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Multichannel Deconvolution of Seismic Signals
Using Statistical MCMC Methods

Idan Ram, Israel Cohergenior Member, |IEEE, and Shalom Raz

Abstract—In this paper we propose two multichannel blind For each sample of the reflectivity sequence, a Bernoulli
deconvolution algorithms for the restoration of two-dimersional variable characterizes the presence or absence of a reflecto
(2D) seismic data. Both algorithms are based on a 2D refleciv gnq the amplitude of the reflector follows a Gaussian dis-
ity prior model, and use iterative multichannel deconvoluion - . . . .
procedures which deconvolve the seismic data, while taking tribution given the_ Bernoulll variable 'S_ nonzero. They use
into account the Spatia| dependency between neighboring aces. Second Order statistics methOdS to estimate the WaVeIet and
The first algorithm employs in each step a modified maximum recover the reflectivity by maximum likelihood estimation.
posterior mode (MPM) algorithm which estimates a reflectivty  The maximum likelihood criterion is maximized using the
column from the corresponding observed trace using the estiate Single Most Likely Replacement (SMLR) algorithm [2], which

of the preceding reflectivity column. The second algorithm akes . T . N . L.
into account estimates of both the preceding and subsequent'mprOVes the likelihood by iteratively choosing a refleitjiv

columns in the estimation process. Both algorithms are apjgd to ~ Sequence that varies at each iteration by only one sample.
synthetic and real data and demonstrate better results comgred Kaaresen and Taxt [5] introduced an algorithm which al-

to those obtained by a single-channel deconvolution method ternately estimates a finite impulse response wavelet and a

Expectedly, the second algorithm which utilizes more infomation g noy|li-Gaussian reflectivity. The wavelet is estimatsihg

in the estimation process of each reflectivity column is showto . L .

produce better results than the first algorithm. a Ieast-sq_uares fit ar_ld _the_ reflectlv!ty is recove_red usieg th
iterated window maximization algorithm [6]. This algonith

is similar to the SMLR, but produces better results since

it updates many samples at each step instead of only one.

Cheng, Chen and Li [7] simultaneously estimate a Bernoulli-

Gaussian reflectivity and a moving average wavelet using a

|. INTRODUCTION Bayesian framework in which prior information is imposed

Reflection seismology is a common method in oil an@" the sgismic wavelet, BG reflectivity parameters and .the
natural gas exploration, in which a picture of the subserfafi0IS€ variance. These para.meters along W|th.the reflgctivit
sedimentary layers of the earth is generated from surfa¥@duence are estimated using a Markov Chain Monte Carlo
measurements. Seismic data is obtained by transmitting GHCMC) method called a Gibbs sampler [8], [9]. Rosec
acoustic wave into the ground and measuring the reflectgd@l- [10] use a moving average wavelet and model the
energy resulting from impedance discontinuities. Thersigis reflectivity sequence as a mixture of Qau§5|an distribstion
pulse (wavelet) is time-varying, however here we make tfhéll- They propose two parameter estimation methods. The
usual assumption that it is approximately time-invariamtthe first method performs maximum likelihood estimation and use
received section of the seismic data. Therefore, the obderjn€ stochastic expectation maximization (SEM) algorittii[
seismic data can be modeled as a convolution between a thd?] t©© maximize the likelihood criterion. The second metho
dimensional (2D) reflectivity section and the wavelet, whicPerforms a Bayesian estimation resembling the method of
has been further degraded by additive noise. Deconvolutisheng etal. [7]. The estimated parameters are employedeby th
is used to minimize the effect of the wavelet and produce &@Ximum posterior mode (MPM) algorithm [14], which uses
increased resolution estimate of the reflectivity, wheosely reallz:_;mons of the refl_e_ctlvny simulated by a Gibbs sample
spaced reflectors can be identified. to estimate the reflectivity.

Many methods utilize the fact that the wavelet is a one- APPlication of 1D restoration methods to 2D seismic data is
dimensional (1D) vertical signal and break the multichanngl€arly suboptimal, as it does not take into account theetarr
deconvolution problem into independent vertical 1D decoHon between neighboring columns of the seismic data (§jace
volution problems. A 1D reflectivity column appears in thd/hich stems from the presumed continuous and roughly
vertical direction as a sparse spike train where each Spjp@nzontal structure of Fhe earth Iaye_rs. Idier and Goudss_ar
(reflector) corresponds to a boundary between two adjacéhel Proposed two versions of a multichannel deconvolution
homogenous layers. Mendel et al. [1], [2] use an autorgrethod Whlch.takes into account the strat|f|cat|on.o.fthellay
gressive moving average model for the wavelet and modele two versions are based on two 2D reflectivity models:

the reflectivity as a Bernoulli-Gaussian (BG) process [8], [ Markov-Bernoulli-Gaussian (MBQ) | and I.I. Each model is
composed of a Markov-Bernoulli random field (MBRF) [16],
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columns of the reflectivity section. Each reflectivity coluis method of Rosec el al. [10]. The second algorithm which
estimated from the corresponding observed trace and the astilizes more information in the estimation process of each
mate of the previous reflectivity column, using an SMLR-typeeflectivity column is shown to produce better results than t
method. Kaaresen and Taxt [5] also suggest a multichanfigdt algorithm.
version of their blind deconvolution algorithm, which acots The paper is organized as follows: In Section Il we for-
for the dependencies across the traces. However, this thethaulate the multichannel blind deconvolution problem. Then
encourages spatial continuity of the estimated reflectsirsgu we describe the MBG | reflectivity model and the parameter
an optimization criterion which penalizes non-sparse aoa n estimation method. In Section Il and IV we introduce the
continuous configurations. Heimer, Cohen and Vassilioy, [1%irst and second proposed algorithms, respectively. In@sect
[18] introduced a multichannel blind deconvolution method we present simulation and real data results demonstrating
which combines the algorithm of Kaaresen and Taxt witthe performance of both proposed algorithms compared to
dynamic programming [19], [20] to find continuous paths dd single-channel deconvolution. We summarize the paper in
reflectors across the channels of the reflectivity sectimwH section VI.
ever, layer discontinuities are not taken into account hy th
method. Heimer and Cohen [21] also proposed a multichanngl progLEM FORMULATION AND REFLECTIVITY MODEL
blind deconvolution algorithm which is based on the MBG /& Problem Formulation
reflectivity model. They first define a set of reflectivity st "~
and legal transitions between configurations of neighlgorin Multichannel blind seismic deconvolution aims at restgrin
reflectivity columns. Then they apply the Viterbi algorithn® 2D reflectivity section and an unknown seismic wavelet
[22] for finding the most likely sequences of reflectors that afrom a 2D observed seismic data. The seismic wavklet
connected across the reflectivity section by legal traomsiti  [2(1), ..., h(N,,)]” is a 1D vertical vector of lengthV,, which
In this paper we propose two multichannel blind deconvés assumed to be invariant in both horizontal and vertical
lution algorithms. Both algorithms are based on the MBG directions. The reflectivity sectiaR is a matrix of sizeV, x .J
reflectivity model and iteratively deconvolve the seismitag and the 2D seismic dafif is a matrix of sizeN, x J, where
while taking into account the spatial dependency betweéh, = Nn + N — 1. Y can be modeled as the following
neighboring traces. The first algorithm employs in each st&gise-corrupted convolution product:
a modified version of the maximum posterior mode (MPM) .
algorithm which estimates the current reflectivity colurmonfi Y=hxR+W (1)
the corresponding observed trace and the estimate of thieereW is a matrix of sizelV, x J which denotes an additive
preceding reflectivity column. The modified MPM algorithnwhite Gaussian noise independentRfwith zero mean and
is a two step procedure. First, it employs a Gibbs sampler varianceo? .
simulate realizations of the MBRF and amplitude variables b We use the MBG | reflectivity model so that the stratification
iteratively sampling from their conditional distributisywhich  of the layers of the Earth will be taken into account in the
depend on the estimate of the preceding reflectivity columgeconvolution process. Since the deconvolution problem is
Then, a decision step takes place in which the MBRF amgind, i.e.,h, 02 and the MBG | model parameters are un-
amplitude variables are estimated from their realizatidi® known, a suitable estimation method needs to be derived. We
second algorithm is an extension of the first. It takes intgext describe the MBG | reflectivity model and subsequently
account the dependency between each reflectivity column gndpose a method for estimating the missing parameters.
both the preceding ansubsequent neighbors, in the decon-
volu'qon process._lt employs in e_ach step a fu_rther modlfleé! Prior Model
maximum posterior mode algorithm which simultaneously
estimates both the current and subsequent reflectivitymodu 1 he Markov-Bernoulli-Gaussian | reflectivity model [15] is
These columns are determined from the Corresponding &)ZD extension of the 1D Bernoulli-Gaussian representation
served traces and the estimate of the preceding reflectivityls composed of a Markov-Bernoulli random field, which
column. Again, the estimation is carried out in two Stepg_ontrols the geometrical characteristics of the reflegtiand
First, a Gibbs sampler is employed to simulate realizatiof§ @mplitude field, defined conditionally to the MBRF. The
of the MBRF and amplitude variables corresponding to t{dBRF comprises two types of binary variables: location
current and subsequent reflectivity columns, by iteraﬁveyariables and transition variables. The location varigldet in
sampling from their conditional distributions. Then, th&RF @ Ny x J matrix Q, indicate the position of layer boundaries.
and amplitude variables are determined from their reatinat L€t qx,; denote the location variable in tt{#, j) position of
in a decision step. Out of the two obtained estimates, orff- Theng ; is set to one if a reflector exists in th, j)
the estimate of the current reflectivity column is kept. ThRosition of R, and is set to zero otherwise. The transition
estimate of the subsequent column is discarded, as thimeoluvariables, set in thred/, x .J — 1 matricesT/, T~ andT",
will be determined from estimates of both its preceding arfitermine whether adjacent location variables belong ¢o th
subsequent neighbors in the next step. same layer boundary or not. Leﬁd, o t;,j denote the
Both multichannel deconvolution algorithms are applied t#ansition variables in thék, j) positions of T/, T~ and T,
synthetic and real data, and demonstrate better results caaspectively. Theméj is set to one ity ; andg,—1,;4+1 belong
pared to those obtained by the single-channel deconvalutio the same layer boundary and to zero otherwise. Similarly
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\ ey of the reflectivity p (R |T/, T-, T\, Q) is assumed to
feaa b have a first-order Markov chain structure, and each reflec-
, tor is assumed to be correlated only with reflectors lo-
tk-. . cated on the same boundary. Let denotes thejth col-

Y| umn of R, and let ry; denote thekth reflector inr;.
\ Then the correlation between, ; and reflectors in previous
columns depends on the local geometry of the layers and

k[ Ohesja ' ' %14 is described through (rk_,j ‘q,w-,tg_l,t;_l,t)_l,rj,l). Let

(€80 ; Ok-1j-1

tL:,J—l
O j1 - G j

() (b) t£+17j_1 (respectivelyt; . ;. t;_w_l) be set to one, then

. . . . . we will further refer to the reflector j as a successor
Fig. 1: Location and transition variables: (a) Layer bouretarepre- f tivel ’ d tri
sentation. (b) Location variablg, ; and other location and transition ©' "k+1,j-1 (respectivelyry j—1, r—1,;-1) and symmetri-
variables affected by it. cally ry41,-1 (respectivelyry, j_1, ri—1 ;1) will be referred

to as a predecessor of, ;. The conditional probabilities

\ p(rkJ’qu,tj 1t 1,t> 1 Tj— 1) can be separated into
ty; andt, ; are set to one if, ; belongs to the same layerfour cases which depend on the existence and uniqueness of
boundary ‘asy, g+1 and ey 4, reipectlvely, and to zerosyccessors and predecessors:
otherwise. Thereforet/ _, ¢ . andt, . determine whether 1) If g; = 0 then there is no reflector at positi¢h, j),
layer boundaries whose orientation is diagonally ascendin andrj = 0.
horlzon.tal, and diagonally descending, respectivelysteii 2 |f Qk:j = 1, and if r; is the unique successor of
the (k, j) position of Q. Figure. 1(a) shows a representation a unique predecessof, qx ;_1 (—1 < dk < 1), then
of layer boundaries and their orientation in several |arati re; is sampled from a first-order autoregressive (AR)
using location and transitions variables. Gray squarestéen prbcess, conditionally to 4 1. This case corre-
the presence of a layer boundary and arrows facing upward, sponds to interactions along a single layer boundary.
n/ghtward and downward correspond to positions in which | et 4 € [0, 1] control the degree of correlation between
t; ;- x, andt, ., respectively, are set to one. Figure. 1(b) reflector amplitudes along the same boundary and let

shows the location variabley ;, all the location variables w, ~ N [0, (1 - a?) o2], then the AR process is defined
which may be on the same boundary with it, and the transition by

variables between them.

o _ Thj = QTktdk,j—1 + Wy (2
Letp (-) denote a probability distribution function. Then the . _
MBRF has the following properties: 3) If gx; = 1 and if r ; has no predecessor, the;a,j;s
1) Separability property: sampled from the basic Gaussian distributiér{0, o2).
(t/ PR (t/ ) (t‘ ) (t\ ) 4) If g1 ; =1 and if r, ; has more than one predecessor,
P\ ko ko) =P P\"j)P\"kj or symmetrically whem,, ; is not a unique predecessor,
2) The jth columns ofQ, T/, T~ and T\, denotedq;, thenrk_,j is sampled from the basic Gaussian distribution
tj/., t; and t}, respectively, are white and Bernoulli N (0,02).
distributed marginally from the rest of the field. Before the deconvolution can be performed, the parameters
3) The characteristic parameters of the Bernoulli distribyf the 2D reflectivity model described above need to be
tions are given by: estimated from the data, along with the seismic wavelet and
A=p(qk,; =1), p =p (t/ .= 1), the noise variance. We next describe the parameter estimati
_ — method.
o :p(tk,jzl) u\—p(\ 1)
; . YA
4) Horlzont/al symmetry.\p (qm,tm,tk,j,tk,j) C. Parameter estimation
P (Qk,jatkﬂg Dbk te_1j1 Our goal is to estimate the parametérs= (h, \,0,.,0,,)
5) Isolated transition variables cannot be set to onghd the MBG | parametem®; pc = (a W, )from
p = = =0]g,; =0) = the observed trac¥. The parameteré can be estimated using
t,; =0ty =0,t,, =0] 0) =1 he observed trac¥. Th rscan b d usi

6) Dlscontinuities along layer boundaries are possible: the stochastic expectation maximization algorithm of Raete
P (qk,j -1 ’tz/cﬂ,j—l = 0,t;,_, =0, £\ 1= 0) — al.[10]. Lety; denote thejth trace of the seismic data. Then
) ' ' we apply the SEM algorithm to each of the traggsand ob-
7) X is related to{M/,M—ju\,g} according to:\ = 1 — tain from each trace an estimate Since the parameteésare
(1 _ M/) (1—p) (1 _ N\) (1—¢). assumed common to all the seismic traces, the final estimate

We now turn to the amplitude fiel®. The MBG | ¢ = (h’/\’&“‘}W) is obtained by averaging the estimates
model assumes that the amplitudes of the reflectors z@r]e We now proceed to estimate the parame®issc by
independent in the vertical direction and that marginallgmploying the parametefsto deconvolve each of the traces
from the rest of the field, the amplitude of each reflectgr; using the maximum posterior mode algorithm of Rosec et
is normally distributed with zero mean and variance equal. [10]. Subsequently, we remove all the isolated reflector
to 2. The conditional probability of the amplitude fieldfrom the obtained reflectivity estimate and term the result
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R%BT. Letting I/, I~ andI\ denote the number of positionswhere t;_; = {tgfl,tgfl,t>7l}. This formula led them
in Rz, in which the orientation of the layer boundaries iso propose the following suboptimal iterative maximizatio
ascending, horizontal and descending, respectively, oggse procedure:

the following estimators:
(1) First column: (#1,q;) = argmaxp (qi,r1,y1) (7)

ﬂ/ — L ri,qi
(J—}) Ny (2) Forj € [2,J]: (#),8;,tj-1) =

0= - argmax p (rj, qj,tj-1,y; [@j-1,j-1) (8)
(J—1)N, rj,d b1

A\ I : o

B = m where SMLR-type algorithms were used for the optimization

) “ . L ) of the partial criteria (7) and (8). In the first stepandq; are
e=1-(1-N)/A-i)/A-a7)/1-0Y). @) determined from the first observed trage In each following

For the estimation ofi, we use a heuristic estimator, whichstep, the reflectivity columm;, j € [2, J] and corresponding
calculates the average attenuation ratio between neigfgpohidden binary vectors; 1, q; are determined from the current
reflectors. Letl; be the number of layer boundariesRf. ,,., Observed tracg; and the estimates of_; andq;_1, obtained
and letl,, = [I,n(1), ..., lm(Lm)]" be the reflectors of thesth  in the previous step. This maximization procedure is subopt
boundary arranged in a vector of length,. Note that when mal since forj > 1 each partial criterion is maximized only
RS, contains layer boundaries which split or merge, eadMth respect tor;, q;,t;-1 and all the previously estimated
section of a boundary before and after the node where t#gantities remain unchanged. Also, the determination;dé

splitting or merging occurs, is treated as a separate boyndgased on observations only up g and subsequent columns
of the observed data, which are very informative aboyt

layer. Then:
5 P are not taken into account in its estimation. On the other
i1 Z 1 Z min (lm (k+1) 1y (k) ) hand, this method is much simpler than global maximization
I = | Lp—1 &~ Im (k) "l (K +1) of p (T/, T, T\,Q,R|Y), and does take into account the

4) dependency between neighboring reflectivity columns kenli
Once all the missing parameters are known, multichanrgihgle-channel deconvolution methods.
deconvolution can be performed. We next describe the firstHere we use a similar iterative maximization procedure,
proposed multichannel deconvolution procedure. which employs MCMC methods for the optimization of its
partial criteria. We first rewrite (7) and (8) as:
I1l. RECURSIVE CAUSAL MULTICHANNEL BLIND

DECONVOLUTION .
In this section we propose a multichannel blind deconvo- (1) First column: (#1, 1) = aiglrﬂ?’(p(rl’ql y1) )

lution algorithm, which iteratively deconvolves the seism . e a3 -

data, while taking into account the spatial dependency &etw (2) Forj € [2,J]: (rj’qj’tj_l? o

neighboring traces. The proposed method is based onthe MBG ~ 21&Max p (rj, a5, t5-1 1y, -1, 85-1) (10)
| reflectivity prior model and employs the parameter estiomat Pt

method proposed in the previous section. We next descrée th

deconvolution scheme of the proposed algorithm. i . o . . .
prop 9 The first partial criterion can be optimized using the maxi-

mum posterior mode algorithm presented by Rosec et al. [10].

A. Deconvolution Scheme Finding an optimal solution for the maximization problend)1
The MAP estimator of the matrice$T/, T~,T\,Q}, is a very hard, since it requires examination of all the fiesi
comprising the MBRF, and the amplitude fieRl is: configurations ofq;,t; 1, whose number ranges froaf'-
(’i‘/ - N Q f{) _ to 8N, Therefo_re, we apply ins_tead a r_nodified version of
oo™ the MPM algorithm. This algorithm estimates the vectors

p (T/,T*,T\, Q,R|Y) ' (5) Tir%>ti-1 from realizations simulated by a Gibbs sampler,

argmax )
described next.

T/, T-,T\,QR
Obtaining the exact MAP solution is very difficult, even when
the efficient Viterbi algorithm is used, because of the Iarqg :
. X . Gibbs Sampl
dimension of the state-space ¢T/, T, T\, Q}. However, 100S _ mpier
Idier and Goussard [15] showed that the a posteriori likelth ~ The Gibbs sampler generates samples 19fq;,t; 1

p(T/,T~,T\,Q,R|Y) can be expressed as: from the joint distributionp (r;,q;,t;-1[y;, ¥j-1,d;-1)-
Let v_; ; denote a vectowv; without its k'th sample, i.e.
p (T/, va T\, Qv R |Y) S8 V_kj = [vlyj, vy Uk—1,55 Vk+1,55 ...,’UNT_’J']T. Also, let B (a)

denote a Bernoulli distribution with parameterThen instead
of sampling directly from the joint distribution, the Gibbs

J
P((h,rl,}ﬁ)Hp(tj—hqg‘,r,w}’j|%‘—1,I‘j—1) (6) ! i - e
sampler iteratively samples from the conditional disttids:

Jj=2
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. p(té,]—l rjvqjvt/—k,j—ptj_fut>f1vfjflvijl)
~ B (s

. P(t;ﬁl rjaqjaté—lat:k,jfvt—’}fl’fj_l’qi—l)
~ B (1)

d p(tk,j—l rjaqa’atg—latj_—lat\—k,j—pfjflvijl)
~ B ()

. P(Tk,j,‘Jk,j |Yj7r7k.,j7qfk,jvtjflvf'jfl)
~ AN (mi,ja ka,j) + (1 - )‘2,3‘) 6 (r.;)

where the derivation qﬁéﬂjfl, Ty Mk,jfl’ Ay 5, my ; and
Vkﬁj can be found in subsections | and Il of the appendix.
For the simulation of the vectors, q;, andt;_;, the Gibbs
sampler follows these steps iteratively:
1) Initialization: choice ofg\”, r'” andt{”),.
2) Fori=1,...,1
Fork=1,...,N,

. computeu£7j71 using (36) and simulate

fﬁﬁl ~ B (Mé,jfl)
« computey; ., using (37) and simulate

— i) _
tk,j(fl ~ B (Mk,jfl)
. computeu;_’jf1 using (38) and simulate
N0
k,j—1
. compute/\g,j using (26) and simulate

Qfﬁ)] ~ B ()‘Z,j)

. simulater, ~ N (mgj,v,gj)
@ _

kg —

~ B (Mk,jfl)

if ¢\ = 1, other-
wise r

C. MPM algorithm
We estimate each columry, 1 < j < J using a modified

version of the MPM algorithm. This algorithm employs th
Gibbs sampler described above to generate realizationso?

r;,q; and tj_l drawn fromp(rj,qj,tj_l |yj,f‘j_1,qj_1).

The Gibbs sampler performg iterations until it reaches a

steady state period. The samplésy),q;i) £

,t;”, ) produced

I .
1, if 2 Y ¢%>05
SR I—1I k,
qQk,j = ’ i=Ip+1 /
0, otherwise
« estimation step
Lo () )
1:10+1qk’jrk’j PN
Fri= T o it Gry =1
»J Z qk,j(k)
i=Ig+1
0, otherwise
T

3) £ =[rij,7N,j]

IV. RECURSIVENON-CAUSAL MULTICHANNEL BLIND
DECONVOLUTION

The algorithm proposed in this section is an extended
version of the first proposed algorithm, and uses the same
reflectivity model and parameter estimation method. Howeve
it takes into account the dependency between each reftgctivi
column and both the preceding and subsequent neighbors, in
the deconvolution process. We next describe the deconwenlut
scheme of this algorithm.

A. Deconvolution Scheme

Our goal is to improve the performance of the first proposed
algorithm, by taking into account information from both
preceding and subsequent traces in the deconvolutiongsoce
of each trace. More specifically, we wish to utilize estinsaié
bothr;_; andr;,4, in the estimation process of. However,
an estimate of ;. is not available from previous steps in the
jth step of the algorithm, in which; is estimated. Therefore,
instead of estimating only; in the jth step, we simultaneously
estimate bothr; andr;,;, conditionally to the estimate of
r;_1, obtained in the previous step. This way, the dependency
betweenr; andr;; is taken into account when the former
is estimated. In each step besides the last, only the estimat

of i is kept out of the two obtained estimates. The estimate
T

i+1 Is discarded, as this column will be reestimated in
the next step. It is kept only in the last step, as the estimate
of the last column in the 2D reflectivity sectior;. We
note that extending the algorithm to utilize more than one

in the following iterationgly < i < I are used to first eStimatesubsequent reﬂectivity column in the estimation process; of

each ofgy j, téj_l, by 1> t;7j_1, and then determiney ;
conditionally to the estimate ofy ;. The modified MPM
algorithm follows these steps iteratively:
. . i) (1) (i) :
1) Fori = 1,...,1 simulate (rlg.),q§ ,t§_1) using the
Gibbs sampler.
2) Fork=1,...,.N,

« detection step:
P BNV ()
i 1, if e > te o1 > 05
k,j—1 i=Ip+1 )
0, otherwise
I
w1 = (9
- 1 if = } >t 01 >05
k,j—1 i=Ip+1 )
0, otherwise
P B SN ()
AL if = X ;21 >05
k,j—1 i=Ig+1 ’
0, otherwise

is straightforward. However, simulation results showedt th
only a small improvement in the performance is gained when
more than one reflectivity column is estimated along with

at the cost of a larger computational burden. We next define
the following vectors:

— T _ T _ T
Yi = [yfvyf+1] ) Ty = [r?,rJT+J y dj = [qfaqf+l] ’
T/ ' N (AT £ — T 1T
0= |(6) S (8) | B = [0 )]
3 T 7T
= [(0)" ()] =
where té =t, = t(\) = Opn,x1 and Oy, x1 denotes a

vector of N,. zeros. Using these concatenated vectors in the
deconvolution process allows us to simultaneously esémat
the amplitude, location and transition variables assediatith
bothr; andr;;,. The deconvolution is carried out iteratively,
using the following maximization procedure:
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o if Gpy =1 simulatef,(cf?j ~ N (m'};j,ka’j), other-

(1) First column: (?1,61 ,fo) = argmaxp (F1,q1, to|y1) wise T;(gi 0.
F1,d1,t0 Fork = N, + 1,..,2N,
(11) . computeu,/C ~, ; using (36) and simulate

; _11- (3. 5. %, /(Z /
@501 (5 B 40~ )

= argmax p(%;,q;, tj-11¥;, £j-1, qj-1) (12) . computeuk ~, ; using (37) and simulate

Fj,45,85— -
' kj()lNB /‘karj
wheret;_; = {té Lt 1,1:} 1} . computeu; ~,.; Using (38) and simulate
Similarly to the deconvolution scheme of the first proposed tk (i )1 ~ B (Mé N
Ni — Ve,

algorithm, a single partial criterion is optimized in each computer? Using (26) and simulate

step. Direct optimization of these partial criteria is pically ¢ @) P k—Nr,j+1 g (26)

impossible, since it requires examination of all the possi- G ; ~ B ()\Z,Nﬁjﬂ

ble configurations ofg;,t;_1, whose number ranges from =) ( b b ) i
) ! - . simulate 7,7, ~ N {m}_~ i1, Vi~ s if

22Nr 1o 82N+ Instead, we apply a further modified version * kg k=Nt 12 Th=Nr,g

of the MPM algorithm to these partial criteria. This MPM ‘?;(;)7 =1, othe_rwis.ef,(cf?j =0. _
algorithm estimates in the first stéfp,q; andt; from y;,  Similarly, in the estimation process of thgh reflectiv-
and estimates in thgth step,j € [2,J — 1], t,-1,q; and ity column, j € [2,J—1], we employ a different Gibbs

F; from y;, #;_; and §; ;. The flrstN samples of the sampler to generate samples Bf g, ;-1 from the joint
estimates off;, q;, t; t _,t;, and tJ 1, j € [1,J—1] are distributionp (¥;,q;,t;-1¥;,%;-1,4;-1) . This Gibbs sam-
kept as the deswed estimatés, ; .. In the J — 1th pler iteratively samples from the conditional distribunsoof
P W j

step the lastN, samples of the estimates are also kept d&.7» Gk.is bk j—1tkj—1 andtk] 1» Where the firstV, samples
TR DIE AN P A of ,d;,t,_,,t;_,,%)_, are sampled from:

The MPM algorithm employs two different Gibbs samplers ( / .t/ \ s
. . . e p ty, raqatf '77t'77t'77r—17 —1
in the estimation process af andr;, j € [2,J —1]. We wd ; 7 ki b b B
describe these Gibbs samplers next. ~ B (l‘k.,jq

_ / _ N N
o Ptk rjvqjvtj—lat—k,j—pt;—lvrjflvijl)
B. Gibbs Samplers B (/f )
L ) . ~ k,j—

In the estimation process of the first reflectivity column, we \ 2t / _ A R R
employ a Gibbs sampler to generate samples of; , to from . p(tkj [T Attt k,jflarj—laqj—l)
the joint distributiorp (1, q1, to |y1) - Instead of sampling di- ~ B (H; , 1)

L . . . . . 2]

rectly from this joint d|str|put|on,_the_ G|t_)bs s;atmplfrr mey/ely o Dy Gog 59T s Qs b1 By 1y Tt Gyt )
samples from the conditional distributions of 1, k.1, ¢} . N (mm Vm) + (1 \m )5 ()
_ ~ , _ i
fr, andiy,. The first N, samples oft),t;,ty equal zero " A " ?

d the firsty, | ff led f and the derivation of\;";, mj";, and V. can be found
and the first, samples ok, q are sampled from: in subsection IV of the appendlx The IaSJEr samples of

o P(Thjs Gk, |yg7r k,]vq k,gar7+1=%+1v i) r;,q;, §_1atj—1at>—1 are sampled from the same conditional
)‘iaN mk]’ Vk] +{1- )‘ka 8 (rk,5) distributions as the las¥, samples offl,ql,fé,fg,fé.
where the derivation of\/ , mf . and V;/, can be found For the simulation of the vector, G; andt;,, the Gibbs
in subsection Ill of the appendix. The last, samples of Sampler follows these steps |terat|vely

F1,4d,,%,, 5, %) are sampled from: 1) Initialization: choice ofe\", g'”, &),
/ ) ) / \ / 2) Fori=1,...,1
LY tk,j r]+17qj+1at/_k Jvt7 7t\77rjaqj) ~ B (:u]g,]) Fork = 1 N’r
o Pl T+ Ay, €6, 5, 371“77%) ~ B (M;j) . computeu,/C ;1 using (36) and simulate
7/ (&) [,/
L2 t;J rj-l—laqj-l-lat;atj at\ k;7j7rj’qj) ~ B (,U,;J) tk _]Z 17 B (:uk,j—l)
o D(Thjt1, Qhjt1 |Yj+1:T—k j+1,d—k j+1, b5, T5) . corr.lputeu,;j_1 using (37) and simulate
~ AZJ’HN mz-,jJrl’ka-,jJrl +(1-X J+1 0 (Tk,j+1) El;j(i)l ~ B (:u];j—l)
For the simulation of the v_ecto@, q: andtg, the Gibbs . computeu; 1 using (38) and simulate
sampler follows these steps iteratively: t\ () B ( \
s . (0) =(0) £(0) k-1 " 'uk,j—l)
;g ::rgtrl?lzaltlon.lchmce off;”.a; . % - . c?mputeAgjj using (64) and simulate
s )
Fork=1,..., N, Qi ™~ B()\mj)
. compute/\-};j using (54) and simulate . smulaterfg)j ~ N (mﬁj,v,gj}) if gx; = 1, other-

a; ~ B ()‘ig) wise ) =
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Fork = N, +1,..,2N, follow the same steps as the TABLE I: Synthetic 2D Example: True and Estimated Paranseter

Gibbs sampler described above. True Estimated (0 dB)| Estimated (5 dB)
B} 0.0489 | 0.0479 (0.0033) | 0.0553 (0.0013)
or 1 1.2851 (0.0603) | 1.152 (0.0249)

C. MPM algorithm 0w (0 dB) | 0.2211| 0.1742 (0.0035) -
' _ -~ 0w (5 dB) | 0.1243 - 0.1014 (0.0012)
The second proposed algorithm employs a further modified a 0.999 | 0.7752 (0.0202) | 0.7899 (0.0152)
MPM algorithm. This MPM algorithm estimatas, i, to in p 0.008 | 0.0058 (0.0007) | 0.0076 (0.0008)
the first step, and estimat@s, q;,t;_1, j € [2,J — 1] in the p 8'832 oodgél((i&?gé&) 8'8(2)22 Eg'ggég
following steps. It uses the two versions of the Gibbs sample 6 0.0005 | 0.0266 (0.0034) | 0.0174 (0.0019)

described in the previous subsection to generate realimatf
t;,q;, andt;_, where the first, iterations are considered a

learning period. Only the Samp|<§§-z),(_l(-l),f§21) produced 8000, and 16000, and the corresponding burn-in pefipd
in the subsequent steady state perigd< i < I are used was set to 4000, 4000, and 8000 iterations, respectively. Th
to first estimate each afy, ;, féj_l, b1 E;,j_l and then average processing times of a data set of i@ x 100 on
determinery, ; conditionally to the estimate afy ;. Pentium Core 2 Duo E8400, by matlab implementations of the

The further modified MPM algorithm follows these stepsingle-channel and the first and second proposed algorithms
iteratively: were 8.86, 9.17 and 47.69 minutes, respectively. Note that

each reflectivity column estimated by the single-channel an

multichannel deconvolution algorithms had gone through a

postprocessing procedure. Whenever this procedure foumd t
& three successive reflectors, or two reflectors separated b

ohe sample, it replaced them by their center of mass. We will

hereafter refer to the first and second proposed algorithms
as Multi-channel I (MC-l) and Multi-channel II (MC-II),
respectively. The results of single-channel deconvatutiad
the MC-I and MC-II algorithms, obtained with the true and
estimated parameters for the seismic data with SNR of 5 dB,
. depicted in Figs. 2(c), are shown in Fig. 3. The results olethi
A. Synthetic data with the estimated parameters for the seismic data with SNR

We generated a 2D reflectivity section of sizé x 100, of 0 dB depicted in Figs. 2(b), are shown in Fig. 4. Visual com-
shown in Fig. 2(a), using the MBG | model. We then comparison between these results shows improved performdnce o
volved it with a 25 samples long Ricker wavelet and addeghth the MC-I and MC-II algorithms over the performance
white Gaussian noise, with signal to noise (SNR) ratios of & the single-channel deconvolution algorithm. For bothRSN
dB and 5 dB, where the SNR is defined as levels the estimates of MC-I and MC-II are more continuous,

N2 E, contain less false detections and are generally closereo th
’—2) ) true reflectivity than the single-channel deconvolutiosutts.
Tw It can also be seen that, as one would expect, better results
We created 20 realizations for each SNR, two of them witlre obtained with the true parameters than with the estiinate
SNRs of 0 dB and 5 dB are shown in Figs. 2(b) and (chnes.
respectively. We then used the proposed parameter egimati In order to quantify the performances of the MC-I and
method to find the missing parameters corresponding to eddf-Il algorithms and compare them to each other and to
of the data sets. The total number of iterations of the SEMe performance of the single-channel algorithm, we used
algorithm was set to 4000, where the first 3000 iteratiortke four loss functions suggested by Kaaresen in [23]. Let
served as the burn-in period after which the algorithm reachr be a 1D reflectivity sequence aridbe its estimate, and
a steady state. The true wavelet, along with wavelets etalet |||, and ||-|, be the L; and L, norm, respectively.
for the realizations in Figs. 2(b) and (c) are shown in Fig#lso, let N™ = #{n : #(n) = 0, r(n) # 0} and
2(d) and (e), respectively. The true parameters are shownNd**¢ = #{n : 7 (n) # 0, r (n) = 0} denote the number of
Table 1, along with the means and standard deviations (imissed and false detections in respectively. Then the loss
brackets) of the parameters estimated from the realizatidnnctions are:
with the different SNRs.

The true and estimated parameters were employed by the
deconvolution schemes of the two proposed multichannel
algorithms, and the single-channel MPM algorithm of Rogec e
al. [10]. The reflectivity sections recovered by singleohel
deconvolution and those obtained with the true parameters
were used for comparison reasons. The total number Kéaresen also suggested to make the loss functions more
iterations I of the MPM algorithms of Rosec et al. andrealistic, by regarding estimated reflectors that wereeclos
the first and second proposed algorithms was set to 80@gir true positions as partially correct. Therefore we eatid

1) Fori = 1,..,1 simulate (E(.izl,q§i),f<i)

J J
Gibbs samplers.

2) Use the same detection step as in Section Il
Whererk_,j,qk_,j,téj_l,t,;j_l and t>7j_1 are replaced
by fk,j’(jk,]-,tf,/c_’jfl,tf,;jfl andtfz_’jfl, respectively.

3) t; =

) using the

[Fijonn ]

V. EXPERIMENTAL RESULTS

SNR = 10log;, < (13)

Lmiss+false — ||f‘ _ r”l 4 NmisS + Nfalse
Lmiss — ||f‘ _ r”l + Nmiss
Lfalse — ||f‘ _ r”l + Nfalse

LS9 = [[¢ —x,. (14)



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. Y, MONT 2010

Time [Sample]

Trace number

(@)

Time [Sample]

0O 10 20 30 40 50 60 70 80 90 100
Trace number

Time [Sample]

0O 10 20 30 40 50 60 70 80 90 100
Trace number

(b) ()

e o 9
PN W

I
It
ko

-0.2

Amplitude
Amplitude

I
o
w

[
o o o
o v b

o

5 20 25 0 5 10 15 20 25

Time [Sample]
(d) (e)

Fig. 2: Synthetic reflectivity, wavelet and data sets: (ahtBgtic 2D reflectivity section. (b) 2D seismic data (SNR=).d(c) 2D seismic
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Fig. 3: Synthetic 2D data deconvolution results obtainethwhe true parameters (TP) and the estimated parametefSqEBNR of 5 dB:
(a) Single-channel deconvolution results (TP). (b) MC4dules (TP). (c) MC-II results (TP). (d) Single-channel deeaution results (EP).
(e) MC-I results (EP). (f) MC-II results (EP).
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Fig. 4. Synthetic 2D data deconvolution results: (a) Sirgflannel deconvolution results for SNR=0 dB. (b) MC-I résdbr SNR=0 dB.
(c) MC-II results for SNR=0 dB.

three loss functions which treated reflectors with an offset TABLE IV: Real Data Example: Parameters Estimated for thalRe
of one sample from their true location as if they were s@ati

. . . . . . O Ow a 1] 1] 1] IS
in their true locations, with half their amplitude. For thes 0,0385 | 3.945 | 0.701] 0.001 | 0.0015 | 0.011] 0.0009| 0.025
reflectors a penalty of 0.5 was added to both the missed amd
false detection measures. The new loss functions are:

Lyrsstialse — p oy Ngriss 4 Nfolse the difference between the mean values obtained in these two

Lpiss — D 4 Npniss cases is getting smaller as the SNR increases. Finally, MC-I

pdalse _ o Nfalse (15) seems to be more robust to model parameter inaccuracies than
2 - 2

MC-I1. Although MC-II performs only slightly better than MC-
I when the model parameters are known, it produces signtfican
improvement in the case of blind deconvolution.

whereD = 3|7 (n) + 2F (n— 1)+ 37 (n+1) —r (n)| is a

difference measureyy"ss = N™s — L x #{n : r(n) # 0,
7(n)=0,7(n—1)#0o0r7(n+1)+# 0} is a missed detec-
tion measure andvy“'** = NFalse — 1 in 7 (n) # 0,
r(n)=0,r(n—1)#0o0rr(n+1)# 0} is a false detection B. Real Data
measure. Since we are dealing with 2D reflectivity signals,
we calculated the loss functions for their column stack farm We applied the proposed parameter estimation method to
We also normalized.®5? by the L, norm of the column real seismic data from a small land 3D survey in North Amer-
stack form of the true reflectivity and normalized the rest aéa (courtesy of GeoEnergy Inc., Texas) of si#) x 200,
the loss functions by the number of reflectors contained $mown in Fig. 5(a). Three-dimensional denoising was agplie
the true reflectivity. The means and standard deviationkef tto the data [24], which was subsequently decimated in both
loss functions calculated for the estimates obtained bylsin time and space. The time interval is 8 ms and the in-line trace
channel deconvolution and the MC-l and MC-Il algorithms arspacing is 25m. The estimated wavelet is shown in Fig. 6, and
shown in percents in Tables Il and Ill. The values displayed the estimated parameters are presented in Table IV. Siyilar
Table Il correspond to the results obtained with the true amedl the case of the synthetic data, the estimated parameters
estimated parameters, from the seismic data with SNR ofwere employed by the deconvolution schemes of the MC-I
dB. Similarly, the values in Table Il correspond to the fesu and MC-II algorithms, and the MPM algorithm of Rosec et
obtained from the data with SNR of 0 dB. al. The reflectivity sections obtained by single-channebde

It can be seen that for both SNR levels, and for all the losslution, MC-I and MC-II are shown in Figs. 5(b), (c) and (d)
functions, the mean values calculated for the estimateleof respectively. Comparing these reflectivity sections, it te
MC-I and MC-IlI algorithms are smaller than the respectiveeen that the estimates obtained by MC-I and MC-II contain
mean values calculated for the estimates of the singlergdanlayer boundaries which are more continuous and smooth than
deconvolution algorithm. This implies that both the MC-the ones obtained by the single-channel deconvolutions& he
and MC-II algorithms produce better results than the singlalgorithms also manage to detect parts of the layers that the
channel algorithm. It can also be seen that for both SNR $evasingle-channel deconvolution missed. It can also be sesn th
the MC-II algorithm outperforms the MC-I algorithm, andthe estimates produced by the MC-1 and MC-II algorithms
that the improvement is getting smaller as the SNR increasaee quite close, however the latter managed to recover parts
Not surprisingly, lower mean values of the loss functions aof the layer boundaries missed by both the single-chanrtel an
measured for all the higher SNR estimates, meaning that fist proposed algorithms. Note that since the true reflagtiv
the algorithms performed better when the noise level was logection is unknown, the loss functions (14) and (15) cannot
Also, lower mean values of the loss functions are obtaindé@ used to assess the performance of the proposed algorithms
with the true parameters than with the estimated ones, heawean real data.
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TABLE II: Comparison Between the Quality of Restoration bé&tSingle-Channel Deconvolution (SC), Multi-Channel | (MGnd Multi-
Channel Il (MC-II) Algorithms, Obtained with the True andtiasated Parameters, for SNR of 5 dB.

SNR=5 dB Estimated parameters True parameters
SC MC-I MC-II SC MC-I MC-II
[misstFalse 1711236 (10.89)| 81.15 (13.61)| 69.31 (10.42)| 59 (5.81) | 46.24 (8.74)| 45.35 (5.43)
Lmess 88.55 (7.95) | 64.33 (10.02)| 54.81 (7.67) | 50.98 (4.8) | 38.53 (6.58)| 37.47 (3.88)
[False 79.76 (8.38) | 57.67 (10.11)| 49.35(7.92) | 37.96 (4.01)| 31.24 (6.42)| 30.85 (4.29)
L55Q 67.8 (4.32) 54.01 (5.68) | 47.16 (5.31) | 44.13 (3.57)| 35.24 (5.9) | 34.67 (3.73)
Lgm”‘*false 76.38 (6.39) | 54.13 (8.24) | 46.48 (6.17) | 44.45 (4.22)| 33.7 (6.48) | 31.54 (3.03)
Lyss 59.78 (4.46) | 42.95 (5.87) | 36.98 (4.34) | 39.34 (3.56)| 28.75 (4.82)| 26.83 (2.05)
Lg‘”“ 51.14 (4.82) 36.54 (5.8) | 31.73 (4.54) | 26.39 (2.55)| 21.7 (4.48) | 20.54 (2.41)

TABLE llI: Comparison Between the Quality of Restorationtbé Single-Channel Deconvolution (SC), Multi-Channel IGN) and Multi-
Channel Il (MC-Il) Algorithms, Obtained with the True andtiEsated Parameters, for SNR of 0 dB.

SNR=0 dB Estimated parameters True parameters
SC MC-I MC-II SC MC-| MC-II

[misstFalse 1720713 (13.76)| 185.57 (18.01)| 165.26 (16.67)| 130.42 (6.61)| 104.48 (8.09)| 102.15 (9.01)

Lmess 167.94 (9.51) | 148.91 (13.54)| 132.2 (12.05) | 118.6 (5.18) | 91.46 (6.46) | 87.75 (7.04)

LTalse 145.55 (11.82)| 131.9 (14.08) | 117.96 (13.57)| 77.56 (5.19) | 65.62 (5.97) | 65.94 (6.83)

L55@ 101.35 (4.46) 94.1 (6.23) 86.59 (6.06) | 74.18 (3.35) | 63.11 (4.16) | 62.48 (4.26)
L’z’”“”“l“ 146.65 (8.99) | 123.08 (11.64)| 106.65 (9.72) | 105.67 (3.66)| 76.52 (5.27) | 70.63 (4.43)

Lgss 118.4 (5.69) 98.16 (8.46) 84.93 (6.49) | 98.31 (3.05) | 68.89 (4.41) | 62.36 (3.54)

Lg‘”se 96.05 (8.06) 81.17 (8.93) 70.7 (7.99) 57.27 (2.52) | 43.07 (3.38) | 40.58 (2.96)
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Fig. 5: Real data deconvolution results: (a) Real seismia.d&) Single-channel deconvolution result. (¢) MC-I tesud) MC-II results.

VI. CONCLUSION the two proposed algorithms, based on the MBG Il model
[15]. This model uses a different amplitude field than the
We have proposed two multichannel blind deconvolutiodBG | model, which may lead to different quality of the
algorithms. Both algorithms, which take into account thdeconvolution results. The performance of the new algorsth
spatial dependency between neighboring traces in the den be assessed and compared to that of the original ones.
convolution process, produce visually superior decoriaiu Another topic for future research is the extension of thesdc
results, compared to a single-channel deconvolution délgonr  proposed algorithm to handle 3D input data. In this case the
for synthetic and real data. The second algorithm uses moeeovered reflectivity is a 3D signal and a 3D estimation
information from neighboring traces in the deconvolutiowindow can be used so that neighboring reflectivity columns
process of each trace, and therefore performs better tlean filom 8 directions will be taken into account in the estimatio
first proposed algorithm, on synthetic and real data. Qasalitprocess of each reflectivity column.
tive assessment of synthetic data deconvolution resuttesh
improved performance of both proposed algorithms compared

to the single-channel algorithm. It also shows that the séco DERIVATION OF THE ﬁ::f&'g:;:qs)\b b AND VP
proposed algorithm improves on the first, but this improveme koj? Mg k.j
is getting smaller as the SNR increases. Our goal is to derive the BG distribution

One topic for future research is developing new versions piry ;, qr,; |¥;:*—k,j, -k, tj—1,rj—1). We start by
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factoring this distribution as:

P (Thjs Qhj Vi T—kjs A—k,jr tj—1,Tj-1)
o p(y;lry)p (e lar;, ti—1,ri-1)

X p (qk,j ’té-kl,j—l’t/;,j—l’t;—lvj_l) ' (16)
Noting that
p (qw t£+1,jfl’t;j*1’t>*17j*1) ~B k) A7)

with AL, = (1t 0t (1760) and defin-

ing

p(rrglare; = 1,t5-1,15-1) ~ N (mgj,0% ;) (18)
we get, after some algebraic manipulations:
DTk qkg = 1|y —kjr Ak jr tj—1,Tj-1)
[y7b
: kaj mi,j (mi,jy
o Ap j——— €xp 552 A
Ok,j Ok 2Vk,j
2
b
1 (”w mk,j)
X ————eXp |~ (19)
,/27TVkl’7j 2Vk,j
with
1 B\
mpe. 4
ka - —+—h va‘: kb’ —’J+m
»J <Ul%,j U’%u »J »J Uz.’j w
(20)
1 Np, Np
My = —5 > hi) [Yrpio1j — D h(S)ripe—s;| (21)
Tw i=1 s=1
s#£1
Ny,
Ep =Y _h(). (22)
i=1
Similarly, we get that
P (k> Qs =01y Tk, Ak jr tj—1,T5-1)
o (1= X, ;)6 (rry) - (23)

11

Finally, from (19) and (23) we get that

P (@i Y5 Tk jrAekyj tj—1,Tj-1) ~ B (AL;)  (24)
and
P (Tkjs Qi 1Y 5 T—kojs Aebjo -1, Tj-1)
~ NN (M5, Vi) + (L= A 5) 0 () (25)
where
Moy =0k =11y;T kj Qg tj1,15 1)
—1
B R SR C(miy)® | miy 1
- t b 2
Akg IV Ve 20k,
(26)
APPENDIXII
DERIVATION OF THE PARAMETERS,u,/C_’jfl,,u,;jfl AND
\
Pr,j—1
We will now derive the conditional probabilities
for the three types of transition variables. Let

Sk = {—1<dk<1:qutar,; =1}, then we start with

p tk,j—l ‘I‘j, q;, t/_k)j_l,t;_l,t>_1,rj,1, q;j-1 ), which can
be expressed by

/ / - \
p (tk,j—l ’rja q;, t_k7j_1 ) t_j—l ) t_j—l yrj—1,95-1 )

/ - \
xp (Qkflyj ’tk,j—l b1 j—1oth—o -1 )

/ - \
xXp (tk.,jfvtk,jfl’tk,jfl |Qk,j—1)
x I pOrrarslarsanss ti1mi1). (27)
dk€ Sk ;
Let u/ , = It/ .t ,.t\ ,r; then we first
j—1 —k,j—1>Yj—1>Vi—1>1t5—1 (>

note thatp (té,j—l =1 ‘rj,qj,u§_1,qj71) # 0 only when
qr,j—1 = 1 andgy_1; = 1. Next, let

X§_1 = {Q—(k—l),jvu‘g_lvqfk,jfl} (28)
P{,dk =D (Tk+dk,j ’CIkerk,ja t;w-_l =1, uf_l) (29)
p(/)ydk =p (T“k+dk,j Qe+dk té,j,l =0, u§,1) (30)
77{ =p (t£7j71 = 17t;j717t>7j71 |Qk,j—1 = 1) (31)
mh=p (Qk—l,j =1 ‘té,jfl = Ovtlzfl,jfl’tkfljfl)
X p (t,/g)j_l =045yt lak -1 = 1) (32)
Then using (27), (29) and (31) we get:
P (t£7j71 =1|rj,qp—1,; = 17X§,17Qk,j—1 = 1)
& 77{ H p{,dk (33)
dk€eSy, ;
and using (27), (30) and (32) we get:
P (t]é)j_l =0 ’rjanfl,j = 17X§_17Qk,j71 = 1)
& 776 H P(é,dk (34)
dk€E Sk 5
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Now, from (33) and (34) we get that we get that
p (téj_l ‘rj,qj,u‘g_l,qj,l) ~ B (:ul/c,j—l) (35) P (T Gk = 1Y), Tk, A—k,j: Tjt1, Aj+1, b5)
v f 2
with o k.91 ox (my, ;) (45)
f
/ / / o PV
Hij—1 =P (tk,jfl =1 rjvqj?ujfl?qj—l) £ \2
1 1 (Tk,j - mk,j)
ol o ) X ————¢exp | — 7
_ 1+5 J] = , g1 =qrj-1 =1 ,/271'ka» 2Vi
= M dkeS), ; P1.ak J
0 otherwise 1 2 X
P 1—Xak k+dk,j+1
@ x I () { — e [—T
dkESk, j+1 271’0’7% 2UT
Similarly, it can be shown that: (46)
_ _ _ with
Hij—1 =P (tk,jfl =1 ‘rj’qj’ujflvqj—l) )
—1 2
_ 1 E a
— i f _ h
) [+ ] feae if gr; = qr 1 =1 Vii= |zt t ) Xdk =5 (47)
- M ke, ; Proar r W dkeSk i1 r
else
AT k+dk,j
Gl =y Y T )
dkE€Sk j11 T
and
\ \ \ andm,,, £}, as defined in (21) and (22), respectively.
Hij—1 =P (t;w»_l =1 ‘rga Q> Uy, qul) Similarly, let
) / \
\ _
_ <1 —+ Z—({ H p[\)’i> if Qk+1,5 = Qk,j—1 = 1 go=2p (tk,jvtk,jvtk,j |Qk-,j = O) p (Qk,j = O) (49)
1 dk€Sy,; P1.ak
0 else and
(38)
po.dk = P (Tk+dk,j+1 |qk+dakj+1 = 1,£5,q65 =0,)  (50)
APPENDIX I then

DERIVATION OF THE PARAMETERSAL . m{ . AND V//
P(Thyjs @ = 0Yjs Tk js k5 Tj+1, Ajt1, b5)

Our oal is to derive the BG distribution
. g . ) . Lt Let o god (Tk,5) H Po,dk (51)
p(rk,quk,g |yj7rfk,]aqfk.,jarj+1aqj+la J)' € dke Sy ;
Sk7j+1 = {—1 < dk < 1: Qk+dk,j+1 = 1}, then this kgt

distribution can be rewritten as: .
ISHIBUH wr Finally, from (46) and (51) we get that

D (Thjs Qhj |¥ 5> =k jr Aekj> Tjr1, Aj+1, ;)

PR P (kg Y5> T k> A-kjr Ti41, 9541, 85 ) ~ Be (/\zﬁg) (52)
acp(yjlrj)p (tk,j7 tyoteg 1, ) P (Thj lar,;)  (aw.5)

and
< JI pOrracien larrariiatyrs.q;) (39)
dk€ Sk, j+1 D (Thjs Qhj |¥ 5> T =k jr Aekj> Tjt1, Aj4+1, 5 )
Now, defining ~ AN (V) + (1=AL,) 6 0ns) (69)
g1 =0 (th oty th laes = 1) p oy = 1) (40) where
~2 2 2 .
oy =(1-a")o; 41 A =p(aky =11y kg QkgoTie1, Qs ty)
1 if riptax, ;41 andrg ; are correlated o\ Xdk
Xdk :{ 0 / otherwjise (42) I B po,ax (2757)
- 1—xak
fj = {tj, rj, Q—k,j} (43) Vk{jgl dkESk,j+1 (pl’dk)
—1
f 2 2
and my, . r .
X exp _( k,q) + Z Xdk k+d1c,47+1
oy S 262
k,j dk€ESk,j+1 r

prak = P (Thtdkj+1 [qkrarir1 = 1,5, qe 5 = 1, xar = 0)
(44) (54)
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APPENDIX IV
DERIVATION OF THE PARAMETERS)\}SJ.,
The BG distribution

P (kg Qg [¥ 5o T—kjs A—tpjs tj—1, Tjm1, Tjp1, A1, t5 )
be rewritten as:

my'; AND ;™

can

P (kg Qg [Y 55—k js Qi tj—1,Tjm1, Tjp1, A1, t5 )

ap(yjlry)p (té,j’ b ot 1k ) P (reglqr,j, tj-1,15-1)

/ - \
xXp (‘Jkyj Uet1,j-17 tk,j—17tk—1,j—1)
H D (Thetdk,j+1 |Qhtdi,j+1,t5,T5) (55)
deSk,j+1
Let
c1=p (téjvt};j?t;,j lqr,; = 1)
_ / — \
xXp (Qk,j =1 ‘thrl,jfl’ tk,j717tkfl,j71) (56)

then using (18), (41), (42) and (44) we get that

P (Thyjs Qg = LY T—kyjs Aekyjs tj—1,Tj— 1, Tjt1, Qjt1, t5)

m
Ve Mg, (miy)”
o — exp 352 oym
Ok.j Ok, k,j
2
P m
1 (le mk,j)
———exp |~
2V m 2V
k.j
1 T2 Xdk
1—Xak k4dk,j+1
X H (pl dk) —F—=€XpP | m %=
’ N 262
dkESy j41 27y T
(57)
with
-1
1 Eh a2
V]JZ‘ = |z T 3 E Xdk =5 (58)
i Gk j w Or
»J dkeSy j11
ATk+dk,j+1 | Mk,j
m m ). ).
mi ;= Vi Z 52 + o2 + My
dkEeSy, r k,j
k,j+1
(59)

andm,,, £}, as defined in (21) and (22), respectively.
Similarly, let

Co=7p (té,jvt;ja ) g = O)

_ / - \
Xp (Qk-,j =0 ‘tk+1,j—1vtk,j—lvtk—m_l)

then using (50) we get that

(60)

P (Thjr Qrj = 0¥, Tk jr Aek,jr tim1,Tj—1,Tj11, Ajp1, t5)

o cod (rk,5) H Po,dk (61)
dkE€Sk j11
Finally, from (57) and (61) we get that
P (@i Vi T—kjs A—kj, tj—1,Tj—1, Tj1, dj+1, t5)
~ B (AL;) (62)

and
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P (Thyjs Qhj [Y55 T kg Ay tj—1, Tj—1, Tj1, A1, £ )

~ NN (mil, Vi) + (L= A1) 6 ()

(63)

where

m
Ny =0 Qg = 1]yj Tk jy Qg tj—1,T5-1,Tj1, Q15 £5)

2 2
)y omie )T My
- m 2
Ve Vi 20k,
rl%-l—dk j+1
+ Xdk%
Z 20.T2
deSk,j+1
Xdk \ —1
~ 2
Po,dk (27T03)
(pr.ai)' o
dkeSk j11 1,dk
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