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Recovering Signals from Lowpass Data
Yonina C. Eldar,Senior Member, IEEE, and Volker Pohl

Abstract— The problem of recovering a signal from its low
frequency components occurs often in practical applications due
to the lowpass behavior of many physical systems. Here we study
in detail conditions under which a signal can be determined
from its low-frequency content. We focus on signals in shift-
invariant spaces generated by multiple generators. For these
signals, we derive necessary conditions on the cutoff frequency of
the lowpass filter as well as necessary and sufficient conditions
on the generators such that signal recovery is possible. When
the lowpass content is not sufficient to determine the signal,
we propose appropriate pre-processing that can improve the
reconstruction ability. In particular, we show that modulating
the signal with one or more mixing functions prior to lowpass
filtering, can ensure the recovery of the signal in many cases,
and reduces the necessary bandwidth of the filter.

Index Terms— Sampling, shift-invariant spaces, lowpass signals

I. I NTRODUCTION

Lowpass filters are prevalent in biological, physical and
engineering systems. In many scenarios, we do not have
access to the entire frequency content of a signal we wish
to process, but only to its low frequencies. For example, it
is well known that parts of the visual system exhibit lowpass
nature: the neurons of the outer retina have strong response
to low frequency stimuli, due to the relatively slow response
of the photoreceptors. Similar behavior is observed also inthe
cons and rods [1]. Another example is the lowpass nature of
free space wave propagation [2]. This limits the resolutionof
optical image reconstruction to half the wave length. Many
engineering systems introduce lowpass filtering as well. One
reason is to allow subsequent sampling and digital signal
processing at a low rate.

Clearly if we have no prior knowledge on the original signal,
and we are given a lowpassed version of it, then we cannot
recover the missing frequency content. However, if we have
prior knowledge on the signal structure then it may be possible
to interpolate it from the given data. As an example, consider
a signalx that lies in a shift-invariant (SI) space generated
by a generatorφ, so thatx(t) =

∑
anφ(t − nT ) for some

T . Even if x is not bandlimited, it can be recovered from the
output of a lowpass filter with cutoff frequencyπ/T as long
as the Fourier transform̂φ(ω) of the generator is not zero for
all ω ∈ [−π/T, π/T ) [3], [4].

The goal of this paper is to study in more detail under what
conditions a signalx can be recovered from its low-frequency

The authors are with the Department of Electrical Engineering, Technion –
Israel Institute of Technology, Haifa 32000, Israel, Phone: +972 4 829 3256,
Fax: +972 4 829 5757, e-mail: {yonina,pohl}@ee.technion.ac.il.

This work was supported in part by the Israel Science Foundation under
Grant no. 1081/07 and by the European Commission in the framework of
the FP7 Network of Excellence in Wireless COMmunications NEWCOM++
(contract no. 216715). V. Pohl acknowledges the support by the German
Research Foundation (DFG) under Grant PO 1347/1–1.

content. Our focus is on signals that lie in SI spaces, generated
by multiple generators [5], [6], [7]. Following a detailed
problem formulation in Section II, we begin in Section III
by deriving a necessary condition on the cutoff frequency
of the low pass filter (LPF) and sufficient conditions on the
generators such thatx can be recovered from its lowpassed
version. As expected, there are scenarios in which recovery
is not possible. For example, if the bandwidth of the LPF
is too small, or if one of the generators is zero over a
certain frequency interval and all of its shifts with period
2π/T , then recovery cannot be obtained. For cases in which
the recovery conditions are satisfied, we provide a concrete
method to reconstructx from the its lowpass frequency content
in Section IV.

The next question we address is whether in cases in which
the recovery conditions are not satisfied, we can improve our
ability to determine the signal by appropriate pre-processing.
In Section V we show that pre-processing with linear time-
invariant (LTI) filters does not help, even if we allow for a bank
of LTI filters. As an alternative, in Section VI we consider
pre-processing by modulation. Specifically, the signalx is
modulated by multiplying it with a periodic mixing function
prior to lowpass filtering. We then derive conditions on the
mixing function to ensure perfect recovery. As we show, a
larger class of signals can be recovered this way. Moreover,
by applying a bank of mixing functions, the necessary cutoff
frequency in each channel can be reduced. In Section VII we
briefly discuss how the results we developed can be applied
to sampling sparse signals in SI spaces at rates lower than
Nyquist. These ideas rely on the recently developed framework
for analog compressed sensing [8], [9], [10]. In our setting,
they translate to reducing the LPF bandwidth, or the number
of modulators. Finally, Section VIII summarizes and points
out some open problems.

Modulation architectures have been used previously in dif-
ferent contexts of sampling. In [11] modulation was used
in order to obtain high-rate sigma-delta converters. More
recently, modulation has been used in order to sample sparse
high bandwidth signals at low rates [12], [13]. Our specific
choice of periodic functions is rooted in [13] in which a
similar bank of modulators was used in order to sample
multiband signals at sub-Nyquist rates. Here our focus is on
signals in general SI spaces and our goal is to develop a
broad framework that enables pre-processing such as to ensure
perfect reconstruction. We treat signals that lie in a predefined
subspace, in contrast to the union of subspaces assumption
used in the context of sparse signal models. Our results can
be used in practical systems that involve lowpass filtering to
pre-process the signal so that all its content can be recovered
from the received low-frequency signal (without requiringa
sparse signal model).

http://arxiv.org/abs/0907.3576v1
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II. PROBLEM FORMULATION

A. Notations

We use the following notation: As usual,CN , L2, and
ℓ2 denote theN -dimensional Euclidean space, the space of
square integrable function on the real line, and the space of
square summable sequences, respectively. All these spacesare
Hilbert spaces with the usual inner products. Throughout the
paper we writex̂ for the Fourier transform of a function
x ∈ L2:

x̂(ω) =

∫ ∞

−∞

x(t) e−jωt dt , ω ∈ R.

ThePaley-Wiener space of functions inL2 that are bandlimited
to [−B,B] will be denoted byPW (B):

PW (B) = {x ∈ L2 : x̂(ω) = 0 for all ω /∈ [−B,B]},

and PB is the orthogonal projectionL2 → PW (B) onto
PW (B). Clearly, PB is a bounded linear operator onL2.
We will also need the Paley-Wiener space of functions whose
inverse Fourier transform is supported on a compact interval,
i.e.

P̂W (B) = {x̂ ∈ L2 : x(t) = 0 for all t /∈ [−B,B]}.

For anya ∈ R, the shift (or translation)operator Sa : L2 →
L2 is defined by(Sax)(t) = x(t− a).

If {φk}k∈I is a set of functions inL2 with an arbitrary
index setI then span{φk : k ∈ I} denotes the closed linear
subspace ofL2 spanned by{φk}k∈I .

B. Problem Formulation

We consider the problem of recovering a signalx(t), t ∈ R

from its low-frequency content. Specifically, suppose thatx is
filtered by a LPF with cut off frequencyπ/Tc, as in Fig. 1.
We would like to answer the following questions:

• What signalsx can be recovered from the outputy of the
LPF?

• Can we perform preprocessing ofx prior to filtering to
ensure thatx can be recovered fromy?

x(t) - - y(t)
−π/Tc π/Tc

Fig. 1. Lowpass filtering ofx(t).

Filtering a signalx ∈ L2 with a LPF with cutoff frequency
π/Tc corresponds to a projection ofx onto the Paley Wiener
spacePW (π/Tc). Therefore we can writey = Pπ/Tc

x.
Note, that we assume here that the outputy(t), t ∈ R is

analog. Sincey is a lowpass signal, an equivalent formulation
is to sampley with periodTs = 1/fs lower than the Nyquist
periodTc to obtain the sequence of samples{y[n]}n∈Z. The
problem is then to recoverx(t), t ∈ R from the samples
{y[n]}n∈Z, as in Fig. 2. Since{y[n]}n∈Z uniquely determines
y, the two formulations are equivalent. For concreteness, we
focus here on the problem in which we are giveny(t), t ∈ R

x(t) - -
−π/Tc π/Tc

�
�

?
t = nTs

- y[n]

Fig. 2. Sampling ofx(t) after lowpass filtering.

directly. Thus, our emphasis is not on the sampling rate,
but rather on the information content in the lowpass regime,
regardless of the sampling rate to follow.

Clearly, if x is bandlimited to[−π/Tc, π/Tc], then it can
be recovered fromy. However, we will assume here thatx is
a general SI signal, not necessarily bandlimited. These signals
have the property that ifx(t) lies in a given SI space, then so
do all its shifts(SkT x)(t) = x(t − kT ) by integer multiples
of some givenT . Bandlimited signals are a special class of
SI signals. Indeed, ifx is bandlimited then so are all its shifts
SkTx, k ∈ Z for a givenT . In fact, bandlimited signals have an
even stronger property that all their shiftsSax by any number
a ∈ R are bandlimited. Throughout, we assume thatx lies in
a generally complex SI space with multiple generators.

Let φ = {φ1, . . . , φN} be a given set of functions inL2

and letT ∈ R be a given real number. Then theshift-invariant
space generated byφ is formally defined as [5], [6], [7]:

ST (φ) = span{SkTφn : k ∈ Z, 1 ≤ n ≤ N} .

The functionsφn are referred to as thegenerators of ST (φ).
Thus, every functionx ∈ ST (φ) can be written as

x(t) =

N∑

n=1

∑

k∈Z

an[k]φn(t− kT ), t ∈ R, (1)

where for each1 ≤ n ≤ N , {an[k]}k∈Z is an arbitrary
sequence inℓ2. Examples of such SI spaces include multiband
signals [14] and spline functions [15], [3]. Expansions of the
type (1) are also encountered in communication systems, when
the analog signal is produced by pulse amplitude modulation.

In order to guarantee a unique and stable representation
of any signal inST (φ) by sequences of coefficients{an[k]},
the generatorsφ are typically chosen to form aRiesz basis
for ST (φ). This means that there exist constantsα > 0 and
β <∞ such that

α‖a‖2 ≤

∥∥∥∥∥
N∑

n=1

∑

k∈Z

an[k]φn(t− kT )

∥∥∥∥∥

2

L2

≤ β‖a‖2, (2)

where ‖a‖2 =
∑N

n=1

∑
k∈Z

|an[k]|
2. Condition (2) implies

that anyx ∈ ST (φ) has a unique and stable representation in
terms of the sequences{an[k]}k∈Z. In particular, it guarantees
that the sequences{an[k]}k∈Z can be recovered fromx ∈
ST (φ) by means of a linear bounded operator.

By taking Fourier transforms in (2) it can be shown that the
generatorsφ form a Riesz basis1 if and only if [6]

αI � Mφ(ω) � βI, a.e.ω ∈ [−π/T, π/T ]. (3)

1Here and in the sequel, when we say that a set of generatorsφ form (or
generate) a basis, we mean that the basis functions are{φn(t − kT ), k ∈
Z, 1 ≤ n ≤ N}.
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Here Mφ(ω) is called theGrammian of the generatorsφ =
{φ1, . . . , φN}, and is theN ×N matrix

Mφ(ω) =



Rφ1φ1

(ω) . . . Rφ1φN
(ω)

...
...

...
RφNφ1

(ω) . . . RφNφN
(ω)


 , (4)

where for any two generatorsφi, φj the functionRφiφj
is

given by

Rφiφj
(ω) =

∑

k∈Z

φ̂i(ω − 2k π
T ) φ̂j(ω − 2k π

T ). (5)

Note that the functionsRφiφj
are 2π/T -periodic. Therefore,

condition (3) is equivalent toαI � Mφ(ω−a) � βI for every
arbitrary real numbera. We will need in particular the case
a = π/T , for which the entries of the matrixMφ(ω − a) are

Rφiφj
(ω − π

T ) =
∑

k∈Z

φ̂i(ω − [2k + 1] πT ) φ̂j(ω − [2k + 1] πT ).

(6)

III. R ECOVERY CONDITIONS

The first question we address is whether we can recover
x ∈ ST (φ) of the form (1) from the outputy = Pπ/Tc

x of a
LPF with cutoff frequencyπ/Tc, assuming that the generators
φ satisfy (3). We further assume that the generators are not
bandlimited toπ/Tc, namely that they have energy outside the
frequency interval[−π/Tc, π/Tc]. We will provide conditions
on the generatorsφ and on the bandwidth of the LPF such that
x can be recovered fromy. As we show, even if the generators
φ are not bandlimited,x can often be determined fromy.

First we note that in order to recoverx ∈ ST (φ) from
the lowpass signaly = Pπ/Tc

x it is sufficient to recover the
sequences{an[k]}k∈Z, 1 ≤ n ≤ N because the generators
φ are assumed to be known. The output of the LPF can be
written as

y(t) = (Pπ/Tc
x)(t) =

N∑

n=1

∑

k∈Z

an[k]ψn(t− kT )

whereψn := Pπ/Tc
φn denotes the lowpass filtered generator

φn, and the sum on the right-hand side converges inL2

sincePπ/Tc
is bounded. Therefore, we immediately have the

following observation: The sequences{an[k]}k∈Z, 1 ≤ n ≤ N
can be recovered fromy if ψ forms a Riesz basis forST (ψ).
This is equivalent to the following statement.

Proposition 1: Let φ = {φ1, . . . , φN} be a set generators,
and letψn = Pπ/Tc

φn, 1 ≤ n ≤ N be the lowpass filtered
generators whereπ/Tc is the bandwidth of the LPF. Then
the signalx ∈ ST (φ) can be recovered from the observations
y = Pπ/Tc

x if the GrammianMψ(ω) satisfies (3) for some
0 < α ≤ β <∞.

Example 1: We consider the case of one generator (N = 1)

φ1(t) =

{
1/(2D), t ∈ [−D,D]
0, t /∈ [−D,D]

(7)

for someD > 0. The Fourier transform of this generator is
φ̂1(ω) = sin(ωD)/(ωD) which becomes zero atω = kπ/D
for all k = ±1,±2, . . . . We assume thatD/T is not an integer.

Then one can easily see that this generator satisfies (3), i.e.
there existsα, β such that

0 < α ≤
∑

k∈Z

∣∣∣∣
sin(ωD − 2πkD/T )

ωD − 2πkD/T

∣∣∣∣
2

≤ β <∞ (8)

for all ω ∈ [−π/T, π/T ]. The lower bound follows from the
assumption thatD/T is not an integer, so that all the functions
in the above sum have no common zero in[−π/T, π/T ]. The
upper boundβ follows from

∑

k∈Z

∣∣∣∣
sin(ωD − 2πkD/T )

ωD − 2πkD/T

∣∣∣∣
2

≤
∑

k∈Z

1

|ωD − 2πkD/T |
2

≤

(
T

πD

)2
[
1 + 2

∞∑

k=1

1

(2k − 1)2

]
≤

(
2T

πD

)2

using that|ωD − 2πkD/T | ≥ πD/T (2|k| − 1) for all k =
±1,±2, . . . and allω ∈ [−π/T, π/T ].

Assume now that the LPF has cutoff frequencyπ/Tc =
π/T . Then the Fourier transform̂ψ1 of the filtered generator
ψ1 = Pπ/T φ1 will satisfy a relation like (8) only ifD ≤ T ,
i.e. only if φ̂1 has no zero in[−π/T, π/T ]. In cases where
D > T the cutoff frequency has to be larger in order to allow a
recovery of the original signal. One easily sees that the cutoff
frequency of the LPF has to lie at leastπ/T − π/D above
π/T in order thatψ̂1 will satisfy a relation similar to (8). In
this case, the shiftŝψ1(ω ± 2π/T ) compensate for the zero
of ψ̂1(ω) in the sum (8). Thus for cutoff frequenciesπ/Tc ≥
2π/T − π/D a recovery of the signalx from the LPF signal
y will be possible.

The previous example illustrates that the question whetherψ
forms a Riesz basis forST (ψ) depends on the given generators
φ and on the bandwidthπ/Tc of the LPF. The next proposition
derives a necessary condition on the required bandwidthπ/Tc
of the LPF such thatψ can be a Riesz basis forST (ψ).

Proposition 2: Let φ = {φ1, . . . , φN} be a Riesz basis for
the spaceST (φ) and letψn = Pπ/Tc

φn with 1 ≤ n ≤ N .
Then a necessary condition forψ = {ψ1, . . . , ψN} to be a
Riesz basis forST (ψ) is thatπ/Tc ≥ Nπ/T .

Proof: We consider the GrammianMψ(ω) whose entries
are equal to

Rψiψj
(ω) =

∑

|k|≤ 1

2
( T

Tc
+1)

ψ̂i(ω − k 2π
T ) ψ̂j(ω − k 2π

T ).

All other terms in the generally infinite sum (cf. (5)) are
identically zero sincêψn(ω) is bandlimited to[−π/Tc, π/Tc].
This Grammian can be written asMψ(ω) = Ψ∗(ω)Ψ(ω) with

Ψ(ω) =


ψ̂1(ω + [L0 + 1]2πT ) . . . ψ̂N (ω + [L0 + 1]2πT )

ψ̂1(ω + L0
2π
T ) . . . ψ̂N (ω + L0

2π
T )

...
...

ψ̂1(ω) . . . ψ̂N (ω)
...

...
ψ̂1(ω − L0

2π
T ) . . . ψ̂N (ω − L0

2π
T )

ψ̂1(ω − [L0 + 1]2πT ) . . . ψ̂N (ω − [L0 + 1]2πT )




(9)
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whereL0 is the largest integer such thatL0 ≤ (T/Tc− 1)/2.
Since everyψ̂n(ω) is banded to[−π/Tc, π/Tc], the first and
the last row of this matrix are identically zero for someω ∈
[−π/T, π/T ]. At theseω’s, the matrixΨ(ω) has effectively
L = 2L0+1 rows andN columns, and it holds thatL ≤ T/Tc.
SinceMψ(ω) = Ψ∗(ω)Ψ(ω), the Grammian can have full
rank for everyω ∈ [−π/T, π/T ] only if L ≥ N , i.e. only if
π/Tc ≥ Nπ/T .

The necessary condition on the bandwidth of the LPF
given in the previous proposition is not sufficient, in gen-
eral. However, given a bandwidthπ/Tc which satisfies the
necessary condition of Proposition 2, sufficient conditions on
the generatorsφ can be derived such that the lowpass filtered
generatorsψ form a Riesz basis forST (ψ), i.e. such thatx
can be recovered fromy.

Proposition 3: Let φ = {φ1, . . . , φN} be a Riesz basis for
ST (φ) and letψn = Pπ/Tc

φn for 1 ≤ n ≤ N with π/Tc ≥
N π/T . Denote byL the largest integer such thatL ≤ T/Tc.
If L = 2L0 + 1 is an odd number, then we define theL×N
matrix ΦL(ω) by

ΦL(ω) =




φ̂1(ω + 2L0
π
T ) . . . φ̂N (ω + 2L0

π
T )

...
...

φ̂1(ω + 2 π
T ) . . . φ̂N (ω + 2 π

T )

φ̂1(ω) . . . φ̂N (ω)

φ̂1(ω − 2 π
T ) . . . φ̂N (ω − 2 π

T )
...

...
φ̂1(ω − 2L0

π
T ) . . . φ̂N (ω − 2L0

π
T )




.

(10)

For L = 2L0 even, we define

ΦL(ω) =


φ̂1(ω + [2L0 − 1] πT ) . . . φ̂N (ω + [2L0 − 1] πT )
...

...
φ̂1(ω + π

T ) . . . φ̂N (ω + π
T )

φ̂1(ω − π
T ) . . . φ̂N (ω − π

T )
...

...
φ̂1(ω − [2L0 − 1] πT ) . . . φ̂N (ω − [2L0 − 1] πT )




.

(11)

If there exists a constantα > 0 such that

ML(ω) := Φ∗
L(ω)ΦL(ω) � αI a.e.ω ∈ [− π

T ,
π
T ] (12)

thenψ = {ψ1, . . . , ψN} forms a Riesz basis forST (ψ).
Moreover, ifT/Tc is an integer, then condition (12) is also

necessary forψ to be a Riesz basis forST (ψ).
Whenπ/Tc → ∞, i.e.L→ ∞, the matrixML(ω) reduces

to Mφ(ω) of (4), which by definition satisfies (3). However,
since for the calculation of the entries ofML(ω) we are only
summing over a partial set of the integers, we are no longer
guaranteed thatML(ω) satisfies the lower bound of (3).

The requirements of Proposition 3 imply thatL ≥ N .
Consequently, the matrixML(ω) = Φ∗

L(ω)ΦL(ω) is positive
definite for almost allω ∈ [−π/T, π/T ] if and only if ΦL(ω)
has full column rank for almost allω ∈ [−π/T, π/T ].

Note that Example 1 shows that (12) is not necessary, in
general: WithT < D < 2T and a cutoff frequency of
π/Tc > 2π/T −π/D, the correspondingψ form a Riesz basis
for ST (ψ). However, it can easily be verified that (12) is not
satisfied.

Proof: We consider the case ofL being odd. It has
to be shown that the GrammianMψ(ω) satisfies (3). Since
NTc ≤ T , the Grammian can be written asMψ(ω) =
Ψ∗(ω)Ψ(ω) with Ψ(ω) defined by (9). NextΨ(ω) is written
asΨ(ω) = ΨL(ω)+Ψ⊥(ω) whereΨ⊥(ω) is the(2L0+1)×
N matrix whose first and last row coincide with those ofΨ(ω)
and whose other rows are identically zero. SimilarlyΨL(ω)
denotes the matrix whose first and last row is identically zero
and whose remaining rows coincide with those ofΨ(ω). Since
ψn(ω) = φn(ω) for all ω ∈ [−π/Tc, π/Tc] and for every
1 ≤ n ≤ N , we have thatΨ∗

L(ω)ΨL(ω) = Φ∗
L(ω)ΦL(ω).

Therefore,

Mψ(ω) = Ψ∗
L(ω)ΨL(ω) + Ψ∗

⊥(ω)Ψ⊥(ω)

+ Ψ∗
L(ω)Ψ⊥(ω) + Ψ∗

⊥(ω)ΨL(ω)

= Φ∗
L(ω)ΦL(ω) + Ψ∗

⊥(ω)Ψ⊥(ω) (13)

since by the definition ofΨL(ω) andΨ⊥(ω), we obviously
have thatΨ∗

L(ω)Ψ⊥(ω) ≡ 0 and Ψ∗
⊥(ω)ΨL(ω) ≡ 0. Now

it follows from (13) that for everyx ∈ CN

x∗ Mψ(ω)x = ‖ΦL(ω)x‖2
CN + ‖Ψ⊥(ω)x‖2

CN

≥ ‖ΦL(ω)x‖2
CN = x∗ Φ∗

L(ω)ΦL(ω)x ≥ α,

where the last inequality follows from (12). This shows thatthe
GrammianMψ(ω) is lower bounded as in (3). The existence
of an upper bound forMψ(ω) is trivial sinceMψ(ω) has finite
dimensions.

Assume now thatT/Tc is an (odd) integer. In this case
L0 = (T/Tc − 1)/2 and it can easily be verified that the
matrix Ψ⊥(ω) is identically zero. From (13),Mψ(ω) =
Φ∗
L(ω)ΦL(ω) = ML(ω) which shows that if the Grammian

Mψ(ω) satisfies (3) thenΦL(ω) satisfies (12). This proves that
(12) is also necessary forψ to be a Riesz basis forST (ψ).

The case ofL even follows from the same arguments but
starting with expression (6) for the entries of the Grammian
instead of (5). Therefore, the details are omitted.

Example 2: We consider an example with two generators
(N=2) which both have the form as in Example 1, with
different values forD, i.e.

φi(t) =

{
1/(2Di), t ∈ [−Di, Di]
0, t /∈ [−Di, Di]

i = 1, 2

with Fourier transformsφ̂i(ω) = sin(ωDi)/(ωDi). As in
Example 1 we assume thatDi/T are not integers and that
D1 6= D2. Under these conditions, the GrammianMφ(ω)
of φ = {φ1, φ2} satisfies (3). To see this, we consider the
determinant ofMφ(ω) for some arbitrary but fixedω ∈
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[−π/T, π/T ]:

det[Mφ(ω)] =
∑

k∈Z

∣∣∣φ̂1(ω − k 2π
T )
∣∣∣
2∑

k∈Z

∣∣∣φ̂2(ω − k 2π
T )
∣∣∣
2

−

(∑

k∈Z

φ̂1(ω − k 2π
T ) φ̂2(ω − k 2π

T )

)2

. (14)

We know from Example 1, that the first term on the right hand
side is lower bounded by some constantα1α2 > 0. Moreover,
the Cauchy-Schwarz inequality shows that the second term on
the right-hand side is always smaller or equal than the first
term with equality only if the two sequences

{φ̂i(ω − k 2π
T )}k∈Z, i = 1, 2

are linearly dependent. However, sinceD1 6= D2, it is not hard
to verify that these two sequences are linearly independent.
Consequentlydet[Mφ(ω)] > 0 for all ω ∈ [−π/T, π/T ]
which shows thatMφ(ω) satisfies the lower bound of (3). That
Mφ(ω) satisfies also the upper bound in (3) follows from a
similar calculation as in Example 1 using that|φ̂i(ω)| deceases
proportional to1/ω as |ω| → ∞.

Assume now that the bandwidth of the LPF satisfies
2π/T ≤ π/Tc < 3π/T . In this case the matrixΦL(ω) of
Proposition 3 is given by

ΦL(ω) =

[
φ̂1(ω + π

T ) φ̂2(ω + π
T )

φ̂1(ω − π
T ) φ̂2(ω − π

T )

]
,

and the determinant ofML(ω) := Φ∗
L(ω)ΦL(ω) becomes

det[ML(ω)] =
∑

k=±1

∣∣∣φ̂1(ω − k πT )
∣∣∣
2 ∑

k=±1

∣∣∣φ̂2(ω − k πT )
∣∣∣
2

−

(∑

k=±1

φ̂1(ω − k πT ) φ̂2(ω − k πT )

)2

. (15)

This expression is similar to (14) and the same arguments show
thatdet[ML(ω)] > 0 for all ω ∈ [−π/T, π/T ]. Namely, since
Di/T are not integers, the functionŝφi(ω+π/T ) andφ̂i(ω−
π/T ) have no common zero such that the first term on the
right hand side of (15) is lower bounded by someα1α2 > 0.
The Cauchy-Schwarz inequality implies that the second term
is always smaller than the first one.

We conclude thatΦL(ω) satisfies the condition of Propo-
sition 3, so that the signalx can be recovered from its low
frequency componentsy = Pπ/Tc

x.
If for a certain bandwidthπ/Tc of the LPF the generators

φ satisfy the conditions of Proposition 3 then the signalx can
be recovered fromy = Pπ/Tc

x. However, if the generatorsφ
do not satisfy these conditions, then there exists in principle
two ways to enable recovery ofx:

• Increasing the bandwidth of the LPF.
• Pre-processx before lowpass filtering, i.e. modify the

generatorsφ.

It is clear that for a given setφ = {φ1, . . . φN} of generators
an increase of the LPF can only increase the "likelihood" that
the matrixΦL(ω) of Proposition 3 will have full column rank.
This is because enlargingπ/Tc increases the numberL i.e. it

adds additional rows to the matrix which can only enlarge the
column rank ofΦL(ω). Pre-processing ofx will be discussed
in detail in Sections V and VI.

IV. RECOVERY ALGORITHM

We now describe a simple method to reconstruct the desired
signal x from its low frequency components. This method
is used in later sections to show how pre-processing of the
signalx may facilitate its recovery. Throughout this section,
we assume that the bandwidthπ/Tc of the LPF satisfies the
necessary condition of Proposition 2, and that the generators
satisfy the sufficient condition of Proposition 3.

Taking the Fourier transform of (1), we see that everyx ∈
ST (φ) can be expressed in the Fourier domain as

x̂(ω) =

N∑

n=1

ân(ejωT ) φ̂n(ω), ω ∈ R (16)

where
ân(e

jωT ) =
∑

k∈Z

an[k]e
−jωkT

is the 2π/T -periodic discrete time Fourier transform of the
sequence{an[k]}k∈Z at frequencyωT . Denoting byâ(ejωT )
the vector whosenth element is equal tôan(ejωT ) and by
φ̂(ω) the vector whosenth element is equal tôφn(ω) we can
write (16) in vector form as

x̂(ω) = φ̂
T
(ω) â(ejωT ).

The Fourier transform of the LPF outputy = Pπ/Tc
x is

bandlimited toπ/Tc, and for allω ∈ [−π/Tc, π/Tc] we have
ŷ(ω) = x̂(ω). Therefore

ŷ(ω) = φ̂
T
(ω) â(ejωT ) , ω ∈ [− π

Tc
, πTc

]. (17)

For everyω ∈ [−π/Tc, π/Tc], (17) describes an equation
for the N unknownsân(ejωT ). Clearly, one equation is not
sufficient to recover the length-N vectorâ(ejωT ); we need at
leastN equations. However, since according to Proposition 2
the bandwidth of the LPF has to be at leastπ/Tc ≥ Nπ/T , we
can form more equations from the given data by noting that
â is periodic with period2π/T , while φ̂, and consequently
ŷ, are generally not. Specifically, letω0 ∈ [−π/T, π/T ] be
an arbitrary frequency. For anyωk = ω0 + 2πk/T with k
an integer we have that̂a(ejωkT ) = â(ejω0T ). Therefore, by
evaluatingŷ and φ̂ at frequencies−π/Tc ≤ ωk ≤ π/Tc, we
can use (17) to generate more equations. To this end, letL
be the largest integer for whichL ≤ T/Tc. Assume first that
L = 2L0 + 1 for some integerL0, so thatL is odd. We then
generate the equations

ŷk(ω) := ŷ(ω − k 2π
T ) =

N∑

n=1

φ̂n(ω − k 2π
T ) ân(ω − k 2π

T )

for −L0 ≤ k ≤ L0 and for ω ∈ [−π/T, π/T ]. Since by
our assumptionπ/Tc ≥ Lπ/T , all the observationŝyk(ω) =
ŷ(ω − 2k π/T ) are in the passband regime of the LPF. The
above set ofL equations may be written as

ŷ(ω) = ΦL(ω) â(ejωT ) , ω ∈ [−π/T, π/T ], (18)
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where ŷ(ω) = [ŷ−L0
(ω), . . . , 0, . . . , ŷL0

(ω)]T is a lengthL
vector containing all the different observationsŷk of the output
ŷ, andΦL(ω) is theL×N matrix given by (10). In the case
whereL = 2L0 is an even number2, we generate additional
equations by

ŷk(ω) :=

N∑

n=1

φ̂n(ω − [2k + 1] πT ) ân(ω − [2k + 1] πT ) (19)

for −L0 ≤ k ≤ L0 − 1. Here again all the observations in
(19) are in the passband regime of the LPF. Therefore, (19)
can be written as in (18) whereΦL(ω) is now given by (11),
and the definition of̂a is changed accordingly.

If the matrix ΦL(ω) satisfies the sufficient conditions of
Proposition 3, then the unknown vector̂a(ejωT ) can be
recovered from (18) by solving the linear set of equations for
all ω ∈ [−π/T, π/T ]. In particular, there exists a left inverse
G(ω) of ΦL(ω) such that̂a(ejωT ) = G(ω) ŷ(ω). Finally, the
desired sequences{an[k]}k∈Z are the Fourier coefficients of
the 2π/T periodic functionŝan.

V. PREPROCESSINGWITH FILTERS

When ΦL(ω) does not has full column rank for allω ∈
[−π/T, π/T ] and if the bandwidth of the LPF can not be
increased, an interesting question is whether we can pre-
processx before lowpass filtering in order to ensure that it
can be recovered from the LPF output. In this and in the
next section we consider two types of pre-processing: using
a bank of filters, and using a bank of mixers (modulators),
respectively.

Suppose we allow pre-processing ofx with a set ofN filters,
as in Fig. 3. The question is whether we can choose the filters
gn in the figure so thatx can be recovered from the outputs
yn of each of the branches under more mild conditions than
those developed in Section III.

- gN (t) - - yN (t)
−π/Tc π/Tc

- g1(t) - - y1(t)
−π/Tc π/Tc

x(t) - ...
...

Fig. 3. Preprocessing ofx(t) by a bank ofN LTI filters.

Let ŷ, ĝ be the length-N vectors withnth elements given
by ŷn, ĝn. Then we can immediately verify that

ŷ(ω) = ĝ(ω) φ̂
T
(ω) â(ejωT ), ω ∈ [− π

Tc
, πTc

]. (20)

Clearly, â cannot be recovered from this set of equations as
all the equations are linearly dependent (they are all multiples

2In subsequent sections, we will only discuss the case whereL is odd. The
necessary changes for the case ofL being even are obvious.

of each other). Thus, although we haveN equations, only
one of them provides independent information onâ. We can,
as before, use the periodicity of̂a if Tc is small enough.
Following the same reasoning as in Section IV, assuming
that π/Tc ≥ Lπ/T , we can createL − 1 new measurements
using the same unknownŝa by considerinĝy(ω) for different
frequenciesω+ k2π/T . In this case though it is obvious that
the pre-filtering does not help, since only one equation can
be used from the set ofN equations (20) for each frequency.
In other words, all the branches in Fig. 3 provide the same
information. The resulting equation is the same as in the
previous section up to multiplication bŷgn for one index
1 ≤ n ≤ N . Therefore, the recovery conditions reduce to
the same ones as before, and havingN branches does not
improve our ability to recoverx.

VI. PREPROCESSINGWITH M IXERS

We now consider a different approach, which as we will
see leads to greater benefit. In this strategy, instead of using
filters in each branch, we use periodic mixing functionspn.
Each sequence is assumed to be periodic with period equal
to3 Tp = T . By choosing the mixing functions appropriately,
we can increase the class of functions that can be recovered
from the lowpass filtered outputs.

A. Single Channel

Let us begin with the case of a single mixing function, as
in Fig. 4. Sincep is assumed to be periodic with periodT , it

x(t) - l× - - y(t)
−π/Tc π/Tc

p(t)

6

Fig. 4. Mixing prior to lowpass filtering ofx(t).

can be written as a Fourier series

p(t) =
∑

k∈Z

bk e
j2πkt/T (21)

where

bk =
1

T

∫ T/2

−T/2

p(t) e−j2πkt/T dt , k ∈ Z (22)

are the Fourier coefficients ofp. The sum (21) is assumed to
converge inL2 which implies that the sequence{bk}k∈Z is an
element ofℓ2. The outputy = Pπ/Tc

(p x) of the LPF is then
given in the frequency domain by

ŷ(ω) =
∑

k∈Z

bk x̂(ω − k 2π
T ), ω ∈ [− π

Tc
, πTc

]. (23)

Using (16) and the fact that̂an(ejωT ) is 2π/T -periodic, (23)
can be written as

ŷ(ω) =

N∑

n=1

ân(e
jωT )

∑

k∈Z

bk φ̂n(ω − k 2π
T ), (24)

3Note, that we can also chooseTp = T/r for an integerr. However, for
simplicity we restrict attention to the caser = 1.
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for ω ∈ [−π/Tc, π/Tc]. Defining

γ̂n(ω) :=
∑

k∈Z

bkφ̂n(ω − k 2π
T ), 1 ≤ n ≤ N (25)

and denoting bŷγ the vector whosenth element isγ̂n, we
can express (24) as

ŷ(ω) = γ̂
T (ω) â(ejωT ), ω ∈ [− π

Tc
, πTc

]. (26)

Equation (26) is similar to (17) witĥγ replacingφ̂. There-
fore, as in the case in which no pre-processing took place
(cf. Section IV), we can createL − 1 additional equations
by evaluatingŷ(ω) at frequenciesω + 2k π/T as long as
π/Tc ≥ Lπ/T . This yields the system of equations

ŷ(ω) = ΓL(ω) â(ejωT ) , ω ∈ [− π
T ,

π
T ], (27)

whereŷ and â are defined as in (10) and

ΓL(ω) =




γ̂1(ω + L0
2π
T ) . . . γ̂N (ω + L0

2π
T )

...
...

γ̂1(ω) . . . γ̂N (ω)
...

...
γ̂1(ω − L0

2π
T ) . . . γ̂N (ω − L0

2π
T )



.

Consequently, we can recoverâ from the given measurements
as long as the matrixΓL(ω) has full column rank for allω ∈
[−π/T, π/T ]. To this end it is necessary thatπ/Tc ≥ Nπ/T ,
i.e. thatL ≥ N .

Due to the mixing of the signal, the coefficient matrix
ΦL(ω) in (18) is changed toΓL(ω) in (27). This new
coefficient matrix is constructed out of the "new generators"
{γn}

N
n=1 in exactly the same way asΦL(ω) is constructed

from the original generators{φn}Nn=1. Equation (25) shows
that the Fourier transform̂γn of each new generator lies in a
shift invariant space

S 2π
T

(φ̂n) = span{Sk 2π
T
φ̂n : k ∈ Z}

spanned by shifts of̂φn. The coefficients{bk}k∈Z of the
mixing sequence are then the "coordinates" ofγ̂n in S 2π

T
(φ̂n).

We now want to show that the condition of invertibility
of ΓL(ω) is in general easier to satisfy then the analogous
condition on the matrixΦL(ω) of (10). To this end, we write
ΓL(ω) as

ΓL(ω) = BLΦ(ω), (28)

whereΦ(ω) denotes the matrix consisting ofN columns and

infinitely many rowsφ̂
T
(ω + k 2π/T ) with k ∈ Z. Note that

Φ(ω) has the form (10) withL → ∞, i.e. Φ(ω) = Φ∞(ω).
The matrixBL with L = 2L0 + 1 rows and infinite columns
contains the Fourier coefficients{bk}k∈Z of the mixing se-
quence (21) and is given by

BL =




. . . bL0−1 bL0
bL0+1 . . .

...
. . . b0 b1 b2 . . .
. . . b−1 b0 b1 . . .
. . . b−2 b−1 b0 . . .

...
. . . b−L0−1 b−L0

b−L0+1 . . .




. (29)

Representation (28) follows immediately from the relation
γ̂n(ω − ℓ 2π/T ) =

∑
k∈Z

bk−ℓφ̂n(ω − k 2π
T ) for the entries

of the matrixΓL(ω).
The GrammianMφ(ω) of the generatorsφ, defined in (4),

can be written asMφ(ω) = Φ∗(ω)Φ(ω). Therefore, under our
assumption (3) on the generators,Φ(ω) has full column rank
for all ω ∈ [−π/T, π/T ]. The question then is whether we
can choose the sequence{bk}k∈Z ∈ ℓ2, and consequently the
functionp, so thatBLΦ(ω) has full-column rank i.e. such that
the matrix Γ∗

L(ω)ΓL(ω) = Φ∗(ω)B∗
LBLΦ(ω) is invertible

for all ω ∈ [−π/T, π/T ].
If we choose the mixing sequencep(t) ≡ 1 thenb0 = 1 and

bk = 0 for all k 6= 0. ConsequentlyBLΦ(ω) is comprised of
the firstL rows ofΦ(ω), so thatΓL(ω) = ΦL(ω). However,
by allowing for general sequences{bk}k∈Z, we have more
freedom in choosingBL such that the productBLΦ(ω) may
have full column-rank, even ifΦL(ω) does not.

We next give a simple example which demonstrates that
pre-processing by an appropriate mixing function can enable
the recovery of the signal.

Example 3: We continue Example 1 with the single gen-
eratorφ1 given by (7). Here we assume that the parameter
D satisfies the relation1 < D/T < 3/2 and that the cutoff
frequency of the lowpass filter isπ/Tc = π/T . In this case,
recovery ofx from its lowpass componenty = Pπ/Tc

x is not
possible, as discussed in Example 1. However, we will show
that there exist mixing functionsp so thatx can be recovered
from y = Pπ/Tc

(px).
One possible mixing function is

p(t) = 1 + 2 sin(2πt/T )

whose Fourier coefficients (22) are given byb−1 = −j, b0 =
1, b1 = j, and bk = 0 for all |k| ≥ 2. With this choice, the
"new generator" (25) becomes

γ̂1(ω) =
sin(ωD)

ωD

+ j

[
sin(ωD − 2πD/T )

ωD − 2πD/T
−

sin(ωD + 2πD/T )

ωD + 2πD/T

]
.

Sinceπ/Tc = π/T , the matrixΓL(ω) reduces to the scalar
γ̂1(ω) and we have to show that0 < |γ̂1(ω)| < ∞ for all
ω ∈ [−π/T, π/T ]. The upper bound is trivial; for the lower
bound, it is sufficient to show that the real and imaginary
part of γ̂1 have no common zero in[−π/T, π/T ]. This fact is
easily verified by noticing that the only zeros of the real part
of γ̂1(ω) are atω1 = π/D andω2 = −π/D. Evaluating the
imaginary partℑ{γ̂1} of γ̂1 at these zeros gives

|ℑ{γ̂1(ω1,2)}| =
1

2π

| sin(2πD/T )|

(D/T )2 − 1/4

which is non-zero under the assumption made onD/T .
The general question whether for a given setφ =

{φ1, . . . , φN} of generators there exists a matrixBL such
that (28) is invertible for allω ∈ [−π/T, π/T ], or under
what conditions on the generatorsφ such a matrix can be
found seems to be an open and non-trivial question. The major
difficulty is that according to (28), we look for a constant
(independent ofω) matrix BL such thatBLΦ(ω) has full
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column rank for allω ∈ [−π/T, π/T ]. Moreover, the matrix
BL has to be of the particular form (29) with a sequence
{bk}k∈Z ∈ ℓ2.

The next example characterizes a class of generators for
which a simple (trivial) mixing sequence always exist.

Example 4 (generators with compact support): We
consider the case of a single generator (N = 1) and
assume thatπ/Tc = π/T , i.e. L = N = 1. Our problem
then reduces to finding a function̂γ1 ∈ S 2π

T
(φ̂1) such that

γ̂1(ω) 6= 0 for all ω ∈ [−π/T, π/T ].
We treat the special case of a generatorφ1 with finite

support of the form[−D,D] for someD ∈ R, i.e. we assume
thatφ1(t) = 0 for all t /∈ [−D,D]. This means that its Fourier
transformφ̂1 is an element of the Paley-Wiener spacêPW (D)
and so are all linear combinations of the shiftsS2π/T φ̂1. It
follows thatS(φ̂1) ⊂ P̂W (D).

Let now γ̂ ∈ S(φ̂1) be arbitrary and let{ωk}k∈Z be the
ordered sequence of real zeros ofγ̂ with ωn ≤ ωn+1. Then a
theorem of Walker [16] states that

sup
n∈Z

|ωn+1 − ωn| > π/D.

Thus there exists at least one interval of the real line of length
π/D such thatγ̂ has no zeros in this interval. Consequently,
if π/D > 4π/T then there always exists ak0 ∈ Z such that

γ̂(ω − k0
2π
T ) 6= 0 for all ω ∈ [− π

T ,
π
T ]. (30)

This holds in particular for the generatorφ̂1 itself.
We conclude that if the support of the generatorφ1 satisfies

supp(φ1) < T/4, then there always exists ak0 ∈ Z such that
γ̂1(ω) = φ̂1(ω − k0 2π/T ) 6= 0 for all ω ∈ [−π/T, π/T ].
The corresponding mixing sequence is given bybk0 = 1 and
bk = 0 for all k 6= k0.

B. Multiple Channels

In the single channel case, it was necessary that the cutoff
frequencyπ/Tc of the LPF is at leastN times larger than the
bandwidth of the desired signalâ in order to be able to recover
the signal. We will now show that using several channels can
reduce the cutoff frequencyπ/Tc of the filter in each channel,
from which we can still recover the original signalx.

Suppose that we haveL ≥ N channels, where each channel
uses a different mixing sequence, as in Fig. 5. SinceL ≥ N ,
we expect to be able to reduce the cutoff in each channel.
We therefore consider the case in whichTc = T . The output
yℓ = Pπ/T (pℓ x) of the ℓth channel in the frequency domain
is then equal to

ŷℓ(ω) = γ̂
T
ℓ (ω)â(ejωT ), ω ∈ [− π

T ,
π
T ]

whereγ̂
T
ℓ (ω) is the vector withnth element

[γ̂ℓ(ω)]n = γ̂ℓn(ω) :=
∑

k∈Z

bℓkφ̂i(ω + k 2π
T ),

and {bℓk}k∈Z are the Fourier coefficients associated with the
ℓth sequencepℓ. Defining byŷ(ω) the vector withℓth element
ŷℓ(ω) we conclude that

ŷ(ω) = ΓL(ω) â(ejωT ), ω ∈ [− π
T ,

π
T ]

- l× - - yL(t)

pL(t)
6

−π/Tc π/Tc

- l× - - y1(t)

p1(t)
6

−π/Tc π/Tc

x(t) - ...
...

Fig. 5. Bank of mixing functions.

whereΓL(ω) is the matrix whose entry in theℓth row and
nth column is [Γ(ω)]ℓ,n = γ̂ℓn(ω). Now, all we need is to
choose theL sequences{bℓk}k∈Z ∈ ℓ2 such thatΓL(ω) has
full column rank. More specifically, as before we can write

ΓL(ω) = BLΦ(ω), (31)

whereBL is a matrix withL rows and infinitely many columns
whoseℓth row is given by the coefficient sequence{bℓk}k∈Z,
i.e.

BL =




. . . b1−2 b1−1 b10 b11 b12 . . .

. . . b2−2 b2−1 b20 b21 b22 . . .
...

. . . bL−2 bL−1 bL0 bL1 bL2 . . .


 .

By our assumptionΦ(ω) has full column rank and so it
remains to chooseBL such thatΓL(ω) is invertible for every
ω ∈ [−π/T, π/T ].

It should be noted that we used the same notation as in the
previous subsection although the definition of the particular
matrices and vectors differ slightly in both cases. Nevertheless,
the formal approach is very similar. In the previous subsection,
we observed the output signal in different frequency channels
1 ≤ ℓ ≤ L whereas in this subsection the channels1 ≤ ℓ ≤ L
are characterized by different mixing sequences4.

As in the previous subsection, the general question whether
for a given systemφ = {φ1, . . . , φN} of generators there
always exists an appropriate system of mixing sequences
p = {p1, . . . , pL} such thatΓL(ω) has full column rank for
all frequenciesω seems to be non-trivial. The formal difficulty
lies in the fact that we look for a constant (independent of
ω) matrix BL such that (31) has full column rank for each
ω ∈ [−π/T, π/T ]. However, compared with the previous
section, where only one mixing sequence was applied, the
problem of finding an appropriate matrixBL becomes simpler:
In the former caseBL has to have the special (diagonal)
form (29), whereas here its entries can be chosen (almost)
arbitrarily. The sequences{bℓk}k∈Z only have to be inℓ2.

A special choice of periodic functions that are easy to
implement in practice are binary sequences. This example was

4In the first case we perform "frequency multiplexing" whereas the second
case resembles "code multiplexing".
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studied in [13] in the context of sparse multiband sampling.
More specifically,pℓ, 1 ≤ ℓ ≤ L are chosen to attain the
values±1 over intervals of lengthT/M whereM is a given
integer. Formally,

pℓ(t) = αℓn , n T
M ≤ t < (n+ 1) TM , 0 ≤ n ≤M − 1 (32)

with αℓn ∈ {+1,−1}, andpℓ(t+kT ) = pℓ(t) for everyk ∈ Z.
In this case, we have

bℓk =
1

T

∫ T

0

pℓ(t) e
−j 2π

T
ktdt

=
1

T

∫ T/M

0

M−1∑

n=0

αℓne
−j 2π

T
k(t+n T

M
)dt

=
1

T

M−1∑

n=0

αℓne
−j 2π

M
nk

∫ T/M

0

e−j
2π
T
ktdt.

Evaluating the integral gives

bℓ0 =
1

M
α̂ℓ0 and bℓk =

1 − e−jω0k

j2πk
α̂ℓk, k 6= 0

where ω0 = 2π/M , and {α̂ℓk}k∈Z denotes the discrete
Fourier transform (DFT) of the sequence{αℓn}

M−1
n=0 . Note that

{α̂k}k∈Z is M -periodic so that̂αk = α̂k+M .
With these mixing sequences, the infinite matrixBL can be

written as
BL = QF∗W, (33)

whereQ is a matrix withM columns andL rows, whoseℓth
row is given by the sequence{α̂ℓn}

M−1
n=0 , F is theM × M

Fourier matrix, andW is a matrix withM rows and infinitely
many columns consisting of block diagonal matrices of size
M × M whose diagonal values are given by the sequence
{wk}k∈Z defined byw0 = 1/M and wk = 1−e−jω0k

j2πk for
k 6= 0. Applying these binary mixing sequences, the problem
is now to find a finiteL×N matrixQ with values in{+1,−1}
such thatQF∗WΦ(ω) has full column rank for everyω ∈
[−π/T, π/T ].

The next example shows how to selectQ in the case of
bandlimited generators.

Example 5 (bandlimited generators): We consider the case
where each generatorφn is bandlimited to the interval
[−K0 π/T,K0 π/T ] for someK0 ∈ N, andN = 2K0 + 1. In
this case,Φ(ω) = ΦN (ω) is essentially anN ×N matrix (all
other entries are identically zero). This matrix is invertible for
everyω ∈ [−π/T, π/T ] according to assumption (3).

We now applyL = N different mixing sequences{pℓ}Lℓ=1

having the special structure (32), and chooseM = N .
According to (31) and (33) the matrixΓL(ω) then becomes

ΓL(ω) = QF∗ WΦ(ω), (34)

whereQF∗ and WΦ(ω) are matrices of sizeN × N . The
matrix WΦ(ω) may be considered as the product of the
invertible N × N matrix Φ(ω) = ΦN(ω) with an N × N
diagonal matrix consisting of the central diagonal matrix of
W, i.e.

WΦ(ω) = diag(w0, . . . , wN−1)ΦN (ω).

Since this diagonal matrix is invertible alsoWΦN (ω) is
invertible for everyω ∈ [−π/T, π/T ]. Therefore, using the
fact that the Fourier matrixF is invertible,ΓL(ω) is invertible
for eachω ∈ [−π/T, π/T ] if the values{αℓn}

N
n=1 of the

mixing sequencespℓ are chosen such thatQ is invertible. This
can be achieved by choosingQ as a Hadamard matrix of order
N . It is known that Hadamard matrices exists at least for all
orders up to667 [17].

In the previous example,ΦN (ω) was anN ×N invertible
matrix for all ω ∈ [−π/T, π/T ]. According to Proposition 3
recovery of the signalx is therefore possible if the bandwidth
of the LPF is larger thanNπ/T . However, the example shows
that pre-processing ofx by applying the binary sequences in
L = N channels allows recovery of the signal already from
its signal components in the frequency range[−π/T, π/T ].

For simplicity of the exposition, we assumed throughout
this subsection that the bandwidth2π/Tc of the lowpass filter
is equal to the signal bandwidth2π/T and that the number
of channelsL is at least equal to the number of generators
N . However, it is clear from the first subsection that in cases
whereL < N , recovery of the signal may still be possible if
the bandwidth of the LPF is increased.

VII. C ONNECTION WITH SPARSEANALOG SIGNALS

In this section we depart from the subspace assumption
which prevailed until now. Instead, we would like to incor-
porate sparsity into the signal modelx(t) of (1). To this end,
we follow the model proposed in [9] to describe sparsity of
analog signals in SI spaces. Specifically, we assume that only
K out of the generatorsφn(t) are active, so that at mostK
of the sequencesan[k] have positive energy.

In [9], it was shown how such signals can be sampled
and reconstructed from samples at a low rate of2K/T . The
samples are obtained by pre-processing the signalx(t) with
a set of 2K sampling filters, whose outputs are uniformly
sampled at a rate of1/T . Without the sparsity assumption, at
leastN sampling filters are needed where generallyN is much
larger thanK. In contrast to this setup, here we are constrained
to sample at the output of a LPF with given bandwidth. Thus,
we no longer have the freedom to choose the sampling filters
as we wish. Nonetheless, by exploiting the sparsity of the
signal we expect to be able to reduce the bandwidth needed
to recoverx(t) of the form (1), or in turn, to reduce the number
of branches needed when using a bank of modulators.

We have seen that the ability to recoverx(t) depends
on the left invertibility of the matrixΦL(ω) (or ΓL(ω)).
With appropriate definitions, our problem becomes that of
recoverinĝa(ejωT ) from the linear set of equations (18) (with
ΓL(ω) replacingΦL(ω) when preprocessing is used). Our
definition of analog sparsity implies that at mostK of the
Fourier transformŝan(ω) have non-zero energy. Therefore,
the infinite set of vectors{â(ejωT ), ω ∈ [−π/T, π/T ]} share
a joint sparsity pattern with at mostK rows that are not zero.
This in turn allows us to recover{â(ejωT ), ω ∈ [−π/T, π/T ]}
from fewer measurements. Under appropriate conditions, itis
sufficient thatŷ(ω) has length2K, which in general is much
smaller thanN . Thus, fewer measurements are needed with
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respect to the full model (1). The reduction in the number of
measurements corresponds to choosing a smaller bandwidth
of the LPF, or reducing the number of modulators.

In order to recover the sequences in practice, we rely on
the separation idea advocated in [8]: we first determine the
support set, namely the active generators. This can be done
by solving a finite dimensional optimization problem under the
condition thatΦL(ω) (or ΓL(ω)) are fixed in frequency up to
a possible frequency-dependent normalization sequence. Re-
covery is then obtained by applying results regarding infinite
measurement vector (IMV) models to our problem [8]. When
ΦL(ω) does not satisfy this constraint, we can still convert the
problem to a finite dimensional optimization problem as long
as the sequencesak[n] are rich [10]. This implies that every
finite set of vectors share the same frequency support. As our
focus here is not on the sparse setting, we do not describe
here in detail how recovery is obtained. The interested reader
is referred to [8], [9], [10] for more details.

The main point we want to stress here is that the ideas
developed in this paper can also be used to treat the scenario
of recovering a sparse SI signal from its lowpass content.
The difference is that now we can relax the requirement for
invertibility of ΦL(ω),ΓL(ω). Instead, it is enough that these
matrices satisfy the known conditions from the compressed
sensing literature. This in turn allows in general reduction
of the LPF bandwidth, or the number of modulators, in
comparison with the non-sparse scenario.

VIII. C ONCLUSIONS ANDOPEN PROBLEMS

This paper studied the possibility of recovering signals inSI
spaces from their low frequency components. We developed
necessary conditions on the minimal bandwidth of the LPF
and sufficient conditions on the generators of the SI space
such that recovery is possible. We also showed that proper
pre-processing may facilitate the recovery, and allow to reduce
the necessary bandwidth of the LPF. Finally, we discussed how
these ideas can be used to recover sparse SI signals from the
output of a LPF.

An important open problem we leave to future work is
the characterization of the class of generators for which the
proposed pre-processing scheme can (or cannot) be applied.
To this end, the following question has to be answered. We
formulate it only for the most simple case of one generator
(cf. also the discussion in Example 4).

Problem 1: Let φ ∈ L2 be an arbitrary function with
Fourier transformφ̂ and whose Grammian satisfies (3) .
Consider the shift-invariant space spanned byφ̂, i.e.

S 2π
T

(φ̂) = span
{
Sk 2π

T
φ̂ : k ∈ Z

}
.

For which functionsφ ∈ L2 does there exist a function̂γ ∈
S(φ̂) such that̂γ(ω) 6= 0 for all ω ∈ [−π/T, π/T ].

The interesting case is when every functionφ̂(ω−k 2π/T ),
k ∈ Z has at least one zero in the interval[−π/T, π/T ]. Then
the question is whether in this case it is still possible to find
a linear combination of these functions which has no zero in
[−π/T, π/T ].
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