintaining synchronization between the secondary transmitter and receiver. Our

scheme provides a way around this difficulty, albeit we require a dedicated control channel

between the secondary transmitter and receiver.

The problem studied in the second part of this paper that involves learning of unknown

observation statistics is new. However, the idea of combining learning and dynamic spectrum

access was also used in [5] where the authors propose a reinforcement-learning scheme for

learning channel idling probabilities and interference probabilities.

We introduce the basic spectrum sensing and access problem in Section II and describe

our proposed solution in Section III. In Section IV, we elaborate on the problem where the

distributions of the observations are unknown. We present simulation results and comparisons

with some existing schemes in Section V, and our conclusionsin Section VI.

II. PROBLEM STATEMENT

We consider a slotted system where a group of secondary usersmonitor a setC of primary

channels. The state of each primary channel switches between ‘occupied’ and ‘unoccupied’
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according to the evolution of a Markov chain. The secondary users can cooperatively sense any

one out of the channels inC in each slot, and can access any one of theL = |C| channels in the

same slot. In each slot, the secondary users must satisfy a strict constraint on the probability of

interfering with potential primary transmissions on any channel. When the secondary users access

a channel that is free during a given time slot, they receive areward proportional to the bandwidth

of the channel that they access. The objective of the secondary users is to select the channels for

sensing and access in each slot in such a way that their total expected reward accrued over all

slots is maximized subject to the constraint on interferingwith potential primary transmissions

every time they access a channel1. Since the secondary users do not have explicit knowledge

of the states of the channels, the resultant problem is a constrained partially observable Markov

decision process (POMDP) problem.

We assume that all channels inC have equal bandwidthB, and are statistically identical and

independent in terms of primary usage. The occupancy of eachchannel follows a stationary

Markov chain. The state of channela in any time slotk is represented by variableSa(k) and

could be either1 or 0, where state0 corresponds to the channel being free for secondary access

and1 corresponds to the channel being occupied by some primary user.

The secondary system includes a decision center that has access to all the observations made

by the cooperating secondary users2. The observations are transmitted to the decision center

over a dedicated control channel. The same dedicated channel can also be used to maintain

synchronization between the secondary transmitter and secondary receiver so that the receiver

can tune to the correct channel to receive transmissions from the transmitter. The sensing and

access decisions in each slot are made at this decision center. When channela is sensed in slot

k, we useXa(k) to denote the vector of observations made by the different cooperating users on

channela in slot k. These observations represent the sampled outputs of the wireless receivers

tuned to channela that are employed by the cognitive users. The statistics of these observations

are assumed to be time-invariant and distinct for differentchannel states. The observations on

1We do not consider scheduling policies in this paper and assume that the secondary users have some predetermined scheduling

policy to decide which user accesses the primary channel every time they determine that a channel is free for access.

2The scheme proposed in this paper and the analyses presentedin this paper are valid even if the cooperating secondary users

transmit quantized versions of their observations to the fusion center. Minor changes are required to account for the discrete

nature of the observations.
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channela in slot k have distinct joint probability density functionsf0 and f1 whenSa(k) = 0

andSa(k) = 1 respectively. The collection of all observations up to slotk is denoted byXk, and

the collection of observations on channela up to slotk is denoted byXk
a. The channel sensed

in slot k is denoted byuk, the sequence of channels sensed up to slotk is denoted byuk, and

the set of time slots up to slotk when channela was sensed is denoted byKk
a . The decision

to access channela in slot k is denoted by a binary variableδa(k), which takes value1 when

channela is accessed in slotk, and0 otherwise.

Whenever the secondary users access a free channel in some time slotk, they get a rewardB

equal to the bandwidth of each channel inC. The secondary users should satisfy the following

constraint on the probability of interfering with the primary transmissions in each slot:

P({δa(k) = 1}|{Sa(k) = 1}) ≤ ζ.

In order to simplify the structure of the access policy, we also assume that in each slot the

decision to access a channel is made using only the observations made in that slot. Hence it

follows that in each slotk, the secondary users can access only the channel they sense in slotk,

say channela. Furthermore, the access decision must be based on a binary hypothesis test [6]

between the two possible states of channela, performed on the observationXa(k). This leads

to an access policy with a structure similar to that established in [4]. The optimal test [6] is to

compare the joint log-likelihood ratio (LLR)L(Xa(k)) given by,

L(Xa(k)) = log

(
f1(Xa(k))

f0(Xa(k))

)

to some threshold∆ that is chosen to satisfy,

P ({L(Xa(k)) < ∆} |{Sa(k) = 1}) = ζ (1)

and the optimal access decision would be to access the sensedchannel whenever the threshold

exceeds the joint LLR. Hence

δa(k) = I{L(Xa(k))<∆}I{uk=a} (2)

and the reward obtained in slotk can be expressed as,

r̂k = BI{Suk
(k)=0}I{L(Xuk

(k))<∆} (3)

whereIE represents the indicator function of eventE. The main advantage of the structure of

the access policy given in (2) is that we can obtain a simple sufficient statistic for the resultant
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POMDP without having to keep track of all the past observations, as discussed later. It also

has the added advantage [4] that the secondary users can set the thresholds∆ to meet the

constraint on the probability of interfering with the primary transmissions without relying on

their knowledge of the Markov statistics.

Our objective is to generate a policy that makes optimal use of primary spectrum subject to

the interference constraint. We introduce a discount factor α ∈ (0, 1) and aim to solve the infinite

horizon dynamic program with discounted rewards [7]. That is, we seek the sequence of channels

{u0, u1, . . .}, such that the
∞∑

k=0

αk
E[r̂k] is maximized, where the expectation is performed over

the random observations and channel state realizations. Wecan show the following relation based

on the assumption of identical channels:

E[r̂k] = E

[
BI{Suk

(k)=0}I{L(Xuk
(k))<∆}

]

= E

[
E

[
BI{Suk

(k)=0}I{L(Xuk
(k))<∆}|Suk

(k)
]]

= E
[
B(1− ǫ̂)I{Suk

(k)=0}

]
(4)

where,

ǫ̂ = P({L(Xa(k)) > ∆}|{Sa(k) = 0}). (5)

Since all the channels are assumed to be identical and the statistics of the observations are

assumed to be constant over time,ǫ̂ given by (5) is a constant independent ofk. From the

structure of the expected reward in (4) it follows that we canredefine our problem such that the

reward in slotk is now given by,

rk = B(1− ǫ̂)I{Suk
(k)=0} (6)

and the optimization problem is equivalent to maximizing
∞∑

k=0

αk
E[rk]. Since we know the

structure of the optimal access decisions from (2), the problem of spectrum sensing and access

boils down to choosing the optimal channel to sense in each slot. Whenever the secondary

users sense some channel and make observations with LLR lower than the threshold, they are

free to access that channel. Thus we have converted the constrained POMDP problem into an

unconstrained POMDP problem as was done in [4].
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III. D YNAMIC PROGRAMMING

The state of the system in slotk denoted by

S(k) = (S1(k), S2(k), . . . , SL(k))
⊤

is the vector of states of the channels inC that have independent and identical Markovian

evolutions. The channel to be sensed in slotk is decided in slotk − 1 and is given by

uk = µk(Ik−1)

whereµk is a deterministic function andIk , (Xk, uk) represents the net information about

past observations and decisions up to slotk. The reward obtained in slotk is a function of

the state in slotk and uk as given by (6). We seek the sequence of channels{u0, u1, . . .},

such that
∞∑

k=0

αk
E[rk] is maximized. It is easily verified that this problem is a standard dynamic

programming problem with imperfect observations. It is known [7] that for such a POMDP

problem, a sufficient statistic at the end of any time slotk, is the probability distribution of the

system stateS(k), conditioned on all the past observations and decisions, given byP({S(k) =

s}|Ik). Furthermore, since the Markovian evolution of the different channels are independent

of each other, this conditional probability distribution is equivalently represented by the set of

beliefs about the occupancy states of each channel, i.e., the probability of occupancy of each

channel in slotk, conditioned on all the past observations on channela and times when channel

a was sensed. We usepa(k) to represent the belief about channela at the end of slotk, i.e.,pa(k)

is the probability that the stateSa(k) of channela in slot k is 1, conditioned on all observations

and decisions up to time slotk, which is given by

pa(k) = P({Sa(k) = 1}|Xk
a, K

k
a ).

We usep(k) to denote theL × 1 vector representing the beliefs about the channels inC. The

initial values of the belief parameters for all channels areset using the stationary distribution of

the Markov chain. We useP to represent the transition probability matrix for the state transitions

of each channel, withP (i, j) representing the probability that a channel that is in statei in slot

k switches to statej in slot k + 1. We define,

qa(k) = P (1, 1)pa(k − 1) + P (0, 1)(1− pa(k − 1)). (7)
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This qa(k) represents the probability of occupancy of channela in slot k, conditioned on the

observations up to slotk − 1. Using Bayes’ rule, the belief values are updated as followsafter

the observation in time slotk:

pa(k) =
qa(k)f1(Xa(k))

qa(k)f1(Xa(k)) + (1− qa(k))f0(Xa(k))
(8)

when channela was selected in slotk (i.e., uk = a), andpa(k) = qa(k) otherwise. Thus from

(8) we see that updates for the sufficient statistic can be performed using only the joint LLR

of the observations,L(Xa(k)), instead of the entire vector of observations. Furthermore, from

(2) we also see that the access decisions also depend only on the LLRs. Hence we conclude

that this problem with vector observations is equivalent toone with scalar observations where

the scalars represent the joint LLR of the observations of all the cooperating secondary users.

Therefore, in the rest of this paper, we use a scalar observation model with the observation made

on channela in slot k represented byYa(k). We useY k to denote the set of all observations up

to time slotk andY k
a to denote the set of all observations on channela up to slotk.

Hence the new access decisions are given by

δa(k) = I{L′(Ya(k))<∆′}I{uk=a} (9)

whereL′(Ya(k)) represents the LLR ofYa(k) and the access threshold∆′ is chosen to satisfy,

P({L′(Ya(k)) < ∆′}|{Sa(k) = 1}) = ζ. (10)

Similarly the belief updates are performed as in (8) with theevaluations of density functions of

Xa(k) replaced with the evaluations of the density functionsf ′
0 andf ′

1 of Ya(k):

pa(k) =
qa(k)f

′
1(Ya(k))

qa(k)f ′
1(Ya(k)) + (1− qa(k))f ′

0(Ya(k))
(11)

when channela is accessed in slotk (i.e., uk = a), and pa(k) = qa(k) otherwise. We use

G(p(k − 1), uk, Yuk
(k)) to denote the function that returns the value ofp(k) given that channel

uk was sensed in slotk. This function can be calculated using the relations (7) and(11). The

reward obtained in slotk can now be expressed as,

rk = B(1− ǫ)I{Suk
(k)=0} (12)

whereǫ is given by

ǫ = P({L′(Ya(k)) > ∆′}|{Sa(k) = 0}). (13)
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From the structure of the dynamic program, it can be shown that the optimal solution to this

dynamic program can be obtained by solving the following Bellman equation [7] for the optimal

reward-to-go function:

J(p) = max
u∈C

[B(1− ǫ)(1− qu) + αE(J(G(p, u, Yu)))] (14)

where p represents the initial value of the belief vector, i.e., theprior probability of channel

occupancies in slot−1, andq is calculated fromp as in (7) by,

qa = P (1, 1)pa + P (0, 1)(1− pa), a ∈ C. (15)

The expectation in (14) is performed over the random observation Yu. Since it is not easy to

find the optimal solution to this Bellman equation, we adopt asuboptimal strategy to obtain a

channel selection policy that performs well.

In the rest of the paper we assume that the transition probability matrix P satisfies the following

regularity conditions:

Assumption 1 : 0 < P (j, j) < 1, j ∈ {0, 1} (16)

Assumption 2 : P (0, 0) > P (1, 0) (17)

The first assumption ensures that the resultant Markov chainis irreducible and positive recurrent,

while the second assumption ensures that it is more likely for a channel that is free in the current

slot to remain free in the next slot than for a channel that is occupied in the current slot to switch

states and become free in the next slot. While the first assumption is important the second one

is used only in the derivation of the upper bound on the optimal performance and can easily be

relaxed by separately considering the case where the inequality (17) does not hold.

A. Greedy policy

A straightforward suboptimal solution to the channel selection problem is the greedy policy,

i.e., the policy of maximizing the expected instantaneous reward in the current time slot. The

expected instantaneous reward obtained by accessing some channela in a given slotk is given

by B(1 − ǫ)(1 − qa(k)) where ǫ is given by (13). Hence the greedy policy is to choose the

channela such that1− qa(k) is the maximum.

ugr

k = argmax
u∈C

{1− qu(k)}. (18)
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In other words, in every slot the greedy policy chooses the channel that is most likely to be free,

conditioned on the past observations. The greedy policy forthis problem is in fact equivalent to

theQMDP policy, which is a standard suboptimal solution to the POMDPproblem (see, e.g., [8]).

It is shown in [1] and [2] that under some conditions onP andL, the greedy policy is optimal if

the observation in each slot reveals the underlying state ofthe channel. Hence it can be argued

that under the same conditions, the greedy policy would alsobe optimal for our problem at high

SNR.

B. An upper bound

An upper bound on the optimal reward for the POMDP of (14) can be obtained by assuming

more information than the maximum that can be obtained in reality. One such assumption that

can give us a simple upper bound is theQMDP assumption [8], which is to assume that in all

future slots, the state of all channels become known exactlyafter making the observation in that

slot. The optimal reward under theQMDP assumption is a function of the initial belief vector,

i.e., the prior probabilities of occupancy of the channels in slot−1. We represent this function

by JQ. In practice, a reasonable choice of initial value of the belief vector is given by the

stationary distribution of the Markov chains. Hence for anysolution to the POMDP that uses

this initialization, an upper bound for the optimal reward under theQMDP assumption is given by

JU = JQ(p∗1) wherep∗ represents the probability that a channel is occupied underthe stationary

distribution of the transition probability matrixP , and1 represents anL× 1 vector of all1’s.

The first step involved in evaluating this upper bound is to determine the optimal reward

function under the assumption that all the channel states become known exactly after making

the observation in each slot including the current slot. We call this functionJ̃ . That is, we want

to evaluateJ̃(x) for all binary stringsx of lengthL that represent the2L possible values of the

vector representing the states of all channels in slot−1. TheQMDP assumption implies that the

functionsJQ and J̃ satisfy the following equation:

JQ(z) = max
u∈C

{[B(1− ǫ)(1 − qu) +

∑

x∈{0,1}L

αP({S(0) = x})J̃(x)]} s.t. p(−1) = z (19)

where p(−1) denotes the a priori belief vector about the channel states in slot −1 and qu is



11

obtained frompu(−1) just as in (15). Hence the upper boundJU = JQ(p∗1) can be easily

evaluated usingP once the functionJ̃ is determined.

Now we describe how one can solve for the functionJ̃ . Under the assumption that the states of

all the channels become known exactly at the time of observation, the optimal channel selected

in any slotk would be a function of the states of the channels in slotk − 1. Moreover, the

sensing action in the current slot would not affect the rewards in the future slots. Hence the

optimal policy would be to maximize the expected instantaneous reward, which is achieved by

accessing the channel that is most likely to be free in the current slot. Now under the added

assumption stated in (17) earlier3, the optimal policy would always select some channel that was

free in the previous time slot, if there is any. If no channel is free in the previous time slot, then

the optimal policy would be to select any one of the channels in C, since all of them are equally

likely to be free in the current slot. Hence the derivation ofthe optimal total reward for this

problem is straightforward as illustrated below. The totalreward for this policy is a function of

the state of the system in the slot preceding the initial slot, i.e., S(−1).

J̃(x) = max
u∈C

E

[
κ[I{Su(0)=0} + αJ̃(S(0))]

∣∣∣∣{S(−1) = x}

]

=





κP (0, 0) + αV (x) if x 6= 1

κP (1, 0) + αV (x) if x = 1

whereV (x) = E[J̃(S(0))|{S(−1) = x}], κ = B(1− ǫ), and1 is anL× 1 string of all 1’s. This

means that we can write

J̃(x) = κ

{
P (0, 0)

∞∑

k=0

αk − (P (0, 0)− P (1, 0))w(x)

}

= κ

{
P (0, 0)

1− α
− (P (0, 0)− P (1, 0))w(x)

}
(20)

where

w(x) , E


 ∑

M≥−1:S(M)=1

αM+1

∣∣∣∣∣{S(−1) = x}




is a scalar function of the vector statex. Here the expectation is over the random slots when

3It is easy to see that a minor modification of the derivation ofthe upper bound works when assumption (17) does not hold.
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the system reaches state1. Now by stationarity we have,

w(x) = E


 ∑

M≥0:S(M)=1

αM

∣∣∣∣∣{S(0) = x}


 . (21)

We useP to denote the matrix of size2L×2L representing the transition probability matrix of

the joint Markov process that describes the transitions of the vector of channel statesS(k). The

(i, j)th element ofP represents the probability that the state of the system switches toy in slot

k+1 given that the state of the system isx in slot k, wherex is theL-bit binary representation

of i− 1 andy is theL-bit binary representation ofj − 1. Using a slight abuse of notation we

represent the(i, j)th element ofP asP(x, y) itself. Now equation (21) can be solved to obtain,

w(x) =
∑

y

αP(x, y)w(y) + I{x=1}. (22)

This fixed point equation which can be solved to obtain,

w = (I− αP)−1




0
...

0

1




2L×1

(23)

wherew is a 2L × 1 vector whose elements are the values of the functionw(x) evaluated at the

2L different possible values of the vector statex of the system in time slot−1. Again, theith

element of vectorw is w(x) wherex is theL-bit binary representation ofi−1. ThusJ̃ can now

be evaluated by using relation (20) and the expected reward for this problem under theQMDP

assumption can be calculated by evaluatingJU = JQ(p∗1) via equation (19). This optimal value

yields an analytical upper bound on the optimal reward of theoriginal problem (14).

C. Comparison with [4] for single user problem

Although we have studied a spectrum access scheme for a cooperative cognitive radio network,

it can also be employed by a single cognitive user. Under thissetting, our approach to the

spectrum access problem described earlier in this section is similar to that considered in [4] and

[3] in that sensing does not reveal the true channel states but only a random variable whose

distribution depends on the current state of the sensed channel. As a result, the structure of our
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optimal access policy and the sufficient statistic are similar to those in [4]. In this section we

compare the two schemes.

The main difference between our formulation and that in [4] is that in our formulation the

secondary users use the primary signal received on the channel to track the channel occupancies,

while in [4] they use the ACK signals exchanged between the secondary transmitter and receiver.

Under the scheme of [4], in each slot, the secondary receivertransmits an ACK signal upon

successful reception of a transmission from the secondary receiver. The belief updates are then

performed using the single bit of information provided by the presence or absence of the ACK

signal. The approach of [4] was motivated by the fact that, under that scheme, the secondary

receiver knows in advance the channel on which to expect potential transmissions from the

secondary transmitter in each slot, thus obviating the needfor control channels for synchro-

nization. However, such synchronization between the transmitter and receiver is not reliable in

the presence of interfering terminals that are hidden [9] from either the receiver or transmitter,

because the ACK signals will no longer be error-free. In thisregard, we believe that a more

practical solution to this problem would be to set aside a dedicated control channel of low capacity

for the purpose of reliably maintaining synchronization, and use the observations on the primary

channel for tracking the channel occupancies. In addition to guaranteeing synchronization, our

scheme provides some improvement in utilizing transmission opportunities over the ACK-based

scheme, as we show in section V-A.

Another difference between our formulation and that in [4] is that we assume that the statistics

of channel occupancies are independent and identical while[4] considers the more general case

of correlated and non-identical channels. However, the scheme we proposed in section III can be

easily modified to handle this case, with added complexity. The sufficient statistic would now be

the posteriori distribution ofS(k), the vector of states of all channels, and the access thresholds

on different channels would be non-identical and depend on the statistics of the observations the

respective channels. We avoid elaborating on this more general setting to keep the presentation

simple.

IV. THE CASE OF UNKNOWN DISTRIBUTIONS

In practice, the secondary users are typically unaware of the primary’s signal characteristics

and the channel realization from the primary [10]. Hence cognitive radio systems have to rely on
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some form of non-coherent detection such as energy detection while sensing the primary signals.

Furthermore, even while employing non-coherent detectors, the secondary users are also unaware

of their locations relative to the primary and hence are not aware of the shadowing and path

loss from the primary to the secondary. Hence it is not reasonable to assume that the secondary

users know the exact distributions of the observations under the primary-present hypothesis,

although it can be assumed that the distribution of the observations under the primary-absent

hypothesis is known exactly. This scenario can be modeled byusing a parametric description

for the distributions of the received signal under the primary-present hypothesis. We denote the

density functions of the observations under the two possible hypotheses as,

Sa(k) = 0 : Ya(k) ∼ fθ0

Sa(k) = 1 : Ya(k) ∼ fθa

whereθa ∈ Θ, ∀a ∈ {1, 2, . . . , L} (24)

where the parameters{θa} are unknown for all channelsa, andθ0 is known. We useLθ(.) to

denote the log-likelihood function underfθ defined by,

Lθ(x) , log

(
fθ(x)

fθ0(x)

)
, x ∈ R, θ ∈ Θ. (25)

In this section, we study two possible approaches for dealing with such a scenario, while

restricting to greedy policies for channel selection. For ease of illustration, in this section we

consider a secondary system comprised of a single user, although the same ideas can also be

applied for a system with multiple cooperating users.

A. Worst-case design for non-random θa

A close examination of Section III reveals two specific uses for the density function of the

observations under theSa(k) = 1 hypothesis. The knowledge of this density was of crucial

importance in setting the access threshold in (10) to meet the constraint on the probability of

interference. The other place where this density was used was in updating the belief probabilities

in (11). When the parameters{θa} are non-random and unknown, we have to guarantee the

constraint on the interference probability for all possible realizations ofθa. The optimal access

decision would thus be given by,

δ̂a(k) = I{uk=a}

∏

θ∈Θ

I{Lθ(Ya(k))<τθ} (26)
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whereτθ satisfies,

P({Lθ(Ya(k)) < τθ}|{Sa(k) = 1, θa = θ}) = ζ. (27)

The other concern that we need to address in this approach is:what distribution do we use for

the observations underSa(k) = 1 in order to perform the updates in (11). An intelligent solution

is possible provided the densities described in (24) satisfy the condition that there is aθ∗ ∈ Θ

such that the for allθ ∈ Θ and for all τ ∈ R the following inequality holds:

P({Lθ∗(Ya(k)) > τ}|{Sa(k) = 1, θa = θ}) ≥

P({Lθ∗(Ya(k)) > τ}|{Sa(k) = 1, θa = θ∗}). (28)

The condition (28) is satisfied by several parameterized densities including an important practical

example discussed later. Under condition (28), a good suboptimal solution to the channel selection

problem would be to run the greedy policy for channel selection usingfθ∗ for the density under

Sa(k) = 1 while performing the updates of the channel beliefs in (11).This is a consequence

of the following lemma.

Lemma 4.1: Assume condition (28) holds. Supposef ∗
θ is used in place off ′

1 for the distribution

of the observations underSa(k) = 1 while performing belief updates in (11). Then,

(i) For all γ ∈ Θ and for allβ, p ∈ [0, 1],

Pγ({pa(k) > β}|{Sa(k) = 1, pa(k − 1) = p}) ≥

Pθ∗({pa(k) > β}|{Sa(k) = 1, pa(k − 1) = p}) (29)

wherePθ represents the probability measure whenθa = θ.

(ii) Conditioned on{Sa(k) = 0}, the distribution ofpa(k) given any value forpa(k − 1) is

identical for all possible values ofθa.

Proof: (i) Clearly (29) holds with equality when channela is not sensed in slotk (i.e.

uk 6= a). Whenuk = a, it is easy to see that the new belief given by (11) is a monotonically

increasing function of the log-likelihood function,Lθ∗(Ya(k)). Hence (29) follows from condition

(28).

(ii) This is obvious since the randomness inpa(k) under{Sa(k) = 0} is solely due to the

observationYa(k) whose distributionfθ0 does not depend onθa.

Clearly, updating usingfθ∗ in (11) is optimal ifθa = θ∗. Whenθa 6= θ∗, the tracking of beliefs

are guaranteed to be at least as accurate, in the sense described in Lemma 4.1. Hence, under
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condition (28), a good suboptimal solution to the channel selection problem would be to run the

greedy policy for channel selection usingfθ∗ for the density underSa(k) = 1 while performing

the updates of the channel beliefs in (11). Furthermore, it is known that [11] under condition

(28), the set of likelihood ratio tests in the access decision of (26) can be replaced with a single

likelihood ratio test under the worst case parameterθ∗ given by,

δ̂a(k) = I{uk=a}I{Lθ∗(Ya(k))<τθ∗}. (30)

The structure of the access decision given in (30), and the conclusion from Lemma 4.1 suggests

thatθ∗ is a worst-case value of the parameterθa. Hence the strategy of designing the sensing and

access policies assuming this worst possible value of the parameter is optimal in the following

min-max sense: The average reward when the true value ofθa 6= θ∗ is expected to be no smaller

than that obtained whenθa = θ∗ since the tracking of beliefs is worst whenθa = θ∗ as shown

in Lemma 4.1. This intuitive reasoning is seen to hold in the simulation results in Section V-B.

B. Modeling θa as random

In Section V-B, we show through simulations that the worst-case approach of the previous

section leads to a severe decline in performance relative tothe scenario where the distribution

parameters in (24) are known accurately. In practice it may be possible to learn the value of

these parameters online. In order to learn the parameters{θa} we need to have a statistical

model for these parameters and a reliable statistical modelfor the channel state process. In this

section we model the parameters{θa} as random variables, which are i.i.d. across the channels

and independent of the Markov process as well as the noise process. In order to assure the

convergence of our learning algorithm, we also assume that the cardinality of setΘ is finite4

and let|Θ| = N . Let {µi}N1 denote the elements of setΘ. The prior distribution of the parameters

{θa} is known to the secondary users. The beliefs of the differentchannels no longer form a

sufficient statistic for this problem. Instead, we keep track of the following set of a posteriori

probabilities which we refer to asjoint beliefs:

{P({(θa, Sa(k)) = (µi, j)}|Ik) : ∀i, j, a} . (31)

4We do discuss the scenario whenΘ is a compact set in the example considered in Section V-B.
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Since we assume that the parameters{θa} take values in a finite set, we can keep track of these

joint beliefs just as we kept track of the beliefs of the states of different channels in Section

III. For the initial values of these joint beliefs we use the product distribution of the stationary

distribution of the Markov chain and the prior distributionon the parameters{θa}. We store

these joint beliefs at the end of slotk in anL×N × 2 arrayQ(k) with elements given by,

Qa,i,j(k) = P({(θa, Sa(k)) = (µi, j)}|Y
k
a , K

k
a ). (32)

The entries of the arrayQ(k) corresponding to channela represent the joint a posteriori prob-

ability distribution of the parameterθa and the state of channela in slot k conditioned on the

information available up to slotk which we calledIk. Now define,

Ha,i,j(k) =
∑

ℓ∈{0,1}

P (ℓ, j)Qa,i,ℓ(k − 1).

Again, the values of the arrayH(k) represent the a posteriori probability distributions about the

parameters{θa} and the channel states in slotk conditioned onIk−1, the information up to slot

k − 1. The update equations for the joint beliefs can now be written as follows:

Qa,i,j(k) =





λHa,i,0(k)fθ0(Ya(k)) if j = 0

λHa,i,1(k)fµi
(Ya(k)) if j = 1

when channela was accessed in slotk, andQa,i,j(k) = Ha,i,j(k) otherwise. Hereλ is just a

normalizing factor.

It is shown in Appendix that, for each channela, the a posteriori probability mass function

of parameterθa conditioned on the information up to slotk, converges to a delta-function at the

true value of parameterθa as k → ∞, provided we sense channela frequently enough. This

essentially means that we can learn the value of the actual realization of θa by just updating

the joint beliefs. This observation suggests that we could use this knowledge learned about the

parameters in order to obtain better performance than that obtained under the policy of Section

IV-A. We could, for instance, use the knowledge of the true value of θa to be more liberal in

our access policy than the satisfy-all-constraints approach that we used in Section IV-A when

we did a worst-case design. With this in mind, we propose the following algorithm for choosing

the threshold to be used in each slot for determining whetheror not to access the spectrum.

Assume channela was sensed in slotk. We first arrange the elements of setΘ in increasing

order of the a posteriori probabilities of parameterθa. We partitionΘ into two groups, a ‘lower’
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partition and an ‘upper’ partition, such that all elements in the lower partition have lower a

posteriori probability values than all elements in the upper partition. The partitioning is done

such that the number of elements in the lower partition is maximized subject to the constraint

that the a posteriori probabilities of the elements in the lower partition add up to a value lower

than ζ . These elements ofΘ can be ignored while designing the access policy since the sum

of their a posteriori probabilities is below the interference constraint. We then design the access

policy such that we meet the interference constraint conditioned on parameterθa taking any

value in the upper partition. The mathematical descriptionof the algorithm is as follows. Define

bia(k) ,
∑

j∈{0,1}

Qa,i,j(k − 1).

The vector(b1a(k), b
2
a(k), . . . , b

N
a (k))

⊤ represents the a posteriori probability mass function of

parameterθa conditioned onIk−1, the information available up to slotk − 1. Now let πk(i) :

{1, 2, . . . , N} 7→ {1, 2, . . . , N} be a permutation of{1, 2, . . . , N} such that{µπk(i)}
N
i=1 are

arranged in increasing order of posteriori probabilities,i.e.

i ≥ j ⇔ bπk(i)
a (k) ≥ bπk(j)

a (k)

and letNa(k) = max{c ≤ N :

c∑

i=1

bπk(i)
a (k) < ζ}. Now define setΘa(k) = {µπk(i) : i ≥ Na(k)}.

This set is the upper partition mentioned earlier. The access decision on channela in slot k is

given by,5

δ̃a(k) = I{uk=a}

∏

θ∈Θa(k)

I{Lθ(Ya(k))<τθ} (33)

whereτθ satisfy (27). The access policy given above guarantees that

P({δ̃a(k) = 1}|{Sa(k) = 1}, Y k−1, Kk−1) < ζ (34)

whence the same holds without conditioning onY k−1 andKk−1. Hence, the interference con-

straint is met on an average, averaged over the posteriori distributions ofθa. Now it is shown

in Appendix that the a posteriori probability mass functionof parameterθa converges to a delta

5The access policy obtained via the partitioning scheme is simple to implement but is not the optimal policy in general. The

optimal access decision on channela in slot k would be given by a likelihood-ratio test betweenfθ0 and the mixture density
∑

θ∈Θ
rθ(k − 1)fθ whererθ(k − 1) represents the value of the posterior distribution ofθa after slotk − 1, evaluated atθ.

However setting thresholds for such a test is prohibitivelycomplex.
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function at the true value of parameterθa almost surely. Hence the constraint is asymptotically

met even conditioned onθa taking the correct value. This follows from the fact that, ifµi∗ is the

actual realization of the random variableθa, and bi∗a (k) converges to1 almost surely, then, for

sufficiently largek, (33) becomes:̃δa(k) = I{uk=a}I{Lµi∗
(Ya(k))<τµi∗}

with probability one and

hence the claim is satisfied.

It is important to note that the access policy given in (33) need not be the optimal access

policy for this problem. Unlike in Section II, here we are allowing the access decision in slot

k to depend on the observations in all slots up tok via the joint beliefs. Hence, it is no longer

obvious that the optimal test should be a threshold test on the LLR of the observations in the

current slot even if parameterθa is known. However, this structure for the access policy can be

justified from the observation that it is simpler to implement in practice than some other policy

that requires us to keep track of all the past observations. The simulation results that we present

in Section V-B also suggest that this scheme achieves substantial improvement in performance

over the worst-case approach, thus further justifying thisstructure for the access policy.

Under this scheme the new greedy policy for channel selection is to sense the channel which

promises the highest expected instantaneous reward which is now given by,

ũgr

k = argmax
a∈C

{
N∑

i=1

ha,i,0(k)(1− ǫa(k))

}
(35)

where

ǫa(k) = P


 ⋃

θ∈Θa(k)

{Lθ(Ya(k)) > τθ}

∣∣∣∣{Sa(k) = 0}


 .

However, in order to prove the convergence of the a posteriori probabilities of the parameters

{θa}, we need to make a slight modification to this channel selection policy. In our proof, we

require that each channel is accessed frequently. To enforce that this condition is satisfied, we

modify the channel selection policy so that the new channel selection scheme is as follows:

ũmod
k =





Cj if k ≡ j mod CL, j ∈ C

ũgr

k else
(36)

whereC > 1 is some constant and{Cj : 1 ≤ j ≤ L} is some ordering of the channels inC.
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V. SIMULATION RESULTS AND COMPARISONS

A. Known distributions

We consider a simple model for the distributions of the observations and illustrate the ad-

vantage of our proposed scheme over that in [4] by simulatingthe performances obtained by

employing the greedy algorithm on both these schemes. We also consider a combined scheme

that uses both the channel observations and the ACK signals for updating beliefs.

We simulated the greedy policy under three different schemes. Our scheme, which we callG1,

uses only the observations made on the channels to update thebelief vectors. The second one,

G2, uses only the ACK signals transmitted by the secondary receiver, while the third one,G3,

uses both observations as well as the error-free ACK signals. We have performed the simulations

for two different values of the interference constraintζ . The number of channels was kept at

L = 2 in both cases and the transition probability matrix used was,

P =


 0.9 0.1

0.2 0.8




where the first index represents state 0 and the second represents state 1. Both channels were

assumed to have unit bandwidth,B = 1 and the discount factor was set toα = 0.999. Such

a high value ofα was chosen to approximate the problem with no discounts which would be

the problem of practical interest. As we saw in Section III, the spectrum access problem with

a group of cooperating secondary users is equivalent to thatwith a single user. Hence, in our

simulations we use a scalar observation model with the following simple distributions forYa(k)

under the two hypotheses:

Sa(k) = 0 (primary OFF) : Ya(k) ∼ N (0, σ2)

Sa(k) = 1 (primary ON) : Ya(k) ∼ N (µ, σ2) (37)

It is easy to verify that the LLR for these observations is an increasing linear function ofYa(k).

Hence the new access decisions are made by comparingYa(k) to a thresholdτ chosen such that,

P({Ya(k) < τ}|{Sa(k) = 1}) = ζ (38)

and access decisions are given by,

δa(k) = I{Ya(k)<τ}I{uk=a}. (39)
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Fig. 1. Comparison of performances obtained with greedy policy that uses observations and greedy policy that uses ACKs.

Performance obtained with greedy policy that uses both ACKsas well as observations and the upper bound are also shown.

The belief updates in (8) are now given by,

pa(k) =
qa(k)f(µ, σ

2, Ya(k))

qa(k)f(µ, σ2, Ya(k)) + (1− qa(k))f(0, σ2, Ya(k))

when channela was selected in slotk (i.e. uk = a), andpa(k) = qa(k) otherwise. Hereqa(k) is

given by (7) andf(x, y, z) represents the value of the Gaussian density function with meanx and

variancey evaluated atz. For the mean and variance parameters in (37) we useσ = 1 and choose

µ so thatSNR = 20 log10(µ/σ) takes values from−5 dB to 5 dB. In the case of cooperative

sensing, thisSNR represents the effective signal-to-noise ratio in the joint LLR statistic at the

decision center,L(Xa(k)). We perform simulations for two values of the interference constraint,

ζ = 0.1 and ζ = 0.01.

As seen in Fig. 1, the strategy of using only ACK signals (G2) performs worse than the one

that uses all the observations (G1), especially forζ = 0.01, thus demonstrating that relying

only on ACK signals compromises on the amount of informationthat can be learned. We also
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observe that the greedy policy attains a performance that iswithin 10% of the upper bound. It

is also seen in the figure that the reward values obtained under G1 andG3 are almost equal.

For ζ = 0.01, it is seen that the two curves are overlapping. This observation suggests that

the extra advantage obtained by incorporating the ACK signals is insignificant especially when

the interference constraint is low. The explanation for this observation is that the ACK signals

are received only when the signal transmitted by the secondary transmitter successfully gets

across to its receiver. For this to happen the state of the primary channel should be ‘0’ and the

secondary must decide to access the channel. When the value of the interference constraintζ

is low, the secondary accesses the channel only when the value of theYa(k) is low. Hence the

observations in this case carry a significant amount of information about the states themselves

and the additional information that can be obtained from theACK signals is not significant.

Thus learning using only observations is almost as good as learning using both observations as

well as ACK signals in this case.

B. Unknown distributions

We compare the performances of the two different approachesto the spectrum access problem

with unknown distributions that we discussed in Section IV.We use a parameterized version

of the observation model we used in the example in Section V-A. We assume that the primary

and secondary users are stationary and assume that the secondary user is unaware of its location

relative to the primary transmitter. We assume that the secondary user employs some form of

energy detection, which means that the lack of knowledge about the location of the primary

manifests itself in the form of an unknown mean power of the signal from the primary. Using

Gaussian distributions as in Section V-A, we model the lack of knowledge of the received

primary power by assuming that the mean of the observation under H1 on channela is an

unknown parameterθa taking values in a finite set of positive valuesΘ. The new hypotheses

are:

Sa(k) = 0 : Ya(k) = Na(k)

Sa(k) = 1 : Ya(k) = θa +Na(k)

whereNa(k) ∼ N (0, σ2), θa ∈ Θ,min(Θ) > 0. (40)
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For the set of parameterized distributions in (40), the log-likelihood ratio functionLθ(x)

defined in (25) is linear inx for all θ ∈ Θ. Hence comparingLθ(Ya(k)) to a threshold is

equivalent to comparingYa(k) to some other threshold. Furthermore, for this set of parameterized

distributions, it is easy to see that the conditional cumulative distribution function (cdf) of the

observationsYa(k) underH1, conditioned onθa taking valueθ, is monotonically decreasing inθ.

Furthermore, under the assumption thatminΘ > 0, it follows that choosingθ∗ = minΘ satisfies

the conditions of (28). Hence the optimal access decision under the worst-case approach given

in (30) can be written as

δ̂a(k) = I{uk=a}I{Ya(k)<τw} (41)

whereτw satisfies

P({Ya(k) < τw}|{Sa(k) = 1, θa = θ∗}) = ζ (42)

whereθ∗ = minΘ. Thus the worst-case solution for this set of parameterizeddistributions is

identical to that obtained for the problem with known distributions described in (37) withµ

replaced byθ∗. Thus the structures of the access policy, the channel selection policy, and the

belief update equations are identical to those derived in the example shown in Section V-A with

µ replaced byθ∗.

Similarly, the access policy for the case of randomθa parameters given in (33) can now be

written as

δ̃a(k) = I{uk=a}I{Ya(k)<τr(k)} (43)

whereτr(k) satisfies

P({Ya(k) < τr(k)}|{Sa(k) = 1, θa = θ#(k)}) = ζ (44)

whereθ#(k) = minΘa(k). The belief updates and greedy channel selection are performed as

described in Section IV-B. The quantityǫa(k) appearing in (35) can now be written as

ǫa(k) = P({Ya(k) > τr(k)}|{Sa(k) = 0}).

We simulated the performances of both the schemes on the hypotheses described in (40). We

used the same values ofL, P , α andσ as in Section V-A. We chose setΘ such that the SNR

values in dB given by20 log µi

σ
belong to the set{−5,−3,−1, 1, 3, 5}. The prior probability

distribution for θa was chosen to be the uniform distribution onΘ. The interference constraint



24

ζ was set to0.01. Both channels were assumed to have the same values of true SNR while the

simulations were performed. The reward was computed over10000 slots since the remaining

slots do not contribute significantly to the reward. The value of C in (36) was set to a value

higher than the number of slots considered so that the greedychannel selection policy always

uses the second alternative in (36). Although we require (36) for our proof of convergence of

the a posteriori probabilities in the Appendix, it was observed in simulations that this condition

was not necessary for convergence.

The results of the simulations are given in Fig. 2. The net reward values obtained under the

worst-case design of Section IV-A and that obtained with thealgorithm for learningθa given in

Section IV-B are plotted. We have also included the rewards obtained with the greedy algorithm

G1 with known θa values; these values denote the best rewards that can be obtained with the

greedy policy when the parametersθa are known exactly. Clearly, we see that the worst-case

design gives us almost no improvement in performance for high values of actual SNR. This is

because the threshold we choose is too conservative for highSNR scenarios leading to several

missed opportunities for transmitting. The minimal improvement in performance at high SNR is

due to the fact that the system now has more accurate estimates of the channel beliefs although

the update equations were designed for a lower SNR level. Thelearning scheme, on the other

hand, yields a significant performance advantage over the worst-case scheme for high SNR values

as seen in the figure. It is also seen that there is a significantgap between the performance with

learning and that with knownθa values at high SNR values. This gap is due to the fact that

the posteriori probabilities about theθa parameters take some time to converge. As a result of

this delay in convergence a conservative access threshold has to be used in the initial slots thus

leading to a drop in the discounted infinite horizon reward. However, if we were using an average

reward formulation for the dynamic program rather than a discounted reward formulation, we

would expect the two curves to overlap since the loss in the initial slots is insignificant while

computing the long-term average reward.

Remark 5.1: So far in this paper, we have assumed that the cardinality of set Θ is finite.

The proposed learning algorithm can also be adapted for the case whenΘ is a compact set. A

simple example illustrates how this may be done. Assuming parameterized distributions of the

form described in (40), suppose that the value ofθa in dB is uniformly distributed in the interval

[−4.5, 4.5] and that we compute the posteriori probabilities ofθa assuming that its value in dB
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Fig. 2. Comparison of performances obtained with worst-case approach and learning approach. Performance obtained with

greedy policy is also shown. The value ofζ = 0.01.

is quantized to the finite setΘ = {−5,−4, . . . , 5}. Now if the actual realization ofθa is between

1 dB and2 dB, say1.5 dB, then we expect to see low posteriori probabilities for all elements of

Θ except1 dB and2 dB and in this case it would be safe to set the access thresholdassuming

an SNR of1 dB. Although this threshold is not the best that can be set forthe actual realization

of θa, it is still a significant improvement over the worst-case threshold which would correspond

to an SNR of−4.5 dB. We expect the a posteriori probabilities of all elementsof Θ other than

1 dB and2 dB to converge to0, but the a posteriori probabilities of these two values may not

converge; they may oscillate between0 and 1 such that their sum converges to1. A rigorous

version of the above argument would require some ordering ofthe parameterized distributions

as in (28).
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VI. CONCLUSIONS AND DISCUSSION

The results of Section V-A and the arguments we presented in Section III-C clearly show that

our scheme of estimating the channel occupancies using the observations yields performance

gains and may have practical advantages over the ACK-based scheme that was proposed in [4].

We believe that these advantages are significant enough to justify using our scheme even though

it necessitates the use of dedicated control channels for synchronization.

For the scenario where the distributions of the received signals from the primary transmitters

are unknown and belong to a parameterized family, the simulation results in Section V-B suggest

that designing for worst-case values of the unknown parameters can lead to a significant drop in

performance relative to the scenario where the distributions are known. Our proposed learning-

based scheme overcomes this performance drop by learning the primary signal’s statistics. The

caveat is that the learning procedure requires a reliable model for the state transition process

if we need to give probabilistic guarantees of the form (34) and to ensure convergence of the

beliefs about theθa parameters.

In most of the existing literature on sensing and access policies for cognitive radios that

use energy detectors, the typical practice is to consider a worst-case mean power under the

primary-present hypothesis. The reasoning behind this approach is that the cognitive users have to

guarantee that the probability of interfering with any primary receiver located within a protected

region [10], [9] around the primary transmitter is below theinterference constraint. Hence it is

natural to assume that the mean power of the primary signal isthe worst-case one, i.e., the mean

power that one would expect at the edge of the protected region. However, the problem with this

approach is that by designing for the worst-case distribution, the secondary users are forced to

set conservative thresholds while making access decisions. Hence even when the secondary users

are close to the primary transmitter and the SNR of the signalthey receive from the primary

transmitter is high, they cannot efficiently detect vacancies in the primary spectrum. Instead,

if they were aware that they were close to the transmitter they could have detected spectral

vacancies more efficiently as demonstrated by the improvement in performance at higher SNRs

observed in the simulation example in Section V-A. This lossin performance is overcome by the

learning scheme proposed in Section IV-B. By learning the value of θa the secondary users can

now set more liberal thresholds and hence exploit vacanciesin the primary spectrum better when
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they are located close to the primary transmitter. Thus, using such a scheme would produce a

significant performance improvement in overall throughputof the cognitive radio system.

APPENDIX

Here we show that for each channela, the a posteriori probability mass function of parameter

θa converges to a delta-function at the true value of the parameter almost surely under the

algorithm described in Section IV-B.

Theorem A.1: Assume that the transition probability matrixP satisfies (16). Further assume

that the conditional densities of the observations given in(24) satisfy
∫

fµi
(y)| log(fµi

(y))|dy < ∞ for all µi ∈ Θ, (45)

and that all densities in (24) are distinct. Then, under the channel sensing scheme that was

introduced in (36), for each channela,

P({θa = µi}|Y
n)

a.s.
−−−→
n→∞

I{θa=µi}, for all µi ∈ Θ.

Proof: Without loss of generality, we can restrict ourselves to theproof of the convergence

of the a posteriori distribution ofθ1, the parameter for the first channel. By the modified sensing

scheme introduced in (36), it can be seen that channel1 is sensed at least everyML slots. Hence,

if the a posteriori distribution converges for an algorithmthat senses channel1 exactly every

ML slots, it should converge even for our algorithm, since our algorithm updates the a posteriori

probabilities more frequently. Furthermore by considering anML-times undersampled version

of the Markov chain that determines the evolution of channel1, without loss of generality, it is

sufficient to show convergence for a sensing policy in which channel1 is sensed in every slot.

It is obvious that since condition (16) holds for the original Markov chain, it holds even for the

undersampled version. So now we assume that an observationYk is made on channel1 in every

slot k. We useY k to represent all observations on channel1 up to slotk.

We useµi∗ ∈ Θ to represent the true realization of random variableθ1 with i∗ ∈ {1, . . . , N},

and π to denote the prior distribution ofθ1. The a posteriori probability mass function ofθ1

evaluated atµi after n time slots can be expressed as

P({θ1 = µj}|Y
n) =

Pj(Y
n)π(µj)∑

i Pi(Y n)π(µi)
(46)
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where we use the notationPi(.) to denote the distribution of the observations conditionedon

θ1 taking the valueµi ∈ Θ. It follows from [12, Theorem 1, Theorem 2, and Lemma 6] that

conditioned on{θ1 = µi∗} we have,

Pi∗(Y
n)

Pi(Y n)

a.s.
−−−→
n→∞

∞ for all i 6= i∗.

Hence, it follows from (46) that conditioned on{θ1 = µi∗} we have,

Pi∗(Y
n)π(µi∗)∑

i Pi(Y n)π(µi)
a.s.

−−−→
n→∞

1

which further implies that conditioned on{θ1 = µi∗} we have,

Pj(Y
n)π(µj)∑

i Pi(Y n)π(µi)

a.s.
−−−→
n→∞

I{i∗=j}.

Since this holds for all possible realizationsµi∗ ∈ Θ of θ1, the result follows.
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