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Abstract

This paper provides central limit theorems for the wavebatket decomposition of stationary band-
limited random processes. The asymptotic analysis is pagd for the sequences of the wavelet packet
coefficients returned at the nodes of any given path of\thband wavelet packet decomposition tree. It is
shown that if the input process is centred and strictly atatiy, these sequences converge in distribution
to white Gaussian processes when the resolution levelasegs provided that the decomposition filters
satisfy a suitable property of regularity. For any givenhpahe variance of the limit white Gaussian

process directly relates to the value of the input procesgepaspectral density at a specific frequency.

Index Terms

Wavelet transforms, Band-limited stochastic processpsctfal analysis.

. INTRODUCTION

arXiv:0802.0797v3 [cs.IT] 17 Apr 2009

This paper addresses the statistical properties of Mh®&and Discrete Wavelet Packet Transform,
hereafter abbreviated d¢-DWPT. In [1], asymptotic analysis is given for the corr@atstructure and
the distribution of the)M-Band wavelet packet coefficients of stationary random gsees. The limit
autocorrelation functions and distributions are shown e¢otliie same for everw/-DWPT path. This
seems to be a paradox because MieDWPT paths are characterised by several sequences ofaetavel

filters. Two arbitrary sequences are different, and thus)atchave the same properties. In addition, the
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results presented in [1] seem to be in contradiction witls¢hstated in [2] concerning the autocorrelation
functions of the standard discrete wavelet packet transf@v/-DWPT with M/ = 2) of wide-sense
stationary random processes. The results presented ingRljdght that the limit variance of the wavelet
packet coefficients does depend on the path followed in theeMapacket tree.

In fact, as shown below, the limit results in [1, CorollaryP¥pposition 12] apply to only one path of
the M-DWPT, namely the standard approximation path (only lowspfiiters are used in this path). The
same holds true for [3, Proposition 7], which extends [1,dllary 5] to the case of the dual-tre¥ -
DWPT. Actually, the limit analysis of the autocorrelationdadistributions of thel/-DWPT coefficients
is more intricate than presented in [1] and [3] because, asstbelow, this analysis depends on the
path chosen and the wavelet filters used for decomposingniing random process. This analysis is
presented for the Shanndid-DWPT filters and standard families of paraunitary filterattbonverge to

the Shannon paraunitary filters.

[l. PRELIMINARY RESULTS
A. General formulas on thé&/-DWPT
In what follows, ;7 and M are natural numbers antl > 2. An M-DWPT is performed by using
wavelet paraunitary filters with impulse responggsm = 0,1,2,..., M — 1. For further details about
the computation and the properties af-DWPT filters, the reader is asked to refer to [4]. Let

Hp(w) = \/LM S hunlf)exp (—itw) )

¢ez
and® be a function such thafr,® : k € Z} is an orthonormal system di?(R), wherer;,® : ¢ +—
®(t — k). Let U be the closure of the space spanned by this orthonormalmsyste

The M-DWPT decomposition of the function spaté involves splittingU into M orthogonal sub-
spaces (an easy extension [5, Lemma 10.5.1] establishetddatandard DWPT):

M—1
U= Wi, 2
m=0
and recursively applying the following splitting
M—1
W, = EB W1, Mntm, 3)
m=0
for every natural numbej and everyn = 0,1,2,..., M7 — 1. In this decomposition, thevavelet packet

spaceW; , is the closure of the space spanned by the orthonormal séeafdvelet packet functions
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{W;nr:keZ} whose Fourier transforms are given by

FWjnk(w) = exp (—iM kw) FW;pn(w), (4)
with
FWin(w) = MV2FW, (Mw), (5)
where the sequend&,,,n =0,1,2,..., is recursively defined by
FWin(w) = Hp(w/M)F®(w/M), (6)
and
FWhintm(w) = Hpm(w/M)FWy(w/M), (7)

form=0,1,2,...,M — 1 andn € N.

Note that the functionP in Eq. (6) is not necessarily the standard scaling functissoeiated with
the low-pass filterh, (see [5, Lemma 10.5.1] for more details).®f is this scaling function, we have
Wy = ® in Eq. (6).

B. M-ary representations of th&/-DWPT paths

A given wavelet packet pat® is described by a sequence of nested functional subspétes:

(U {W, () }jen), whereW; .y € W;_y ,;_1y, with n(0) = 0 by convention and
n(j) = Mn(j = 1) +mj, 8)

for j > 1, wherem; € {0,1,..., M — 1}. Therefore, the shift parameter is

J
n(j) =Y mM ™t e{0,1,... M/ —1} 9)
/=1

at every resolution level. By construction, eacW ,,; is obtained by recursively decomposikjvia
a particular sequence of filte(s,,, ),—1 2.... ; where eachn, belongs to{0, 1,..., M —1}. Thus, pathP
can be associated with a unigdé-ary sequence = (my)sen Of elements of0,1,..., M — 1}. From
now on, any givenM/-DWPT decomposition path will be represented by/dRrary sequence. Since
the shift parameter. depends orj and A via Eq. (9), the notatiom = n,(j) will hereafter be used
to indicate this dependence if required. Therefore Marary sequence associated with ad/-DWPT

decomposition path specifies a unique sequéWe , (;));jen Of wavelet packets. Now we have:

Lemma 1:Let P = (U, {Wj,m(j)}jeN) be some path of théd/-DWPT decomposition tree. If the

shift parameter is a bounded function of, then X is the null sequencg, = (0,0,...).
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Proof: If there exists somg, such thatn, (jo) # 0, then it follows from Eq. (9) that, (j) > M7~

for everyj > jo. Thereforen, cannot be upper-bounded by a constant. |

Remark 1:Lemma 1 states that the approximation path (associatedlwéthull sequence) is the unique
M-DWPT decomposition path for which the shift parametes bounded by a constant independent of
j. As a consequence, the results established in [1, CordlaRroposition 12] and [3, Proposition 7]
concern the approximation path only, because the assumbiédn is constant is made in this reference

to derive the asymptotic analysis.

The results given in the present paper depends on the padferchio theM/-DWPT tree. In fact, the
M-ary representation of thé/-DWPT paths plays an important role throughout becauselatval a

complete path characterization. The following lemma withy®e useful in the sequel.

Lemma 2:Forn = n(j) given by Eq. (9), we have

J
w w
FWy(w) = Ll_[ Hme(W)] Fo(y5)- (10)
=1
Proof: An easy extension of [2, Lemma 1]. [ |

C. ShannonV/-DWPT and the Paley-Wiener spacemband-limited functions

The Shannom\/-DWPT filters are hereafter denotég, for m = 0,1,..., M — 1. These filters are

ideal low-pass, band-pass and high-pass filters. We have

H> (w) = Z Ia,, (w — 270), (11)
el

where ¥ denotes the indicator function of a given g6t 1x(x) = 1 if x € K and I (z) = 0,

otherwise, and\,,, = [— (m;})’r, —%} U [%, (m;\}l)’r}. The scaling functionb®> associated with these

filters is defined for every € R by ®3(t) = sinc(t) = sin(rt) /nt with ®3(0) = 1. The Fourier transform

of this scaling function is
FO° =1 . (12)

The closureU® of the space spanned by the orthonormal sysfep®® : k € Z} is then the Paley-
Wiener (PW) space of those elementsIgfR) that arer band-limited in the sense that their Fourier
transform is supported withifi-7, 7].

Let X be any band-limited Wide-Sense Stationary (WSS) randommgsowhose spectrum is supported
within [—m, 7]. We have (see [2, Appendix D])

X[k] = /R X()®5(t — k)dt, (13)
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so thatUS is the natural representation space of such a process. MfYWPT of X can thus be
initialized with the sampleX[k], k € Z.

Now, let us consider the Shanndi-DWPT of the PW spac®°>. The wavelet packet functiorWﬁn
of this M-DWPT can be computed by means of Egs. (5), (6) and (7), bingebt= ®° and H,,, = H>,
m=0,1,...,M — 1. The Fourier transforms of these wavelet packet functiogasgazen by proposition

1 below, which extends [6, Proposition 8.2, p. 328] sincel#tier follows from the former with\/ = 2.

Proposition 1: For every non-negative integgrand everyn € {0,..., M7 — 1},
‘FWﬁn = Mj/2]lﬁjwc<n>7 (14)
where, for any non-negative integey
[ k+L)m km kr (k4 1)7
Ajk = [_W’_W MM (15)
and G is defined by recursively setting, for = 0,1,...,M — 1 and/=0,1,2,..., G(0) = 0 and
MG{)+m if G(¢) is eve
G(Ml+m) = © @ ! (16)
MGW)—m+M—1 if G(¢)is odd

In the rest of the paper, we set, for any pgirk) of non-negative integers,

kr (k4 1)w
+ _ |k (ktDm
gk [Mj’ M| an

[1l. ASYMPTOTIC ANALYSIS FOR THE AUTOCORRELATION FUNCTIONS OF THE M -DWPT OF

SECOND-ORDERWSSRANDOM PROCESSES

Let X denote a centred second-order real random process assuifpedantinuous in quadratic mean.
The autocorrelation function ok, denoted byR, is defined byR(t, s) = E[X (t)X (s)]. The projection

of X on W, ,, yields a sequence of random variables, the wavelet padedficientsof X:

einlk] = / X(OW; nr()dt, ke Z, (18)
R
provided that the integral
[ R W) (19)
RQ

exists, which will be assumed in the rest of the paper sincangonly used wavelet functions are
compactly supported or have sufficiently fast decay. Theisece given by Eq. (18) defines the discrete
random process; ,, = (c;j . [k|)rez Of the wavelet packetoefficientsof X at any resolution levej and

for any shift parameten € {0,1,..., M/ —1}.
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A. Problem formulation
Let R;,, stand for the autocorrelation function of the random preegs. We have
Rinlk. ) = Bl lblesnld] = [ | RO OW,nals)dtds: (20)
If X is WSS, we writeR(t,s) = R(t — s) with some usual and slight abuse of language. From Eq.
(20), it follows that
Ryl €] = / / REW, it + 5)W; o) dids. (21)
R2
In the sequel, the spectrumof X, that is, the Fourier transform a?, is assumed to exist. By using
Fubini’s theorem and Parseval’s equality, we can procedd g5 Appendix C] to derive from Eqgs. (4),
(5) and (21) that;,, is WSS. For any:, ¢ € Z, and with the same abuse of language as above, the value

R; »[k, (] of the autocorrelation function of the discrete random psse; ,, is R; [k — ¢] with

= [ AW @) P exp (i) deo (22)

Let us assume thay € L°°(R) and is continuous af. These two assumptions have two easy

}{ﬁn[k]

consequences. First, the integrand on the right hand gidé ¢f Eq. (22) is integrable since its absolute
value is upper-bounded biy||so| FW,(-)|?, whose integral equalgy|.; second, the limit ofy(1%)
is v(0) when j tends tooo. Therefore, for every given natural numbey it follows from Lebesgue’s

dominated convergence theorem applied to Eq. (22) that

. _ 1 2 .
jETmRJ’"[k] = 27T/R’y(0)\.7-"Wn(w)\ exp (ikw) dw,
= 3(0) [ WO Wt = Ryt = ~(0)3T 23)
. i 1 if m=0,
whereo is the standard Kronecker symbol defined fo€ Z by §[k] =
0 if m=#D0.

The result thus obtained is that given in [1, Corollary 5].

From Lemma 1, we distinguish two cases, for any gisdrRDWPT pathP = (U, {ij(j)}jeN).
First, if n) is a constant function of, then X is the null sequencg,, and thus;P is the approximation
path. In this case, the shift parametey(j) is 0 at each resolution level and the M-DWPT of X
through path? = P,, consists of an infinite sequence of low-pass filters. The wdeladion is then
guaranteed by Eq. (23) (see also [1, Corollary 5]). The secase is that of a function, which cannot

be upper-bounded by a constant independent when j tends to infinity. In such cases wherne, is

'Example: for the sequence= (1,1,...), we haven,(j) = M’ — 1 . The nodegj, M7 — 1) are those of the path located

at the extreme rhs of th&/-DWPT decomposition tree.
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not a constant function of, the asymptotic decorrelation of ti&-DWPT coefficients at nodgj, n)(j))
whenj tends toco is no longer a mere consequence of Eq. (23) since Lebesgummadted convergence
theorem does not apply. To proceed, we then write Eq. (22henfarm

1

T or

Rynlk] /R (@) F Wi () 2 exp (M7 ko) doo. (24)

This equality derives from Eq. (22) after a change of vagadhd by taking into account Eq. (5).
The purpose of the next section is then to analyse the balvagfoR; ,, in the case of the Shannon

filters and some families of filters that converge to the Sharfilters.

B. Asymptotic decorrelation achieved by the ShaniDWPT

Let A = (my)een be anM-ary sequence of elements f4,1,..., M — 1}. Consider the Shannal/ -
DWPT, that is, the decomposition &f° associated with the Shannaf-DWPT filters(hfn)m:OJ,...7M_1.
Let Py = (U, {st.m(j)}jeN) be the path associated within the Shannon\/-DWPT decomposition

tree. It follows from proposition 1 that the supporthjsm(j) is A

ipa(s), Wherepy(j) = G(na(j)). For

j €N, the setsajﬂ(j) are nested closed intervals whose diameters teAdTberefore, their intersection

contains only one point,. It then follows from (15) that

oy = lim 2207 (25)

j—+oo M7
Let X be some centred second-order WSS random process, corginmoguadratic mean, with
spectrunty. The autocorrelation functioRJS,n resulting from the projection ok on stn derives from

Eq. (24) and is given by

RS>, [k] = % /R’Y(W)\J:Wﬁn(w)PeXp (iM7 kw) duw. (26)

From Eqgs. (14) and (26) and by taking into account thad even, as the Fourier transform of the even
function R, it follows that '
WE .
R]Sn[k:] = —/ ~v(w) cos (M7 kw)dw. (27)
A

™ +
where Ajp is given by Eq. (17) angp = G(n). When X satisfies some additional assumptions, the
following theorem 1 states that the ShanddrDWPT of X yields coefficients that tend to be decorrelated
whenj tends to infinity. One of these additional assumptions i$ #das band-limited in the sense that

its spectrum is supported withir-7, 7]. When M = 2, theorem 1 is equivalent to [2, Proposition 1].

Theorem 1:Let X be a centred second-order WSS random process, continuaysadratic mean.

Assume that the spectrum of X is an element ofL>°(R) and is supported withi—m, 7]. Let A =
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(me)een be anM-ary sequence of elements f, 1,..., M —1} andPy = (U, {W>  };en) be the
ShannonM -DWPT decomposition path associated wikh

If the spectrumy of X is continuous at poinb), then

Jlim R7 ) K] = v (wn)dlk] (28)

uniformly in k € Z, WhereR]S.m(j) is the autocorrelation function of the coefficients resgitirom the

projection of X on st.m(j).
Proof: The proof is an easy generalisation of that of [2, Propasitih which concerns the standard

wavelet packet transformi{ = 2). The key point of the proof is proposition 1 above, which eslt

possible to compute Eq. (25). |

The foregoing theorem is mainly of theoretical interestsithe Shannon/-DWPT filters have infinite
supports and are not really suitable for practical purptserder to obtain a result of the same type
for filters of practical interest, thé/-DWPT is now assumed to be performed by using decomposition

filters of orderr, hﬁ’,‘j, m=20,1,...,M — 1, such that

lim HI' = HS (ae). (29)

The parameter is called the order of thé/-DWPT filters. According to [7], the Daubechies filters
satisfy Eq. (29) forM = 2 whenr is the number of vanishing moments of the Daubechies wavelet
function; according to [8], Battle-Lemarié filters alsais®y Eq. (29) for M = 2 whenr is the spline
order of the Battle-Lemarié scaling function. The exisef such families fof/ > 2 remains an open
issue to address in forthcoming work. However, it seemsorese to expect that generdf -DWPT

filters of the Daubechies or Battle-Lemarié type conveagthe Shannon filters in the sense given above.

Theorem 2:Let X be a centred second-order WSS random process, continuaysadratic mean.
Assume that the spectrumof X is an element of.*°(R) and is supported withifi—m, 7). Assume that
the M-DWPT of the PW spac®® is achieved by using decomposition filtdrg], m=0,1,..., M —1,
satisfying Eq. (29).

For every natural numbej and everyn = 0,1,..., M7 — 1, let Ry]n stand for the autocorrelation

[r

function of the wavelet packet coefficients &f with respect to the packdV' . . We have

]7”

lim R/ [k] = R3,[k], (30)

r—4oo DT

uniformly in & € Z andn, Wherestm is given by Eq. (27).
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Remark 2:Since theM-DWPT concerns the spadé®, we have

J

FW3w) = [HHM#) Fo¥ (=), (31)
/=1
e | TT 7 (@ e
‘FWn (w) - [H ng(Mj+1_g)] Fo (Mj)7 (32)
/=1

wheren is given by Eq. (9). These equations straightforwardlydefiom Eq. (10) of lemma 2. From
Egs. (5), (29), (31) and (32), we obtain, for every given retaumber;j, that

lim FW' =FW?, (ae), (33)

r—+00 J;n
uniformly in n. The three equalities above will prove useful below.

r]

Proof: (of theorem 2)The autocorrelation functioﬁf;n is given by Eq. (24) and is equal to

. 1 . o
RJ[L[ |=— / ’y(w)\}"W-[r]L(w)\Qexp (iM7kw) dw. (34)
b 27T R ]7
In addition, we have
. 1 "
|RILIK - RS0 | < 5 /R ()| | IFW (@) 2 = [FW S, (@) deo, (35)

s . .. 7]
whereR?, is given by Eq. (27). From Egs. (5), (31) and (32), and by tgkitto acount thatHy, (w)|
and |H,§u (w)| are less than or equal to(due to the paraunitarity of th&/-DWPT filters), we obtain

FWE )P — [FWS, ()P | < 209 |Fad(w)|

(36)

The results derives from Eqgs. (33), (35), (36) and Lebesgdeminated convergence theorem. ®

V. CENTRAL LIMIT THEOREMS
We now consider a real random processthat has finite cumulants and polyspectra. Denote by
cum(t, s1,89,...,8n) = cum{X(t), X(s1), X (s2),..., X(sn)}, (37)

the cumulant of ordeV + 1 of X. The above cumulant is hereafter assumed to belonk? &V 1)
and to be finite for any natural numbaf (see [9, Proposition 1] for a discussion about the exist@fce
this cumulant). The cumulant of ordé¥ + 1 of the random process;,, has the integral form given by
(see [9, Proposition 1]):

cumjnlk, 01, ..., 0n] = cum{c;nlklcjn[l1] . .. cjnlln]}

= / dtdsl . dchum(t, 81,82,... ,SN)Wj,n7k(t)Wj,n7£1(31) . Wj,n,ZN(SN)- (38)
RN+]
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Assume thatX is strictly stationary so thatum(¢,t + t1,t + to,...,t + ty) = cum(ty,ta, ..., tN),
thenc; ,, is a strictly stationary random process with cumulants; ,, [k, k + ki, k + ko, ...,k + kn] =
cumj ki, ko, ..., kn]. Assume also thafl has a polyspectrumyy(wi,ws,...,wN) € L>®(RYN) for
every natural numbeN and every(w;,ws, ...,wy) € RY. The polyspectrum is the Fourier transform
of the cumulantum(ty,to,...,tx). WhenN =1, ~; is the spectrum o and is simply denoted as

in section lll. Then after some routine algebra, Eq. (38)uced:

M-I(N-1)/2 .
CUijL[kf)la..-akN] = (27T)N R dwl"'dwNeXp (—Z(klbdl"“i’kNwN))
ooy (oM N M FWa(—wi — . — wN) FWa(wi) ... FWe(wy).  (39)

If n is a bounded function of, it follows from Lebesgue’s dominated convergence theotiea, for
any natural numbeN > 1, cum; ,[k1, ko, ..., ky] tends to0 uniformly in ki, ks, ..., kx whenj tends
to oo. This is a consequence of [1, Proposition 11]. On the othedhd »n cannot be upper-bounded
by a constant independent with the situation is similar to that discussed in section llI{Ae shift
parametern depends on and Lebesgue’s dominated convergence theorem does ngttapp. (39) to
prove the vanishing behaviour of the cumulants. The vanigbehaviour of the cumulants are hereafter

given by theorems 3 and 4.
By taking into account Eq. (5), Eq. (39) can also be writteithvan easy change of variables:
1 .
k1, = — —iM (k otk
cum; (k1 kn] oL /RN dwy ... dwy exp (—iM? (kywi + ... + kywy))
’yN(—wl, vy —wN)}"ij(—wl — ... wN)]:ij(wl) N ij7n(wN). (40)

Theorem 3:Let X be a centred second-order strictly stationary random ggy@@ntinuous in quadratic

mean. Assume that the polyspectrum of X is an element ofL.>*(R") for any N > 1 and that the

spectrumy is supported withiM—m, 7]. If N > 1, then we have, uniformly k1, ks, ..., kn,
lim cum?, [k1, k2, ..., kn] = 0. (41)
j—+oo ’

Proof: When the wavelet packet functions are the functiizir}%n, it follows from Egs. (14) and (40)
that the cumulantumjs.vn[kl, ka,...,kn] of the discrete random process returned at ngde) by the

ShannonM -DWPT of X satisfies

M5 ||

S ’ N

|cumj,n[k‘1, ]{727 ey kN” < T]VOO AN
ey

dCUldCUQ e dwN (42)

where AN = A;, x Aj, x ... x Aj, andp = G(n).

N times
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According to Eq. (15),fAj pdw = 2w /M7. Therefore, we obtain

jcum? [k, ko, - ]| < [y lloo M7V D/, (43)
Given any natural numbeN > 1, the rhs of the latter inequality does not dependwtk, ..., ky and
vanishes wherj tends tooco, which completes the proof. ]

Corollary 1: With the same assumptions and notation as those of theoreand 3, assume thatis
continuous atvy. Then, whenj tend to infinity, the sequencéc - (J))r,j converges in the following
distributional sense to a white Gaussian process with vegia(w, ): for everyz € RY and every > 0,
there existsjy = jo(x,€) > 0 such that, for every > jj, the absolute value of the difference between

the value atc of the probability distribution of the random vector

( NG )[kl]’ 7, M(J)[kﬂ’ T ’st'vm(j)[kN])

and the value at: of the centredV-variate normal distributionV/(0, v(wy)Ix) with covariance matrix

¥(w)Iy is less thare.
Proof: A straightforward consequence of theorems 1 and 3. |

Consider filters satisfying Eq. (29). Let be anM-ary sequence of elements 66, 1,..., M — 1}.
The following results describe the asymptotic distribataf the discrete random proca§§ returned

at node(j,n(j)) when the resolution level and the order of the filters increase.

Theorem 4:Let X be a centred second-order strictly stationary random gsy@@ntinuous in quadratic
mean. Assume that the polyspectrym of X is an element of.>°(R) for every natural numbeN > 1
and that the spectrum is supported withif—m, 7].

For every given natural numbgrand everyn € {0,1,..., M7 —1}, Ietcum[ " stand for the cumulant

of order N + 1 of the wavelet packet coefficients &f with respect to the packélvﬂ.

We have, uniformly inn, k1, ks, ..., kn,
lim cuml (ke ko, k] = cum? [k ke, o k) (44)

Proof: By applying Eq. (40) tolV. and W? . we obtain

J,n’
1
jeuml [k, . k] — cumS [k, ..,]{7]\/]|<—N||7N||oo/ dwi ... dwy
(2m) RN
FW (—wr = won) FWI 1) FW on) — FWS, (—wi ... — wn)FWS, (@1) ... FWS, (wn)|.

(45)
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The integrand on the rhs of the second inequality above canlb@oupper-bounded by
IMINAN2HS (1)) B (wy) . .. D5 (wy) (46)

where we use Egs. (5), (31), (32), and take into acount ]ﬁé’fl(w)\ and |H>, (w)| are less than or
equal tol. The upper-bound given by Eq. (46) is independent @nd integrable; its integral equals
2MI(N+HD/2(27)N | By taking Eq. (33) into account, we derive from Lebegue’snitiated convergence

theorem that the upper bound in Eq. (45) tend$ twwhenr tends to+co. [ |

Corollary 2: With the same assumptions and notations as those of thed@end 4, assume that

is continuous atvy. Then, when;j andr tend to infinity, the sequencécg."lu(jg converges in the
’ r?j

following distributional sense to a white Gaussian proceihk variancey(w,): for everyz ¢ RY and
everye > 0, there existsjy = jo(z,e) > 0 and there existsy = r¢(z, jo, €) such that, for every > jj
and everyr > rg, the absolute value of the difference between the valusohthe probability distribution
of the random vector

(cm

VELIDN

N 2 RN 15 NONE L RN 199

(g NG
and the value at: of the centredV-variate normal distributionV/(0, v(wy)Ix) with covariance matrix

¥(wa)Iy is less thare.

Proof: The result follows from Egs. (28), (30), (41) and (44). |
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