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Abstract—We address the issue of noise robustness of reconstruc-
tion techniques for frequency-domain optical-coherence tomography
(FDOCT). We consider three reconstruction techniques: Fourier, iterative
phase recovery, and cepstral techniques. We characterize the reconstruc-
tions in terms of their statistical bias and variance and obtain approximate
analytical expressions under the assumption of small noise. We also
perform Monte Carlo analyses and show that the experimental results
are in agreement with the theoretical predictions. It turns out that the
iterative and cepstral techniques yield reconstructions with a smaller bias
than the Fourier method. The three techniques, however, have identical
variance profiles, and their consistency increases linearly as a function of
the signal-to-noise ratio.

Index Terms—Bias, cepstrum, frequency-domain optical-coherence to-
mography (FDOCT), variance.

I. INTRODUCTION

Frequency-domain optical-coherence tomography (FDOCT) [1] is a
new imaging modality based on the principle of low-coherence interfer-
ometry [2]–[6]. It is contact-free, employs a nonionizing radiation, has
high sensitivity, and enables fast acquisition. These advantages have
given rise to many applications, the most recent ones being in func-
tional imaging [7]–[9].

In FDOCT, the measurements are spectral data, from which the spa-
tial domain description of the specimen must be computed. There are
three state-of-the-art techniques for achieving this goal: 1) Fourier ap-
proach; 2) Iterative phase recovery method [10]; and 3) Cepstral tech-
nique [11].
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Fig. 1. Schematic of the FDOCT setup.

In practice, the measurements are affected by acquisition noise [15]
that may affect the performance of a reconstruction algorithm. The
contribution of this paper is a statistical characterization of the tech-
niques mentioned above in the presence of noise in terms of the bias
and variance of the reconstruction. These parameters are important be-
cause the bias is directly related to the amount of artifacts present in
the FDOCT reconstruction, and the variance is a measure of the con-
sistency of a reconstruction technique in the presence of experimental
noise. We show that the bias-variance analysis is relatively easy for the
Fourier approach. For the iterative and cepstral techniques, however, it
is complicated because of the nonlinearities involved, and successive
refinement of phase in the former. However, by making a small-noise
assumption together with reasonable approximations, closed-form ex-
pressions can be derived. By means of Monte Carlo analyses, we show
that the simulation results are largely in agreement with the theoretical
analysis.

II. SIGNAL ACQUISITION AND MODEL

The standard Michelson interferometric setup for FDOCT is shown
in Fig. 1. The system comprises two arms, one for the object and an-
other for the reference. A broadband light source (e.g., a super-lumi-
nescent diode) is employed for illumination as it yields high axial reso-
lution. A beam-splitter is employed to divide the source output between
the two arms. A mirror in the reference arm gives rise to the light that
interferes with the light reflected from the object. The coherent inter-
ference of the recombined signals is detected by a spectrometer, which
records the fringe intensity as a function of the wavelength . Equis-
paced samples on the wavenumber scale are then obtained
by interpolation. In the standard Fourier notation, the measured signal
is expressed as , where is the Fourier
transform of the backscattering function . We assume that is
causal, which is indeed the case in many standard configurations. The
function is the power spectrum of the source; ,
where is the refractive index of the specimen as a function of
the axial variable . is measurable, and hence known. The tomo-
gram reconstruction problem is essentially the task of retrieving
given and . An important point is that the light reflected
from the object is much weaker than that reflected from the mirror;
i.e., . Since is usually not known a priori, a standard
simplification is obtained by replacing it with the average refractive
index [12, Ch. 12]. The tomograms would then be a function of the
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optical path length in the specimen. Such tomograms are quite standard
in OCT applications.

III. STATE-OF-THE-ART RECONSTRUCTION TECHNIQUES

A. Fourier Approach

In this approach, the tomogram is reconstructed as:
, where and

are the autocorrelations of the source and , respectively;
denotes the Fourier transform operator. For broadband illumination, it
is reasonable to assume that is a Dirac impulse. If the zero-delay
plane is outside the specimen, or, equivalently, if is causal, then
there is no overlap between and . The au-
tocorrelation , however, is symmetric about and overlaps
with and . Therefore, the distortion is
and is additive.

B. Iterative Phase Recovery Method

This method is based on a Fienup technique for phase retrieval [14].
One starts with the spectral measurements and alternates between the
spatial and spectral domains via the Fourier transform. At each itera-
tion, two conditions are imposed: 1) causality in the spatial domain; and
2) the condition that the magnitude spectrum of the estimated scattering
function matches the measurements. The procedure converges under
some technical conditions [13]. After convergence, a minimum-phase
version of the scattering function is obtained. If the scattering func-
tion is indeed minimum-phase, then, in principle, it can be recovered
exactly [10], [13]. In [10], the authors also propose an analytical coun-
terpart of the technique, which can be used for initialization to improve
both accuracy and speed of convergence. A summary of the method is
given below.

Initialization: ; as per [10].
1. .
2. Inverse Fourier transform: .
3. Causality constraint: , where is the

unit step function.
4. Fourier transform: ;

.
5. Spectrum constraint: .
6. If a suitable criterion is met, is the estimate of ; else

, and go to step 1. The stopping criterion can be either
a bound on or the relative difference between two consecutive
estimates of .

C. Cepstral Technique

In this technique, the tomogram is reconstructed from the cepstrum
instead of the spectrum. The advantage is that the the autocorrelation
can be suppressed under realistic conditions ([11] contains the proof).
The steps in the technique are given below.

1) Cepstrum: , where and
are the measurements.

2) Causal cepstrum: .
3) Fourier transformation: .
4) Exponential mapping: .
5) Inverse Fourier transformation: .

IV. BIAS AND VARIANCE CALCULATIONS

In order to formulate a realistic model for the noisy signal, we re-
call some results related to scattering and experimental studies on the

noise characteristics. The measured signal is essentially due to scat-
tering within the sample. Yaqoob et al. [16] have shown that optical
scattering in static specimens, which may appear as stochastic, is in fact
deterministic. The stochastic component is mainly due to the acquisi-
tion devices. Leitgeb et al. [15] have shown that the acquisition noise is
approximately white. Based on these results, we employ the model of
a deterministic signal in white noise. To conform to the practical sce-
nario, we consider the samples of , , , and , denoted
by , , , and , respectively. The finite-length discrete version
of the measurements is therefore given as: ,

, where . is the measurement noise
and is assumed to be Gaussian distributed with zero mean and variance

. The Gaussian assumption has been shown to be sufficiently accu-
rate for most practical applications. Based on this assumption, Ralston
et al. [17] showed successful denoising results on experimental data.
Also, in practice, the noise floor is about 40 dB below the signal level
(small-noise regime) [15], [18], [19]; i.e., . We
shall take advantage of this inequality in the subsequent analysis to de-
rive approximate second-order expressions.

A. Fourier Approach

In this approach, it is a standard practice to do reconstruc-
tion after subtracting the reference signal (commonly known
as background subtraction) because it enhances the sample
structure. The measurements after this operation are

,
. Taking the inverse discrete Fourier transform

(IDFT) of the sequence1 and retaining the first half (the
causal part), we get that ,
where is the noise in the spatial domain. Therefore, we have that

, which indicates that is
biased. The variance of is .

B. Iterative Phase Recovery Method

The input to the algorithm is the sequence ,
where is the phase estimate at the th DFT index after the
th iteration; is the initial phase. Under a low-noise condition,

we have the Taylor-series approximation:
, where

and denotes the Landau symbol. The IDFT of

is

(1)

where h.o.t. stands for higher-order terms. The sequence ,

with the second-half part set to zero, yields . Let the

DFT of be denoted by , the angle of which is used
as the phase of in the next iteration; i.e., .
To proceed further with the calculations, consider the term

, where is the phase error in
the th component at the th iteration. For large enough , it is reason-
able to write
in the small noise regime. This term is further scaled down
by the factor [cf. (1)]. The magnitude of the product
is proportional to , which is small compared to .
Therefore, its contribution to the bias is negligible. Similarly,

1The notation for sequences is used to indicate that takes values
.
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the contribution of the term containing is also negligible.
Under these approximations, we can write

. The expecta-

tion on the r.h.s. is rewritten as
. Based on evidence from

Monte Carlo trials, we found that the phase error has a negligible
mean value, and hence its contribution to the above expectation is not
significant. Denote , which is the variance of

the zero-mean phase error after the th iteration. Therefore, we have
that . The bias can therefore be

written as

(2)

After convergence has been achieved, the above expression becomes
independent of . Therefore, the superscript can be dropped. We next
compute an expression for the standard deviation. Recall that
is the DFT of the causal part of

We write , where
. Similarly . From these expres-

sions, we have that ,
where is deterministic. The variance
of is given by .
After convergence, in the noise-free case, we have . There-
fore, (2) simplifies to

(3)

Similarly, it can be shown that the variance is given by

.

C. Cepstral Technique

The following analysis is in the same order as the operations de-
scribed in Section III-C. Rewriting , and taking
its logarithm, we get that

(4)

Recalling the Taylor-series expansion
for , we rewrite (4) as

(5)

the IDFT of which gives the estimated cepstrum

(6)

where is the cepstrum in the absence of noise. The DFT of
the causal part of is

(7)

The step (4) of the technique (cf. Section III-C) yields

(8)

The IDFT of the sequence gives the scattering function

(9)

It follows from (9) that .
The variance of is given by

(10)

V. MONTE CARLO ANALYSES

Deconvolution of the source spectrum is implicit in the cepstral tech-
nique, but this is not the case with the Fourier and iterative methods.
Therefore, in order to make a fair comparison, we set the source spec-
trum to unity within the measurement bandwidth. We synthesize a scat-
tering function (cf. Fig. 2), motivated by measurements on standard
phantoms such as fiber optic cables [19], microscope glass slides, mul-
tilayer silica-glass phantoms [15], [18], etc. We generate 500 realiza-
tions of pseudorandom white Gaussian noise and compute the scat-
tering function estimates by using the three techniques. For the itera-
tive method, we employed the log-Hilbert-transform-based initializa-
tion proposed in [10] to speed up convergence. Typically, the number
of iterations needed would be about 10 [10], but we iterate 100 times
to make sure that the best results are obtained. The experiment is re-
peated for different values of SNR; corresponding to each value, the
biases and variances are computed.

The biases of the estimators corresponding to dB are
shown in Fig. 3. The bias in the Fourier approach is the autocorrelation
term. The result of the simulation matches with the theoretical results
for small lags and at the peaks. The bias at larger lags and in the val-
leys is dominated by noise. The theoretical bias for the iterative method
appears to be reasonably accurate. Although the theoretical bias of the
cepstral technique is small compared to the Monte Carlo value, in prac-
tice, the noise floor places a limit. The Monte Carlo bias profiles of the
iterative and cepstral techniques are nearly identical.

The variances of the estimates for dB are shown in Fig. 4.
We see that the simulation results are in agreement with the theoretical
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Fig. 2. The scattering function used for Monte-Carlo analysis (cf. Section V).
A.U. stands for arbitrary units.

Fig. 3. Biases dB versus the axial depth index.

Fig. 4. Variances dB versus the axial depth index.

Fig. 5. Biases at the first peak versus SNR.

predictions for the Fourier and iterative techniques. For the cepstral
technique, there is a small discrepancy between the theoretical predic-
tion and the experimental value. From these plots, we infer that the cal-
culations are fairly accurate. Also, note that the three techniques have
nearly identical Monte Carlo variance profiles.

Another important aspect is the SNR dependence of the bias and
variance. We show in Figs. 5 and 6 the biases and variances of the
estimators versus the SNR, corresponding to a point at the peak of the
first interface shown in Fig. 2. The bias of the Fourier
method saturates and matches with the theoretical prediction, whereas
the biases of the iterative and cepstral techniques decrease with increase

Fig. 6. Variances at the first peak versus SNR.

Fig. 7. Biases versus SNR at .

Fig. 8. Variances versus SNR at .

in SNR. By comparing the Monte Carlo variances across techniques,
we see that they are almost identical and that there is a good match
between the theoretical and simulation results. The variances also have
a linear dependence on the SNR.

In Figs. 7 and 8, we show another set of results corresponding to
the valley between the first and second peaks in the scattering function

. The bias of the Fourier approach saturates because the
autocorrelation has a peak around this point and thus limits the achiev-
able accuracy. For the other two techniques, the bias shows a decreasing
trend. At this location, the theoretical predictions for the iterative and
cepstral techniques are not expected to match with the simulation re-
sults mainly because of the local absence of signal (i.e., no interface),
and therefore the assumption of high SNR, under which the expressions
are derived, does not hold. There is some discrepancy between the theo-
retical and experimental biases for the iterative and cepstral techniques
suggesting that the truncated Taylor-series calculations may be suit-
able for determining the variance, but not sufficiently accurate for de-
termining the bias. The general observation is that the three techniques
have nearly identical variances, but the iterative and cepstral techniques
give rise to lesser bias than the Fourier method. Such observations were
also found to hold for a different choice of the scattering function.

VI. CONCLUSION

We have compared the noise sensitivities of three state-of-the-art re-
construction techniques for FDOCT. We have shown that the Fourier
method has a higher bias than the iterative and the cepstral techniques.
The experimental results are in agreement with the theoretical values
except for a small discrepancy in the bias for the iterative and cepstral
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techniques. The cepstral technique, although nonlinear, yields estima-
tors with a variance that equals that of the Fourier and iterative methods.
Therefore, in switching from the Fourier approach to the cepstral tech-
nique, statistical efficiency is not lost; in fact, there is a gain in the re-
construction accuracy. The price paid for this migration is only a small
increase in algorithm complexity.
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