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Passive Range-Difference Estimation in a
Dispersive Medium

Y. T. Chan, Thomas K. C. Lo, and H. C. So

Abstract—Passive source localization can be achieved by utilizing the
range-difference (RD) measurements between the source and several
spatially separated sensors. When the signal propagation medium is
nondispersive, the RD is typically obtained from time-difference-of-arrival
(TDOA) between sensor outputs. However, for a dispersive medium which
corresponds to in-solid localization, the TDOA information is not reliable.
In this correspondence, two RD estimation algorithms for dispersive
medium are derived and analyzed, assuming that the dispersion curve is
available. Computer simulations are included to contrast the estimation
performance of the two methods with the Cramér-Rao lower bound
(CRLB) for different conditions.

Index Terms—Dispersive medium, range-difference (RD) estimation,
source localization, time-difference-of-arrival (TDOA) estimation.

I. INTRODUCTION

A conventional approach for passive source localization is to utilize
the range-difference (RD) measurements between spatially separated
sensors in an array. From the RD information, a set of hyperbolic equa-
tions is constructed and the source position can then be calculated with
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the use of the known sensor positions [1]–[4]. The minimum number
of sensors required for two-dimensional positioning is three, and four
for the three-dimensional case. When the signal propagation speed is
a constant, the RD estimates are obtained by multiplying the velocity
with the time-difference-of-arrival (TDOA) measurements, that is, the
differences in arrival times between pairs of sensor outputs which re-
ceive the signal. There has been extensive research [5]–[8] on TDOA
or RD estimation in nondispersive scenarios which have applications in
global positioning systems [9], speaker tracking [10] and mobile phone
location [11]. When the medium is dispersive, the propagation velocity
is a function of frequency and the RDs cannot be obtained directly using
the TDOA estimates. This is because different frequency components
have different propagation speeds. Important application examples for
positioning in a dispersive medium include localization of earthquake
epicenters and underground explosions [12], microseismic events in
mines [13], and tactile interaction in novel tangible human-computer
interfaces [14], [15]. This correspondence is on the development of ac-
curate RD estimation algorithms with known frequency-dependent ve-
locity, denoted by ���� where � is the radian frequency. Note that if
���� is not available, its experimental determination consists of placing
sensors at a known separation distance �, measuring their phase-differ-
ence ���� of an input variable-frequency sinusoid, and the velocity is
then computed as ���� � �������, based on different frequencies
[16], [17].

There is not much literature on TDOA or RD estimation in a disper-
sive medium. Assuming that the TDOA is a polynomial in �, [5] finds
the TDOA as the value that maximizes a weighted sum of cosine func-
tions. The argument of the cosine is the difference between the mea-
sured phase-difference ����, and the theoretical, which is������.
The sum is over all � within the signal bandwidth. There is some dif-
ficulty with obtaining the optimal weights in [5], and [6] provides an
improvement which is applicable when the spectral matrix satisfies an
autoregressive model. As our goal is localization with a known ����
[16], [17], the best way is to estimate the RDs directly. The develop-
ment below gives two RD estimators. The first is nonlinear which cor-
responds to the maximum likelihood method but requires iteration. The
second is linear and thus there is a unique global solution, although its
performance is slightly suboptimal.

The rest of the correspondence is organized as follows. In Section II,
two RD estimation methods for a pair of sensor outputs are derived and
analyzed. Both algorithms operate in the frequency domain. It is proved
that their RD variances can attain the optimality benchmark, namely,
the Cramér-Rao lower bound (CRLB). Extension to more than two sen-
sors is also studied. Numerical examples are provided in Section III to
evaluate the RD estimation performance in the dispersive medium. Fi-
nally, conclusions are drawn in Section IV.

II. ALGORITHM DEVELOPMENT

Consider an array of � sensors at known positions ���� 	��� 
 �
�� 	� 
 
 
 � �, receiving signal from a passive source at unknown posi-
tion ��� 	� in a dispersive medium. The signal propagation velocity
is a function of frequency, denoted by ����, and is assumed known.
Let the distance between the source and the 
th receiver be �� �
��� � ��� � �	� � 	��. The RD between the 
th and �th receivers,

denoted by ��� , is then:

��� � �� ���

� ��� � ��� � �	� � 	�� � ��� � ��� � �	� � 	��
 (1)

We see that the source position can be solved from the hyperbolic equa-
tions constructed from �����.
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In the following, estimation of ����� is addressed given signals
received at the �th sensor, denoted by �����, and ����. The ������
� � �� �� � � � � ���, are samples of its analog counterpart �����, which
are expressed as

����� � 	���� � 
����� � � �� 	� � � � � � (2)

where �	����� are the dispersed versions of the zero-mean Gaussian
source signal, denoted by 	���� �
����� are uncorrelated white
Gaussian noises which are independent of 	��� and � is the data
length received at each sensor. It is worthy to point out that the
Gaussian assumption is necessary only for the CRLB derivation in
Appendix A. Our algorithm development is applicable to non-Gaussian
sources. Indeed, Section III contains a simulation study where the
signal has a uniform probability density function (PDF). Taking the
discrete Fourier transform (DFT) of ����� yields

���
� � ���
� ����
�

� ��
��
���

����
�� 
 � �� �� � � � � � � � (3)

where ���
�� ��
� and ���
� are the DFTs of 	����� 	���, and 
����,
respectively, and �� � 	�
�� . It follows from (1) and (3) that

���
� � ���
��
���

� 
 � �� �� � � � � � � �� (4)

Based on (4), we first propose a frequency-domain nonlinear least
squares (FNLS) estimator for ���


��� � ��
 ���
��

��

���

���
��
��

� ���
�

�

� ��
 ���
��

��

���

�� ���
��
�

� �
��
��

(5)

where ����� denotes the real part of � and � is the conjugate oper-
ator. Let �� ����� �

�����
��� ������
��

�

� �
��
�� � �� ������ ���. The

variance of 
��� , denoted by ���� 
����, can be computed by utilizing an
idea in [18] that leads to [19]

���� 
���� �
�� ��� ������

� �� ��� �������� �� ��

(6)

where denotes the expectation operator, and � �� ����� and � ��� �����
are the first and second derivatives of �� �����, respectively. Let 	���
be bandlimited with a constant power spectral density (PSD) between
�	 � � and �
 � � with �
 � �	, and its variance be ��� . We fur-
ther let the powers of 
���� and 
���� be both equal to �������
��	�

such that the effective noise power in ��	� �
 � is ��� , then ���� 
���� is
(see Appendix B)

���� 
���� �
��� � 	����

� ����

�

�

�

����

�

��

��

(7)

where ��� � �����
�
� is the signal-to-noise ratio in ��	� �
 �. From the

CRLB for ��� in Appendix A, it is seen that (7) attains the optimality
benchmark for � � 	, indicating that the FNLS method is an optimal
estimator for a pair of sensor outputs.

The second approach is a linear least squares based method which
follows the phase-based approach of [7]. The key idea is to estimate the
phase of ���
�����
� in (4), namely, ����������� for RD computa-
tion. To reduce spectral variances, we adopt the weighted overlapped
segment averaging (WOSA) technique and divide the received signal
����� into � segments, denoted by

��
���� � ����� ��� �������

� � �� 	� � � � ��� � � �� �� � � � � �� � � (8)

where �� is the length of each segment and � is the overlap factor in
the segmentation. In order to reduce the bias caused by duplication of
the overlapped signal samples, each segment is multiplied by a smooth
weighting function, denoted by ����, prior to performing DFT. As a
result, the weighted DFT of ��
����, denoted by ��
��
�, is

��
��
� �

� ��

���

��
���������
��� �� � � �� 	� � � � � ��

� � �� 	� � � � ��� 
 � �� �� � � � � �� � � (9)

where �� is now equal to 	�
��� . Let the phase of
�
��� �

�

�
��
���
��
� be ����
�, which is expressed as

����
� �
�����

�����
� 	��� ��
�� 
 � �� �� � � � � �� � � (10)

where the quantity 	��, with � being an integer, makes allowance for
����
� that can be greater than 	�. Applying a phase unwrapping algo-
rithm to ����
� can determine the value of �. In some applications, the
maximum RD, ���� �, is known not to cause a phase wrapping in (10).
Then �� � ����
� � � and � � �. For simplicity, ����
� will denote
the unwrapped phase in the sequel. The phase errors ���
�� can be
approximated as independent zero-mean Gaussian variables with vari-
ances [7]

��� �
���

����
�
(11)

where ����
� is given by

����
� �
� ���
��

�

�� � ���
���
(12)

and  ���
� is the coherence between ���
� and ���
�. An estimate for
� ���
��

� using WOSA is

� ���
��
� �

�
��� �

�

�
��
���
��
�
�

�
��� ���
��
��

� �
��� ���
��
��

�
� (13)

Based on (10) and (11), the best linear unbiased estimator [20] for ���

is then


��� �

��

���

� ���� ����

��� �

��

���

� ����

� �� �

� (14)

We refer to this method as the phase-based linear least squares (PLLS)
estimator. Asymptotically, when � and �� get large, the RD variance
for the PLLS estimator is [5]

���� 
���� �
��

	�
��

���

� ����

� �� �

� (15)
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An approximation for (13) is given in (16), shown at the bottom of the
page. When ���� has a flat spectrum, limited between �� and �� , and
the noise powers are identical, we have

������ �
���

������
� �� � ���� ���

�� �����	
���
(17)

Substituting (17) into (15) yields

�
�� ����� �
���� � � ����

������

�

� ��

��
	����

� ��

�

�� � � ����

� ����

�

�

�

	���

�

��

��

(18)

which is the same as the CRLB (see Appendix A) for� � �, indicating
its asymptotical optimality.

Section III below also considers another estimator, which is an ex-
tension of [5]. It is nonlinear and requires the maximization of

���� � 
�� �
�
�	

��

��


������ ��� 
������
�� ����

	����
� (19)

This phase-based nonlinear (PN) estimator, as well as FNLS, need mul-
timodal searches. In our algorithm realization, Netwon-Raphson pro-
cedure is applied to find the maximum for both FNLS and PN methods,
with PLLS providing the initial guess.

After obtaining the RD estimates from any of the
above methods for all sensor pairs, denoted by �� �
� ����� ����� � � � � ����� ����� � � � � �������
�

� , utilizing the
known constraint of ��� �������� � � will improve the accuracy.

Let ��� � �
������

������ � � � �
������

� be the independent set, where the
first sensor is selected as the reference without loss of generality. The

two vectors �� and ��� are related by [21], [22]

�� � �
��� (20)

where � � �� with � � ������
��� �����
� and � �

���� ��
�
� � � � � ��

�
����

� with �� � ������
�����
������� ������
��� ���� , and �� represent � � � identity matrix, � � � zero matrix
and column vector with length of � with all its elements equal to one,

respectively. The least squares solution for ��� is computed as

��� � ���
������ ��� (21)

It is interesting to note that ��� is an optimal estimate [22] when both
the signal and noises are white Gaussian processes.

III. SIMULATION RESULTS

Computer simulations have been carried out to evaluate the ac-
curacy of the proposed RD estimators in the presence of dispersion
with known 	���. The signal ���� is a zero-mean process of either
Gaussian or uniform PDF, which is generated by passing a white

Fig. 1. MSEs of PLLS versus SNR for Gaussian signal.

sequence through an approximately rectangular-shape bandpass filter
with cutoff frequencies �� and �� , and has power ��	 . The additive
noises ������� are independent and identically distributed Gaussian
processes. Different SNR conditions are produced by properly scaling
the noise sequences. The mean square error (MSE) in RD is used
as the performance measure and comparison with the PN estimator
is made. The corresponding CRLB, derived in Appendix A, is also
given as an optimality benchmark. From [16], the dispersion function
is approximately 	��� � ����� � � �!�. Performing the analog to
discrete frequency conversion, the discrete velocity function is then
equal to 	���� � ����� �	����!�, where �	 � �� kHz is sampling
frequency. In the PLLS and PN schemes, there is a 50% overlapped
segmentation, that is, � � ��" in (8). The weighting function ���� is
a Hanning window. Unless stated otherwise, � � ��� . All results
obtained are based on averages of 1000 independent runs.

In the first test, the effect of the segment size �� in the PLLS esti-
mator is studied. A two-sensor scenario is considered and ��� � ��#
cm is the RD. For this ��� , there is no phase wrapping in (10). Fig. 1
shows the MSEs with �� � "��� �"�� ��$� � and !�, corresponding
to � � !� #� �"� !� and �!, respectively, for ��� � ����� !�� dB.
For lower SNRs, say below 10 dB, the MSEs decrease with increasing
� . This is because WOSA and the weighting matrix are able to sup-
press the noise effectively. However, for �� � !� and ��� � � 
dB, and �� � � and ��� � �# dB, the estimates exhibit a bias.
The reason is that as the number of segments � increases, for a fixed
data length � , the segment length �� decreases. This in turns reduces
the spectral resolution and introduces a bias. Based on the numerical
results, we conclude that a good choice of ���� is between 4 and 8,
giving an RD variance that is close to its asymptotic limit.

In the second test, we evaluate the performance of FNLS, PLLS, and
PN with respect to the CRLB at different � . Fig. 2 plots their MSEs
against SNR with ��� � ��# cm. The values of �� in both PLLS and

��������
� �

� ����
������
�������

����
������� ����
�������

�
� ������������

� ����������� ����
��������� ����������� ����
��������
(16)
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Fig. 2. MSEs of different estimators versus SNR for Gaussian signal at dif-
ferent observation lengths.

Fig. 3. Mean square errors of different estimators versus SNR for uniformly
distributed signal at different observation lengths.

PN methods are ������ for � � ��� and 	����� for � � �
�	,
respectively, with � � ��. It is observed that the MSE decreases as
the observation period increases in all schemes. For ��
 � ���
� 
�
dB, the FNLS algorithm can give performance very close to the CRLB
for different values of � , while the other two algorithms perform very
similarly and their MSEs are above the lower bound by 1 to 2 dB. The
theoretical calculation of (7) is also validated.

In the third test, we repeat the second test using a signal that has a
uniform PDF. The results are shown in Fig. 3. The results are similar
to that of Fig. 2, although there is no CRLB for this case.

The final test aims to study the estimation performance when the
number of sensors is more than 2. We consider � � � and the true
RDs are ��� � ���
 cm, ��� � �
�� cm, ��� � 
�	 cm, and
��� � ��� cm where the first sensor is selected as the reference. Equa-
tion (21) is employed to give a more accurate RD estimation. We also
study the performance degradation when (21) is not applied, that is,
only � ����� ����� � � � � �����

� is used. Fig. 4 shows the average MSE
performance for the four RDs and we observe that the accuracy of the

Fig. 4. Average mean square errors of different estimators versus SNR in
5-sensor scenario.

FNLS method can meet the CRLB for the range ��
 � ���� 
� dB.
The PLLS and PN methods perform similarly and their MSEs are about
1 to 2 dB above the benchmark. Furthermore, it is seen that the perfor-

mance of using � ����� ����� � � � � �����
� and �

������
������ � � � �

������
� is

comparable for high SNR conditions, but the latter is superior when the
SNR is small.

IV. CONCLUSION

TDOA-based passive localization consists of the steps of measuring
the TDOAs between sensor pairs, converting the TDOAs to RDs by
multiplying by the velocity of propagation, and solving the hyperbolic
equations that relate the RDs to the source position. TDOA estima-
tion is usually achieved by cross-correlation. But if the medium is dis-
persive, it spreads a signal in time, and the cross-correlation function
will not give a distinct peak. In addition, the signal velocity is now fre-
quency dependent, making it difficult to perform the TDOA to RD con-
version. There will be more errors when applying a nondispersive lo-
calization scheme to a dispersive medium. The severity of performance
degradation will depend on the degree of dependency of velocity on fre-
quency. As a result, it is preferably to find the RDs directly when the
medium is dispersive. Assuming that the frequency-dependent velocity
function is available, this correspondences gives two frequency-domain
RD estimators. One is nonlinear and requires iterations but is optimal.
The other is linear and is slightly suboptimal. The RD variances of the
proposed methods are also derived in a two-sensor scenario.

APPENDIX A

The CRLB for RDs with known ���� is derived in the frequency
domain as follows. Basically, we follow the CRLB development of
[23] for passive source localization using TDOAs and gain ratios
of arrival in a nondispersive medium. Starting with the contin-
uous-time versions of ���	�� 
��	� and ���	�, denoted by ������

����, and �����, respectively, we construct a frequency domain vector
���� � �
����� 
����� � � � � 
�����

� where 
���� is the Fourier
transform of ������ � � �� �� � � � � �. When the data record � is
sufficiently long, ����� is uncorrelated with ����� for � �� � [20]. Let

� � ��������� � � � �����
� (A1)
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be the RD vector where the first sensor is assigned as the reference.
The Fisher information matrix (FIM) for � given ����, denoted by
������, is

������ � �
�� �� ������� �� � � � ���

�����

� �
�

	�

�

�

�� �� �������

�����
�� (A2)

where the spectrum of ��	� is nonzero for �� � � � �� , and
������� is the PDF of ����, which is of the form

������� �



��������
��
 ���������������� (A3)

where

���� � �����������

� ����� � ������
������ ��� (A4)

with

����� � ��������������������� � � � ��������
� (A5)

and

���� � 
� ��
 �
�
���

����
� � � � � ��
 �
�

���

����

�

�(A6)

The ����� and ������� are the power spectral densities of ��
� and
���
�, respectively, and ������ is the determinant of ����. Note that
����� is a diagonal matrix for uncorrelated ����
��.

For notational simplicity, the dependency on � is removed until the
final expression of ������ is attained. Taking natural logarithm on
(A3) gives

�� ���� � �� ��� � �� ��� � �����
�� (A7)

Applying Sylvester’s determinant theorem [24], ��� is

��� � 
 � ���
�
�
��
� �

� ����

� 
 � ���� �
��
� ����� (A8)

While using Woodbury’s identity [25], the inverse of � is

�
�� � ���

� �����
� �

�

�
�
�
��
� (A9)

where

� �
��


 � �� �� �
��
�

� (A10)

As both �� and �� are independent of �, we have
�� �� ��������� � ��� �� ����������� � � �. The expression of
�� �� ���������� is then simplified as

� �� ����

��
� �

�

��
�
�
�
��
�

�
�

��
������

� �
�

�
�
�
��
� �

�
�

��
������

� ������� (A11)

where

� �
��

��

�

��
� (A12)

and

� � ���
� ��

�
�
��
� � (A13)

Note that � is also independent of �. From (A6), the derivative of �
has the form of:

��

��
�


�

�

��������

		

(A14)

where 	 � �������. For a vector and matrix, the subscript 	 corre-
sponds to the vector with its first element being removed and the matrix
with its first row and column being removed, respectively. Differenti-
ating (A11) with respect to �� yields

�� �� ����

�����
� �

��

��
�

���

��
(A15)

where

��

��
� 
� �
� (A16)

with


� �
��

��

�

�
��

��

�

(A17)

and


� �
�

�

�

����������	�		� (A18)

The expected value of � is

��� � ���
� ��

��
� � ���

� � ���
��
� �

�

�
�
�
��
� � (A19)

Then we have

����� � ���

 �

� � ���� �
��
� �

��
� �

�� (A20)

With the use of (A19) and (A20), �
�� and �
�� are computed
as

�
�� �
�

�

�
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��
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	�
�
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�
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�
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�
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	 (A21)

and

�
�� �
�

�

�

�
��
� ��� �� �

��
� ��

��
	 � (A22)

Taking expectation of (A16) with the use of (A21) and (A22) yields
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��
� ��

�

�

�

��
��
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�
	��
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� �� ���
� ��
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(A23)

Note that ������������ � ����������� as the vector � is
real. As a result, we get
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� 	���
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� (A24)

Authorized licensed use limited to: CityU. Downloaded on February 8, 2010 at 21:37 from IEEE Xplore.  Restrictions apply. 



1438 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010

The FIM of (A2) is now expressed as

������

�
�

�

�

�

���������

� �	 �
��
� ��� ��

��
� ������

��
� ������

�
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��
� ���

�
�

����

�

��� (A25)

It is worthy to point out that when ���� � � which corresponds to the
nondispersive scenarios, (A25) agrees with the FIM for TDOA estima-
tion [24] up to a multiplying constant of 
���. Finally, the CRLB for
���, denoted by �
�������, is given by �	 � 

 	 � 
� entry of the
inverse of ������

�
������� � �����������������
 	 � �
 �
 � � � 
 �� (A26)

When all ����
�� have the same variance of ��� 
 ������ can be sim-
plified as

������ �
� ��
�

��
 � ���
�
��� � ���
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�

�

�
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����
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���

(A27)
Using ����� ���

�
� �

�� � ���� ���
�
� ���, the corresponding CRLB

is then

�
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 � ���
�
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�

�

�

����

� ��

� (A28)

In case of ���� � �� � �, we have
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APPENDIX B

In this Appendix, the variance expression of (7) for the FNLS esti-
mator is derived. It is assumed that ��
� has a constant spectrum limited
between �	 and �
 . The denominator of (6) is calculated as

�� ��� ������
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�

� ��
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(B1)

Substituting ���� � ��� yields
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The numerator of (6) is derived in (B3)–(B5).
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where
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and
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The term �� is expanded as (B5)-(B7), shown at the bottom of the
previous page. Similarly, we have
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and
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Substituting ���� � ��� and using (B6) to (B9), �� becomes
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In a similar manner, when ���� � ��� � �	 and �� are calculated as
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Substituting (B10) and (B11) into (B3) yields
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With the use of (B2) and (B12), (6) becomes
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which is (7).
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