
Quasi-Interpolation by Means of Filter-Banks 
Gerardo Pérez-Villalón 

Abstract—We consider the problem of approximating a regular 
function f(t) from its samples, f(rtT), taken in a uniform grid. 
Quasi-interpolation schemes approximate f(t) with a dilated ver
sion of a linear combination of shifted versions of a kernel f(t), 
specifically / a p p rox(i) = '^2af[<l\ip(t/T — n), in a way that the 
polynomials of degree at most L• — 1 are recovered exactly. These 
approximation schemes give order L, i.e., the error is O (T ) where 
T is the sampling period. Recently, quasi-interpolation schemes 
using a discrete prefiltering of the samples f(ri.T) to obtain the co
efficients a i [n], have been proposed. They provide tight approxi
mation with a low computational cost. In this work, we generalize 
considering rational filter banks to prefilter the samples, instead 
of a simple filter. This generalization provides a greater flexibility 
in the design of the approximation scheme. The upsampling and 
downsampling ratio r of the rational filter bank plays a significant 
role. When r = 1, the scheme has similar characteristics to those 
related to a simple filter. Approximation schemes corresponding to 
smaller ratios give less approximation quality, but, in return, they 
have less computational cost and involve less storage load in the 
system. 

Index Terms—Approximation order, filter bank, quasi-interpo
lation, shift-invariant spaces, Strang-Fix conditions. 

I. INTRODUCTION 

T HIS work deals with the problem of approximating a reg
ular function f(t) from its samples taken in a uniform 

grid {/(nT)}„Gz. In many approximation schemes, the func
tion f(t) is approximated by 

/ a^p roxW = £ 0 W V ( | - ™ ) CD 

where tp is a suitable kernel and the coefficients a[n] are ob
tained by a discrete Altering of the sequence of samples Sf [n] = 
f(nT) 

a[n] - (sf * g) [n] (2) 

with an advisable Alter g. Equivalently 

where S(t) = EnezflW^Í* ~~ n ) i s m e reconstruction func
tion. 
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For interpolation schemes (see [l]-[5]), the interpolation con
dition 

/aT
PProx(^) = f(nT), nel (4) 

is required, and then the preAlter is necessarily given by G(z) = 
( 2 lp(n)z~n)~l, where G(z) denotes the z-transform of g[n], 
G(z) = J2nez g[n]z~n. The classical example is the Shannon 
sampling formula, where ¡p(t) = S(t) = sinc(i), which ex
actly recovers a bandlimited function f(t) taking a small enough 
sampling period. This formula gives a tight approximation for 
functions that are approximately bandlimited. The slow decay 
of sinc(i) is its main inconvenience. A classical interpolating 
alternative is to consider a kernel ip of compact support, satis
fying the Strang-Fix conditions of order L, i.e., 

0 ( 0 ) ^ 0 

<¿>«(n) = 0, / = 0 , 1 , . . . , L - 1, n G Z \ {0} (5) 

where ¡p(w) = J <p(t)e~2^lwtdt denotes the Fourier transform. 
These conditions imply, under appropriate hypotheses, that the 
interpolation formula (3) exactly recovers any polynomial in 
IÍL-I, the space of polynomials of degree less than or equal 
to L -1. A suitable choice for the kernel tp, e.g., a B-spline (see 
[6]), allows us to efficiently compute the approximation by using 
(2) and (1) since g[n] decays exponentially fast and tp has com
pact support. Besides, the ability of reproducing polynomials 
in ILL-I guarantees that the interpolation scheme has approx
imation order L; speciAcally, for any / in the Sobolev space 
W2

L(R) := {/ : I I /OHJ < oo,l < L} (see [2], [7], and [8]) 

11/ - /approxlb = 0(TL) (6) 

and for any / in W¿(R) := {/ : ||/W | |oo < oo,l < L} (see 
[8] and [9]), 

11/ — /approxlloo = C(,J )• 

Quasi-interpolation schemes (see [7], [8], [10], and [11]) of 
order L require only that the formula (3) reproduces polyno
mials in II¿_i (quasi-interpolation condition), which allows us 
to maintain the approximation order (6). This is a weaker condi
tion than the interpolation condition (4), giving more Aexibility 
for the choice of the Alter g. For instance, if we look for a fi
nite-impulse response (FIR) Alter G(z), the only condition that 
has to be satisAed is that the non-null coefficients of the Alter 
G(z) satisfy a certain linear system of L equations (see [7] and 
[11]). Thus, in general, we can design FIR Alters g with a sup
port of size L satisfying the aforementioned condition. It is im
portant to note the possibility of designing quasi-interpolation 
schemes, with an approximation quality close to that given by 
the orthogonal projector onto VT(<P) = {J2 a[n]ip(t/T - n) : 
a el2} (see [7] and [12]-[14]). 
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Fig. 1. Block diagram of the proposed prefiltering of the samples. 
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Fig. 2. Prefiltering when p and q are coprime. 

The interpolation and quasi-interpolation schemes have rele
vant applications in image processing, such as rescaling, volume 
rendering, evaluating gradients, translations, rotations, and in 
general, geometric transformations of the signal (see [4] and ref
erences therein). 

In this work, we study a generalization of the aforementioned 
quasi-interpolation schemes. We consider the possibility of 
obtaining quasi-interpolation schemes of order L by using a 
rational filter bank instead of a simple filter. Specifically, we 
select two natural numbers, q and p, and q discrete filters, 
go, g\,..., gq-\. The samples are filtered with a filter bank as 
shown in Fig. 1, yielding to a coefficient sequence a[n], and 
then the approximation is obtained by using 

J approx \^J ^ a [ n J ( ^ l ^ t _ n (7) 

Whenp and q are coprime, the prefiltering can be easier repre
sented by using the filter H(z) — Y^JZQ z~^pGj(zq) as shown 
in Fig. 2. Reciprocally, any prefiltering of the type given in Fig. 2 
can be represented by using the filters g¿ [n] = h[nq-\- jp], j = 
0 , . . . , q — 1, as shown in Fig. 1 (see Section II). The represen
tation of the prefiltering with H(z) is simpler than the represen
tation with the filters Gj(z). However, the reconstruction func
tions, the quasi-interpolation condition, and the error for this ap
proximation scheme, except in the case p — 1, admit a simpler 
expression in terms of the filters Gj(z). 

The proposed prefiltering implies a rational rate change, 
where the upsampling and downsampling ratio is r = p/q. 
Thus, we have the possibility of choosing the ratio r according 
to the desirable characteristics of the approximation scheme. 
If r = 1 the scheme has similar characteristics to those related 
to a simple filter, in fact when p = q = 1, it is one of them. 
If r < 1, the approximation scheme, as a consequence of the 
compression, loses in quality approximation (see Section IV), 
but it gains in numerical efficiency since the computational 
cost of the algorithm is approximately proportional to r (see 
Sections II and III). Note that the compression associated with 
a ratio r < 1 is also suitable in order to transmit or store the 
signal. From the practical point of view, the case of r > 1, 
although theoretically possible, is not interesting. 

In [15], one can find conditions on the filters Gj (with a slight 
change of notation) that guarantee the perfect reconstruction of 
the functions belonging to Vr((f). This perfect reconstruction is 
not required here; it is only required for polynomials in I I L _ I 

(a weaker condition). Thus, we gain in flexibility, allowing us to 

design approximation schemes involving filters with a smaller 
support. 

In [16], a variational method that applies to this setting is 
given. It allows to approximate a function from nonuniform 
samples. For r < 1 and without variational penalty, the method 
gives the function in Vr((p) that is the closest to the samples in 
the I2 sense. 

For the sake of simplicity, in this work, we confine ourselves 
to FIR filters. However, most of the results are valid to IIR filters 
(with suitable decay conditions). For the case of r = 1, in [7], 
[12], and [14] are given IIR filter satisfying the quasi-interpo
lating condition, which can be implemented by a fast algorithm. 
See [13] for the case of r — 1/q. 

The paper is organized as follows. In Section II, we intro
duce the proposed approximation scheme. In Section III, we 
deduce a necessary and sufficient condition [see infra (16)] on 
this scheme to reproduce polynomials of degree at most L — 1 
(quasi-interpolation condition), and we show that by solving a 
linear system of equations, it is possible to obtain FIR filters Gj 
satisfying this condition. In Section IV, we give examples of 
such FIR filters. In Section V, we prove that whenever the afore
mentioned condition holds, the scheme has approximation order 
L in both the L2(R) and L°°(IR)-norm sense. In this section, by 
applying the error formula given in [10], we get an expression 
for the approximation error, which gives us a suitable criterion in 
order to choose among the filters Gj that satisfy the quasi-inter
polation condition. In Section VI, we give simulations showing 
the behavior of the approximation technique for different values 
of the ratio r. We conclude in Section VII. An Appendix in
cludes the proofs of the results given in Sections I, II, and V. 

II. THE APPROXIMATION SCHEME 

Throughout this paper, we assume that (p is a continuous real 
function, compactly supported, that satisfies the Strang-Fix 
conditions of order L (5). We also assume that the sequence 
{(p(t — n)}nez is a Riesz basis for the space Vi((p) = 
{ Y2 a[ri\ip(t — n) : a e £2}; equivalently, there exist constants 
A, B such that 0 < A < ¿ n G Z \<p(w + n)\2 < B < oo. The 
dual function cpd is defined by 

<Pd(w) := 
0(w) 

J2 \0(w + n) 
(8) 

Discrete filters are either described by their impulse response 
g[n] or by their ¿-transform G(z) = J2nez 9[n\z~n f° r which 
we use uppercase symbols. 

Associated with the kernel tp, two natural numbers p and q, 
and q FIR filters #o? #i> • • • > 9q-i> w e consider the approxima
tion scheme 

q-l 

a W = E E f^kT - ^ 9j [n ~ kp] (9) 
3=0kei 

/aTpproxW = QTf(t) : = Y , " W ? ( £ * - " ) • (10) 
nGZ 

where r denotes the ratio r :— p/q. 
Thus, to approximate a function f(t) from its samples f(nT), 

we first prefilter the samples with the filter bank shown in Fig. 1, 



which yields to a coefficient sequence a[n], and then we apply 
fIPproÁt) = J24nW(rt/T-n). 

Another possibility, yielding to the same approximation 
fIpptox>is t 0 evaluate 

q-1 

/ípproxW = E E f(lnT ~ ̂ Sj (ft ~ nP) 
j=0 nel 

where the reconstruction functions are deAned by 

S¿(í):=E&[«M*-«X J =0,1 , . . . , 9 - 1 . (ID 

When p and q are coprime, the preAltering (9) can be also 
represented as (see Fig. 2) 

a[n] = Y^ f(kT)h(qn - pk) 

where H(z) is deAned by 
q-1 

H(z):=J2z-JPGJ(z
q)-

j=0 

(12) 

(13) 

The proof is given in the Appendix . There, it is also proved that 
(13) is equivalent to 

gj[n] = h[nq + jp], n £ Z, j = 0 , . . . , q — 1. (14) 

Hence, for any FIR Alter h[n], the preAltering (12) can be rep
resented as (9), where the Alters gj[n] are deAned by (14). 

See references [17] and [18] for efficient structures for frac
tional decimation and for Alter banks. 

The (type 2) polyphase components Rj¿ of the Alters Gj are 
deAned by 

p-i 

G3-(*) = 5>~ (P_1~* ) iM*P)> J = 0,1,...,9-1- (15) 
fe=0 

Note that, under the assumed hypotheses, /^,p r o x(i) is well 
deAned for any function / . Besides, the reconstruction functions 
Sj have compact support. 

The ratio r plays and important role in the numerical effi
ciency of the reconstruction algorithm (9) and (10). Indeed, the 
computational cost of the second step of the algorithm (to eval
uate ^2 a[n]ip(rt/T — n)) is proportional to the number of coef-
Acients a[n] considered, which is approximately equal to r x N, 
where N is the number of available samples (assuming that N 
is much bigger than the size of the support of the Alters gj). 
In the next section, we show that if we choose the Alters with 
the smallest support, the computational cost of the Arst step (the 
preAltering) of the algorithm is also proportional to r. The cost 
of this Arst step is almost negligible compared to the second one 
(see [1] and [5]), which requires evaluations of the kernel. 

Note that except in the case of q = 1, the system does not 
satisfy the shift invariant property Qr[f(—Tn)](t) — Qrf{t— 
Tn), but it satisAes QT[f(- - Tqn)]{t) = QTf(t - Tqn). 

III. THE QUASI-INTERPOLATION CONDITION 

We denote G(z) := [G0{z),Gi{z),... ,Gq-i{z)]T. As 
usual, £(w) = 0(wL) means that \£(w)/wL\ is bounded as 
w - • 0 (when £ e C°°(R), it is equivalent to £«(0) = 0 

for / = 0 , 1 , . . . , L — 1); Sn denotes the delta sequence; and c 
denotes the conjugate of c e C. Finally, let ei(z), for I = p,q, 
denote 

el(z) = [l,z-\ - ( i - l ) l T 

Recall that we have assumed that the kernel ¡p(t) satisAes the 
Strang-Fix conditions of order L (5). 

The next lemma gives a necessary and sufficient condition on 
the approximation scheme (9) and (10) in order to reproduce 
polynomials of degree at most L — 1. 

Lemma 1: The approximation operator QT deAned in (9) and 
(10) satisAes QTP = p for all p e HL-I if and only if the 
condition 

e^(e2virw)G(e2^w+n^)(p(w+-') -P6n = 0(wL) (16) 

is satisAed for all n € Z. 
The proofs of this and the next lemma are given in the 

Appendix. Next, we give a more manageable sufficient con
dition. Notice that since (p has compact support, the function 
Av(w) = ^2 \tp(w + n)\2 is a trigonometric polynomial (see 
[19]), and then the function ¡pd deAned in (8) is inAnitely 
differentiable. 

Lemma 2: Any of the equivalent conditions 

eT(e2*irw^G(e2*i(w+k/p)) _ pfid(w)Sk = 0(WL) ( 1 7 ) 

for k = 0 , 1 , . . . ,p — 1, or 

\ ^ Jlh Je2mpw\e-2m(jr+p-l—k)w 

dw 
j=0 

^°(0) 
-u)=0 

(18) 
for k = 0 , 1 , . . . ,p - 1, and for I = 0 , 1 , . . . . L - 1, where 
Rk,j(z) are the polyphase components deAned in (15), implies 
that condition (16) holds or equivalently that QTp = p for all 
P e n L _ i . 

For the case of r = p = q = 1, condition (17) reduces to 

G(e2*iw) = $d(w) + 0(wL) 

and it can be found in [7], [11], and [12]. Thus, in order to And 
a FIR Alter g = g0 so that the approximation scheme (3) repro
duces the polynomials in I I £ _i , we have to solve a linear system 
with L equations whose unknowns are the non-null g[n]. Thus, 
in general, it is possible to And a FIR Alter g with support of size 
L satisfying the reproducing condition. If we consider N sam
ples, this Alter implies approximately Lx N sums and products 
in the preAltering step (assuming that N is much bigger that L). 

In the general case, in order to And q FIR Alters 
go,gi,---,gq-i, such that the approximation scheme (9) 
and (10) reproduces the polynomials of I I L - I , we have to solve 
a linear system with p x L [see (17) or (18)] whose unknowns 
are the non-null gj [n]. Thus, it is possible, in general, to And 
FIR Alters gj being the sum of the size of their supports equal 
to p x L and satisfying the reproducing condition. For these 
Alters, the computation of the preAltering step (9) involves ap
proximately r x Lx N products and sums; hence, the resulting 
computational cost of the preAltering step is approximately 
proportional to r. 



If the kernel tp is even (recall that we have supposed that it is 
real), a suitable property (see [4]), then <pd (t) is real and even, 
and thus (pd' (0) is real and is equal to 0 when / is odd. As a 
consequence, condition (18) has real solutions, which implies 
real filters. 

In the case of r = 1/q, condition (17) reads as 

d „ , , _ „ / „ , ! =$f(p), Z = o , . . . , L - l (19) 
dwl H(e 2-Ktw/q 

w=0 

where H(z) is given by (13). Note that if the kernel ip is even, 
then any even filter h(n) satisfies the above equations for I odd. 
Thus, we can achieve symmetric approximation schemes, with 
a filter of support L when L is odd, and of support L - 1 when 
L is even. 

As the reader can observe, in the proof of Lemma 2, condi
tions (17) and (18) are almost always necessary for the repro
duction property: QTP — p for all p G HL-I-

IV. EXAMPLES WITH THE QUADRATIC B-SPLINE 

In order to illustrate the theoretical results, we consider as an 
example the generator 

3 _t2 
4 h i ~\<t<\ 

v(t) = pz(t) = \ \{\t\-\y, \<\t\< 
o, \t\ > I 

the centered quadratic B-spline, which satisfies the Strang-Fix 
conditions of order L — 3. We have (see [7]) 

<Mw) = 
sin3 (71-to) 

7r3w3 [l — sin2(7rw) + (jg) sin4(7rw;)] 

In the case of r = 1, the unique filter of the type H(z) = 
a + b(z + z~v) that satisfies (19) is 

Hl{z)--=\-\(^ + ^1)- (20) 

The approximation algorithm, (12) and (10), reads 

a[n] = \f(nT) - ± [f(nT + T) + f(nT - T)] 

t 
/ approxW = Y , ^ ^ (f ~ n) • 

In the case of r = 1/2, the filter 

H1/2(z) := 2 - l2(z + z-1) 

(21) 

(22) 

is a solution of (19). The approximation algorithm now reads 

a[n] = 2/(2nT) - ^ [/(2nT - T) + f(2nT + T)] 

/ a T p p r o x W = E a ^ 2 r — - ' V2T 
(23) 

In the case oír = 2/3, the vector of filter 

G2/3(*) == 

2 5 - i ( - + ^-1)' 
1 6 4 5 ^ - 1 

- ^ + iz~' 32 " 

_9_ 
,32 

64* 

(24) 

satisfies condition (17). The algorithm (9)—(10) reads 

a[2n] = § / ( 3 n T ) - A [ / ( 3 n T + T ) + / (3nT - T)] 

a[2n + 1] = - ^ ( / ( 3 n T ) + f(BTn + BT)) 
54 
45 

64 
[/(3nT + T) + f(BnT + 2T) 

/ approx <(*) E 
n€Z 

«[2n]/?2(§ 

a[2r 

2n 

2i ^(i-2»-1 

In order to fix the support of the entries of G2/3, we have taken 
into account that a[2n+1] is the coefficient of ¡32 ((2/(3T))[i-
BnT - ST/2]), which is centered at BnT + 3T/2, and a[2n] is 
the coefficient of/?2((2/(3T))[t - BnT]), which is centered at 
BnT. 

In the case of r = 3/4, the vector of filters 

G3/4(z) :--

17 13 

^ 2 , 8 2 6 

%t2 7 
(z + z-1) 
Z 

*(z + z*) 

10 r 2 
8 1 ^ 

81" 4 """ 2T"4 9 ^ 

(25) 

satisfies (17). Its corresponding prefiltering step is 

a\M = ^ / ( 4 T n ) - ^( / (4Tn - T) + / (4nT + T)) 

a[3n + 1] : ^ / ( 4 T n ) - g / ( 4 T n + 3T) 

+ ^ / ( 4 T n + 2T) + § / ( 4 T n + T) 

a [ 3 n + 2] = - 7^/(4Tn + 4T) + § / ( 4 T n + BT) 

+ ^ / ( 4 T n + 2 T ) - ^ / ( 4 T n + T). 

Let us recall that the interpolating filter (such that (4) is sat
isfied) for the generator <p = 01 is 

Hhi\z) := y 
+ HZ + Z-1)' 

(26) 

Finally, let us give an interesting example from [13] of an 
IIR filter satisfying the quasi-interpolating condition that can be 
implemented with a fast algorithm. This example is for the case 
oiip = (32 and r = 1/2. It is 

Him{z) :--
^ + z + 2 

• + Í(z* + z-*) 
(27) 

1/q Examples for other B-splines ¡3n and other values of r 
can be found in [13]. 

V. THE APPROXIMATION ERROR 

We split this section into three subsections. In the first one, we 
obtain a pointwise estimation for the approximation error and 
study the ¿°°-norm of this error. In the second one, we apply 
the results in [10] to study the L2-norm of the error. The third 



one is concerned with designing the filters Gj in order to get a 
smaller L2 -approximation error. 

A. A Pointwise Estimation and the L°° -Approximation Error 

Theorem 1 proves that whenever the quasi-interpolation con
dition (16) holds, the approximation scheme has approximation 
order L in the Z,°°-norm sense. Besides, it gives a pointwise es
timation for the error, which shows that the error depends on the 
compression factor r. We denote 

q-l 

n(t):=(-l)LY,^-pn + Jr)LSJ(t-pn) 
j=0neZ 

2 - 1 

" ( * ) : = Z ) Yl I (* - p n + i r ) L 5¿(* - *™) I • 
j=0neZ 

Note that since the reconstruction functions Sj are continuous 
and compactly supported, Q and Q are bounded functions. 

Theorem 1: Whenever the condition (16) holds, for all / G 
W¿(R), we have 

11/, T 
approx 

7 | | o o < 
l l í í l l o o l l / ^ l l o o TL 

L\ 
(28) 

and, for all / e W¿+ 1(R), we have 

f*(t) - /(*) = WW™® g + 0{TW). (29) 
L! 

The proof, based on the Taylor polynomial of / , is given in 
the Appendix. For the case of r = p = q = 1, the estimations 
(28) and (29) are given in [8]. 

B. The L2-Approximation Error 

In [10], Blu and Unser gave a formula for the Z,2-norm of 
the approximation error valid to an ample set of approximation 
operators Ch'. For any / G Wj W 

11/-A/lb /

OO 

l/(«OI: 
-co 

E{hw)dw 
1/2 

+ 0(/ifc) (30) 

where the integral kernel E(w) depends on the approx
imation scheme but does not depend on / . Moreover, 
[J\f(w)\2E(hw)dw] gives exactly the average approxi
mation error (see [10, Theorem 2]). This error formula (30) can 
also be applied to the operator Q T by changing the sampling 
step; specifically, it can be applied to Ch '= Qhr- In this case, 
the formula (30) can be expressed as 

I I / - Q T / | | 2 -Í + 0(hk) 

(31) 
where the integral kernel is (assuming that the filters gj are real) 

I 1/2 

E(w) = 1 -5R eI(zr)G{z)<p{w) 

p-i 

+ Í E \eJ(zr)G(ze2^n\2Ajw+ k- I (32) 
k=0 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Fig. 3. y/E(w/r) for H±, G 3 / 4 , G2/3, H1/2, HIIK, and for the orthogonal 
projector P (r = 1 in this case). 

where z Jliziw , 5ft denotes the real part, and A^(w) :— 
SnGZ I^C^ + n)\2 ( s e e m e details in the Appendix). Fig. 3 
shows the square root of the integral kernel y/E(w/r), corre
sponding to the orthogonal projector P [see infra (35)] and to 
the filters Hl9 G3/4, G2/3, H1/2, and HUR defined in (20), (22), 
(24), (25), and (27), respectively. Fig. 4 shows y/E(w/r) for P , 
Hi, and for the interpolating filter Hint defined in (26). 

In [10], some results about the approximation error of the op
erator Ch are deduced from the formula (30). In Theorem 2, we 
collect the applications of these results to the operator Q T = 
CTjr. In particular, we deduce that the quasi-interpolation con
dition (16) in Lemma 1 is necessary and sufficient to the approx
imation scheme (9) and (10) to have order L in the L2-norm 
sense. 

Note that since we have assumed that cp has compact sup
port (thus A^{w) is a trigonometric polynomial) and Gj(z) are 
FIR filters, the integral kernel E(w) given in (32), has infinite 
bounded derivatives. 

Theorem 2: Assume that gj are real FIR filters. The quasi-
interpolating condition (16) holds if and only if 

ll/aT
Pprox - / l b = 0(TL), for a l l / G W2

L(R). 

Moreover, in this case, for all / G W2
L+1(R) 

TL | | /W||2 
rL P(2TT)LL\ ll/J„ - /II2 = S J S T J E I ^ C 0 ) ! ^ 0 ^ 1 ) 

nei 
(33) 

where Tn(w) = e] (e2™rw)G(e2™(w+nM)<p(w + n/p), and 
for all / e W2

fe(R), with k > L 

ll/aTpprox - / l b < C^\\f<L% + K^\\fW\\2 (34) 

where 

C = Vll^(2L)Hoo 
2L7TL7(2Z)! 

and K = 
2pk 

I ^ H o o ^ -
-2k 

n>l 

1/2 
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a n d ¿ \ The quasi-interpolation condition (17) gives 

eJ(zr)G(ze2*ik'*)-P<PdWh = 0(wK), k = 0 , . . . , p - l 
(38) 

holds for K = L, and then Eres(w) = 0(\w\2L). Thus, when
ever most of the energy of f(w/T) is concentrated close to zero, 
the approximation error is small. In order to do it smaller, we can 
try to find a vector of filters satisfying (38) for a bigger K. Be
sides, having in mind that a part of the energy of f(w/T) could 
not be so close to zero, we can also use the flexibility given for 
a bigger support of the filters in order to minimize [see (31) and 
(36)] 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

j(w)Eres^—j dw (39) 

Fig. 4. y/E(w/r) for the orthogonal projector P, for the interpolating filter 
# i n \ a n d f o r # i . 

To prove these results, we only have to apply the theorems in 
[10] (see the Appendix). When r — 1/q, the above expression 
for Tn reduces to Tn(w) = H(e27Tlw/q)(p(w + n). In the case 
of r = p = q = 1, it reduces to Tn(w) = S(w + n). For this 
case, the estimation (33) is given in [8]. 

C. Optimal Filters 

The orthogonal projector onto Vh((p) defined by 

where v(w) > 0 is a suitable weight. Namely, we fix a weight 
v(w), an order K > L, and the support of the filters. Then, 
we search the G that minimize (39) among those that satisfy 
(38). This is a linear problem easy to solve. For example, when 
(p = ^2 , r = 1, the symmetrical filters H(z) of the type 

H(z) = a+b-(z + z-1)+C-(z2+z-2) 

satisfying (38) for K — L + 1 = 4 are those given by 

5 1 
a = - + 3c, b = — - — 4c. 

4 4 

Thus, minimizing (39) is equivalent to finding c such that 

{w)\ <pd(w) 5 1 /rt x 
- + - COS(27T^) 
4 4 

gives the best approximation, in the Z,2-norm sense, by a func
tion in Vh((p). This approximation cannot be computed from the 
samples of the function. However, we can take advantage of the 
flexibility provided by the quasi-interpolation schemes to get an 
approximation whose error is close to that given by the orthog
onal projector. To do this, we will base, as it is done in [7] and 
[12]—[14], on the error formula (30). The orthogonal projector 
Ph satisfies the estimation (30) and the integral kernel, which 
we denote by Em[n (see [7]), is 

3 - 4cos(27™) + COS(4TTW) \dw 

Emin(w) = 1 - I^HI2 

The integral kernel (32) can be expressed as 

E{w) = £ m i n ( w ) + £ r e s ( w ) (36) 

where 

is minimum. For instance, when v(w) is the characteristic 
function of the interval ( -1/4,1/4) , then c « 0.054 and the 
searched filter is 

Hl(z) := 1.412-0.233(2 + ¿ - 1 ) + 0.027(¿2 + z~2). 

For the rate r = 1/2, the same criterium provides 

Hl/2{z) := 2.87 - 1.08(¿ + ^-1)+0.145(^2 + z~2). 

Fig. 5 shows the square root of Eres(w/r) for these filters as 
well as for those with minimum support. Note that the bigger 
support increases the computations in the prefiltering step but 
has no influence on the number of evaluations of the kernel. 

Eves(w) =Acp(w) 0d(w) - - e j (zr)G(z) 

p-i 

+ -2 E \eJ(znG(ze2^n\2A^ lw+-) (37) 
fc=i 

VI. SIMULATIONS 

In this section, we give numerical simulations showing the 
behavior of the approximation scheme given in Sections IV and 
V. Specifically, we apply the algorithms to recover the functions 
shown in Fig. 6 from 31 samples taken in the interval [—3,3] 



0.25 

0.25 

Fig. 5. y/Eie6{wlT) for Hl9 H°, H1/2, and H{ 
¡2-

with period T — 0.2. The L2 [—3,3]-norm of the error for the 
different algorithms and examples are given in Table I. 

For instance, for the first example f(t) — (1 — t)e~f , the 
algorithm (21) that does not entail compression Hi (corre
sponding to r = 1) gives an error of 7 x 10 - 4 . It needs 30 
evaluations of the kernel. The algorithm corresponding to iii/2 
needs only 15 evaluations of the kernel, but its error increases 
to 6.4 x 10 - 3 . Between these cases are those corresponding to 
the rates r = 3/4 and r = 2/3. 

For the second example, the errors are bigger (it has wide 
variations). The behavior with respect to the different rates are 
the same. 

For the third example, the L2[—3, 3]-norm of the error, due 
fundamentally to the discontinuity, is approximately equal for 
all the rates. However, the reproduction of the discontinuity is 
better using a bigger r, as it is shown in Fig. 7. 

Table I also gives the errors for the interpolating filter Hint 

and for the IIR filter HUR, which are close to those given by Hi 
and H°,2, respectively. 

The pointwise error for the second example and for some of 
the algorithms can be seen in Fig. 8. 

As can be observed in Table I, using the optimized filters H% 
and H°,2 improves the results with respect to the minimum sup
port filters Hi and Hi/2- The reconstruction of the second ex
ample using Hi and H± and sampling period T = 0.5 can be 
seen in Fig. 9. 

The gradient, used in some applications (e.g., contour detec
tion, shading), can be computed by means of the coefficients 
a[n] obtained in the prefiltering step (9). Indeed, using (10) and 
that d/dt(32(t) = ^{x + 1/2) - f31{x - 1/2), where (31 is the 
B-spline of degree 1, we obtain that 

nez \ 

For the first example, T = 0.2, and using Hi, G3/4, G2/3, and 
Hi J 2, this formula gives L2[—3,3]-norm error equal to 1.1 x 
10"2, 2.1 x 10"2, 2.7 x 10"2, and 5.1 x 10"2, respectively. 

VII. CONCLUSION 

In this work, we have studied the approximation of functions 
from their samples by using quasi-interpolation formulas. These 

schemes give a good quality since they have a certain order of 
approximation, and they are numerically efficient since the nec
essary prefiltering of the samples can be done with little support. 
In particular, they give a quality close to that given by the clas
sical interpolating formula. 

A rational filter bank with a rate r < 1 can be used for the 
prefiltering of the samples, maintaining the approximation order 
and the little support. When the rate r decreases, we lose in 
quality of approximation, but we gain in numerical efficiency. 
Thus, in applications where the speed is more relevant than the 
quality, it is advisable to use a rate r < 1. 

APPENDIX 

In this Appendix, we include the proofs of the results in 
Sections II, III, and Section V. 

Proof that (9) can be Represented by (12) and that (13) and 
(14) are Equivalent: First, we prove that for any H Z , there 
exist unique numbers n and j satisfying 

k = nq + jp, n € Z , j G { 0 , 1 , . . . , q - 1}. (40) 

Indeed, since q and p are coprime, there exist a, b G Z such 
that 1 = ap + bq. Then, k = kap + kbq. Using that ka can be 
written as ka = Iq + j , with j G {0 , . . . , q — 1} and / G Z, 
we obtain (40) with n — Ip + kb. The numbers n and q are 
unique since nq + jp = nq-\- jp implies (n — n)q = (j — j)p, 
j — j G { — (q — 1 ) , . . . , q — 1}, and q, p are coprime. 

From the representation (40), we obtain that H(z) = 
Eq~l Z-^G^)= £ r ¿ E„e z 9iW 
if gj[n] = h[nq + jp], for all n G Z and j G {0 
Hence, (13) and(14) are equivalent. 

Using that gj[n] = h[nq + jp], we obtain 

(nq+jp) i f a n d o n l y 

, 9 - 1 } . 

q-1 

3=0kez 
q-l 

= E E /(to* - ^T) h\sn - p^k - M 
3=0kez 

= Y,f(kT)H<in-pk). 
kez 

D 
Proof of Lemma 1: Notice first that Q T reproduces the 

polynomials in HL-I if and only if Qr does it since Q T = 
o'T/rQrO'r/Ty where oa denotes the operator aaf = f(-/a). 

Notice that ^ne^{pn—jr)lSj(t—pn) converges in the sense 
of tempered distributions (see [21, Theorem 4.3-1]). Applying 
the Fourier transform, we obtain that 

q-l 

tl = [Qrx
l](t) = Y, E ^ n " 3r)lSá{t - pn) 

3=0 nez 

if and only if 

(-27TÍ)1 

q-l 

3=0nez 



TABLE I 
L 2 [ - 3 , 3]-N0RM OF THE ERROR 

Hint 

3.8 x 1 0 ~ 4 

3.2 x l O - 3 

0.26 

Hi -jjinr H? 

4 x l O " 4 

3.1 x l O " 3 

0.26 

7 x l O " 4 

7.2 x l O - 3 

0.25 

^3/4 

2.6 x 1 0 ~ 3 

2.3 x l O - 2 

0.2 

J 2/3 g l / 2 i J 1/2 

6.4 x 1 0 ^ ~ 
6.1 x l O " 2 

0.26 
/ ( t ) cos (3 t ) 

/(¿)+nft-l) 

3.2 x 10 
3.2 x 10 

0.25 

3.6 x 10 
4.1 x 10 

0.21 

4 x 10-
4.4 x 10~ 

0.47 
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Fig. 6. Examples. 
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Fig. 7. Function / ( t ) + u ( t — 1) and the reconstructed functions from samples 
taken with period T — 0.2 using H1/2 and G3/4, respectively. 

Fig. 9. Function / ( t ) c o s ( 3 t ) and the reconstructed functions from samples 
taken with period t = 0.5 using the filters H1 and Hf respectively. 

where S denotes the Dirac delta. The Fourier transform of (x — 
jr)1 has compact support. Thus, applying the Poisson formula 
(see [22]), we obtain that the above equality holds if and only if 

q-l 

j=0neZ 

-»/«)*(')(„, _ ü ) s » 

or equivalently if 
q-l 

6np6^l\w) = ^e-2*ij(rw-nM6W(w - -)s3(w) 
3=0 P 

q-l 
_ V"^ e-2irij(rw-n/q) 

3=0 

x G3(e
2™w)0(w) 

V p 

Fig. 8. Pointwise error in the reconstruction of the second example f n ^ 7 T , . - , . ^ . r r .. ¿- ^ 

f(t) cos(3i) using G3 /4, G2/3 and H1/2.
 f o r a11 n e Z ' Taking into account that for any function £ € 

W ^ 7 7 X C°°(R)wehaveZ(w)6(l\w-n/p) = 0,forl = 0,l,...,L-l, 



if and only if £(w + n/p) = 0(wL), we deduce that the above Since QT reproduces polynomials in HL-I, we have 
equality holds for every / = 0 , 1 , . . . ,L— 1, or equivalen tly Qr f(t) = P^~1{t) = Q T P / ' - 1 ^ ) - Hence, using the nota-
reproduces polynomials of HL-I, if and only if condition (16) tion [Qr£(a;)] (*) f°r Qr^it), we obtain 
is satisfied for all n e l . • 

Proof of Lemma 2: Let z denote z = e27™w. A sufficient 
condition (also necessary in most of the times) for (16) is 

QTf(t)-f(t)=QT(f-Pt
L-1)(t) 

= QT{^±(x-t)L + Rt(x)}](t) 

et(zr)G(z)<p(w) -p= 0(wL). (41) = & ± [QT(X - t)L] (t) + QTP t
L(i). 

J(zr)G(ze27rin/p) = 0(wL), n = l,...,p-l 

Since we have assumed that cp satisfies the Strang-Fix condi
tions of order L and has compact support, we have 

(42) 

We have 

— I<3(w)l2 q~1 + 
1 - fcH^M = 1 - E | ' ; ( V | n ) | 2 = 0(w2L) [QT(X _ t )L] ( t ) = £ ^(inT - jT - tfSj ( | - np 

ngZ i=0 «€Z 

TL „/rt (see [8, inequality (53)]). Hence, condition (41) is equivalent = —fl{-^)- (43) 
to(17). r 

In terms of the polyphase components (15), the condition(17) Besides, taking into account that 
reads as, for n = 0 , 1 , . . . ,p - 1 

, T TL+1 llf(L+1)|l /r \L+1 

k=0 

and that X)|=o S « e z \t—pn+jr\L+1\Sj(t—pri)\ is abounded 
where Ck(w) = X)j=o Rk,j{zP)z~ir~(p~1~k)> z = e2"1" a n d function, we obtain 
a = e~

27Tt/p, or equivalently, for n = 0 , 1 . . . . ,p - 1 
4 - 1 , 

QTi?t
L(i) = E E ^ ( ^ - J'T)5¿ (^ - Pn) 

P±dl\0)a^-^ =P^\0)Sn, l = 0,...,L-l. =0(T^). 

„ ,. ~ rrr(()/nN, , „ From this estimation, (42), and (43), the estimation (29) follows. 
?en(n-fh!r ~ iCk (m=o L-i,k=o,...,P-i^d f\ - s . m i l a r l o v e ^ f o r / e W £ ( R ) > the remainder 
[«»<" fc)]fe=o,...,í-i,n=o,...,í-i, the above equalities read as R,_1{x) * / ( x ) _

P
p L - i ( x ) s a t i / f l e s 

CA = pí^)(o)¿„l, . r . . .. non r L 

L »Ji=o,...,i-i!n=o,...„-i |QrJRf-i(*)| < S ^ I I / ^ I U ^ 
Using that A A* = pi, where A* denotes the transpose con
jugate of A and I the identity matrix, we deduce that the which, as QT/(i) - / ( t ) = Q r(/-P t

L -1)(i) = QTP^_1(t), 
above equality holds if and only if C¡[/(0) = (pd (0) for proves (28). • 
k = 0,..., p - 1, / = 0,..., L - 1, which proves (18). • Proof that (31) Holds With E(W) Given by (32): It can 

Proof of Theorem 1: Let Pf
fe (x) denotes the Taylor polyno- be easily verified that the approximation operator QT can be 

mial of degree k for / at t. Any function / in the Sobolev space expressed by 
Wi,+1(R) satisfies (see [20, Ch. 2]) 

L(„\ i D L / „ \ neZ f(x)=Pt
L(x) + Rt(x) 

f(L)(t) 

QTf(t) = W f(r)<i>T (L-pn)^(j-np)y (44) 

(x - t)L + Pt
L-\x) + Rf(x) w h e r e h = T/r> * = [<h, • • •, <PP-I]T> * = [</>o, • • •, </>P-I]T, 

Ü and 

where the remainder R% can be expressed as 

-^L+1 r1 

<l>s{t)=<p(t-s), 
9 - 1 

iff (s) = ( : r " * > + 1 / ( l - r )L / ( L + 1 )( í + T[:r-í])dT. ^ ( 0 = E E f t ^ + í W í + í * + Í r ) 
L! J0 j=ofcez 



for s = 0 . 1 , . . . . p - 1. By applying [10, Theorem 1], it follows 
that Ch := Qhr satisfies (30), where the kernel is given by 

E(w) = -^\p- $(w)é(w)\2 + -^ Y^ \$(w)$(w + -) pZ pZ ¿__j i y pj 

-K[l(u.)é(w)] + \ E | * M $ ( ™ + " ) = 1 

(45) 

Denoting z — e2mw, for n £ Z, we have 

$(w)<&(w = J2Í2z~rrJ29Ákp+s]z-pk 

s=oj=o kei 

j=o s=okez 

x(ze2™/p)-pk-'tp(w+-') 

9 - 1 

= Yz-3rGj{ze2*inlp)^w + - ) 
i=o p 

= e J ( ^ ) G ( ¿ e 2 ™ l / 3 > ( u > + - ) . (46) 

Then 

E |*W* 
n<Ei 

: E e ^ ^ ^ G ^ e 2 " " ^ 
n € Z 

p - 1 

E E \eJ(zr)G(ze2™/*)<p(w + n+-

p-1 

E \eq(z
r)G(ze2™/r)\2Av(w + - ) . 

s = 0 

Using this equality and (45), the expression for the integral 
kernel (32) follows. From (30), with h = T/r, (31) follows. 
Notice that by applying [10, Lemma 2] using the expres
s ion^ ) , we obtain a new proof of the lemma • 

Proof of Theorem 2: We use the notation of the above 
proof. As Y,nez2~2P

sZo\x - s - np\2L4>s(x - np) is 
bounded (since <p is continuous jmd has compact support), 
and j \(f>s(t)\dt and j \t - n\2L\cf>s(t)\dt are bounded (since 
gj are FIR filters), the hypothesis of [10, Theorem 3] holds for 
Ch :— Qhr- By applying this theorem and Lemma 1, the first 
assertion of Theorem 2 follows. As the integral kernel E(w) 
has, in this case, infinite bounded derivatives, the estimation 
(33) follows from [10, Theorem 4], taking into account (46). 
Finally, the inequality (34) follows from [10, Theorem 5]. • 
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