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Abstract— The problem of recovering a signal from its low content. Our focus is on signals that lie in Sl spaces, géeera
frequency components occurs often in practical applicatios due py multiple generators [5], [6], [7]. Following a detailed
to the lowpass behavior of many physical systems. Here we &ty 5h10m formulation in Sectiofi]ll, we begin in Sectibm Il

in detail conditions under which a signal can be determined by derivi diti th toff f
from its low-frequency content. We focus on signals in shift y deriving a necessary condition on the cutofr irequency

invariant spaces generated by multiple generators. For thee Of the low pass filter (LPF) and sufficient conditions on the
signals, we derive necessary conditions on the cutoff fregmcy of generators such that can be recovered from its lowpassed

the lowpass filter as well as necessary and sufficient conditis version. As expected, there are scenarios in which recovery

on the generators such that signal recovery is possible. Whe 5 ot hossible. For example, if the bandwidth of the LPF
the lowpass content is not sufficient to determine the signal . t I if f 1h t .
we propose appropriate pre-processing that can improve the IS 100 small, or it one o € generators IS zero over a

reconstruction ability. In particular, we show that modulating Certain frequency interval and all of its shifts with period
the signal with one or more mixing functions prior to lowpass 27 /T, then recovery cannot be obtained. For cases in which

filtering, can ensure the recovery of the signal in many cases the recovery conditions are satisfied, we provide a concrete
and reduces the necessary bandwidth of the filter. method to reconstruat from the its lowpass frequency content
Index Terms— Sampling, shift-invariant spaces, lowpass signals in Section TV.
The next question we address is whether in cases in which
the recovery conditions are not satisfied, we can improve our
. INTRODUCTION ability to determine the signal by appropriate pre-proitess

Lowpass filters are prevalent in biological, physical anth Section[Y we show that pre-processing with linear time-
engineering systems. In many scenarios, we do not hdpyariant (LT1) filters does not help, even if we allow for artka
access to the entire frequency content of a signal we wigh LTI filters. As an alternative, in Sectidn VI we consider
to process, but only to its low frequencies. For example, Rfe-processing by modulation. Specifically, the sigmals
is well known that parts of the visual system exhibit lowpadgodulated by multiplying it with a periodic mixing function
nature: the neurons of the outer retina have strong respoR8@r to lowpass filtering. We then derive conditions on the
to low frequency stimuli, due to the relatively slow resppnsMixing function to ensure perfect recovery. As we show, a
of the photoreceptors. Similar behavior is observed alghen larger class of signals can be recovered this way. Moreover,
cons and rods [1]. Another example is the lowpass nature Bf applying a bank of mixing functions, the necessary cutoff
free space wave propagation [2]. This limits the resolutibn frequency in each channel can be reduced. In Setfidn VII we
optical image reconstruction to half the wave length. Marfiefly discuss how the results we developed can be applied
engineering systems introduce lowpass filtering as welle OfP sampling sparse signals in S| spaces at rates lower than
reason is to allow subsequent sampling and digital sigr¥yauist. These ideas rely on the recently developed frarriewo
processing at a low rate. for analog compressed sensing [8], [9], [10]. In our setting

Clearly if we have no prior knowledge on the original signathey translate to reducing the LPF bandwidth, or the number
and we are given a lowpassed version of it, then we canrfftmodulators. Finally, Section_VIII summarizes and points
recover the missing frequency content. However, if we ha@ilt some open problems.
prior knowledge on the signal structure then it may be péssib Modulation architectures have been used previously in dif-
to interpolate it from the given data. As an example, consigéerent contexts of sampling. In [11] modulation was used
a signalz that lies in a shift-invariant (SI) space generatetf order to obtain high-rate sigma-delta converters. More
by a generator, so thatz(t) = 3 a,¢(t — nT') for some recently, modulation has been used in order to sample sparse
T. Even if z is not bandlimited, it can be recovered from th&igh bandwidth signals at low rates [12], [13]. Our specific
output of a lowpass filter with cutoff frequeney/T as long choice of periodic functions is rooted in [13] in which a
as the Fourier transform(w) of the generator is not zero forSimilar bank of modulators was used in order to sample
all w e [—x/T,7/T) [3], [4]. multiband signals at sub-Nyquist rates. Here our focus is on

The goal of this paper is to study in more detail under whatgnals in general Sl spaces and our goal is to develop a

conditions a signat can be recovered from its low-frequencyProad framework that enables pre-processing such as teeensu
perfect reconstruction. We treat signals that lie in a piiedd
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Il. PROBLEM FORMULATION
A. Notations o(t) — —‘:I:L >< y[n]

X i —7/T. w/Te
We use the following notation: As usuaG", L2, and t = nT,

¢ denote theN-dimensional Euclidean space, the space of

square integrable function on the real line, and the space of

square summable sequences, respectively. All these spaeesig. 2. Sampling ofz(t) after lowpass filtering.
Hilbert spaces with the usual inner products. Throughoet th

paper we writez for the Fourier transform of a function

directly. Thus, our emphasis is not on the sampling rate,

2.
TelLn - but rather on the information content in the lowpass regime,
(w) = / z(t)e @tdt, weR. regardless of the sampling rate to follow.
-0 Clearly, if z is bandlimited to[—=/T., 7/T.|, then it can
ThePaley-Wener space of functions inL? that are bandlimited P€ recovered frony. However, we will assume here thatis
to [- B, B] will be denoted byPW (B): a general Sl signal, not necessarily bandlimited. Theseafsg
, have the property that if(¢) lies in a given Sl space, then so
PW(B) ={xz € L”:&(w) =0 forall w ¢ [-B, B}, do all its shifts(Syra)(t) = (t — kT) by integer multiples

and Py is the orthogonal projectio? — PW(B) onto of some givenT'. Bandlimited signals are a special class of

PW(B). Clearly, P is a bounded linear operator ab?. Sl signals. Indeed, if: is bandlimited then so are all its shifts
We will also need the Paley-Wiener space of functions whoS&7?: k € ZforagivenT'. Infact, bandlimited signals have an

inverse Fourier transform is supported on a compact interv&VEnN Stronger property that all their shifigz by any number
ie. a € R are bandlimited. Throughout, we assume thdies in

. a generally complex Sl space with multiple generators.
PW(B)={te€L?:2(t)=0forall t ¢ [-B,B]}. Let ¢ = {#1,...,¢n} be a given set of functions in>
: . and letT € R be a given real number. Then tHaft-invariant
For anya € R, the shift (or translation)operator S, : L? — . ; )
12 is defined by(S.z)(t) = ( — a). space generated by is formally defined as [5], [6], [7]:
If {¢r}rez is @ set of functions inL? with an arbitrary Sr(¢) = span{Skron : k€ Z,1 <n < N}.
index setZ then spaf¢y : k € Z} denotes the closed linear

subspace of.2 spanned by} rez. The functionsyp,, are referred to as thgenerators of Sy (o).

Thus, every functior € Sp(¢) can be written as
N

2(t) =Y anlklpn(t — kT), teR, 1)
n=1keZ
where for eachl < n < N, {a,[k]}rez IS an arbitrary
sequence if?. Examples of such Sl spaces include multiband
signals [14] and spline functions [15], [3]. Expansions loé t
type (1) are also encountered in communication systemsywhe
the analog signal is produced by pulse amplitude modulation
In order to guarantee a unique and stable representation

of any signal inSy(¢) by sequences of coefficien{s,, [k]},
the generatorg are typically chosen to form &iesz basis

B. Problem Formulation

We consider the problem of recovering a signél), ¢t € R
from its low-frequency content. Specifically, suppose tha
filtered by a LPF with cut off frequency /T, as in Fig.[1.
We would like to answer the following questions:

« What signalst can be recovered from the outpubf the

LPF?

« Can we perform preprocessing ofprior to filtering to

ensure that: can be recovered from?

for Sr(¢). This means that there exist constants> 0 and
x(t) —— J:IiL — y(t) 8 < oo such that
—n/T. w/Tc 9
N
allal® < |3 Y anlklga(t —kT)|| < Bllal®, @)
Fig. 1. Lowpass filtering ofc(¢). n=1keZ L2

. . . , where [|a||> = Y 37, |a,[k]|?. Condition [2) implies
Filtering a signalz € L* with a LPF with cutoff frequency 4 any. e S;(¢) has a unique and stable representation in
/T, corresponds to a projection afonto the Paley Wiener terms of the sequencea,, [k]} xcz. In particular, it guarantees

spacePW (w/T.). Therefore we can writg = Pr/7.2.  that the sequencefun|k]lrez can be recovered from e
Note, that we assume here that the outp(t), ¢t € R is Sr(#) by means of a linear bounded operator.

analog. Sincey is a lowpass signal, an equivalent formulation By taking Fourier transforms ifi2) it can be shown that the

is to sampley with periodTs = 1/ f, lower than the Nyquist generators form a Riesz badkif and only if [6]

period T, to obtain the sequence of samplggn]},.cz. The

problem is then to recover(t), t € R from the samples ol 2 My(w) 261, aewe[-7/T,7/T]. 3)

,asin Fig[2. Sinc uniquely determines
{y[n]}"ez gDZ Qy[n]}nez quely IHere and in the sequel, when we say that a set of generatéoem (or

Y, the two formulations are.eqUi\.’alent' For cgncreteness, W&]erate) a basis, we mean that the basis functiond @ét — kT'), k €
focus here on the problem in which we are giwgn), t € R 7,1 <n < N}.
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Here M4 (w) is called theGrammian of the generatorg = Then one can easily see that this generator satisfles (3), i.e
{¢1,...,0n}, and is theN x N matrix there existsy, 5 such that
Rpip, (@) ... Rpon (W) sin(wD — 27kD/T)|?
0<a< <fB< o (8)
My (w) = , 4) % wD —27kD/T
Rongi (@) o Royon (W) for all w € [—n/T,n/T]. The lower bound follows from the
where for any two generators;, ¢; the function Ry, is assumption thaD /T is not an integer, so that all the functions
given by ' i in the above sum have no common zerd-r /T, 7/T]. The
- upper bound3 follows from
Ryg(w) =Y di(w—2kF) dj(w—2kF).  (5) , ,
ez sin(wD — 27kD/T) Z 1
— 2
Note that the functionsk,,,, are 2 /T-periodic. Therefore,  iez! “P~ 2mkD/T iz lwD = 27kD/T|
con_dition @) is equivalent taI.j Md)(u{—a) =2 01 for every 7\ 2 o 1 97\ 2
arbitrary real number. We will need in particular the case < D 1+ 22 @17 < D
a = m/T, for which the entries of the matrikl(w — a) are k=1

= . using thatjw D — 2xkD/T| > n#D/T(2|k| — 1) for all k =
Ryip;(w—F) = Zd’i(” —[2k+1] 7) ¢5(w — 2k + 1] 7). +1,42,... and allw € [-7/T,7/T].
keZ ©6) Assume now that the LPF has cutoff frequencyl,. =
w/T. Then the Fourier transformy; of the filtered generator
Y1 = Pryp ¢1 Will satisfy a relation like [(B) only ifD < T,
] ) . i.e. only if ¢, has no zero if—=/T,7/T). In cases where
The first question we address is whether we can recovers 7 the cutoff frequency has to be larger in order to allow a
x € Sr(¢) of the form [1) from the outpuy = Pz, = of & recovery of the original signal. One easily sees that theftut
LPF with cutoff frequencyr/T., assuming that the generatorgrequency of the LPF has to lie at leas{T — =/D above
¢ satisfy [3). We further assume that the generators are oty in order thaty), will satisfy a relation similar to[{8). In
bandlimited tor /T, namely that they have energy outside thgyis case, the shifts); (w + 27/7) compensate for the zero
frequency interval—m/T., 7/Tc]. We will provide conditions f 4/, () in the sum[(B). Thus for cutoff frequencieg 7, >
on the generators and on the bandwidth of the LPF such thag, /7 _ /D a recovery of the signat from the LPF signal
x can be recovered fromm As we show, even if the generatorsy will be possible.
¢ are not bandlimitedy can often be determined from The previous example illustrates that the question whather
First we note that in order to recover € Sr(¢) from  forms a Riesz basis fa (1)) depends on the given generators
the lowpass signaj = Pr/r, = it is sufficient to recover the ; and on the bandwidth /7. of the LPF. The next proposition
sequencegan[k|}rez, 1 < n < N because the generatorsjerives a necessary condition on the required bandwfidif
¢ are assumed to be known. The output of the LPF can Bethe LPF such that’ can be a Riesz basis fe(1)).

Ill. RECOVERY CONDITIONS

written as Proposition 2: Let ¢ = {¢1,..., 6y} be a Riesz basis for
N the spaceSr(¢) and lety,, = P 1, ¢, with 1 < n < N.
y(t) = (Prjg, 2)(t) = Y > anlk] ¥n(t — kT) Then a necessary condition for = {41,...,¢n} to be a
n=1keZ Riesz basis folSy(v) is thatn/T. > N7 /T.

wherev, := P, 1, ¢,, denotes the lowpass filtered generator Proof: We consider the GrammiaWl,, (w) whose entries

én, and the sum on the right-hand side convergesLin are equal to

since P, . is bounded. Therefore, we immediately have the . T oa o

foIIowing/ observation: The sequencgs, [k]} ez, 1 <n < N Ry, (@) = 12; Vilw =k 7)W= k).

can be recovered from if ¢ forms a Riesz basis faSz (1)). K<z (72 +D)

This is equivalent to the following statement. All other terms in the generally infinite sum (cf](5)) are
Proposition 1: Let ¢ = {¢1,...,6n} be a set generators,identically zero since),, (w) is bandlimited to[—7 /T, 7 /T.].

and lety,, = Pr/p,én, 1 < n < N be the lowpass filtered This Grammian can be written &d,, (w) = ¥*(w) ¥ (w) with

generators where /T, is the bandwidth of the LPF. Then

the signalz € Sr(¢) can be recovered from the observations ¥(w) =

g = P7T</Tﬁx if the GrammianM,(w) satisfies[(B) for some [ 1211(91 + (Lo +21]2%) @N(w Lo +21]2%) -
Sasp<oo Y1 (w+ LoZE v Yn(w+ LoE
Example 1. We consider the case of one generaf¥r=£ 1) 1l ) or) w( i o7)
1/(2D), te[-D,D - -

a={ /" DD % B e ) ©
for someD > 0. The Fourier transform of this generator is - : o . : o
¢1(w) = sin(wD)/(wD) which becomes zero at = kx/D . G LOT)% IR N (w — LOT)%
forall k = +£1,+2,. ... We assume thad/T is notan integer. L ¥1(w —[Lo+1]5F) ... dn(w—[Lo+1]F) ]
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where Ly is the largest integer such thay < (T/T.—1)/2. Note that Exampl€]l shows thdf {12) is not necessary, in
Since everyy), (w) is banded to—x /T, 7/T.], the first and general: WithT < D < 2T and a cutoff frequency of
the last row of this matrix are identically zero for somez « /T, > 2n/T — 7/ D, the corresponding form a Riesz basis
[-7/T,7/T]. At thesew's, the matrix¥ (w) has effectively for Sr(¢). However, it can easily be verified th&t{12) is not
L =2Ly+1rows andN columns, and it holds thdt < T'/T.. satisfied.

Since My (w) = ¥*(w)¥(w), the Grammian can have full  proof: We consider the case of being odd. It has
rank for everyw € [—7/T,7/T] only if L > N, i.e. only if to be shown that the GrammiaMl,(w) satisfies[(B). Since
/T, > Nn/T. B NT. < T, the Grammian can be written asl,(w) =

The necessary condition on the bandwidth of the LP&*(w)®¥(w) with ¥ (w) defined by[[D). Next® (w) is written
given in the previous proposition is not sufficient, in gemnasw(w) = ¥y (w)+ ¥, (w) whereW® | (w) is the(2Ly+1) x
eral. However, given a bandwidth/7. which satisfies the N matrix whose first and last row coincide with thoselofw)
necessary condition of Propositibh 2, sufficient cond&iom and whose other rows are identically zero. Similatly, (w)
the generatorg can be derived such that the lowpass filtereglenotes the matrix whose first and last row is identicallpzer
generators) form a Riesz basis foSr(¢), i.e. such thatt  and whose remaining rows coincide with thoselof,). Since
can be recovered from. VYn(w) = ¢p(w) for all w € [—7/T,,7/T.] and for every

Proposition 3: Let ¢ = {¢1,...,¢n} be a Riesz basis for | < 5, < N, we have that¥} (w) ¥, (w) = &} (w) B (w).
Sr(¢) and lety,, = Pr 1, ¢, for 1 < n < N with 7/T. > Therefore,

N 7/T. Denote byL the largest integer such that< T'/T..

If L =2Ly+ 1is an odd number, then we define thex V

matrix & (w) by My (w) = B} () Wr(w) + T (w) T (w)
1( (

. . . - + ¥ (W) ¥ (w) + ¥ (w) Tr(w)
oot 2hof) e ovle 2EoR) ) L) + V@) PL) (13
hw+2%F) ... onw+2F) since by the definition of; (w) and ¥ | (w), we obviously
PLw)=|  hiWw) o on(Ww) . have that®} (w) ¥, (w) = 0 and ¥* (w) ¥ (w) = 0. Now
prw—=2%) ... onw—-27) it follows from (I3) that for every € CV
L q@l(w—2L0%) éN(w—2L0%) ] X" Mﬂ)(w)x = Hq>L(w)X||%N +H‘Ill(w)x||%N

(10) > [@r()x|Ey =x" @ (w)PL(w)x > o,

For L = 2L, even, we define
where the last inequality follows frori(lL2). This shows ttnet

P (w) = GrammianM, (w) is lower bounded as i {3). The existence
[ 1 (w+ [2Lo — UZ) ... én(w+[2Lo—1]E) T of an upper bound faM., (w) is trivial sinceM,, (w) has finite
. . dimensions.
. . o . Assume now thafl’/T. is an (odd) integer. In this case
9?1(‘”4' 7) ‘?N(WJF 7) ) Lo = (T/T. — 1)/2 and it can easily be verified that the
$1(w—F) on(w = 7F) matrix ¥, (w) is identically zero. From[{A3)M,(w) =
: : ®] (w) ®L(w) = ML (w) which shows that if the Grammian
i br(w— [2Lo — TESN S (w = [2Lo — 1)2) M, (w) satisfies[(B) the® ;, (w) satisfies[(I2). This proves that

“(11) (I2) is also necessary far to be a Riesz basis fa$r ().

The case ofL even follows from the same arguments but

If there exists a constant > 0 such that starting with expressiori{6) for the entries of the Grammian

M (w) = @5 (W) ®r(w) = ol aewe[-% %] (12) instead of [(b). Therefore, the details are omitted. ]
_ i Example 2: We consider an example with two generators
thenty) = {¢1,...,¢n} forms a Riesz basis fa$r(v)). (N=2) which both have the form as in Examglé 1, with

Moreover, if T/T, is an integer, then condition (12) is alsqjitferent values forD, i.e.
necessary for) to be a Riesz basis fa$(v).

Whenn /T, — oo, i.e. L — oo, the matrixM,(w) reduces
to My (w) of (@), which by definition satisfies(3). However, oi(t) = {
since for the calculation of the entries Bf; (w) we are only
summing over a partial set of the integers, we are no longer
guaranteed thavI, (w) satisfies the lower bound dfl(3). with Fourier transformsg;(w) = sin(wD;)/(wD;). As in

The requirements of Propositidd 3 imply that > N. Example[1 we assume thd;/T are not integers and that
Consequently, the matri¥;, (w) = ®7 (w) ®(w) is positive D; # Ds. Under these conditions, the Grammidd(w)
definite for almost all € [—#/T,#/T] if and only if . (w) of ¢ = {¢1,¢2} satisfies[(B). To see this, we consider the
has full column rank for almost alb € [—n /T, 7/T). determinant ofM,(w) for some arbitrary but fixedv €
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[—7/T,7/T]: adds additional rows to the matrix which can only enlarge the

) column rank of®,(w). Pre-processing of will be discussed
det[ My ()] = 3 [du(w — k)| 3 |dalw — k)

2 . . .
in detail in Section§V and VI.
kEZ kEZ

IV. RECOVERY ALGORITHM

2
- <Z $1(w —kFF) po(w — k%”)) - (14)  We now describe a simple method to reconstruct the desired
kez signal = from its low frequency components. This method
We know from Examplgl1, that the first term on the right hanig used in later sections to show how pre-processing of the
side is lower bounded by some constantv, > 0. Moreover, Signalz may facilitate its recovery. Throughout this section,
the Cauchy-Schwarz inequality shows that the second termw@ assume that the bandwidiyT.. of the LPF satisfies the
the right-hand side is always smaller or equal than the firgecessary condition of Propositibh 2, and that the generato

term with equality only if the two sequences satisfy the sufficient condition of Propositiéh 3.
R o ) Taking the Fourier transform ofl(1), we see that every
{0i(w = kF )} hen, i=1,2 Sr(¢) can be expressed in the Fourier domain as

are linearly dependent. However, sinbe # Do, it is not hard N

to verify that these two sequences are linearly independent ZF(w) = Z in(@“T) dp(w), weR (16)
ConsequentlydetMy(w)] > 0 for all w € [—7/T,7/T] n=1

which shows thaM 4 (w) satisfies the lower bound dfl(3). Thatyhere

M, (w) satisfies also the upper bound [ (3) follows from a i (€77 = Zan[k]e*jw’”

similar calculation as in Examplé 1 using that(w)| deceases kez

proportional tol /w as|w| — oc. . IO . .
Assume now that the bandwidth of the LPF satisfielg the 27 /T-periodic discrete time Fourier transform of the

: . Sequenceda, [k]}rez at frequencywT. Denoting bya(e/“T)
2n/T < m/Tc < 3n/T. In this case the matriby (w) of 0" orior whosenth element is equal t@,,(e/“T) and by
Propositior{B is given by

¢(w) the vector whoseith element is equal t¢,,(w) we can
B (w) = [ Qfl (w+ %) q}z(w 4 %) } ’ write (I8) in vector form ai
nlw=g) oalo—7) #(w) = & (@) A7),
and the determinant a¥f, («w) := &7 (w) & (w) becomes The Fourier transform of the LPF outpyt= P,z z is

. . . .2 bandlimited tor/T., and for allw € [-n /T, 7/T.] we have
detML ()] = Y |diw=kF)| D |olw—kF)|  j(u) = i(w). Therefore

k=1 k=+1 o _
jw)=¢ Wa"), wel-£,£l. (A7)

2
- hi(w— k&) go(w—kZ)) . (15
<k§1 1(w = k) G2l T)> (13) For everyw € [~n/T.,7/T.], (1) describes an equation

) S for the N unknownsa,, (e’“T). Clearly, one equation is not
This expression is similar to (14) and the same arguments shg sfficient to recover the length= vectora(e/“T); we need at
thatdet[Mp,(w)] > 0 for allw € [—m/T' 7/T]. Namely, Since g5t equations. However, since according to Proposfiion 2
D;/T are not integers, the functions(w +7/T) and¢i(w - the bandwidth of the LPF has to be at leagl, > N /T, we
7/T) have no common zero such that the first term on the, form more equations from the given data by noting that
right hand side of[(15) is lower bounded by somgv; > 0. 4 is periodic with period2r/T’, while ¢, and consequently
The Cauchy-Schwarz inequality implies that the second terM are generally not. Specifically, let, € [—7/T,7/T] be
is always smaller than the first one. N an arbitrary frequency. For any, = wg + 27k/T with k

We conclude thatb; (w) satisfies the condition of Propo-,4, integer we have thai(e/*7) = a(e/«oT). Therefore, by
sition[3, so that the signat can be recovered from its low evaluatingg andcfb at frequencies-r/T, < wy < m/Tp, We
frequency componentg= Py )z, z. can use[(17) to generate more equations. To this end, let

If for a certain bandwidthr/T. of the LPF the generatorspg the largest integer for which < T'/T.. Assume first that

¢ satisfy the conditions of Propositigh 3 .then the sign@an  _ 9Lo + 1 for some integet.o, so thatl is odd. We then
be recovered fromy = P /7, x. However, if the generators generate the equations

do not satisfy these conditions, then there exists in placi
two ways to enable recovery of

« Increasing the bandwidth of the LPF.
o Pre-processc before lowpass filtering, i.e. modify the
generatorsp.

It is clear that for a given set = {¢1,...¢n} of generators

an increase of the LPF can only increase the "likelihoodt' th
the matrix®,(w) of Propositiori B will have full column rank.
This is because enlarging/T, increases the numbdr i.e. it V(w) =& (w)a(eT), wel[-n/T,7/T], (18)

’2

N
Iw) = 9w —kZFE) =) dnlw—kZ)an(w— k%)

for —Ly < k < Ly and forw € [—=n/T,n/T]. Since by

our assumptionr /T, > L= /T, all the observationg;(w) =

y(w — 2kw/T) are in the passband regime of the LPF. The
bove set ofL equations may be written as
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wherey(w) = [J_r,(w),...,0,...,9.,(w)]T is a lengthL. of each other). Thus, although we hadé equations, only
vector containing all the different observatiagjsof the output one of them provides independent informationaonNe can,
7, and®r,(w) is the L x N matrix given by [(ID). In the case as before, use the periodicity & if 7. is small enough.
where L = 2L, is an even numbgr we generate additional Following the same reasoning as in Sectlod 1V, assuming
equations by thatw/T. > L«/T, we can creatd. — 1 new measurements
N using the same unknowidsby consideringy(w) for different
Ge(w) = Z on(w — [2k + 1] ) an(w — 2k + 1] &) (19) frequenciesv + k27 /T. In this case though it is obvious that
el the pre-filtering does not help, since only one equation can

for —Lo < k < Lo — 1. Here again all the observations inbe used from the set ¥ equations[{20) for each frequency.

(13) are in the passband regime of the LPF. Therefére, (1I other words, all the branches in Fig. 3 provide the same
can be written as il (18) whe® () is now given by [[1IL) information. The resulting equation is the same as in the
and the definition o is changed accordingly. " previous section up to multiplication by, for one index

If the matrix ®,(w) satisfies the sufficient conditions of. = ™ = N. Therefore, the recovery conditions reduce to
Proposition[B, then the unknown vectar(e“T) can be Fhe same ones as before, and haviNgbranches does not
recovered from{18) by solving the linear set of equations fgNProve our ability to recover.
all w € [-n/T,n/T]. In particular, there exists a left inverse Vi
G(w) of @1 (w) such thata(e’“T) = G(w) y(w). Finally, the
desired sequences,[k]|}rcz are the Fourier coefficients of
the 27 /T periodic functionsi,,.

. PREPROCESSINGNITH MIXERS

We now consider a different approach, which as we will
see leads to greater benefit. In this strategy, instead afjusi
filters in each branch, we use periodic mixing functigns
V. PREPROCESSINGNITH FILTERS Each sequence is assumed to be periodic with period equal
tdd T, = T. By choosing the mixing functions appropriately,

When @, (w) does not has full column rank for alf € . 4
. . we can increase the class of functions that can be recovered
[-7/T,n/T] and if the bandwidth of the LPF can not b :
reom the lowpass filtered outputs.

increased, an interesting question is whether we can pr
processz before lowpass filtering in order to ensure that iA
can be recovered from the LPF output. In this and in the
next section we consider two types of pre-processing: using
a bank of filters, and using a bank of mixers (modulators]!
respectively.

Suppose we allow pre-processingwofvith a set ofNV filters,
ot % I Y A

Single Channel

Let us begin with the case of a single mixing function, as
Fig.[4. Sincep is assumed to be periodic with peridy it

as in Fig[B. The question is whether we can choose the filters /T 7T
gn in the figure so that: can be recovered from the outputs

yn Of each of the branches under more mild conditions than p(t)
those developed in Sectignllil.

Fig. 4. Mixing prior to lowpass filtering of:(t).

g1(t) J:I:L — y1(t) can be written as a Fourier series
—7/Te w/Te )
p(t) =) by et (21)
ke
x(t) — : : where
1 [T/2 _
by = — / p(t)e 2 R/ Tqr ke (22)
T J 72
gn () J:I:L - yn(t) are the Fourier coefficients @f The sum[(2ll) is assumed to
—n/Te «/Te converge inL? which implies that the sequenééy, } .cz is an

element of¢2. The outputy = Pr 1, (px) of the LPF is then
given in the frequency domain by

Fig. 3. Preprocessing af(t) by a bank of N LTI filters.
Jw) =) beilw—kF), wel-F, ] (23)

Let y, g be the lengthV vectors withnth elements given kEZ
by 9., g».- Then we can immediately verify that Using [I8) and the fact that, (/7 is 27 /T-periodic, [Z3)
() = g() (%T(w)é(eij)’ we [-&, £l (20) can be written asN
Clearly, a cannot be r_ecovered from this set of equation_s as j(w) = Z an (e79T) Zbk P (w — k2%, (24)
all the equations are linearly dependent (they are all pieki n=1 kEZ

2In subsequent sections, we will only discuss the case whaseodd. The SNote, that we can also choodg, = T'/r for an integerr. However, for
necessary changes for the caselobeing even are obvious. simplicity we restrict attention to the case= 1.
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for w € [-7n/T,,w/T.]. Defining

An(w) ==Y bpdn(w —k3F), 1<n<N
kez
and denoting byy the vector whoseith element isy,,, we
can expresd (24) as
Iw) =4" (W) ae*"), wel-%, £ (26)

Equation [26) is similar to{17) with replacinge. There-

(25)

Representation[(28) follows immediately from the relation
An(w — 021)T) = 3y bredn(w — kZE) for the entries
of the matrixI'y, (w).

The GrammiariM,(w) of the generators, defined in [(#),
can be written adl,(w) = ®*(w)®(w). Therefore, under our
assumption[{3) on the generatof(w) has full column rank
for all w € [—n/T,n/T]. The question then is whether we
can choose the sequenfi, } ez € ¢2, and consequently the
functionp, so thatB;, ®(w) has full-column rank i.e. such that

fore, as in the case in which no pre-processing took platiee matrixI'; (w)T'(w) = ®*(w)B;B.®(w) is invertible
(cf. Section[1V), we can creaté — 1 additional equations for all w € [—n /T, 7 /T).

by evaluatingg(w) at frequenciesv + 2k«/T as long as
w/T. > L=«/T. This yields the system of equations

y(w) =Tr(w)a(e?),
wherey anda are defined as if(10) and
A1 (w + Lo2R) AN (w + Lo%%)

wel-2,2, @D
W= %@ ..  ww

A1(w — Lo%E) An(w— Lo%E)

If we choose the mixing sequenpé&) = 1 thenb, = 1 and
bi = 0 for all £ £ 0. ConsequenthB ®(w) is comprised of
the first L rows of ®(w), so thatl';,(w) = &, (w). However,
by allowing for general sequence$y}icz, we have more
freedom in choosin@®;, such that the produdB; ®(w) may
have full column-rank, even i®,(w) does not.

We next give a simple example which demonstrates that
pre-processing by an appropriate mixing function can enabl
the recovery of the signal.

Example 3: We continue Examplg]1 with the single gen-
erator ¢; given by [T). Here we assume that the parameter
D satisfies the relation < D/T < 3/2 and that the cutoff

Consequently, we can recov@&ifrom the given measurementsfrequency of the lowpass filter is/7, = /7. In this case,

as long as the matrik';, (w) has full column rank for allb €
[-7/T,n/T]. To this end it is necessary thafT. > N« /T,
i.e. thatL > N.

Due to the mixing of the signal, the coefficient matrixromy _

®,(w) in (@8) is changed tol'(w) in (@24). This new

recovery ofz from its lowpass component= P, is not
possible, as discussed in Example 1. However, we will show
that there exist mixing functions so thatz can be recovered
Prr.(px).

One possible mixing function is

coefficient matrix is constructed out of the "new generdtors

{7 }N_, in exactly the same way a®;(w) is constructed

from the original generator§e, }Y_,. Equation [2b) shows

p(t) =1+ 2 sin(2nt/T)

whose Fourier coefficient§ (P2) are given by, = —7, by =

that the Fourier transforr,, of each new generator lies in a; by = j, andby, = 0 for all [k| > 2. With this choice, the

shift invariant space
Sz (¢n) = SPar{Sy2z ¢n : k € Z}

spanned by shifts ofin. The coefficients{bs }recz of the
mixing sequence are then the "coordinatesy,pin Sz% (on)-

We now want to show that the condition of invertibility

"new generator'[(25) becomes

. sin(wD
) = D)
sin(wD — 27 D/T)  sin(wD +27D/T)
wD —2xD/T wD +2xD/T

of I‘L.(w) is in genergl easier to satisfy then the ana'QQOlﬁﬁncew/Tc = /T, the matrixT', (w) reduces to the scalar
condition on the matrix@ . (w) of (I0). To this end, we write 4, (,,) and we have to show that < |41 (w)| < oo for al

I'y(w) as

FL(W) :BL <I>(w), (28)

where®(w) denotes the matrix consisting &f columns and

infinitely many rowséST(w + k27 /T) with k € Z. Note that
®(w) has the form[(T0) withl — oo, i.e. P(w) = P (w).

The matrixBy with L = 2Ly + 1 rows and infinite columns

contains the Fourier coefficient®y, }rcz of the mixing se-
guence[(2l1) and is given by

bro-1  br, brot1
bo by bo
BL = b_ 1 bO bl (29)
by by, b
L b*Lofl b*Lo b*L()Jrl h

w € [-n/T,n/T). The upper bound is trivial; for the lower
bound, it is sufficient to show that the real and imaginary
part of 41 have no common zero if-7 /T, 7/T]. This fact is
easily verified by noticing that the only zeros of the realtpar
of 41(w) are atw; = n/D andws = —7/D. Evaluating the
imaginary part3{4:} of 4; at these zeros gives

. 1 |sin(27D/T)]|
IS{(wi2)} = %m
which is non-zero under the assumption madelf¥.

The general question whether for a given sgt =
{¢1,...,¢n} Of generators there exists a matd; such
that (28) is invertible for allw € [—=n/T,n/T], or under
what conditions on the generato¢s such a matrix can be
found seems to be an open and non-trivial question. The major
difficulty is that according to[(28), we look for a constant
(independent ofv) matrix By, such thatB; ®(w) has full



8 RECOVERING SIGNALS FROM LOWPASS DATA

column rank for allw € [—7n /T, 7/T]. Moreover, the matrix

B has to be of the particular forni_(29) with a sequence (x) J:I:L — y1(?)
{bk}kEZ € 2. \\T/ —7/T. w/Tc

The next example characterizes a class of generators for
which a simple (trivial) mixing sequence always exist. pi(t)

Example 4 (generators with compact support): We z(t) —

consider the case of a single generatd¥ (= 1) and
assume thatr/T. = «/T, i.e. L = N = 1. Our problem
then reduces to finding a functiop. € Szx (¢1) such that

41(w) # 0 for all w € [—/T,7/T). ’ 1

We treat the special case of a generatgr with finite
support of the fornj—D, D] for someD € R, i.e. we assume pr(t)
thatg,(t) = 0 forall ¢ ¢ [-D, D]. This means that its Fourier
transformg, is an element of the Paley-Wiener spae#’ (D)
and so are all linear combinations of the shLﬁ@r/Tél. It
follows thatS(é1) ¢ PW (D).

Let now 5 € S(¢1) be arbitrary and le{wy}rcz be the whereT';(w) is the matrix whose entry in théth row and
ordered sequence of real zerosjoWwith w, < w,41. Thena nth column is[T'(w)],n = 4% (w). Now, all we need is to
theorem of Walker [16] states that choose thel. sequencegb }rez € ¢2 such thatl'z(w) has
full column rank. More specifically, as before we can write

— yL(t)

—7/T. w/Tc

—

Fig. 5. Bank of mixing functions.

Sup |wn41 — wy| > 7/D.
e Iy (w) =Br@(w), (31)
Thus there exists at least one interval of the real line oftlen . o e
7/D such thaty has no zeros in this interval. Consequently/hereBr is a matrix withL rows and infinitely many columns

if 7/D > 47/T then there always existska € Z such that y’vhosezth row is given by the coefficient sequengl } ez,
ie.

This holds in particular for the generator itself. B, _ b2y b2y b3 bE b3

We conclude that if the support of the generatprsatisfies L= :
supp(¢1) < T/4, then there always existskg € Z such that LbEy, bE b% bl bk
(w) = ¢1(w —ko27/T) # 0 for all w € [—n/T,w/T). _ )
The corresponding mixing sequence is givenigy = 1 and By our assumption®(w) has full column rank and so it
b, = 0 for all k # k. remains to choosB, such thafl';, (w) is invertible for every
w e [-n/T,7/T].
B. Multi It should be noted that we used the same notation as in the
. Multiple Channels . ) " .

) ) previous subsection although the definition of the paricul

In the single channel case, it was necessary that the cutgffirices and vectors differ slightly in both cases. Ne\aetss,
frequencyr/T. of the LPF is at leasV times larger than the {he formal approach is very similar. In the previous sulieact
bandwidth of the desired signalin order to be able to recover e gpserved the output signal in different frequency chinne
the signal. We will now show that using several channels can- y 1, whereas in this subsection the chanrieks ¢ < L
reduce the cutoff frequeney/T. of the filter in each channel, 516 characterized by different mixing Sequeﬁces_ <
from which we can still recover the original signal As in the previous subsection, the general question whether

Suppose that we have > N channels, where each channefy; 4 given systemp = {¢,..., ¢y} oOf generators there

uses a different mixing sequence, as in Eig. 5. Sihce N,  giways exists an appropriate system of mixing sequences
we expect to be able to reduce the cutoff in each chann]gli {p1,...,pr} such thatT';(w) has full column rank for
We therefore consider the case in whifh= T The output 4| frequenciess seems to be non-trivial. The formal difficulty

Yye = Pryr(pex) of the (th channel in the frequency domainjies in the fact that we look for a constant (independent of

is then equal to w) matrix B, such that[(31) has full column rank for each
Ji(w) =47 (W)a(eT), we|-Z, ] w € [-n/T,m/T]. However, compared with the previous
. _ _ section, where only one mixing sequence was applied, the
where<; (w) is the vector withnth element problem of finding an appropriate mati; becomes simpler:

In the former caseB; has to have the special (diagonal)
form (29), whereas here its entries can be chosen (almost)
arbitrarily. The sequence@? } <z only have to be in/?.

and {b} }xcz are the Fourier coefficients associated with the A special choice of periodic functions that are easy to

(th sequence,. Defining byy (w) the vector with/th element implement in practice are binary sequences. This exampie wa
J¢(w) we conclude that

Y(w) =Trw)ae™"), wel-

Fe(@)ln = A4nw) ==Y bidi(w + k3F),
keZ

4In the first case we perform "frequency multiplexing" wherélae second

R ] case resembles "code multiplexing”.

elE}
SN2
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studied in [13] in the context of sparse multiband samplin@ince this diagonal matrix is invertible als& @y (w) is
More specifically,p,, 1 < ¢ < L are chosen to attain theinvertible for everyw € [—=/T,w/T]. Therefore, using the
values+1 over intervals of lengtll’/M where M is a given fact that the Fourier matri¥ is invertible,I',(w) is invertible
integer. Formally, for eachw € [—7n/T,n/T] if the values{ca!}Y_, of the
' T T mixing sequenceg; are chosen such th@y is invertible. This
pe(t) =y, nyp <t <(n+1l)gp, 0<n<M-1@32) canpe achieved by choosiyas a Hadamard matrix of order
with of € {+1, —1}, andp, (t+kT) = py(t) for everyk € Z. N. It is known that Hadamard matrices exists at least for all

In this case, we have orders up to667 [17]. o
r In the previous exampleb v (w) was anN x N invertible
B i/ pe(t) e=I kg matrix for all w € [—x/T,7/T]. According to Propositiofl3
T ) recovery of the signat is therefore possible if the bandwidth

1 fT/M ML . . of the LPF is larger thatv=/T'. However, the example shows
= T/ Z afﬂ*”Tk(””ﬁ)dt that pre-processing af by applying the binary sequences in
0 n=0 L = N channels allows recovery of the signal already from

1, e T - its signal components in the frequency rariger /T, 7/T).
I a e*]ﬁnk e*JTktdt. R L. ..
T Z n o For simplicity of the exposition, we assumed throughout
n=0 this subsection that the bandwidth /T, of the lowpass filter
Evaluating the integral gives is equal to the signal bandwidthw/T and that the number
1 1 _ o—dwok of channelsL is at least equal to the number of generators
by=—ah and bl =———at, k#0 N. However, it is clear from the first subsection that in cases
M j2mk where L < N, recovery of the signal may still be possible if
where wy = 27/M, and {di}kel denotes the discretethe bandwidth of the LPF is increased.
Fourier transform (DFT) of the sequenge?, }2*-,'. Note that
{@k}_kez 1S M-p_e_r|0d|c so thaty, = QM - VII. CONNECTION WITH SPARSEANALOG SIGNALS
With these mixing sequences, the infinite maldx can be . ) ]
written as In this section we depart from the subspace assumption
B = QF*W, (33) which prevailed until now. Instead, we would like to incor-

porate sparsity into the signal modet) of (@). To this end,
whereQ is a matrix withM columns andL rows, whose/th we follow the model proposed in [9] to describe sparsity of
row is given by the sequenc{afyfl}ﬁigl, F is the M x M analog signals in S| spaces. Specifically, we assume thgt onl
Fourier matrix, andW is a matrix withM rows and infinitely K out of the generators,,(t) are active, so that at mogt
many columns consisting of block diagonal matrices of siz&f the sequences, [k] have positive energy.
M x M whose diagonal values are given by the sequenceln [9], it was shown how such signals can be sampled
{wg }rez defined bywy = 1/M and w, = 1*;{% for and reconstructed from samples at a low rat@&f/T. The
k # 0. Applying these binary mixing sequences, the problesamples are obtained by pre-processing the sigg! with
is now to find a finitel. x N matrix Q with values in{+1,—1} a set of2K sampling filters, whose outputs are uniformly

such thatQF*W &(w) has full column rank for everw € sampled at a rate df/7". Without the sparsity assumption, at

[—7/T,7/T]. leastN sampling filters are needed where generallys much
The next example shows how to selé@tin the case of larger thank. In contrast to this setup, here we are constrained
bandlimited generators. to sample at the output of a LPF with given bandwidth. Thus,

Example 5 (bandlimited generators): We consider the case we no longer have the freedom to choose the sampling filters
where each generatop, is bandlimited to the interval as we wish. Nonetheless, by exploiting the sparsity of the
[~Kon/T, Kom/T) for someKy € N, andN = 2K, +1. In signal we expect to be able to reduce the bandwidth needed
this case®(w) = ®x(w) is essentially anV x N matrix (all to recoverz(t) of the form [1), or in turn, to reduce the number
other entries are identically zero). This matrix is invelgifor of branches needed when using a bank of modulators.
everyw € [—w/T,w/T] according to assumptiofil(3). We have seen that the ability to recoveft) depends

We now applyL = N different mixing sequence§p,}%~_, on the left invertibility of the matrix®y(w) (or T'z(w)).
having the special structuré {32), and choase = N. With appropriate definitions, our problem becomes that of
According to [31) and(33) the matriR; (w) then becomes recoveringa(e?~T) from the linear set of equationis {18) (with

I';(w) replacing®,(w) when preprocessing is used). Our
Ir(w) = QF W &(w), (34)  definition of analog sparsity implies that at ma&t of the

where Q F* and W &(w) are matrices of sizeV x N. The Fourier transformsi,, (w) have non-zero energy. Therefore,

matrix W &(w) may be considered as the product of thi1® infinite set of vectorga(e’“"),w € [=/T,m/T]} share
invertible N' x N matrix ®(w) — ®y(w) with an N x N @ Joint sparsity pattern with at mosf rows that are not zero,

. f iT
diagonal matrix consisting of the central diagonal matrix of NiS in tumn allows us to recove@(e’"),w € [~ /T, 7/T]}
W.ie. from fewer measurements. Under appropriate conditioris, it

sufficient thaty (w) has lengti2 K, which in general is much
W & (w) = diagwo, - .., wy-1) Pn(w). smaller thanN. Thus, fewer measurements are needed with
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respect to the full mode[]1). The reduction in the number of
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