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Dynamic Spectrum Management
with the Competitive Market Model

Yao Xie, Benjamin Armbruster, and Yinyu Ye

Abstract— [1], [2] have shown that dynamic spectrum management
(DSM) using the market competitive equilibrium (CE), which sets a
price for transmission power on each channel, leads to better system
performance in terms of the total data transmission rate (by reducing
cross talk), than using the Nash equilibrium (NE). But how to achieve
such a CE is an open problem. We show that the CE is the solution
of a linear complementarity problem (LCP) and can be computed
efficiently. We propose a decentralized tâtonnement process for adjusting
the prices to achieve a CE. We show that under reasonable conditions,
any tâtonnement process converges to the CE. The conditions are that
users of a channel experience the same noise levels and that the cross-talk
effects between users are low-rank and weak.

Index Terms—Radio spectrum management, dynamic spectrum man-
agement (DSM), linear complementarity problem (LCP), competitive
equilibrium

I. INTRODUCTION

Dynamic spectrum management (DSM) is a technology to effi-
ciently share the spectrum among the users in a communication
system. DSM can be used in the digital subscriber line (DSL) systems
to reduce cross-talk interference and improve total system throughput
[3]–[5]. DSM is also a promising candidate for multiple access in
cognitive radio [6]. In DSM, multiple users coexist in a channel,
and this causes co-channel interference. The goal of DSM is to
manage the power allocations in all the channels to maximize the
sum of the data rates of all the users, subject to power constraints
[3]. Unfortunately, this problem is non-convex and cannot be solved
efficiently in polynomial time [5]. While we will use game-theoretic
tools to find decentralized solutions to DSM, it is worth noting
that [5] give a computationally tractable but centralized optimization
formulation that is asymptotically optimal as the number of users
becomes large.

Recently, the game-theoretic formulation of DSM has attracted
interest in a variety of contexts including DSL [3], [4], [7] and
wireless [8]. In the game-theoretic formulation, each user maximizes
her data rate, the Shannon utility function, given knowledge of the
other users’ current power allocations. The Nash equilibrium (NE)
of this competitive game has been well-studied, e.g. [3], [4], [7],
[9], [10]. Under certain conditions the NE exists and is unique. One
merit of the game theoretic formulation is that the user’s problem
can be solved efficiently because it is convex when holding the other
users’ power allocations fixed. However, the power allocation in a NE
may not be socially optimal. Because of the non-cooperative nature
of the NE, users tend to compete for “good” channels regardless of
the interferences caused to others, to the detriment of overall system
efficiency, when they may all be better off using different channels to
avoid interference. This is an instance of the well-known “tragedy of
the commons” from economics [11]. [1] presents a simple example
demonstrating the inefficiency of the NE in DSM.
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Therefore we turn to the competitive market model for DSM
described in [1]. (Taking a different approach to this problem, [12]
analyze a generalization of the Nash Equilibrium that they call a
“conjectural equilibrium”.) In the competitive market model, each
channel has a fictitious price per unit power, and each user purchases
some power allocation in these channels, given her budget constraint,
to maximize her data rate. The prices are determined by a central
manager to keep the total power allocated in each channel to be below
a spectral mask. A competitive equilibrium (CE) of a market model
is a set of prices and the corresponding power allocations which
maximizes all users’ utility and clears the market, i.e., makes the total
power allocated meet the spectral mask. While the CE has received a
lot of recent attention in computer science, its application to resource
management for communication systems appears rare. The existence
of a CE for DSM was proven in [1]. Also, [2] showed that the CE
achieves greater social utility (total transmission rate) than the NE,
with properly assigned budgets to guarantee fairness among all users.
It is worth noting that algorithm proposed in [2] to determine the
budgets has low communication complexity because it only requires
the data rate of each user rather than the complete channel state
information. However, how to find a CE prices efficiently is an
open problem. Traditionally, the prices are determined by distributed,
auction-type algorithms called tâtonnement processes [11]. But it is
not known whether such processes converge with the Shannon utility
function.

This paper focuses on determining the CE of the competitive
market model for DSM and makes three contributions. We first show
that the CE is the solution of a linear complementarity problem
(LCP) [13] despite the apparent nonlinearity of the problem. [4]
showed a similar result for the NE. Secondly, we show that when
the interference coefficients are user symmetric, then the problem
is equivalent to finding KKT points of a quadratic program (QP),
for which a fully polynomial-time approximation scheme (FPTAS)
exists [14]. Lastly, we present decentralized tâtonnement processes
to solve the CE, where the manager adjusts the prices based on
the excess demand (the difference between the total power and the
spectral mask). We prove under some low-rank conditions, the prices
converge to the equilibrium prices (hence the tâtonnement processes
converge to the CE).

The paper is organized as follows. The next section presents
the problem formulation. Section III presents the LCP formulation
and the FPTAS result, and Section IV is about decentralized price-
adjustment tâtonnment processes. We conclude in Section VI. Tech-
nical proofs are in the appendix.

The notation in this paper is conventional. We use lower case, bold
letters for vectors and capital, bold letters for matrices. X ≥ 0 and
x ≥ 0 are elementwise inequalities whileX � 0 andX � 0 indicate
that X is semi-positive definite and positive definite, respectively. In
addition, I is the identity matrix; ρ(X) is the spectral radius of
X; X† is the Moore-Penrose pseudoinverse of X; and (x)+ :=
max{x, 0}.

II. PROBLEM FORMULATION

Consider a communication system consisting of n users and m
channels. Multiple users may use the same channel (at the same
time) causing interference to each other. Suppose the power allocated
by user i to channel j is xij ≥ 0. The total power allocated by
all the users in the jth channel is bounded above by the spectral
mask cj ,

∑n

i=1
xij ≤ cj , for regulatory reasons. For example, in

overlay cognitive radio [6], we may want to limit the interference
experienced by the primary user due to transmissions from secondary
users. (In that case we should actually scale the power allocations
so that xij represents the power received by the primary user on
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Fig. 1. Competitive spectrum market model.

channel j from user i. Such a scaling carries through the analysis
cleanly.) To achieve an efficient allocation of spectrum we associate
a price pj > 0 with each channel j. For a given vector of prices,
p = [p1, . . . , pm]>, each user i chooses the power allocation xi =
[xi1, . . . , xim]> that maximizes her utility function subject to her
budget wi. ( [2] discusses how to choose the users’ budgets.) The
spectrum manager adjusts the prices, so that eventually the “market
clears”: the demand in each channel,

∑n

i=1
xij , equals the supply,

cj .
In the weak-interference regime, user i’s utility is her total data

transmission rate across all the channels (Shannon utility):

ui(xi, x̄i) =

m∑
j=1

log

(
1 +

xij

σij +
∑

k 6=i
aj

ikxkj

)
. (1)

Here x̄i = [x1, . . . ,xi−1;xi+1, . . . ,xn]> is the power allocation of
the other n−1 users; σij > 0 is the noise level experienced by user i
on channel j; and aj

ik ≥ 0 is the cross-talk coefficient for interference
to user i on channel j from user k 6= i. The optimal power allocation
x∗i (p, x̄i) of user i, when she faces prices p and power allocations x̄i

of the other users, is determined by the following convex optimization
problem

x∗i (p, x̄i) = arg max
xi

ui(xi, x̄i)

s.t. p>xi ≤ wi,

xi ≥ 0,

(2)

which has a unique solution because it is strictly convex. Fig. 1
illustrates this competitive market model.

The competitive equilibrium (CE) [11] of this model is the vector
of prices p∗ and the corresponding user-optimal power allocations
{x∗ij} so that the market clears,

∑n

i=1
xij = cj . [1] proved the

existence of a CE in this model. It can be easily shown that, given p,
each users’ power allocation problem (2) has a water-filling solution

x∗ij =

(
νi

pj
− σij −

∑
k 6=i

aj
ikx
∗
kj

)+

(3)

where the dual variable νi ≥ 0 is determined by the budget constraint
p>xi ≤ wi, which is tight at the CE [1].

III. CE AS LCP

By applying the fact that x = y+ is equivalent to x ≥ y ∧ x(x−
y) = 0 ∧ x ≥ 0 to (3), we obtain the following nonlinear equations

that characterize the CE:

xij ≥
νi

pj
− σij −

∑
k 6=i

aj
ikxkj ∀ij,

xij

(
xij −

νi

pj
+ σij +

∑
k 6=i

aj
ikxkj

)
= 0 ∀ij,

p>xi = wi ∀i,∑
i

xij = cj ∀j,

xij ≥ 0 ∀ij.

(4)

Now we reformulate these equations as an LCP. Let the revenue
of user i on channel j be rij := xijpj . Define the vectors rj :=
[r1j , . . . , rnj ]>, σj := [σ1j , . . . , σnj ]>, w := [w1, . . . , wn]>, and
ν := [ν1, . . . , νn]>. Also the define matrices Aj of cross-talk
coefficients, [Aj ]ik = aj

ik for k 6= i with ones on the diagonal,
[Aj ]ii = 1. After rearranging terms and introducing the slack vectors
sj , (4) becomes

Ajrj + σjpj − ν − sj = 0 ∀j,∑
j

rj = w,

1>rj = cjpj ∀j,
rijsij = 0 ∀ij,
rj , sj ≥ 0 ∀j.

(5)

We eliminate prices from the LCP by noting that the third line implies
pj = (1>rj)/cj :(

Aj +
1

cj
σj1

>
)
rj − ν − sj = 0 ∀j,∑

j

rj = w,

rijsij = 0 ∀ij,
rj , sj ≥ 0 ∀j.

(6)

To see its LCP structure, consider an example with two channels,
m = 2 and n users. LetM j := Aj +(σj1

>)/cj . Then, (6) becomes(
M1 0 −I
0 M2 −I
I I 0

)(
r1

r2

ν

)
=

(
s1

s2

w

)
,(

r1

r2

)
≥ 0, and

(
s1

s2

)
≥ 0,

(7)

where we look for a complementarity solution r>1 s1 + r>2 s2 = 0.
If both M1 and M2 are monotone matrices, that is, M1 + M>

1

and M2 + M>
2 are positive semidefinite, then the LCP matrix on

the very left of (7) is also monotone. In that case an LCP solution
can be computed in polynomial time [13]. Applying this fact and the
fact that a KKT point of a QP can be computed by an FPTAS [14]
to (6) leads to our first result.

Theorem 1: Consider the competitive equilibrium model for spec-
trum management.

1) Let wi, cj , σij and aj
ik be rational. Then, there exists a CE with

rational entries, that is, the entries of the equilibrium point are
rational values.

2) If the matrix Aj + (σj1
>)/cj is monotone for all j, then a

CE can be computed in polynomial time.
3) If the matrix Aj + (σj1

>)/cj is symmetric (in particular, if
Aj is symmetric and σ1j = σij for all i) for all j, then the
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competitive equilibria are the KKT points of the following QP

minimize
r1,...,rm

∑
j

1

2
r>j

(
Aj +

1

cj
σj1

>
)
rj

s.t.
∑

j

rj = w, (with Lagrange multiplier ν)

rj ≥ 0, ∀j, (with Lagrange multiplier sj).
(8)

4) There is a FPTAS to compute a CE if the matrix Aj +
(σj1

>)/cj is symmetric for all j.

Furthermore, assuming strict monotonicity (replacing “positive
semidefinite” with “positive definite” in the definition of monotonic-
ity) ensures that the CE is unique.

Corollary 2: There is a unique CE if the matrix Aj + (σj1
>)/cj

is strictly monotone for all j,
For example, a symmetric and weak-interference condition, that

is, for all j,
∑

k 6=i
aj

ik < 1 for all i and
∑

i 6=k
aj

ik < 1 for all k,
will ensure that Aj is strictly monotone for all j. In addition, if we
have equal noise: σ1j = σij , ∀ij, then Aj + (σj1

>)/cj will be
strictly monotone for all j. It is reasonable to assume that the Aj

are symmetric because most communication channels are reciprocal,
including wireless and wired DSL channels. It is further reasonable
to assume that the σij are very small and equal because they are
given by the specification to which the transmitters and receivers are
built. Weak-interference is a standard assumption for DSL and is
reasonable in some situations for wireless communication systems.

IV. TÂTONNEMENT PROCESS FOR SPECTRUM MANAGEMENT

In this section we present a decentralized algorithm for solving
the CE. In the centralized approach as described above, the spectrum
manager gathers all the parameters and then publishes the optimal
power allocations. However, in the decentralized approach each user
only sends her current power allocations and receives the channel
prices from the manager. This reduces the communication between
users and distributes the computational load to the users. The paper
[15] provides a summary of the benefits of distributed algorithms
over centralized ones.

Given the channel prices p, the power allocations can be found
by water filling. The key question is how to adjust the prices and
to ensure that the process converges quickly to a CE. Tâtonnement
processes [11] are a broad class of price-update rules that adjusts
the price based on the excess demand: if the supply on channel j,
cj , exceeds the total demand,

∑
i
xij , then decrease the price pj

(increase it if the demand falls short of supply). The users and the
manager then alternate between updating their power allocations and
the updating the channel prices, respectively, until the difference be-
tween demand and supply is small. The condition for the convergence
of a tâtonnement process is known as the weak gross substitutability
(WGS).

Theorem 3: 1) Suppose prices for each product j are adjusted
continuously by

dpj(t)

dt
= fj(yj(p(t))), (9)

where fj(·) is a sign preserving function (i.e., sign fj(y) =
sign y) and yj is a measure of the excess of product j. Then
y → 0 if weak gross substitutability holds, that is, ∂lyj(p) ≥ 0
for all l 6= j.

2) Suppose prices for each product j are adjusted discretely by

pt+1
j = pt

j + fj(yj(pt)), (10)

where fj(·) is a sign preserving function (i.e., sign fj(y) =
sign y) and yj is a measure of the excess of product j. Then
yt → 0 if weak gross substitutability holds, that is, ∂lyj(p) ≥
0 for all l 6= j.

Proof: Part 1 is Theorem 4.1 of [16] (also found in [11]) while
part 2 is proved by [17].

With some conditions, we can prove WGS for our competitive
market model. For algebraic simplicity we use excess revenue instead
of excess demand (this is without loss of generality since for each j
the factor pj could easily be incorporated into fj(y)).

Theorem 4: For each channel j define yj(p) :=
pj

(∑
i
x∗ij − cj

)
. Assume the following conditions

1) symmetric, weak-interference condition:
∑

k 6=i
aj

ik < 1 and∑
k 6=i

aj
ki < 1 ∀j;

2) low-rank condition: the matrices of cross-talk coefficients can
be written as Aj = Dj + ajb

>
j ∀j where Dj diagonal,

Dj ,aj , bj ≥ 0, and aj , bj in the range of Dj ; and
3) equal noise condition: σij = σj ∀ij.

Then our spectrum model satisfies WGS, i.e., ∂lyj(p) ≥ 0 for all l 6=
j, so that both continuous and discrete tâtonnement price-adjustment
processes converge.

Condition 2 is a sensible approximation of the cross-talk coeffi-
cients and the coefficients [aj ]i and [bj ]i can be interpreted as the
isolation level of the receiver and transmitter of user i, respectively.
We remark that [1], [2] also use condition 2) from Theorem 4 and the
assumption that aj

ik = aj
i ≤ 1 for all ijk to show that the equilibrium

set is convex. For two channels, m = 2 weaker conditions suffice:
Theorem 5: If m = 2 and the weak-interference condition holds

for A>1 and A>2 , then WGS holds and tâtonnement processes
converge.

V. NUMERICAL EXAMPLES

We present three examples with n = 10 users and fewer channels
than users (m = 6), an equal number of channels and users (m = 10),
and more channels than users (m = 14) channels, respectively.
The cross-talk coefficients are independent random samples from
the uniform distribution on [0, 1/(n − 1)], ensuring that the weak
interference condition is satisfied. The noise levels satisfy the equal
noise condition, and the σj are independent random samples from the
uniform distribution on [0, 1]. For all i and j, wi = 1 and cj = 1.
Fig. 2 shows how channel prices with a decentralized tâtonnment
process converge to the CE prices calculated with the LCP in (6).
After 100 iterations of the tâtonnement process, the relative difference
between each user’s utility and their utility at the CE is less than
10−3. For these examples, we compare a modified CE to the NE
(where each user’s total transmission power is limited to 1). To not
favor the CE we scale each users’ power allocations in the CE to
match the NE’s limit on the total transmission power per user. Thus
the modified CE obeys the power constraints imposed on the NE and
its performance is no better than that of the true CE. We find that the
average user’s utility at this modified CE is higher than at the NE by
5%, 6%, and 2%, respectively. (We calculate the NE with the LCP
in [4].) [2] has more comparisons of the CE and the NE.

VI. CONCLUSIONS

We considered a competitive market model for dynamic spec-
trum management of a communication system. We showed that the
problem of finding the competitive equilibrium can be formulated
as a linear complementarity problem (LCP) and solved efficiently.
Besides the centralized LCP solution, we also proposed decentralized
tâtonnement processes for adjusting prices. We proved these pro-
cesses convergence to the CE under certain conditions. In our model,
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Fig. 2. Convergence under the tâtonnement process of the channel prices to the CE,
∣∣p∗ − pt

∣∣, for three examples.

each user’s budget constraint implicitly limits their total transmission
power. We plan to extend this model by incorporating explicit limits
on the transmission power of each user and by relaxing the weak-
interference assumption and the low-rank assumptions on the matrices
Aj of cross-talk coefficients.

APPENDIX

Proof of Theorem 4: Let [r∗1(p), . . . , r∗m(p)] be the solution to
(5). We rewrite yj(p) = 1>r∗j (p)− pjcj . For j 6= l, we will show
that both the left and right hand limits are ∂lyj(p) = 1>∂lr

∗
j (p) ≥

0. Let us look at the left hand limit (the right hand limit will be
similar). Then there is a small open interval (t − ε, t) in which the
active set of the LCP is constant. Let the set Sj be the active set of
channel j, Sj := {i : sij = 0} and Ij the n × n matrix so that
[Ij ]il := 1 if i = l ∈ Sj and 0 otherwise. Note that Ijsj = 0 and
rij = 0 for i /∈ Sj , thus Ijrj = rj . Thus the first equation in (5)
becomes

IjAjIjrj = Ijν − pjIjσj . (11)

Defining Āj := IjAjIj it follows that Āj
†
Ij = Āj

† and that one
solution is

rj = Āj
†
ν − pjĀj

†
σj . (12)

Then the budget constraint (the last equation in (5)) gives us∑
k

Ā
†
kν − pkĀ

†
kσk = w. (13)

Thus one solution for ν is

ν =

(∑
k

Ā
†
k

)†(
w +

∑
k

pkĀ
†
kσk

)
. (14)

Thus for j 6= l,

∂yj

∂pl
=

∂

∂pl
1>rj = 1>Ā

†
j

∂ν

∂pl
, (15)

∂yj

∂pl
= 1>Ā

†
j

(∑
k

Ā
†
k

)†
Ā
†
lσl. (16)

The equal noise condition and Lemma 8 then prove the claim.
Proof of Theorem 5: Following the proof of Theorem 4 we need

to show that ∂y2/∂p1 given by (16) is nonnegative:

∂y2
∂p1

= 1>Ā
†
2

(
Ā
†
1 + Ā

†
2

)†
Ā
†
1σ1 = 1>

(
Ā2 + Ā1

)†
σ1. (17)

Since 0.5(Ā2 +Ā1)> is a channel matrix obeying weak interference
we can apply Lemma 7 to show that 1>

(
Ā2 + Ā1

)†
is a nonneg-

ative vector. The fact that σ1 ≥ 0 completes the proof.
The following lemmas are needed in the above proofs.

Lemma 6: For i = 1, . . . ,m, let Aj = Dj + ajb
>
j where Dj

diagonal, Dj ,aj , bj ≥ 0, and aj , bj in the range of Dj . If for each

i there exists j such that [Dj ]ii > 0, then,
(∑

j
A†j

)−1

exists and
is nonnegative.

Proof: Applying the Sherman-Morrison formula to the range of
Aj we obtain A†j = D†j −Bj , where Bj := (D†jajb

>
j D

†
j)/(1 +

b>j D
†
jaj). Since Dj ≥ 0, D†j ≥ 0. Therefore, aj , bj ≥ 0 implies

Bj ≥ 0. Thus
∑

j
A†j can be written as∑

j

A†j = D −B, (18)

where D :=
∑

j
D†j and B :=

∑
j
Bj . Since D � 0, D−1 exists

and we may defineC := D−1/2BD−1/2. Note thatD ≥ 0,B ≥ 0,
and D diagonal. Thus D−1/2 ≥ 0 and C ≥ 0. Note that for any
x 6= 0,∣∣x>Cx∣∣ =

∣∣xD−1/2BD−1/2x
∣∣ ≤∑

j

∣∣xD−1/2BjD
−1/2x

∣∣
(19)

=
∑

j

∣∣∣∣∣xD−1/2D†jajb
>
j D

†
jD
−1/2x

1 + b>j D
†
jaj

∣∣∣∣∣ (20)

≤
∑

j

ρ((D†j)1/2ajb
>
j (D†j)1/2)

∥∥(D†j)1/2D−1/2x
∥∥2

2

1 + b>j D
†
jaj

(21)

=
∑

j

(b>j D
†
jaj)(x>D−1/2D†jD

−1/2x)

1 + b>j D
†
jaj

(22)

≤ λ
∑

j

x>D−1/2D†jD
−1/2x (23)

where λ = maxj(b>j D
†
jaj)/(1 + b>j D

†
jaj). Since Dj ,a, b ≥ 0,

λ ≥ 0 and since a and b are in the range of Dj , λ < 1. Therefore,
for any x 6= 0,∣∣x>Cx∣∣ <∑

j

x>D−1/2D†jD
−1/2x

= x>D−1/2DD−1/2x = x>x. (24)

Hence, ρ(C) < 1 and thus (I−C)−1 =
∑∞

k=0
Ck ≥ 0. Therefore,

(
∑

j
A†j)−1 = (D −B)−1 = D−1/2(I −C)−1D−1/2 ≥ 0.

Lemma 7: If A is a channel matrix satisfying the weak-
interference assumption, then A−11 ≥ 0.

Proof: Since A is a channel matrix we can write A = I +B
for some B ≥ 0. Hence

A−11 =(I +B)−11 = (I +B)−1(I −B)−1(I −B)1

=
(
I −B2

)−1
(I −B)1.

(25)
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The weak interference assumption implies that ρ(B) < 1. Hence(
I −B2

)−1
exists and equals

∑∞
k=0

B2k ≥ 0. In addition, (I −
B)1 > 0, due to the weak interference assumption. Thus A−11 ≥ 0.

Lemma 8: Assume conditions 1)–3) of Theorem 4 hold. For each
j consider a set Sj and construct Āj so that [Āj ]il := [Aj ]il if
i, l ∈ Sj and 0 otherwise. Then

1>Ā
†
j

(∑
k

Ā
†
k

)†
Āl
†
1 ≥ 0 ∀j, l. (26)

Proof: Applying Lemma 7 to the range of Āl implies that
Ā
†
l 1 ≥ 0. Similarly for Āk. Applying Lemma 6 to the union of

the ranges of Dj shows that
(∑

k
Ā
†
k

)†
≥ 0. This proves the claim

because the product of nonnegative vectors and a nonnegative matrix
is nonnegative.
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