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Abstract

Group lifting structures are introduced to provide an algebraic framework for studying lifting fac-
torizations of two-channel perfect reconstruction FIR filter banks. The lifting factorizations generated
by a group lifting structure are characterized by abelian groups of lower and upper triangular lifting
matrices, an abelian group of unimodular gain scaling matrices, and a set of base filter banks. Examples
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two-channel linear phase FIR filter banks, the whole- and half-sample symmetric classes, including both
the reversible and irreversible cases. This covers the lifting specifications for whole-sample symmetric
filter banks in Parts 1 and 2 of the ISO/IEC JPEG 2000 still image coding standard. The theory is used
to address the uniqueness of lifting factorizations. With no constraints on the lifting process, it is shown
that lifting factorizations are highly nonunique. When certain hypotheses developed in the paper are
satisfied, however, lifting factorizations generated by a group lifting structure are shown to be unique.
A companion paper applies the uniqueness results proven in this paper to the linear phase group lifting
structures for whole- and half-sample symmetric filter banks.
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Fig. 1. The polyphase-with-advance filter bank representation.
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Fig. 2. (a) Whole-sample symmetric (WS) filter bank. (b) Half-sample symmetric (HS) filter bank.

I. INTRODUCTION

This paper studies two-channel finite impulse response (FIR) perfect reconstruction filter banks [1].
Figure 1 depicts the polyphase-with-advance representation of a filter bank [2]. A lifting factorization [3],
[4] decomposes the polyphase matrices H(z) and G(z) into upper and lower triangular lifting matrices,
a variant of a well-known result from linear algebra (e.g., [5, Proposition VII.2.11]) stating that any
matrix over a Euclidean domain can be diagonalized by elementary matrices. The construction of such
factorizations via the Euclidean algorithm was given for general FIR perfect reconstruction filter banks
in [6] and was subsequently refined for linear phase filter banks in [7], [2]. These latter works were
motivated by the ISO/IEC JPEG 2000 standard [8], [9], [7], which specifies whole-sample symmetric
(WS, or FIR type 1 linear phase) wavelet filter banks in terms of half-sample symmetric (HS, or FIR
type 2) lifting filters. (The connection between filter banks and wavelet transforms is well-known and
will not be treated here; see [10], [11], [12], [13].)

Elementary matrix decompositions are known to be nonunique and it is also known that, in general,
lifting factorizations of filter banks are similarly nonunique. Nonetheless, this paper introduces a frame-
work for lifting factorizations, called a group lifting structure, that allows us to prove uniqueness of lifting
steps under carefully stated hypotheses. This is an extension of the group-theoretic approach to lifting
introduced in [2]. A companion paper [14] applies the theory developed here to the two principal classes
of linear phase filter banks, the WS and HS classes shown in Figure 2. It is proven in [14] that there is
only one way to factor a given WS filter bank into HS lifting filters as specified in [8], [9], even though the
given filter bank has many other lifting factorizations into different (e.g., nonlinear phase) lifting filters.
As shown in [2], factoring HS filter banks into linear phase lifting steps is more complicated than in the
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WS case, but [14] contains analogous results on the uniqueness of linear phase lifting factorizations for
HS filter banks. A follow-on paper currently in preparation studies the group-theoretic structure of lifting
factorizations and determines the groups (up to isomorphism) arising in unique lifting factorizations. This
work is being applied to develop a group-theoretic numerical framework for optimal filter bank design,
a goal motivated by the observation that perfect reconstruction filter banks do not form vector spaces.

A. Nonuniqueness of Lifting Factorizations

Examples of nonunique lifting factorizations are ubiquitous. Consider our old friend, the Haar filter
bank, normalized with a polyphase determinant of 1 and a lowpass DC response of 1:

Hhaar(z) ≡
[
1/2 1/2
−1 1

]
. (1)

The lifting factorization of (1) in [6] and [9, Annex H] is

Hhaar(z) =
[
1 1/2
0 1

] [
1 0
−1 1

]
. (2)

The Haar matrix has another factorization, however, with different lifting steps and a diagonal gain scaling
matrix:

Hhaar(z) =
[
1/2 0
0 2

] [
1 0
−1/2 1

] [
1 1
0 1

]
. (3)

Similar observations are made in [6] regarding nonunique factorizations of the 4-tap/4-tap (D4) orthogonal
wavelet filter bank, and that example can be extended to exhibit nonunique lifting factorizations for the
entire family of orthogonal Daubechies (D2n) wavelet filter banks.

To appreciate just how fundamentally nonunique lifting factorizations are, equate (2) and (3) and move
the lifting steps from (2) over to the right end of (3). Use [6, Section 7.3] to factor diag(1/2, 2) into
lifting steps, yielding factorization (4).

I =
[

1 0
−1 1

] [
1 −1
0 1

] [
1 0

1/2 1

] [
1 2
0 1

]
·
[

1 0
−1/2 1

] [
1 1
0 1

] [
1 0
1 1

] [
1 −1/2
0 1

]
(4)

The formulas in [6, Section 7.3] can be used to generate infinitely many other lifting factorizations of
the identity.

In spite of the general nonuniqueness of elementary matrix decompositions, work on the JPEG 2000
standard raised a number of questions regarding uniqueness of linear phase lifting factorizations. For
instance, the lifting factorization of WS filter banks in [2, Theorem 9] involves left matrix “downlifting”
of a WS transfer matrix into HS lifting steps. One is naturally led to ask whether the same sequence of
HS lifting filters is obtained for right matrix factorizations or, more generally, for a mix of left and right
factorization operations.

For example, the software accompanying [15], [16] uses the Euclidean algorithm to compute nine
different lifting factorizations of a 7-tap/5-tap Cohen-Daubechies-Feauveau WS wavelet filter bank based
on cubic B-splines [17], [10]. One factorization (5), computed in [16, Section 5.4] in synthesis matrix
form, uses HS lifting filters exclusively (the other eight factorizations involve non-symmetric lifting
filters).

2−9/2
[
−12z + 40− 12z−1 −8− 8z−1

3z2 + 5z + 5 + 3z−1 2z + 12 + 2z−1

]
=

[
1 0

−(z + 1)/4 1

] [
1 −1− z−1
0 1

]
(5)

·
[

1 0
3(z + 1)/16 1

] [
2
√
2 0

0 1/2
√
2

]
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This exact same linear phase lifting is obtained using both left and right matrix downlifting factorization
as in [2].

Other questions about unique factorization arise when factoring HS filter banks, which contain an HS
lowpass filter and a half-sample anti-symmetric (HA, or FIR type 4) highpass filter, as in Figure 2(b).
HS filter banks factor using whole-sample antisymmetric (WA, or FIR type 3) lifting filters and con-
centric equal-length HS base filter banks [2, Section VI]. For instance, a 6-tap/10-tap HS wavelet filter
bank, H6,10(z), can be derived from the same halfband spectral factorization as the 9-tap/7-tap Cohen-
Daubechies-Feauveau WS wavelet filter bank in [17], [10, Figure 8.8]. Annex H.4.1.2.1 of [9] has a
factorization of H6,10(z) in which it is lifted from a concentric 6-tap/6-tap HS base filter bank by a
second-order WA lifting step. At the time that [9] was written, it was unknown whether it was possible
to lift H6,10(z) from the Haar filter bank using WA lifting filters. The same question was raised about a
10-tap/18-tap HS filter bank that is lifted from a 10-tap/10-tap HS base filter bank in [9, Annex H.4.1.2.2]
by a fourth-order WA lifting filter. It would have simplified the writing of [9, Annex H] if all HS filter
banks could be lifted by WA lifting filters from a single base filter bank such as the Haar, but our results
will show this to be impossible.

B. Technical Approach

Our approach, which is algebraic rather than algorithmic, ignores the mechanism used to generate
lifting factorizations (e.g., the Euclidean algorithm in [6] or the “downlifting” approach in [2]) and instead
constrains the universe of allowable lifting steps. Under suitable hypotheses, we shall prove uniqueness
within precisely defined classes of lifting factorizations. For example, using the results of this paper, we
prove in [14] that one always obtains the same HS lifting filters when factoring a WS filter bank into
HS lifting steps, regardless of how the factorization is constructed. In [14] we also prove uniqueness of
the WA lifting filters and the equal-length HS base filter bank that arise in the factorization of a suitably
normalized HS filter bank. Both results follow from Theorem 1 of the present paper, a result that does not
depend on linear phase characteristics. As in [2], we make extensive use of the group-theoretic structure
of lifting factorizations.

Readers may be surprised by the absence of traditional ring-theoretic methods for establishing unique
factorization results over polynomial domains. While ring-theoretic techniques such as Gröbner bases [18]
have been used for constructing wavelet filter banks, filter banks are elements of matrix polynomial rings,
which are not integral domains. More significantly, perfect reconstruction filter banks (including lifting
matrices) are units in the ring of 2 × 2 matrices over the Laurent polynomials, C[z, z−1]. This means
that traditional algebraic methods based on ideal theory can tell us nothing about uniqueness of lifting
factorizations. Of course, it is also surprising that unique factorization results can be proven using group-
theoretic techniques since everything divides everything in a group, but this only highlights the importance
of carefully formulating the universe of admissible lifting factors for a given class of polyphase matrices.

The author considered recasting the problem in terms of rings of causal matrix polynomials, but doing
so would have required reworking much of the basic theory of lifting and would have distracted attention
from the results presented here. Fortunately, the group-theoretic approach proved adequate for deriving the
results of interest, and it probably resulted in a more elementary level of algebraic machinery than would
have been used in a ring-theoretic approach. Moreover, the technical crux of the group-theoretic approach,
which is the proof of an order-increasing property, would probably be required in a ring-theoretic treatment
as well. The reader should note that this paper does not require an extensive background in group theory.
The basic material—group axioms, subgroups, and homomorphisms—found in any introductory text on
“abstract algebra” will suffice; e.g., [5], [19], [20], [21].

1) Comparison to Other Work: Daubechies and Sweldens [6] point out that the Euclidean algorithm
can generate many different lifting factorizations for a given filter bank, and they pose the analysis
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and exploitation of nonuniqueness as “an interesting topic for future research.” Nonuniqueness of lifting
factorizations was studied in [22] to find optimal integer-to-integer liftings for a given reversible filter
bank. Recent research by Zhu and Wickerhauser [23] exploits nonuniqueness to construct liftings that
use only “nearest-neighbor” data (i.e., first-order lifting filters of the form a+ bz−1 or az+ b) in order to
minimize memory fetches in hardware implementations. Their work shows that some lifting factorizations
are much more ill-conditioned than others, which likely affects rate-distortion scalability in source coding
applications. As far as the author is aware, however, there are no prior results establishing uniqueness of
lifting steps for any classes of lifting factorizations.

Unlike [24], [25], [26], which also apply group theory to multirate discrete-time systems, the present
paper makes no use of the specialized theory of finite groups. Moreover, our results are not constrained to
finite signals of length 2n: the papers [24], [25], [26] use group-theoretic tools to analyze the multiscale
structure of the underlying space of finite-length signals, whereas we employ group-theoretic methods to
analyze the algebraic structure of multirate FIR filter banks acting on general discrete-time signals with
no length constraints.

2) Outline Of The Paper: Section II reviews filter banks and lifting. Section III introduces the group-
theoretic concepts that provide the framework for our uniqueness results, which are based on the notion
of group lifting structures. Section IV presents examples of group lifting structures for factoring WS
and HS filter banks into linear phase lifting filters, including the ELASF class of reversible HS filter
banks lifted from the Haar filter bank that was defined by M. Adams. In Section V we define the key
polyphase order-increasing property that a group lifting structure must satisfy to ensure unique lifting
factorizations, and we prove the main uniqueness theorem. Section VI contains concluding remarks.

II. FILTER BANKS AND LIFTING FACTORIZATIONS

This section reviews notation and introduces several important concepts and tools for working with
lifting factorizations.

A. Filters, Filter Banks, and Support Intervals

Throughout the paper, FIR filters are written as (possibly noncausal) Laurent polynomials,

F (z) ≡
b∑

n=a

f(n) z−n ∈ C
[
z, z−1

]
.

Definition 1: The support interval of an FIR filter, denoted

supp_int(F ) ≡ supp_int(f) ≡ [a, b] ⊂ Z , (6)

is the smallest closed interval of integers containing the support of the filter’s impulse response or,
equivalently, the largest closed interval for which f(a) 6= 0 and f(b) 6= 0. If

supp_int(f) = [a, b]

then the order of F (z) is
order(F ) ≡ b− a . (7)

The analysis polyphase-with-advance decomposition of a filter [2, eqn. (9)] is

F (z) = F0(z
2) + zF1(z

2) ,
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and its analysis polyphase vector representation is

F (z) ≡
[
F0(z)
F1(z)

]
=

d∑
n=c

f(n) z−n, (8)

f(n) ≡
[
f0(n)
f1(n)

]
with f(c), f(d) 6= 0 . (9)

In this paper we generally work with analysis (rather than synthesis) polyphase-with-advance filter bank
representations, so henceforth “polyphase” will mean “analysis polyphase-with-advance” unless stated
otherwise. The polyphase representation (8), (9) has the polyphase support interval

supp_int(f) ≡ [c, d] , (10)

which differs from the scalar support interval (6) for the same filter. The polyphase order of (8) is

order(F ) ≡ d− c . (11)

These definitions generalize for FIR filter banks, {H0(z), H1(z)}. Decompose each filter, Hi(z), i =
0, 1, into its polyphase vector representation, H i(z), as in (8) and form the polyphase matrix:

H(z) ≡
[
HT

0 (z)

HT
1 (z)

]
=

d∑
n=c

h(n) z−n , (12)

h(n) ≡
[
hT0 (n)

hT1 (n)

]
with h(c), h(d) 6= 0 . (13)

Note that we use bold italics for column vectors and bold roman (upright) fonts for matrices. The
polyphase support interval of the filter bank in (12), (13) is defined to be

supp_int(h) ≡ [c, d] (14)

and the polyphase order is
order(H) ≡ d− c . (15)

B. Lifting

H(z) is an FIR perfect reconstruction filter bank (i.e., an FIR filter bank with FIR inverse) if and only
if

detH(z) = az−d for a 6= 0, d ∈ Z.

The set of all such filter banks forms a multiplicative group, F, called the FIR filter bank group [2,
Theorem 1]. A polyphase matrix is called unimodular [19] if

detH(z) = 1 . (16)

In [2, Theorem 1] it was noted that the filter banks satisfying (16) form a normal subgroup, N C F,
of the FIR filter bank group. We refer to N, which readers may recognize as SL(2, C

[
z, z−1

]
), as the

unimodular group. (This meaning of unimodular is different from its use in group representation theory,
where a group is called unimodular if its left and right translation-invariant measures are the same.)

Daubechies and Sweldens [6] proved that any unimodular FIR transfer matrix has a lifting factorization:

H(z) = diag(1/K, K)SN−1(z) · · ·S1(z)S0(z) . (17)

We also refer to (17) as a lifting cascade. The diagonal matrix, diag(1/K, K), is a unimodular gain
scaling matrix with scaling factor K 6= 0. The lifting matrices Si(z) are upper or lower triangular
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K

X0

X1
Y1(z)

1/K Y0(z)

S 0(z) S 1(z)

+

+

X(z) ↓

z

↓

Fig. 3. Lifting form of a two channel irreversible analysis filter bank.

with ones on the diagonal and a lifting filter, Si(z), in the off-diagonal position. In the factorization
corresponding to Figure 3, for instance, the lifting matrix for the step containing S0(z) (which is a
lowpass update) is upper triangular, and the matrix for the second step (a highpass update) is lower
triangular.

Definition 2: The update characteristic of a lifting step (or lifting matrix) is a binary flag, m = 0 or
1, indicating which polyphase channel is being updated by the lifting step.

For instance, the update characteristic, m0, of the first lifting step in Figure 3 is “lowpass,” which is
coded with a zero: m0 = 0. Similarly, the update characteristic of the second lifting step is “highpass”
(coded with a one: m1 = 1). The update characteristic, denoted mi, is defined similarly for each lifting
matrix, Si(z), in a lifting cascade (17). (The term “update characteristic” is taken from [9, Annex G].)

1) Partially Factored Lifting Cascades: To cover cases that lift one filter bank to another, we do not
assume all lifting cascades start from the identity (i.e., are “lifted from the lazy wavelet”). Instead, we
often work with partially factored lifting cascades relative to some base filter bank B(z),

H(z) = diag(1/K, K)SN−1(z) · · ·S0(z)B(z) , (18)

with corresponding scalar filters B0(z) and B1(z). Since the lifting matrices multiply B(z) on the left,
(18) should be called a left lifting cascade. This is the primary case of interest, however, so “partially
factored lifting cascade” will mean left cascade, as in (18), unless specified otherwise. Moreover, we
usually ignore the lifting steps involved in factoring B(z) and only study the steps Si(z) to the left of
B(z) in (18). Cascades like (17) that are completely factored into lifting steps are regarded as the special
case B(z) = I.

Lifting cascades will often be written recursively:

H(z) = diag(1/K, K)E(N−1)(z) ,

E(n)(z) = Sn(z)E(n−1)(z) for 0 ≤ n < N , (19)

E(−1)(z) ≡ B(z) .

This recursive formulation is the basis for the definition of the key polyphase order-increasing property
in Section V-A.

C. Irreducible Lifting Cascades

We can easily rule out a couple of degenerate cases that preclude uniqueness of lifting factors.
Definition 3: A lifting cascade (18) is irreducible if all lifting steps are nontrivial (Si(z) 6= I) and

there are no consecutive lifting matrices with the same update characteristic (i.e., they strictly alternate
between lower and upper triangular).
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For example, filter banks are signaled in JPEG 2000 Part 2 codestreams as irreducible lifting cascades
lifted from the identity (B(z) = I).

Irreducibility is an attribute of lifting cascades rather than an attribute of individual matrices, making
it qualitatively different from the notion of irreducible elements in a ring. Requiring irreducibility poses
no loss of generality since any lifting cascade can be simplified into an irreducible cascade using matrix
multiplication. While irreducibility eliminates numerous trivial obstacles to uniqueness of lifting factors,
irreducibility alone does not imply uniqueness, as the preceding examples show. In fact, by inserting
factorizations of the identity such as (4) into a lifting of a given FIR perfect reconstruction filter bank,
it follows that every filter bank has infinitely many different irreducible lifting factorizations.

Such extreme nonuniqueness also trivializes questions like: “Can H(z) be lifted (irreducibly) from the
Haar filter bank?” Just create a partial lifting factorization like, e.g.,

[any lifting of H] [inverse of (2)] [lifting (4)] Hhaar

and simplify to irreducible form. This trivial example can be generalized to yield the following patho-
logical result.

Proposition 1: If G(z) and H(z) are any FIR perfect reconstruction filter banks then G(z) can be
irreducibly lifted from H(z) in infinitely many different ways.

D. Irrelevance of Zeroth-Order Lifting Filters

After comparing the above nonuniqueness results to the formulas in [6, Section 7.3] for factoring
unimodular gain scaling matrices into lifting steps, it is tempting to dismiss the examples in Section I-A
and Proposition 1 (as well as the nonunique factorizations of orthogonal filter banks in [6], which also
involve zeroth-order lifting filters) as a pathology somehow resulting from the use of constant or zeroth-
order lifting filters, which are units in C

[
z, z−1

]
. To see that the failure of uniqueness cannot be attributed

to the use of zeroth-order lifting filters, we have the following example.
Example 1: For all b, c ∈ C with b, c 6= 0, b2 6= c2, the fourth-order unimodular transfer matrix

H(z) ≡

 b−2z2 b−2z2(1− bz−1)
b2−c2
b2 (1 + bz−1) b2−c2

b2

(
1− b2c2

c2−b2 z
−2
) 

has two different irreducible lifting factorizations,

H(z) = S2(z)S1(z)S0(z) = S′2(z)S′1(z)S′0(z) . (20)

Specifically, S2(z), S0(z), and S′1(z) are lower triangular and S1(z), S′2(z), and S′0(z) are upper
triangular. The lifting filters are all first-order Laurent polynomials:

S0(z) = 1 + bz−1 , S′0(z) =
c2

c2 − b2
(1− bz−1) ,

S1(z) = b−2z2(1− bz−1) , S′1(z) =
b2 − c2

b2
(1 + bz−1) ,

S2(z) = −c2z−2(1 + bz−1) , S′2(z) =
z2

b2 − c2
(1− bz−1) .
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Taking b = 1, c =
√
5 in (20) leads to a reversible lifting of the identity (21) with linear phase lifting

filters.

I =
[
1 (−z2/4)(1− z−1)
0 1

] [
1 0

−4(1 + z−1) 1

]
·
[
1 (5/4)(1− z−1)
0 1

] [
1 0

−(1 + z−1) 1

]
(21)

·
[
1 −z2(1− z−1)
0 1

] [
1 0

5z−2(1 + z−1) 1

]
In short, without some nontrivial, carefully crafted limits on the scope of allowable lifting operations,
there is no hope of obtaining unique lifting factorizations.

III. ABELIAN LIFTING MATRIX GROUPS AND

GROUP LIFTING STRUCTURES

A uniqueness theorem is always given relative to some universe of feasible solutions; i.e., it states
that there is only one solution in that universe. This makes it necessary to preface a unique factorization
theorem by specifying the universe of factors with respect to which factorizations are unique. In this
section, universes of lifting factorizations will be defined in terms of abelian groups of lifting matrices,
abelian groups of gain scaling matrices, and sets (not generally groups) of base filter banks.

A. Abelian Groups of Lifting Matrices

Define one-to-one mappings
υ, λ : C[z, z−1]→ N

that map the lifting filter S(z) ∈ C[z, z−1] to lifting matrices:

υ(S) ≡
[
1 S(z)
0 1

]
and λ(S) ≡

[
1 0

S(z) 1

]
. (22)

It is easy to show that υ and λ are homomorphisms from the additive group C[z, z−1] into the multi-
plicative group N.

Lemma 1: For any additive subgroup of the Laurent polynomials, P < C[z, z−1], the images υ(P) and
λ(P) are abelian subgroups of N that are isomorphic to P.

Definition 4: For additive groups of Laurent polynomials Pi < C[z, z−1], i = 0, 1, the groups U ≡
υ(P0) and L ≡ λ(P1) are called the lifting matrix groups generated by P0 and P1. Note that U and L

need not be isomorphic to one another; i.e., it may be that P0 6∼= P1.

B. Gain Scaling Matrices and Inner Automorphisms

Another component of lifting is an abelian gain scaling group, D, of unimodular constant matrices,

DK ≡ diag(1/K, K) for scaling factor K 6= 0, (23)

with the product DKDJ = DKJ . D need not contain the matrices (23) corresponding to all K 6= 0; D
could be defined in terms of any multiplicative subgroup of

R∗ ≡ R\{0} or C∗ ≡ C\{0} .

Let D act on N via inner automorphisms: for a given D ∈ D define the inner automorphism γD ∈
Aut(N),

γDA(z) ≡ D A(z)D−1. (24)
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This is equivalent to the intertwining relation

D A(z) = (γDA(z))D . (25)

Homomorphisms commute with inversion so there is no ambiguity in writing

γDA−1(z) ≡ γD

(
A−1(z)

)
= (γDA(z))−1 . (26)

We will write “γK” as a shorthand for γDK
. Note that γK is the inverse of the “gain conjugation operator,”

CK , defined in [2, Section IV-A.1]. This makes the mapping

γ : DK 7→ γK

a homomorphism of D onto a subgroup γ(D) < Aut(N). Applying γK to a generic matrix gives (27):

γK

[
a b
c d

]
=

[
a K−2b
K2c d

]
. (27)

Definition 5: A group G < N is D-invariant if all of the inner automorphisms γD ∈ γ(D) fix the group
G; i.e., γDG = G, so that γD|G ∈ Aut(G). This is equivalent to saying that D lies in the normalizer of G
in N:

D < NN(G) ≡
{
A ∈ N : AGA−1 = G

}
.

Lemma 2: Given an additive group P of lifting filters, the groups υ(P) and λ(P) are D-invariant if
and only if P is closed under multiplication by K2 for all DK ∈ D.

Proof: Follows immediately from (27).

C. Group Lifting Structures

The final component in a universe of lifting factorizations is a set, B, of base filter banks from which
other filter banks are lifted using lifting matrices in U and L. Using a set rather than a single base filter
bank will allow us to prove uniqueness of base filter banks as well as uniqueness of lifting matrices. B
need not form a group, as will be seen in the case of HS filter banks. We can now define a universe of
lifting factorizations, called a group lifting structure.

Definition 6: A group lifting structure, S, is an ordered four-tuple,

S ≡ (D, U, L, B) ,

where D is a gain scaling group, U and L are upper and lower triangular lifting matrix groups, and
B ⊂ N. The lifting cascade group, C, generated by S is the subgroup of N generated by U and L:

C ≡ 〈U ∪ L〉 =
{

S1 · · ·Sk : k ≥ 1, Si ∈ U ∪ L
}
. (28)

We say S is a D-invariant group lifting structure if U and L, and therefore C, are D-invariant groups.
The set of all filter banks generated by S is

DCB ≡
{

DCB : D ∈ D, C ∈ C , B ∈ B
}
.

We will regard elements of DCB both as individual transfer matrices and as partially factored lifting
cascades of the form (18) with gain matrix DK ∈ D, lifting matrices Si(z) ∈ U ∪ L, and base B(z) ∈ B.
The statement that H(z) “has a (group) lifting factorization in S” will mean that H ∈ DCB. Moreover,
since any group lifting factorization can be simplified via matrix multiplication into an irreducible lifting
factorization with lifting matrices in the same groups, we obtain the following elementary result.

Proposition 2: H(z) has a group lifting factorization in S if and only if it has an irreducible lifting
factorization in S.
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Definition 7: The scaled lifting group, S, generated by S is the subgroup of N generated by D and
C:

S ≡ 〈D ∪ C〉 = 〈D ∪ U ∪ L〉

=
{

A1 · · ·Ak : k ≥ 1, Ai ∈ D ∪ U ∪ L
}
. (29)

Remarks: When two adjacent factors in (29) have the form AiAi+1 = SD for S ∈ U ∪ L and
D ∈ D, we can use (25) to rewrite the product as SD = DS′ where γDS′ = S. In this way an arbitrary
element of S can be written

A1 · · ·Ak = (D1D2 · · · )(S′1S′2 · · · ) . (30)

If S is D-invariant then S′i ∈ U ∪ L for all i, so (30) implies

S = DC and DCB = SB if S is D-invariant. (31)

This shows that S embodies the group-theoretic aspects of DCB even if B and DCB are not groups.
Work in preparation analyzes the group-theoretic structure of S and C in detail.

IV. GROUP LIFTING STRUCTURES FOR LINEAR PHASE FILTER BANKS

We now give examples of group lifting structures that parameterize the factorization of linear phase
filter banks into linear phase lifting steps, based on the factorization theory in [2]. It would also be nice
to have examples of group lifting structures for paraunitary filter banks [1] since paraunitary transfer
matrices naturally form a group, but lifting is not as well-suited for paraunitary matrices as it is for WS
or HS matrices. The problem is not existence of lifting factorizations: the theory in [6] ensures that one
can always factor paraunitary matrices into lifting cascades, and a three-step lifting structure is given
in [6, Section 7.2] for arbitrary 2×2 rotations, yielding a general lifting parameterization for paraunitary
filter banks via Givens rotations. Rather, the problems stem from the fact that individual lifting matrices
are never paraunitary in their own right. This means that lifting factorization of paraunitary matrices
necessarily takes place outside of the paraunitary group. Consequently, there does not appear to be any
simple way of defining a group lifting structure that algebraically enforces the paraunitary property.
Moreover, it means that the paraunitary property is not robust with respect to quantization effects in
finite-precision lifting implementations. This is in marked contrast to the cases of WS and HS filter
banks.

A. Whole-Sample Symmetric Filter Banks

In [2, Theorem 3] it was shown that the family of delay-minimized WS filter banks with real impulse
responses are defined by an intertwining relation,

H(z−1) = Λ(z)H(z)Λ(z−1) , (32)

with Λ(z) ≡ diag(1, z−1). Filter banks satisfying (32) form a subgroup of F called the WS group.
Definition 8: The unimodular WS group, W, is the intersection of the WS group and N; i.e., W is the

group of all real FIR transfer matrices that satisfy both (16) and (32).
Example 2: Group lifting structure for the unimodular WS group. Define the following groups of

half-sample symmetric real Laurent polynomials:

P0 ≡
{
S(z) ∈ R[z, z−1] : S(z−1) = zS(z)

}
, (33)

P1 ≡
{
S(z) ∈ R[z, z−1] : S(z−1) = z−1S(z)

}
. (34)
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According to [2, Theorem 9], every unimodular WS filter bank factors completely using lifting filters
from P0 and P1. Specifically, the lifting matrix groups are U ≡ υ(P0) and L ≡ λ(P1). Since unimodular
WS filter banks factor completely (i.e., can be “lifted from the lazy wavelet”) using matrices in U and L,
set B ≡ {I}. Let D ≡ {DK : K ∈ R∗} and SW ≡ (D, U, L, B), which is D-invariant by Lemma 2.
In terms of SW, the WS lifting factorization theorem [2, Theorem 9] can be stated succinctly as

W = DCW

= SW by (31),

where CW ≡ 〈U ∪ L〉 and SW ≡ 〈D ∪ CW〉.
Irreversible WS Filter Banks in JPEG 2000: JPEG 2000 Part 2 [9, Annex G] allows user-defined

irreversible WS filter banks specified as irreducible lifting cascades in SW. JPEG 2000 does not ac-
commodate all possible filter banks in SW, however, because the standard imposes a lowpass DC gain
normalization requirement [9, Annex G.2.1], [27]:

H0(1) = 1 . (35)

The irreversible WS filter banks permitted by [9, Annex G] form a proper subset of SW: each unnormalized
lifting cascade E(z) ∈ CW that satisfies E0(1) 6= 0 must be paired with the unique gain scaling factor
K = E0(1), which implies (35). See [27] for an analysis of JPEG 2000 gain normalization.

The WS filter banks satisfying the normalization (35) do not form a subgroup of W. For instance, the
filter bank

E0(z) ≡ z + 1 + z−1 and E1(z) ≡ z (36)

has E(z) = S(z) with lifting filter S(z) = 1 + z−1. The normalized polyphase matrix H(z) ≡ D3S(z)
satisfies (35) but H2(z) does not, hence such matrices do not form a group.

Example 3: Group lifting structure for the reversible WS group. In contrast to the group W, whose
definition is independent of the notion of lifting, the group of reversible WS filter banks, Wr, is defined
directly in terms of lifting [28], [29], [7]. Let D be the ring of dyadic rationals,

D ≡ { k2n : k, n ∈ Z } , (37)

and define groups of dyadic symmetric Laurent polynomials:

P0 ≡
{
S(z) ∈ D[z, z−1] : S(z−1) = zS(z)

}
, (38)

P1 ≡
{
S(z) ∈ D[z, z−1] : S(z−1) = z−1S(z)

}
. (39)

The groups of reversible lifting matrices are Ur ≡ υ(P0) and Lr ≡ λ(P1). Since gain scaling is not used
in reversible filter bank implementations, let Dr ≡ {I}. Set Br ≡ {I} and SWr

≡ (Dr, Ur, Lr, Br)
with CWr

≡ 〈Ur ∪ Lr〉. The reversible WS group is the group defined by

Wr ≡ CWr
.

Note that Wr, which is a subgroup of the unimodular WS group, W, consists of linear filter banks and does
not include specifications for the nonlinear rounding operations involved in reversible implementations
of these filter banks.
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Reversible WS Filter Banks in JPEG 2000: JPEG 2000 is more restrictive regarding user-defined
reversible WS filter banks in [9, Annex G] than it is regarding irreversible ones because reversible
implementations may not use gain scaling operations. This means that the normalization (35) must be
implicit in the choice of dyadic HS lifting filters. For instance, the 5-tap/3-tap LeGall-Tabatabai spline
wavelet analysis filter bank [30] is specified in [8, Annex F.4.8.1] and [9, Annex G.4.2.1] using the dyadic
lifting factorization

H(z) =
[
1 (1 + z−1)/4
0 1

] [
1 0

−(z + 1)/2 1

]
, (40)

which satisfies (35). Note that (36) provides an example of a dyadic lifted WS filter bank that does not
satisfy (35) without a gain scaling renormalization and therefore cannot be implemented reversibly within
the constraints of [9].

Remarks: While one can define reversible integer-to-integer filter banks by inserting rounding
operations into floating-point lifting cascades [29], this produces finite-precision sensitivities that could
cause problems in communications applications where data is encoded on one platform and decoded on
another. For this reason, prevailing practice (e.g., [9]) has been to restrict reversible implementations to
dyadic filter banks. (A side benefit is the opportunity to replace floating point arithmetic with integer
arithmetic and bit-shifts.) This creates difficulties in factorization theory, however, since D[z, z−1] is not a
Euclidean domain. This means that lifting factorization of a transfer matrix over D[z, z−1] may not yield
lifting filters in D[z, z−1]. For instance, if b = 2 and c = 3 then the transfer matrix H(z) in Example 1
of Section II-C has matrix components in D[z, z−1], but the factorization

H(z) = S′2(z)S′1(z)S′0(z)

does not have dyadic lifting filters even though it could have been constructed using the Euclidean
algorithm.

B. Half-Sample Symmetric Filter Banks

Concentric delay-minimized HS filter banks (in which both impulse responses are centered at −1/2)
are characterized in [2, eqn. (37)] by the relation

H(z−1) = L H(z)J , (41)

where
L ≡

[
1 0
0 −1

]
and J ≡

[
0 1
1 0

]
.

Unlike the case of WS filter banks, (41) does not define a matrix group, which is reflected in the fact
that the base filter banks for the HS group lifting structure do not form a group.

Definition 9: The unimodular HS class, H, is the class of all real FIR transfer matrices that satisfy
both (16) and (41).

Example 4: Group lifting structure for the unimodular HS class. Let D ≡ {DK : K ∈ R∗}. Define
the following group of whole-sample antisymmetric real Laurent polynomials:

P ≡
{
S(z) ∈ R[z, z−1] : S(z−1) = −S(z)

}
. (42)

Let U ≡ υ(P) and L ≡ λ(P). The set of concentric equal-length base filter banks for the unimodular
HS class is

BH ≡ {B ∈ H : order(B0) = order(B1)} . (43)

Set SH ≡ (D, U, L, BH) and SH ≡ 〈D ∪ U ∪ L〉. Then SH is D-invariant by Lemma 2, and the HS
lifting factorization theorem [2, Theorem 14] can be stated succinctly as

H = SHBH .
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Example 5: Group lifting structure for the reversible HS class. As with WS filter banks, the class
of reversible HS filter banks, Hr, is defined in terms of lifting. Define the following group of dyadic
antisymmetric Laurent polynomials:

P ≡
{
S(z) ∈ D[z, z−1] : S(z−1) = −S(z)

}
. (44)

The groups of lifting matrices are Ur ≡ υ(P) and Lr ≡ λ(P).
Defining the set BHr

of reversible HS base filter banks is problematic. As in (43) they must be
concentric equal-length HS filter banks, but in light of the remarks at the end of Example 3 we cannot
simply take the set of all such filter banks with dyadic coefficients because we have no guarantee that they
will have lifting factorizations over D[z, z−1]. Instead, define BHr

as the set of all matrices in BH that
have lifting factorizations over D[z, z−1]. (Any scaling matrix, DK , for which K = 2n can be factored
into dyadic lifting steps using the formulas in [6, Section 7.3]. Also, note that by [2, Theorem 13] any
lifting factorization of a concentric equal-length, delay-minimized HS base filter bank requires some
lifting filters that are not whole-sample antisymmetric.)

Let Dr ≡ {I} and set SHr
≡ (Dr, Ur, Lr, BHr

). The reversible HS class is defined to be

Hr ≡ CHr
BHr

.

Example 6: The ELASF family of M. Adams. The Ph.D. dissertation of M. Adams [31], [32] defines a
class of reversible lifted HS filter banks referred to as the even-length analysis/synthesis filter (ELASF)
family. Adams studied constraints on the rounding rules used in reversible filter bank implementations
resulting from the requirement that a reversible implementation yield symmetric or antisymmetric integer
subbands in symmetric pre-extension schemes [33]. Ignoring issues related to rounding rules, which are
not relevant to this paper, we can construct a group lifting structure for the linear (non-rounded) ELASF
family. All ELASF filter banks are lifted from the Haar (1) so B ≡ {Hhaar}, and all are reversible so
Dr ≡ {I}. The lifting filters for the ELASF family are the same antisymmetric dyadic filters (44) used
in SHr

. Let SELASF be the corresponding group lifting structure.
Adams also specifies the reversible lifting factorization (2) for the Haar base filter bank, and when the

first WA lifting step (S0(z) in (18)) is upper triangular he advocates combining it with the upper triangular
step in (2) before the first rounding operation to minimize quantization effects (see [32, Figure 3]). Since
we are only interested in linear (non-rounded) filter banks, however, we regard (linear) ELASF filter banks
as being defined by a partially factored lifting cascade (18) lifted from a single base filter bank, Hhaar,
using antisymmetric dyadic lifting filters. The set of all (linear) ELASF filter banks, CB, generated by
SELASF is therefore a subset of the reversible HS class, Hr, and every group lifting factorization in
SELASF is also a group lifting factorization in SHr

.

V. A UNIQUENESS THEORY FOR LIFTING CASCADES

We now establish sufficient conditions on a group lifting structure to imply that all of the matrix
factors (the lifting matrices, Si(z), and the gain scaling and base matrices) in irreducible group lifting
factorizations are unique modulo one trivial degree of freedom.

A. The Order-Increasing Property

From an engineering perspective, factorization (4) is of no practical interest because it doesn’t synthe-
size a high-order filter bank from low-order building blocks. (For instance, (4) is not a factorization one
would arrive at via the Euclidean algorithm.) Writing nonunique lifting factorizations as factorizations of
the identity, as in (4) and (21), raises an interesting point. Given a lifting of the identity, if some partial
product E(n)(z) has nonzero order then the order of subsequent partial products must eventually decrease
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so that the final product (which is I) has order zero. This suggests that lifting structures that only generate
“order-increasing” cascades will also generate unique factorizations, an idea that will be made rigorous in
Theorem 1. Evidently, though, the notion of order reduction embodied in the Euclidean algorithm is not
sufficiently strong to imply uniqueness when factorizations are constructed via the Euclidean algorithm
as in [6]. We therefore need to define an appropriate notion of “order-increasing” lifting cascades. The
key is to focus on the polyphase orders of the intermediate transfer matrices E(n)(z) rather than on the
polynomial orders of the intermediate scalar filters.

Definition 10: A lifting cascade (18) is strictly polyphase order-increasing (usually shortened to just
order-increasing) if the order (15) of each intermediate polyphase matrix (19) is strictly greater than the
order of its predecessor:

order
(
E(n)

)
> order

(
E(n−1)

)
for 0 ≤ n < N .

A group lifting structure, S, will be called order-increasing if every irreducible cascade in CB is order-
increasing.

Example 7: WS filter bank with a non-order-increasing HS lifting cascade. Define the causal (nonuni-
modular) lazy wavelet filter bank using B0(z) ≡ 1 and B1(z) ≡ z−1; i.e., instead of lifting from the
identity as in Example 2 we are lifting from

B(z) =

[
1 0
0 z−1

]
, (45)

whose order is one. Lift B1(z) to a higher-order WS filter, E(0)
1 (z), using the HS lifting filter S0(z) ≡

1 + z−1:
E

(0)
1 (z) = B1(z) + S0(z

2)B0(z) = 1 + z−1 + z−2 .

The symmetry of S0 is chosen to leave e(0)1 symmetric about n = 1, just like b1. The lifted polyphase
matrix (19) is

E(0)(z) =

[
1 0

1 + z−1 1

] [
1 0
0 z−1

]
=

[
1 0

1 + z−1 z−1

]
,

whose polyphase order is still one (no increase) even though the order of the highpass scalar filter
increased from zero to two. Despite the similarities between this example and Example 2, we show
in [14] that the group lifting structure for the unimodular WS group, W, defined in Example 2 is strictly
polyphase order-increasing, a somewhat nontrivial task.

B. A General Uniqueness Theorem

As noted above, any lifting cascade can be simplified to irreducible form by matrix multiplication. Since
U and L are groups, every transfer matrix generated by S has an irreducible lifting factorization in DCB.
Our main result shows that such factorizations are “unique modulo rescaling” if S is order-increasing
(per Definition 10) and D-invariant.

Theorem 1 (Uniqueness of lifting factors): Suppose that S = (D, U, L, B) is a D-invariant, order-
increasing group lifting structure. Let H(z) be a transfer matrix generated by S, and suppose we are
given two irreducible group lifting factorizations of H(z) in DCB:

H(z) = DK SN−1(z) · · ·S0(z)B(z) (46)

= DK′ S′N ′−1(z) · · ·S′0(z)B′(z) . (47)
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Then (46) and (47) satisfy the following three properties:

N ′ = N , (48)

B′(z) = Dα B(z) where α ≡ K/K ′, (49)

S′i(z) = γαSi(z) for i = 0, . . . , N − 1. (50)

If, in addition, B(z) and B′(z) share a nonzero matrix entry at some point z0 then the factorizations (46)
and (47) are identical; i.e., K ′ = K, B′(z) = B(z), and

S′i(z) = Si(z) for i = 0, . . . , N − 1. (51)

It also follows that K ′ = K if either of the scalar filters, B0(z) or B1(z), shares a nonzero value with
its primed counterpart; e.g., if the base filter banks have equal lowpass DC responses.

Remarks: The type of lifting equivalence described above is the subject of the following definition.

Definition 11: Two factorizations of H(z) that satisfy (48)–(50) are said to be equivalent modulo
rescaling. If all irreducible group lifting factorizations of H(z) are equivalent modulo rescaling for every
H(z) generated by S, we say that irreducible factorizations in S are unique modulo rescaling.

We now prove Theorem 1.
Proof: Without loss of generality, assume that order(B′) ≥ order(B). Equate (46) and (47), and

combine the gain scaling matrices on the unprimed side:

Dα SN−1(z) · · ·S0(z)B(z) =

S′N ′−1(z) · · ·S′0(z)B′(z) , (52)

where α = K/K ′ and Dα ∈ D. Move the lifting matrices Si(z) from the left-hand side of (52) to the
right-hand side using (25) and (26):

Dα B(z) =

γαS−10 (z) · · · γαS−1N−1(z)S′N ′−1(z) · · ·S′0(z)B′(z) . (53)

Since U and L are D-invariant groups, the matrices γαS−1i (z) are still in U ∪ L.
Simplify (53) to irreducible form via matrix multiplication. Since (46) and (47) are irreducible,

simplification can only occur if γαS−1N−1(z) and S′N ′−1(z) have the same update characteristic. If so,
combine them into a single lifting matrix, and if it reduces to the identity, i.e., if

γαSN−1(z) = S′N ′−1(z) ,

then combine γαS−1N−2(z) and S′N ′−2(z), etc. Simplification will eventually terminate in an irreducible
cascade,

Dα B(z) = S′′M−1(z) · · ·S′′0(z)B′(z) , (54)

for some M ≤ N+N ′. The cascade on the right-hand side of (54) is still in CB since S′′i (z) ∈ U ∪ L for
all i. If M > 0 then the order-increasing property of S implies that order(B) > order(B′), a contradiction.
Therefore we must have M = 0, which means we have pairwise cancellation of all of the matrices
γαS−1i (z) and S′i(z) in the reduction of (53) to irreducible form. This proves uniqueness modulo rescaling;
i.e., conclusions (48), (49) and (50).

If Bij(z0) = B′ij(z0) 6= 0, then (49) implies K ′ = K and (51) follows. The case of Bi(z) sharing a
value with its primed counterpart, e.g., B0(1) = B′0(1) 6= 0, is similar.
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VI. CONCLUSIONS

A new algebraic framework, the group lifting structure, has been introduced for studying lifting fac-
torizations of FIR perfect reconstruction filter banks. The primary focus of the paper is the uniqueness of
the matrix factors arising in lifting factorizations. With no constraints on the lifting process, Proposition 1
shows that any FIR perfect reconstruction filter bank can be irreducibly lifted from any other FIR
perfect reconstruction filter bank in infinitely many different ways. Virtually all such factorizations are
mathematical pathologies, however, and are of no interest for engineering applications.

To impose constraints on the universe of feasible lifting factorizations for a given class of filter banks,
we define group lifting structures in terms of abelian groups of lower and upper triangular lifting matrices,
an abelian group of gain scaling matrices, and sets (not necessarily groups) of base filter banks. If a group
lifting structure satisfies a polyphase order-increasing hypothesis and if the groups of lifting matrices are
invariant under the action of the gain scaling group, the main result of the paper, Theorem 1, shows that
irreducible group lifting factorizations are unique modulo, at most, rescaling.

Theorem 1 is used in [14] to prove uniqueness results for both reversible and irreversible lifting
factorizations of WS and HS filter banks parameterized by the linear phase group lifting structures
defined in Section IV of the present paper. This scope includes the specification of WS filter banks
in JPEG 2000 and M. Adams’ ELASF class of reversible HS filter banks. The key to these proofs is
establishing the order-increasing property for the associated group lifting structures.
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