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Power Allocation for a MIMO Relay System With
Multiple-Antenna Users

Yuan Yu and Yingbo Hua, Fellow, IEEE

Abstract—A power allocation or scheduling problem is studied
for a multiuser multiple-input multiple-output (MIMO) wireless
relay system where there is a non-regenerative relay between
one access point and multiple users. Each node in the system is
equipped with multiple antennas. The purpose of this study is to
develop fast algorithms to compute the source covariance matrix
(or matrices) and the relay transformation matrix to optimize
a system performance. We consider the minimization of power
consumption subject to rate constraint and also the maximization
of system throughput subject to power constraint. These problems
are nonconvex and apparently have no simple solutions. In this
paper, a number of computational strategies are presented and
their performances are investigated. Both uplink and downlink
cases are considered. The use of multiple carriers is also discussed.
Moreover, a generalized water-filling (GWF) algorithm is devel-
oped to solve a special class of convex optimization problems. The
GWF algorithm is used for two of the strategies shown in this
paper.

Index Terms—Convex optimization, generalized water filling,
medium access control, multiuser MIMO relays, network of
MIMO links, nonconvex optimization, space–time power alloca-
tion, space–time power scheduling.

I. INTRODUCTION

W IRELESS relays are known to be useful to increase the
coverage of wireless communications under power and

spectral constraints. A wireless relay can be regenerative or non-
regenerative. A regenerative relay requires digital decoding and
re-encoding at the relay, which can cause a significant increase
of delay and complexity. A nonregenerative relay does not need
any digital decoding and re-encoding at the relay, which is a
useful advantage over regenerative relays.

Recently, there have been many research efforts on nonregen-
erative MIMO relay systems [1]–[9]. A nonregenerative MIMO
relay applies a transformation matrix, also called relay matrix, to
its received signal vector and then forwards it to the next node.
The MIMO relay formulation in [3] includes the multicarrier
relay problem in [10] as a special case. This paper continues to
address nonregenerative MIMO relay systems. In particular, we
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consider power allocation problems. In the context of MIMO re-
lays, a power allocation problem is about the determination of
the source covariance matrix and the relay matrix to maximize
a system performance. (Note that the two terms “power sched-
uling” and “power allocation” are used interchangeably in many
cases in the literature, but the former stresses the computation
of the latter in advance.)

For a single-user two-hop MIMO relay system, an optimal
structure of the relay matrix that maximizes the source-to-desti-
nation mutual information was presented in [1] and [2], and an
optimal structure for both the source covariance matrix and the
relay matrix was established in [3]. The optimality of this struc-
ture, which is essentially a diagonalization or decoupling of the
entire relay system into a set of parallel scalar sub-systems, is
recently established in [5] for a broader class of objective func-
tions known as Schur-convex or Schur-concave functions. Fur-
thermore, this elegant structure is also shown in [6] to be optimal
for a multi-hop MIMO relay system of any number of hops.

For multiuser MIMO relay systems, however, the above men-
tioned property does not hold any more. Finding the source co-
variance matrix and the relay matrix to maximize a system per-
formance is generally a difficult task. Prior efforts on multiuser
MIMO relay systems are reported in [7], [8], and [9]. In these
works, each user is assumed to have a single antenna. Part of the
reason for this assumption was to simplify the problem. Addi-
tional references on MIMO relays can be found in [11].

In this paper, we focus on a multiuser two-hop MIMO relay
system where each node is equipped with multiple antennas.
For this problem, not only the diagonal structure as shown in
[1]–[3] and [5] is no longer optimal, but also the uplink–down-
link duality property shown in [9] and [12] no longer applies.
This makes the optimal power allocation a difficult task. Facing
the challenge unsolved by others, we will present a number of
computational strategies to search for the best possible power
allocation. We will consider both uplink and downlink prob-
lems. We will also consider both system throughput maximiza-
tion and power consumption minimization. These algorithms
are summarized in Table I and discussed in detail in this paper.
These algorithms are designed to solve the power allocation
problems more general than those treated before. In particular,
for a problem treated in [7], our approach can yield much better
results than the approach developed there.

We assume that all channel matrices are known to a central
scheduler and to the transmitters and receivers if needed. Except
for Algorithm 1, all other algorithms in Table I are not mathe-
matically proven to yield globally optimal results for their cor-
responding problems. However, Algorithm 1 is based on a re-
formulation of the original problem, which essentially approx-
imates the original nonconvex problem by a convex problem.

1053-587X/$26.00 © 2010 IEEE
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TABLE I
SUMMARY OF POWER ALLOCATION ALGORITHMS FOR A MULTIUSER MIMO RELAY SYSTEM. THE SAMPLE RUN TIMES WERE BASED ON A

DESKTOP WITH 2.40-GHZ CPU, TWO USERS EACH WITH TWO ANTENNAS AND A RELAY WITH FOUR ANTENNAS

Because of this approximation, there is a significant penalty to
the performance of Algorithm 1 as shown later in Section VI.

We will also develop a generalized water-filling (GWF)
theorem and the corresponding GWF algorithm to solve with
global optimality a special type of convex optimization prob-
lems. The GWF algorithm is a useful building block for two
of the power allocation algorithms summarized in Table I. In
the literature there are other types of algorithms also called
generalized water filling. But they were actually designed for
different problems. Our GWF algorithm is a generalization
of the conventional water-filling algorithm from single power
constraint to multiple power constraints.

In Section II, the GWF theorem is presented. In Section III,
we treat a multiuser MIMO relay downlink system. We
present power allocation algorithms for maximizing the system
throughput (i.e., sum rate) under a power constraint, and power
allocation algorithms for minimizing the system power con-
sumption under individual user rate constraints. In Section IV,
we deal with similar issues for the uplink case. In Section V, we
show how to apply our algorithms for joint multicarrier power
allocation. In Section VI, simulations results are presented
to illustrate the performances of our algorithms. This study
confirms that power allocation affects the system performance
significantly and developing fast algorithms for power alloca-
tion is critically important.

II. A GENERALIZED WATER-FILLING ALGORITHM

Consider the following convex optimization problem:

(1)

where and are complex matrices, is a complex positive
semi-definite matrix, and are positive numbers. Without its
base specified, has the natural base . If , the solution
to the above problem can be found by a well known water-filling
algorithm. It is a fast algorithm for this particular case. If ,
however, there appears no fast algorithm available in the prior
literature except for the general purpose convex optimization
programs such as the CVX package designed for Matlab [13].
We now introduce a special purpose algorithm, referred to as
generalized water-filling (GWF) algorithm, to solve the problem
in (1). The GWF algorithm is based on the following GWF the-
orem.

Fig. 1. Diagram of a multiuser MIMO relay downlink system.

Theorem 1: The solution to (1) is given by

(2)

where (assumed to be nonsingular),
and are determined from the SVD ,

replaces all negative diagonal elements by zeros and
leaves all nonnegative diagonal elements unchanged, and

are the solution to the following dual
problem:

(3)

To our knowledge, this theorem is new. The proof
of this theorem and an algorithm for computing are
given in Appendixes I and II, respectively. A com-
plete Matlab script of the GWF algorithm is available at
http://www.ee.ucr.edu/-yhua/GWF.pdf. As illustrated by a
simulation example in Appendix III, the GWF algorithm can
achieve the same accuracy as CVX, and the former has a much
faster speed than the latter when the dimension of is much
smaller than that of . The GWF algorithm is useful for more
applications than those shown in this paper. For example, if one
wants to design a source covariance matrix to maximize the
data rate of a MIMO link and also wants to keep the interfer-
ence from this source to other neighboring nodes under certain
limits, such a problem can be directly formulated as (1).

III. MULTIUSER MIMO DOWNLINK RELAY

We first consider the multiuser MIMO downlink relay system
as illustrated in Fig. 1, where denotes the signal
transmitted from the source equipped with antennas,

the transformation matrix performed by the nonregen-
erative relay also equipped with antennas, and
the signal received by the user equipped with antennas. Fur-
thermore, denotes the channel matrix between the
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source and the relay, is the channel matrix between
the relay and the user , and are the zero-mean
Gaussian noises at the relay and the users. Here, we assume
that all the users are equipped with the same number of antennas.
The transmission from the source to the relay is assumed to be
orthogonal (in time and/or frequency) to the transmission from
the relay to all users. We also assume that the direct link between
the source and any of the users is very weak and negligible.

Note that if the actual numbers of antennas at the users, relay
or source are different from what is described above, we can
always add imaginary dummy antennas to make up the number

or . The effective or may have
zero rows or zero columns, which, however, do not affect the
expressions of our results.

The signal received at the relay, the signal transmitted
from the relay, and the signal received by the user can be
expressed as follows:

(4)

(5)

(6)

If has a covariance matrix , we can write
where the noise term has the co-

variance matrix equal to the identity matrix. So, provided that
the noise covariance matrices of and are known, we can
assume for convenience that they are the identity matrices. We
now define , and

. Then, using (6) for all , we have

(7)

This is an effective channel model between the source and all
users.

A. Maximization of Sum Rate Under Power Constraint and
ZFDPC (Algorithms 1–2)

The problem of maximizing the sum rate for all users under
a power constraint for the downlink case was considered in [7]
where each user has a single antenna. The authors also assume
the use of zero-forcing dirty paper coding (ZFDPC) [14]. We
now extend the approach in [7] to users with multiple antennas.

Define the QR decomposition of the matrix as
, where is an unitary matrix (which is

not the same in Section II) and is a lower trian-
gular matrix. Define the SVD of the channel matrix as

where
with descending diagonal elements, and and are unitary.

We assume that the source precoder generates
where contains i.i.d. symbols of unit variance and is
such that the source covariance matrix is

with .
We also assume that the relay matrix is constructed as

(8)

Here, the source covariance matrix is matched to the right sin-
gular vectors of the channel matrix , the optimality of which
for a single user relay system is shown in [3]. The relay matrix
here is matched to the left singular vectors of and the unitary
matrix of , which is adopted only heuristically without
proof of optimality. As mentioned in [7], the matrix is also
affected by column permutations of , which can be further
optimized. With the above structures of the precoder and
the relay matrix , (7) becomes

(9)

where and . Note that each element of
represents a scalar stream of data. Since is lower triangular,
it is clear from the first term of (9) that the interference from
stream to stream for is now absent. To remove the
interference from stream to stream for , we can use
the dirty paper coding (DPC) starting from the first stream that
corresponds to the first element of in (9). For the first stream,
there is no interference from other streams and the conventional
coding is applied. For the second stream, there is the interfer-
ence from the first stream which is however known to the en-
coder. With DPC, the interference from the first stream to the
second stream can be virtually eliminated. The same principle
applies to the remaining streams. Then, with DPC, the effective
signal to noise ratio for the data stream is

SNR (10)

where is the element of . Note that the use of
DPC has removed the mutual interference between the elements
of . But the first term (the sum) in the denominator of (10) is due
to the noise forwarded from the relay. The above interference
cancellation method based on the QR decomposition and the
DPC is known as zero-forcing dirty paper coding (ZFDPC) [14].

The problem of maximizing the sum rate of this downlink
relay system under ZFDPC can now be formulated as

SNR (11)

(12)

(13)

where the power constraint (12) is for the source, and the power
constraint (13) is for the relay. In [7], the problem (11) is solved
by a geometric programming under a high SNR approximation,
which will be referred to as Algorithm 1. Note that a weighted
sum rate can be used for all sum rate maximization algorithms.
But for convenience, we choose the unit weights.

Next, we present an algorithm without the high-SNR assump-
tion, referred to as Algorithm 2. We will search for and
in an alternate fashion, where each cycle of the alternation is as
follows.

1) Source Optimization With Fixed : It is easy to verify
that with any fixed , the problem (11) is a special case of the
problem (1) shown in Section II, and hence the optimal can
be found by the GWF algorithm.
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2) Relay Optimization With Fixed : With any fixed , the
optimal can be found by maximizing the following penalized
function of (11):

(14)

where the second term is the logarithmic barrier function [15]
associated with the constraint (13). For convenience, we will
also write where . The
gradient of with respect to , denoted by ,
is easy to derive, which is omitted. Following the Armijo’s rule
[16], the search algorithm for is as follows:

(15)

where is the smallest integer satisfying

(16)

(17)

and and . After convergence of the above
search for a fixed , a new search is started with an increased .
When becomes small enough, the search for is consid-
ered completed for the given .

B. Maximization of Sum Rate Under Power Constraint and
DPC (Algorithm 3)

ZFDPC is a scalar DPC, which is suboptimal compared to
the vector DPC [12], [14], [17]. From now on, the vector DPC
will be referred to as DPC. Given that the users receive inde-
pendent messages from the source, we can write the transmitted
vector from the source as and its (source)
covariance matrix as , where is the
covariance matrix of the signal meant for user . Assuming
the use of DPC in the descending order starting from user ,
i.e., the interference from user to user for is virtually
absent, the achievable data rate for user in bits/s/Hz is given by

(18)
In the absence of total power constraint, the maximum possible
data rate for user is independent of for because of
DPC. With any given set of the source covariance matrices
for , a complete design of the vector DPC to
achieve the rates in (18) can be made by following [17].

We formulate the following problem:

(19)

(20)

(21)

A joint gradient search of , can be performed di-
rectly to maximize the following penalized function of (19):

(22)

where is such that . We can denote all param-
eters in by a single vector , and the gradient
of with respect to by . Similar to the case of (14),
there are two loops in the search. The inner loop is for a fixed
pair of where the Armijo gradient search is conducted
until the norm of is small enough. The outer loop cor-
responds to the increase of until they are large enough.

To show an explicit expression of , it suffices to de-
rive explicit expressions of and as follows.
Following the rules of matrix differentials [18], we can show

(23)

(24)

where the derivative of with respect to the complex
matrix is defined as

, and the same applies to . To
derive and , we first define and

according to (18) such that .
Then, using [18], we have

. It is easy to
derive the differentials of and with respect to the matrix

. Applying the resulting expressions into the above expres-
sion, it follows that

(25)

where and

. One can verify

that if then .Therefore,

(26)
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Similarly, one can verify that for ,

(27)
and for ,

, and for , . The above
algorithm is referred to as Algorithm 3.

C. Minimization of Power Under Rate Constraint
(Algorithms 4–5)

We now address minimization of power under rate constraint.
The total power consumed by the source and the relay is

(28)

Our problem now is to minimize the total power consumption
subject to rate constraints:

(29)

(30)

where is a desired data rate for user in bits/s/Hz. To solve
this problem, we can search for the optimal relay matrix and
the optimal source covariance matrices in an alter-
nate fashion, where each cycle of the alternation is shown below.

1) Source Optimization With Fixed : We now assume a
fixed and present an algorithm for computing the optimal

. We will use the property that is independent
of and is a concave function of , and is a
linear function of . It follows from (28) that

(31)

where , and
we have applied . Clearly, and are
one-to-one mappings of each other. We now define

(32)

(33)

where depends on but not any of .
Then, it follows from (18) that

(34)

where we have applied with
being conjugate symmetric.

Based on (31) and (34), the optimal solution to the
problem (29) for , conditional upon ,
is given by the standard water-filling solution. Namely,
if the eigenvalue decomposition of is denoted by

, where , then the optimal

choice of is , where
and is such that . (Note: In

order to keep the solution inside the interior feasible region
to ensure a good convergence behavior, we should choose

slightly larger than .) Furthermore, with a fixed , the
optimal solution for (and hence ) can
be obtained one at a time sequentially by starting with .

2) Relay Optimization With Fixed : We now as-
sume that are fixed. To find the optimal , we can
use the gradient method to minimize the following penalized
cost of (29):

(35)

where the second term is the barrier, and both and
are functions of . With the gradient , also

denoted by , the Armijo search algorithm for
the optimal is where is the smallest integer such
that
and , where

and . Note that the second condition
is important to ensure that none of

the rate constraints is violated. In fact, for good convergence
behavior, for both the source optimization and the relay opti-
mization, we need to keep strictly inside the
interior feasible region of the problem.

The above algorithm for power minimization is referred to
as Algorithm 4. Alternatively, we can solve the problem (29)
by a joint gradient search similar to Algorithm 3, which will be
referred to as Algorithm 5.

IV. MULTIUSER MIMO UPLINK RELAY

A multiuser MIMO uplink relay system is illustrated in Fig. 2,
where we denote by the channel matrix from user

to the relay, and by the channel matrix from the
relay to the access point. Then, we write the received signal at
relay as

(36)

where is the signal transmitted from user , and is the
white Gaussian noise at the relay. The signal transmitted from
the relay is

(37)

where is the relay matrix. The signal received at the access
point is

(38)

where is the white Gaussian noise at the access point. We
assume the use of successive interference cancellation (SIC) at
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Fig. 2. Diagram of a multiuser MIMO relay uplink system.

the access point, starting from user . This means that the in-
terference from user to user for is virtually absent, and
hence the achievable data rate for user is

(39)
where .

A. Maximization of Sum Rate Under Power Constraint
(Algorithms 6–7)

The problem of maximizing the sum rate from all users under
power constraints is formulated as shown in (40)–(42) at the
bottom of the page.

Note that the sum rate of the uplink case is independent of
the order of SIC, which is unlike the sum rate of the downlink
case with DPC. To solve this problem, we can optimize each
of in a cyclic fashion. The basic components in
each cycle are shown below.

1) Source Optimization With Fixed Relay and Other Sources:
If all , but , are fixed, we can define

and

which are independent of . Then, we can write (43), shown at
the bottom of the page. The power constraint (42) is equivalent
to

It should be clear now that with respect to alone, the problem
(40) is equivalent to the convex problem (1) which is solvable
by the GWF algorithm.

2) Relay Optimization With Fixed Sources: If
are fixed, then the problem (40) with respect to alone is
similar to a problem solved in [3], the solution of which is
stated below. Define the SVD of as where

with descending diagonal order, and
the EVD of as where

with descending diagonal order.
Then, the optimal structure of is given by

(44)

where which are to be deter-
mined. With (44), the problem (40) becomes

(45)

Then, by the KKT method [15], we have

(46)

(40)

(41)

(42)

(43)
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where is such that

The above algorithm that searches for in a
cyclic fashion is referred to as Algorithm 6. Note that each com-
ponent in Algorithm 6 is a convex optimization. Alternatively,
we can solve the problem (40) by a joint gradient search over

simultaneously, which will be referred to as Al-
gorithm 7. The details of Algorithm 7 are omitted because of its
similarity to other joint gradient search algorithms.

B. Minimization of Power Under Rate Constraint
(Algorithms 8–9)

The total power consumption for the uplink case is

(47)

With the assumption of SIC, the individual rate for user is
given by (39). Hence, the problem is formulated as

(48)

(49)

The problem (48) can be solved by a joint gradient search algo-
rithm (Algorithm 9) which is omitted, or an alternate optimiza-
tion algorithm (Algorithm 8) as shown below.

1) Source Optimization With Fixed Relay: Since the order of
the SIC is from to 1, is independent of ,
which is a property also shared in the downlink case. With fixed

, the optimal can be found by a convex op-
timization same as in Section III-C-I.

2) Relay Optimization With Fixed Sources: Given
, the optimal can be found by the following

gradient method. Define the following cost with a barrier:

(50)

It follows that

(51)
To derive , we first rewrite (39) as

. Similar to the derivation of (26), it can be
shown that

(52)

where . The rest of the algo-
rithm is the same as in Section III-C-II.

V. MULTI-CARRIER EXTENSIONS

In the previous sections, we have assumed that there is a
single carrier for power allocation. If one wants to use
(orthogonal) carriers for joint power allocation, the previ-
ously shown algorithms are also applicable after the following
changes of notations are adopted.

For the downlink case, the signal models shown in (4)–(6)
hold except that

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

and , where for example denotes the
signal transmitted from the access point on the carrier.
Note that the optimal is not necessarily block diagonal. In
other words, the relay may use a different carrier to forward a
stream of data that was received by the relay on another carrier
[10]. Good (if not globally optimal) choices of along with
the source covariance matrices at all carriers can be determined
by any of the power allocation algorithms. For the uplink case,
the signal models shown in (36)–(38) also hold after a similar
change of definitions of the notations.

These notational changes do not affect any of the algorithms
shown in this paper as long as the power constraint is for the sum
power over all carriers and the rate of interest is also the sum rate
over all carriers. However, the complexity of these algorithms
will increase because of the increased dimensions.

VI. SIMULATION RESULTS

For convenience of reference, all algorithms presented in
Sections III and IV are summarized in Table I. For the simu-
lation examples shown below, a sample set of computational
times of all algorithms for a random channel realization and a
random initialization are listed in the last line in Table I. All
algorithms have roughly the same speed except Algorithm 1
which uses CVX and is much slower than others for a single
run. Algorithm 1 uses geometric programming as proposed
in [7], for which the GWF is not applicable. However, unlike
other algorithms, Algorithm 1 is globally convergent and needs
no multiple runs associated with multiple initializations. When
multiple runs are considered for other algorithms, they may
become effectively slower than Algorithm 1. However, one
can use the result from Algorithm 1 (for down link only) as an
initialization for Algorithm 2 for a new research, which will be
further discussed later.

Next, we show simulation examples to compare these algo-
rithms. We assume that there are two users , each user
is equipped with two antennas , the relay and the ac-
cess point are both equipped with four antennas . A
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Fig. 3. Comparison of downlink Algorithms 1–3: Averaged sum rate versus
power constraint at relay. Algorithm 2-A is Algorithm 2 using the best out of
20 random initializations. Algorithm 2-B is Algorithm 2 using the results from
Algorithm 1 as initializations.

single carrier is assumed. Each of the channel parameters is
realized independently using a complex Gaussian distribution
with zero mean and unit variance. As assumed throughout this
paper, every entry of the noise vectors has zero mean and unit
variance. The performance in terms of either the sum rate or
the total power is based on an average over 50 channel real-
izations. Our experience with 100 or more channel realizations
did not lead to any significant change of results. Unless men-
tioned otherwise, the search conducted by each algorithm (ex-
cept Algorithm 1 which is globally convergent) was initialized
randomly, 20 random initializations were chosen for each real-
ization of channel matrices, and the best result from the 20 ini-
tializations were selected for computing the performance. We
have found that the performance difference between the “best”
and “worst” from 20 initializations can be up to 20%. In general,
the more initializations are used, the better is the chance the op-
timal solution is found. But the computational cost increases as
the number of initialization increases.

Fig. 3 compares the averaged sum rates achieved by the
downlink Algorithms 1–3 versus the relay power . The
power at the source is fixed at . Algorithm 1 is based
on the geometric programming proposed in [7]. Both Algo-
rithms 1–2 are based on ZFDPC while Algorithm 3 is based on
DPC. For Algorithm 2, there are two curves in this figure. For
the lower curve, we used the results from Algorithm 1 as initial-
izations for Algorithm 2. For the upper curve, we used random
initializations. We see that except for the region of small relay
power, Algorithm 1 yielded the least sum rate among the three
algorithms while Algorithm 3 yielded the largest sum rate. In
theory, Algorithm 3 should yield the largest sum rate for the
entire region of relay power if a global optimum (including the
optimal ordering of the DPC) is achieved. This figure suggests
that in the small relay power region, Algorithm 3 was trapped
in unfavorable local minima. Since ZFDPC and DPC are dif-
ferent coding schemes, the results from Algorithms 1–2 cannot
unfortunately be used as good initializations for Algorithm 3.
The complexity of DPC is much more complex than that of
ZFDPC.

Fig. 4. Comparison of downlink Algorithms 4–5: Averaged total power con-
sumption versus individual rate constraint. The curve on the top is for the iden-
tity relay matrix.

Fig. 5. Comparison of uplink Algorithms 6–7: Averaged sum rate versus relay
power constraint. The curves for Algorithms 6–7 are identical. The lower curve
is for the identity relay matrix.

Fig. 4 compares the averaged total power consumption re-
quired by the downlink Algorithms 4–5 versus individual rate
constraint. Also shown in this figure is the power consumption
based on the identity relay matrix, i.e., , while the source
covariance matrix is optimized by the source optimization sub-
routine in Algorithm 4. Algorithm 4 uses cyclic search while
Algorithm 5 uses joint gradient search. The search directions
for cyclic search are more limited than the joint gradient search.
We see that when the date rate is high, the difference of power
consumption is very large. The power consumption from Algo-
rithm 5 is the least, i.e., the best.

Fig. 5 compares the averaged sum rates achieved by the up-
link Algorithms 6–7 versus the power constraint at the relay.
The source power is fixed at for all . It turns out that the
two algorithms yield the same results. The relay optimization
and the source optimization in Algorithm 6 (which is cyclic) are
both convex, and Algorithm 7 uses the joint gradient search. The
lower curve in this figure is based on the identity relay matrix,
i.e., , while the source covariance matrices of all users are
optimized by the source optimization subroutine in Algorithm 6.



YU AND HUA: POWER ALLOCATION FOR A MIMO RELAY SYSTEM WITH MULTIPLE-ANTENNA USERS 2831

Fig. 6. Comparison of uplink Algorithms 8–9: Averaged total power consump-
tion versus individual rate constraint. The curve on the top is for the identity
relay matrix.

Fig. 7. An example of joint multi-carrier power allocation for downlink multi-
user MIMO relay system where � � �, � � �, � � � and � � �.
Algorithm 3 was applied with 20 random initializations. The rates shown are
based on a single channel realization for each of the two carriers.

Fig. 6 compares the averaged total power consumption re-
quired by the uplink Algorithms 8–9 versus a common data rate
of all users. Also shown in this figure is a curve based on the
identify relay matrix, i.e., , while the source covariance
matrices of all users are optimized by the source optimization
subroutine in Algorithm 8. In this case, the joint gradient search
by Algorithm 9 yields better results than the cyclic search by
Algorithm 8.

Finally, Fig. 7 illustrates an effect of joint multi-carrier power
allocation. Here, the relay system is for downlink, there are two
users , each user has two antennas , there
are four antennas at the relay node and four antennas at the ac-
cess point , and there are two carriers . For
each of the two carriers, an independent channel realization was
made. The first top curve is the sum rate over two users and two
carriers, which was obtained by the joint multi-carrier power al-
location. The second top curve is the sum rate over two users and
two carriers, which was obtained by two separate single-carrier
power allocations. The bottom two curves are the sum rates each

summed over the two users for carrier 1 and carrier 2, respec-
tively. The total power for the two carriers used for the first curve
is twice that for each carrier used for the other curves. The power
per carrier is the same for all curves. We see that there is an im-
provement of the sum rate by using joint multi-carrier power
allocation, which is expected. However, the improvement is not
large. It is known that the distribution of the singular values of a
matrix of i.i.d random variables hardens (becomes invariant) as
the dimension of the matrix increases [19]. Hence, if the number
of antennas at each node becomes large, the improvement from
the joint multi-carrier power allocation is expected to disappear.

VII. CONCLUSION

In this paper, we have developed several computational
strategies for a multiuser MIMO relay system where each node
may be equipped with multiple antennas. The complexities of
these algorithms are about the same, but their performances
can be very much different. Although the central problem is
nonconvex, the joint gradient search for the relay matrix and
the source covariance matrices, with multiple random initial-
izations, has consistently yielded the best result. The use of
logarithmic barrier functions, which is a key approach of the
interior-point optimization methods, has been very effective
for constrained optimizations. But for one case, the cyclic
(or alternating) search for the relay matrix and the source
covariance matrices yielded results similar to those by the
joint gradient search. The GWF algorithm shown in this paper
is a faster alternative to the CVX algorithm (or package) to
solve the convex problem (1). In applications with practical
coding methods, the rate-versus-power model of each link may
need to be revised with simple penalty factors while the power
allocation algorithms shown in this paper are still applicable.
This paper has shown that fast algorithms for power allocation
are very important to achieve the full potentials of MIMO relay
systems with multiple-antenna users.

APPENDIX I
PROOF OF THEOREM 1

For any (i.e., positive semi-definite), we can write
where is a full column rank matrix. With respect

to , we can write the following Lagrangian function of (1):

(61)

The gradient of with respect to can be found by using
, and

other basic tools [18]. The result is

(62)
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Then, the complete K.K.T. conditions [15] of the problem (1)
with respect to can be written as

(63)

(64)

(65)

(66)

where .
Although the problem (1) with respect to is not convex,

we now show that the generalized KKT conditions [15] of the
problem (1) with respect to , which is convex, are equiv-
alent to (63)–(66). Consider as in (61) with replaced
by . It follows that

(67)

We define a vector operator for a complex conjugate symmetric
matrix as follows:

Here, stacks up all elements from , and
stacks up all elements from . Assume

. Then, . Now, based on (5.95) in [15],
we have the following sufficient generalized KKT conditions:

(68)

(69)

(70)

(71)

(72)

where , . Also,
, and is in the dual cone of , i.e.,

. The term in
(68) is due to the constraint , for which we have used

.
Note that for any two complex conjugate symmetric and

positive semi-definite matrices and , the following
equations are equivalent:

. It is then easy to show, similar

to Example 2.24 in [15], that . Then, as long as
and , we have that (68) implies

, (63) implies (72) and vice versa. On the other hand, if
does not hold, then does not hold because

of (68). Therefore, if and only if , (63)–(66) are
equivalent to (68)–(72).

Next, we construct an optimal structure of based on (63).
Since and is nonsingular, (63) is
equivalent to (73), shown at the bottom of the page. Define the
SVD of as

(74)

where and are square unitary matrices, (square) and
(possibly nonsquare) are diagonal, all the diagonal elements of

are larger than one, and all the diagonal elements of are
less than or equal to one. We now assume that
where is nonsingular. Then, (73) is equivalent to (75), shown
at the bottom of the next page, where for and we used the
matrix inverse lemma. We see that since ,
the above solution for , and hence the corresponding , is a
valid solution.

The above solution of has the same span as . A
simple observation of the above analysis also suggests that as
long as the span of belongs to that of , a matrix ex-
ists such that satisfies (73) where is a sub-
matrix (selected columns) of . On the other hand, if the span
of contains a vector from , i.e., where

has a column vector from , then there does not exist
such a matrix for to satisfy (73), or equivalently the corre-
sponding “solution” would be nonpositive semi-definite
which contradicts to the fundamental nature of . There-
fore, the highest rank solution of to satisfy (73) is given by

where . Equivalently, the
highest rank solution of to satisfy (73) is given by

(76)

where , the inverse of a zero (squared singular
value) would be treated as positive infinity, and
applies on each diagonal element of itself.

With (76) and (67), one can verify that

(77)

(73)
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Note that the th diagonal element of the diagonal matrix be-
tween and in (77), denoted by , is

if
if

(78)

where is the diagonal element of . If we did not use
the highest rank solution for as in (76), then there would be
a associated with a and hence (77)
would not hold and hence the corresponding from (68) would
not belong to .

With the optimal given in (76), which is a function of
, the remaining problem is to find the optimal .

Since the effective KKT equations for are the same for both
(63)–(66) and (68)–(72), the optimal can be found by using
either the dual problem of (1) with respect to or the dual
problem of (1) with respect to . Choosing the former, we can
find the optimal by solving (3). The dual problem of (1) with
respect to is the same as (3) except for the additional term

which is however maximized to zero by for any
.
The proof of the theorem is completed. In the next section, we

show how to find the optimal in more details. For the primal
problem (1), has real elements. (Even under the con-
straint , has free real-part elements,

free imaginary-part elements, and hence total
free real elements.) For the dual problem (3), there are real
variables in . If , it is reasonable to expect the dual
problem to be less costly to solve.

APPENDIX II
COMPUTATION OF THE DUAL PROBLEM IN THEOREM 1

Since the dual problem is convex, we can follow the interior-
point method [15] and define the following dual function with

logarithmic barrier terms:

(79)

where we use to stress that is a function of . Note that
the first two terms in (79) equal to , which we want to
maximize subject to . For each choice of , we can apply
the Newton’s method [15] to find the optimal , i.e.,

(80)

where denotes the iteration index and the scalar is deter-
mined by the backtracking line search. Upon convergence for
each , we can increase by a factor and continue a new
cycle of the Newton’s search. The above process continues until

is smaller than a pre-specified number .
The computation of the gradient vector and the

Hessian matrix is straightforward although the
detailed expressions are lengthy. Since depends on the
eigenvalue decomposition of and the compu-
tation of also needs the eigenvalue
decomposition of , we need to use the first-order
and second-order differentials of eigenvalues and eigenvectors.
The basic formulas for these differentials can be found in [18].
The detailed expressions of the gradient and the Hessian are
omitted to save space.

To avoid possible numerical problems in computing the
differentials of eigenvectors when there are multiple identical
eigenvalues, we added a small random perturbation matrix
to in our program, which proved to be very
effective. A complete Matlab script of the GWF algorithm is
available at http://www.ee.ucr.edu/-yhua/GWF.pdf.

(75)
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Fig. 8. Optimal values of � and � as function of the outer loop index � in
� � � .

APPENDIX III
A COMPARISON OF GWF AND CVX

To show a comparison of our GWF algorithm with CVX in
[13], we ran both algorithms on a desktop with 2.40-GHz CPU.
We chose , , , and used the complex
Gaussian distribution with zero mean and unit variance to ran-
domly choose each element in the following matrices: see the
first equation at the top of the page.

For the GWF algorithm, the initial elements of
were randomly chosen between zero and . We chose

as the stopping crite-
rion for the inner loop (for fixed ). We also chose and

, and finally as the stopping criterion

Fig. 9. Optimal value of �� (capacity) as function of the outer loop index �

in � � � .

for the outer loop. We noticed that for each , the inner loop
converged after about eight iterations.

At the convergence, the following results from the GWF al-
gorithm and the CVX algorithm were obtained: see the second
equation at the top of the page.

These two matrices agree with each other very well. Both
GWF and CVX achieve the same value of capacity 2.6139 in
bits/s/Hz (i.e., in (1)). But GWF took 3.40 seconds while
CVX took 14.94 seconds. GWF is about four times faster than
CVX. Note that the dimension of used here is larger than that
used for Algorithms 2 and 6 shown in Table I.

Fig. 8 shows how of the GWF converged to the optimal
as the outer iterations continued. We see that approaches to
zero, which means that the second power constraint is satisfied
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automatically while the first power constraint is active. Fig. 9
illustrates the capacity as function of the barrier constant .
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