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Abstract— Time delay estimation arises in many applications
in which a multipath medium has to be identified from pulses
transmitted through the channel. Various approaches have éen
proposed in the literature to identify time delays introduced by
multipath environments. However, these methods either opate
on the analog received signal, or require sampling at the Nygjst
rate of the transmitted pulse. In this paper, our goal is to deelop
a unified approach to time delay estimation from low rate sampes
of the output of a multipath channel. Our methods result in
perfect recovery of the multipath delays from samples of the
channel output at the lowest possible rate, even in the presee
of overlapping transmitted pulses. This rate depends only o the
number of multipath components and the transmission rate, ht
not on the bandwidth of the probing signal. In addition, our
development allows for a variety of different sampling mettods.
By properly manipulating the low-rate samples, we show that
the time delays can be recovered using the well-known ESPRIT
algorithm. Combining results from sampling theory with those
obtained in the context of direction of arrival estimation methods,
we develop sufficient conditions on the transmitted pulse ahthe
sampling functions in order to ensure perfect recovery of tle
channel parameters at the minimal possible rate. Our resuk
can be viewed in a broader context, as a sampling theorem for
analog signals defined over an infinite union of subspaces.

|I. INTRODUCTION

Time delay estimation is an important signal processi
problem, arising in various applications such as radar [
underwater acoustics [2], wireless communications [3H al
more. In a typical scenario, pulses with a priori known sha
are transmitted through a multipath medium, which consi
of several propagation paths. As a result the received kigna
composed of delayed and weighted replicas of the transinitﬁe

a

pulses. In order to identify the medium, the time delay arid g

coefficient of each multipath component has to be estimat

from the received signal.

S

proposed sampling schemes are flexible, so that a variety
of different sampling techniques can be accommodated. Our
main contribution is the development of efficient sampling
schemes for the received signal. The resulting samplirg rat
is generally much lower than the traditional Nyquist rate
of the transmitted pulses, and depends only on the number
of multipath components and the transmission rate, but not
on the bandwidth of the transmitted pulse. This can lead to
significant sampling rate reduction, comparing to the Ngfui
rate, in applications where only small number of propagatio
paths exists, or when the bandwidth of the transmitted pulse
is relatively high. This reduction is desirable for praatic
implementation. Sampling at lower rates allows for anaimg-
digital converters (ADCs) that are more precise (i.e. useemo
bits), and with lower power consumption. In addition, loimer

the sampling rate can reduce the load on both hardware and
further digital processing units.

A classical solution for the time delay estimation problem
is based on correlation between the received signal and the
transmitted pulse [1]. However, the time resolution of this
method is limited by the inverse of the transmitted pulse
bandwidth. Therefore, this technique is effective only whe
the multipath components are well separated in time, or when
r]only one component is present. This approach was originally
]’gqotivated in the analog domain, where the entire analog

orrelation is computed. Performing the correlation in the
pdégital domain requires samples of the data at a high sagplin
rt%te, in order to approximate the continuous correlation.

In order to resolve closely spaced multipath components,
various superresolution estimation algorithms were psegdo
n [4], [5], the MUSIC [6] method was applied in the time
gamain in order to estimate the time delay of each multipath
component. Hou and Wu [7] were the first to convert the
time estimation problem to model-based sinusoidal paramet

In this paper we consider recovery of the parameters defin-

ing such a multipath medium from samples of the chann

output. Specifically, we assume that pulses with known sh
are transmitted at a constant rate through the medium,

our aim is to recover the time delays and time-varying ga

coefficients of each multipath component, from samples
the received signal. We focus on the sampling stage,

of the channel output at the minimal possible rate. Thée
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an
derive methods that ensure perfect recovery from samples

%§timati0n, and used an autoregressive method in order to
estimate the model's parameters. Other works, such as [5],
[9], relied on the same principle, but different estiina
aﬂgorithms were used: Tufts-Kumaresan SVD algorithm [10],

s S-ESPRIT method [11] and a modification of MUSIC,
respectively.

n the above superresolution approaches, the sampling stag
was typically not directly addressed. Most of these workg re

n uniform pointwise samples of the received signal, at & hig
sampling rate. In [7] and [9] the required sampling rate & th
Nyquist rate of the transmitted pulse. Since often the puise
chosen to have small time support, the bandwidth can be quite
large, corresponding to a high Nyquist rate. In [8] and in the
frequency domain algorithm proposed in [5], the sampling of
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the received analog signal is not mentioned explicitly.c8in broader context of sampling theory. In Sectich V we discuss
these algorithms involve operations in the analog fregyenin detail the relationship between our problem and previous
domain, effectively they also require sampling at the Ngtjuirelated setups treated in the sampling literature: samplin
rate. The time domain algorithms proposed in [4] and [5] casignals from a union of subspaces [15], [16], compressed
theoretically recover the time delays from a low samplirtg,ra sensing of analog signals [17], [18], [19], [20], [21], [22]
which depends on the number of multipath components. Hoard finite-rate of innovation (FRI) sampling [23], [24]. The
ever, the sampling considerations were not directly adeies results we develop here can be viewed as a special case of
in these works, and no concrete conditions on the tranginiti@nalog compressed sensing over an infinite union of spaces,
pulse and the samples were given, in order to ensure unigua therefore extends previous work, which focused on finite
recovery of the delays from the samples. unions, to a broader setting. In comparison with FRI tech-

Besides the sampling stage which is not studied in previongjues, our approach allows for lower sampling rates and at
works, another assumption underlying all the methods alsovea lower computational cost. Furthermore, we do not need to
that the receiver has access to a single experiment ([7]9B] impose stringent conditions on the pulse shapes, as require
or multiple non-overlapping experiments ([4], [5], [9]) ¢ime by FRI methods.
channel. In each experiment a pulse is transmitted thraugh t This paper is organized as follows. In Sectibh Il, we
multipath medium, and it is required that all the returnsisfan describe our signal model. A general sampling scheme of
before the next experiment is conducted. This imposes tthe received signal is proposed in Sectlod IIl. Secfion 1V
constraint that the transmitted pulse is sufficiently tiingted, describes the recovery of the unknown delays from the sam-
which can be problematic in certain scenarios. For examppges, and provides sufficient conditions ensuring a unigue
in wireless communications, modulated pulses are tratestnitrecovery. Relation to previous work is discussed in detail i
at a constant symbol rate through the medium. In this case, &ection[\Y. Sectioi_ VI describes an application example of
cannot consider the observed signal over one symbol pesiocchannel identification in wireless communications. Nuiredri
an independent experiment, since it will generally be affdc experiments are described in SectionlVII.
by reflections caused by adjacent symbols.

In Section[d] we propose a general signal model, that can Il. SIGNAL MODEL AND PROBLEM FORMULATION
describe the received signal from a time-varying multipat Notations and Definitions

medium. An advantage of our model is that it does not reqUireMatr'ces and vectors are denoted by bold font. with lower-
the assumption of non-overlapping experiments, and allows ! v y » Wi W

for general pulse shapes. We then formulate the mediliase letters corresponding to vectors_and_uppercaseslwer
matrices. Thenth element of a vectoa is written asa,,, and

identification problem as a sampling problem, in which thie se """ o .
of parameters defining the medium have to be recovered fr ijth ;Iement 2}‘ amatrbA. is denoted b)A.ij' Sgperscnpts
(-[- , ()7 and (-)” represent complex conjugation, transpo-

samples of the received signal at the lowest possible rate. T, d lgate t i tively. The i
this end we develop a general sampling scheme, which censfifion an conjugate transposition, respectively. - The oo
Penrose pseudo-inverse of a matAxis written asAf. The

of filtering the received signal with a bank @f sampling . ) o of si is d db
filters and uniformly sampling their outputs. This class d]dentlty matrix of sizen is denoted byL,,.

sampling methods is common in sampling theory [12] and can '€ Fourier transform of a continuous-time signdt) <
accommodate a wide variety of sampling techniques, inolydi~2 'S defined by.X () = [~ = (t) e7/*"dw, and
pointwise uniform sampling. GiveK multipath components, .
we show that at leatK sampling filters are required in order (@ (t),y () = / (t)y” (t)dt, 1)
to perfectly recover the time delays. We then develop eitplic _ - . . :
sampling strategies that achieve this minimal rate. IniQagr, denotes the_mner p_roduct be_tween two continuous-time sig-
we derive sufficient conditions on the transmitted pulsetaed nals. The d|scre.te-t|m_e Fourier transform (DTFT) of a se-
choice of sampling filters, which guarantee unique recom‘eryquencea [n] & £2 is defined by
the channel parameters. A (T = Z aln]e 7T 2)
In order to recover the channel parameters from the given neZ
samples we combine results from standard sampling theory, | . S .
with those of direction of arrival (DOA) algorithms [6], [1,1 afd is periodic with perio@r /T
[13], [14]. Specifically, by appropriate manipulation ofeth _
sampling sequences, we show that we can formulate dér Signal model
problem within the framework of DOA methods. We then rely We consider the class of signals that can be written in the
on the estimation of signal parameters via rotational iavexe form X«
techniques (ESPRIT) [11], developed in that context. The
unknown delays are recovered from the samples by first @ (t) = Z Z ax [n] g (t =ty —nT),
applying a digital correction filter bank, and then applythg
ESPRIT algorithm. Once the time delays are identified, thveherer = {tk}szl is a set ofK distinct unknown time delays
gain coefficients are recovered using standard samplirig.toan the continuous interval, T'), ax, [n] is an arbitrary sequence
The sampling schemes we develop for the channel ideriti-¢2, andg (t) € Lo is a known function. Each signal from
fication problem treated in this paper, can be viewed in this class can describe the propagation of a pulse with known

®)

k=1n€zZ



shapeg (t) which is transmitted at a constant rate bfT’ A finitely-generated Sl subspace éf, is defined as [26],
through a medium consisting df paths. Each path has a[27], [28]
constant delayy, and a time-varying gain, which is described K
by the sequencey [n]. In cases where the transmitted pulses 4 _ _ _ : _
are amplitude modulated, the sequengdn| describes the A {x(t) ;%ak )i (¢ =nT) - ax [n] € ZQ}
multiplication between the pulse amplitude and the gain co- @)
efficient of each path. In Sectidn VI we will discuss mordhe functionsgy, (t) are referred to as the generators.éf
thoroughly an example of a communication signal transuhittén order to guarantee a unique stable representation of any
through a multipath time-varying channel. signal z (t) € A by coefficientsay, [n], the generatorgy ()

Our problem is to determine the delaysand the gains are typically chosen to form a Riesz basis 4f[26], [27].
ax[n] from samples of the received signdl), at the minimal Clearly, the signal model i {3) is a special case[df (7) with
possible rate. Since these parameters uniquely defifeour generatorsgy,(t), obtained fromK delayed versions of (t):
channel identification problem is equivalent to developéfig
ficient sampling schemes for signals of the fofth (3), allayin ge(t)=g(t—te), 1<k<K (8)
perfect reconstruction of the signal from its samples. One way to sample a signal of the fori (7) is to Use

The model [(B) is more general than that described farallel sampling channels [17]. In each channel the signal
previous work [7], [4], [5], [8], [9], which is based on siregbr s first filtered with an impulse responsé (—t), and then
multiple experiments on the medium. In each experiment teampled uniformly at times = »7" to produce the sampling
received signal is observed over a finite time window, whickequencer, [n], as depicted in the left-hand side of FIg. 1.
is synchronized to the transmission time of the pulse. Momhe sampling sequence at the output of thie channel can
precisely, the received signal in thah experiment is given be written as
> ol = (@) s (t=nT)), 1<L<K (@

By analyzing the DTFTsC; (e/“T) of the sequences
cen],1 < ¢ < K, it was shown in [17] that the sequences
wheret,, is the delay of thé:th multipath component which is ¢, [n],1 < ¢ < K, which define the signak (¢), can be
constant in all the experiments, angl, is the gain coefficient recovered frome,[n] using an adequate multichannel filter
of the kth multipath component at theth experiment, which is bank. Specifically, let (ea‘wT) .a (eij) denote the lengtt
generally varying from one experiment to another. This nhodgolumn vectors whoséh elements aré), (eij) LAy (eij)
can be seen as a special casd_bf (3) with additional constra@spectively. Then, it can be shown that

on the pulsey (¢) and the transmission rate/T. Indeed, we

K
T (t) = Zakng (t - tk) ) te [Oa T) ’ (4)
k=1

can write the received signal on thg¢h experiment as ¢ (eij) = Msc (ejWT) a (ejWT) ) (10)
o () =2 (t—nT) te0,T) ) whereMgg (e/“T) is a K x K matrix with /kth element

if we require that s, (7)) = % S s; (w 3 %ﬂm) G, (w B Q%m) .
g(t—ty —nT) =0 for all n # 0. (6) mer (11)

. . L HereGj, (w) andS, (w) denote the Fourier transforms @f (¢)
This retquwzn:ﬁ nttt?eans :_P:_at the _plé[@(:tzhhas I];,m_te |t|me andsy (t) respectively. If this matrix is stably invertible a.e in
support, anc that the repetition period of the puisess 1ong |, then the sequences [n] can be recovered from the samples

enough such that all t.he reflec_tlons from one pulse Van'aging the multichannel filter bank whose frequency response
before the next pulse is transmitted. On the other hand, %'rgiven by M2 (eij) as depicted in the right-hand side
signal model does not require these constraints, so thahit f Fig.[I 5G '

support infinite length pulses and allows interference betw

. The proposed sampling scheme achieves an average sam-
experiments.

pling rate of K/T since there ar& sampling sequences each
at ratel/T. Intuitively, this approach requires one sample per
[1l. SAMPLING SCHEME degree of freedom of the signal(t): for a signal of the form
A. Known delays (3), under the assumption that the time delays are known, or

) ) a signal of the form[{7), in each time peridd there arek
Before we treat our sampling problem of signals of thge,, parameters.

form (3), we first consider a simpler setting in which the

delayst;, are known. In this case our signal model is a special

case of the more general class of signals that lie in a shit: Unknown delays

invariant (SlI) subspace. For such signals classes, thenselr We now address our original problem of designing a sam-
known sampling schemes that guarantee perfect recoverg atpiling scheme for signals of the forinl (3) with unknown delays.
minimal possible rate [12], [17], [25]. Below, we review theMe propose a system similar to that used in the case of
main results in this setting which will serve as a basis far olknown delays, comprised of parallel sampling channelesin
development in the case in which the delays are unknown.now there are more degrees of freedom in the sign@),



ri el HereM (e/“7 1) is ap x K matrix with /kth element
My (ej“T,T) = = Z Sy (w - —m)

o (t) —— : Mg (1) : meZ

-G (w — 2%771) eIt (16)

- ek [n] ax [n]
sie (1) t=nT

and D (e/“T,7) is a diagonal matrix withkth diagonal
element equal te—7«'. Defining the vectob (e/“7) as

b (ej“T) =D (ej”T, 7') a (ej“T) , a7

Fig. 1. Sampling and reconstruction scheme for the case @ikrdelays

T . . we can rewrite[(TI5) in the form
intuitively we will require at least the same number of chelsn [T5)

as in the case of known delays. Denoting the number of c(e/T) =M (T, 1) b (7). (18)
channels byp, this implies thatp > K. As we will see,
under certain conditions on the sampling filters and pulsg
p = 2K sampling filters are sufficient to guarantee perfea
recovery ofz(t) from the samples. We will also show that this’

is the minimal possible rate achievable for all signa(s). To proceed, we focus our attention on sampling filtgrso)

. In ea_lch chanr_1e| of our sampling system the sgn@i) with finite support in the frequency domain, contained in the
is pre-filtered using the filtes} (—¢) and sampled uniformly frequency range

at timest = nT resulting in the sample§](9). In the Fourier

Our problem can then be reformulated as that of recovering
eJ“T and the unknown delay set from the vectors
7‘“T) for all w € [0,2F). Once these are known, the
Vectorsa (e/“7) can be recovered using the relation inl(17).

domain, we can wrlte{:[9) as 27 2w
19
y . F = [T%T(erv) (19)
¢ Z S¢ ( - )X (w - ?m) : wherey € Z is an index which determines the working
mEZ

(12) frequency bandF. This choice should be such that it matches
From the definition ofz(t), its Fourier transform can be th€ frequency occupation gf(¢) (althoughy(t) does not have

written as to be bandlimited). This freedom allows our_sampling schem.e
X to support both complex and real yalued signals. Under this
_ —jw(tp4nT) choice of filters, each elememI (e/“7,7) of (I6) can be
X (w) Z Z a [ G (w)e expressed as
k=1n€Z
K
= ZAk (e7°T) G (w) e77t, (13) My (™7, 7) Z Wi (€7“7) N (7)), (20)
where Ay, (¢7“T) denotes the DTFT of the sequeneg|n], where W (/7)) is ap x p matrix whose/mth element is
andG (w) denotes the Fourier transform oft). Substituting 9Ven by
into we have . 1 2
@3 (12 Wi (e747) = ?Sz‘ (w + % (m—1+ 7))
1 2
C _]wT A _]wT S* =7
(e Z JCE DY f(“’ Tm) ~G(w+2—”(m—1+7)), (21)
mEZ T
-G (w - 2%Tr:m) e—Ii(w=Fm)te andN (1) is ap x K Vandermonde matrix witlnkth element
N (1) = e 7 (=1t (22)
]wT 7]wtk
ZAk € XG:ZSZ < ) Substituting [(2D) into[{118),
JwTy _ jwT jwT
G (w— 2%771) I FE b (14) c(e/") =W (¢/“7) N (1) b(e/“"). (23)
If W (e/+T) is stably invertible, then we can define the
where the first equality is a result of the fact thag (e/~7)  modified measurement vectdr(e/~") as
is 27r/T—periodiC. jwT\ _ -1 ( jwT jwT
From now on, we will assume that€ [0,2F), and all the d () =W () e (). (24)

expressions in the DTFT domain &e/T periodic. Denoting This vector satisfies

by ¢ (e7“T") the lengthp column vector whoséth element is Ty T
Cy (¢/*T) and bya (e7“™') the length/ column vector whose d (1) =N ()b (™). (25)
kth element is4;, (e’“T), we can write [I4) in matrix form Since N () is independent ofu, from the linearity of the
as DTFT, we can expres§ (R5) in the time domain as

c(eT) =M (T, 7) D (7“7, 7) a (/7). (15) d[n]=N(r)b[n], neZ. (26)



TJ* L i We note here that the conditions given above guarantee

a stable digital correction filter ban¥ ! (e7“7"), however
generally it will be comprised of infinite length digital &its.
() —— : W) | DTN Practical implementation of these filters can be achieved by
truncating the impulse response. The length of the regultin
|, filters will affect the total delay of our proposed method jeth
Al au will generally be longer than that of the methods descrilved i
Sectionl, due to the additional digital filtering stage.
Fig. 2. Sampling and reconstruction scheme for the case lofawn delays We summarize the results so far in the following proposi-
tion.
Proposition 1: Let ¢/ [n] = (x (t),se(t —nT)), 1 < £ <
The elements of the vectors[n] and b [n] are the discrete p be a set ofp sequences obtained by filtering the signal
time sequences, obtained from the inverse DTFT of the(t) defined by [(B) withp filters sj (—t) and sampling
elements of the vectorls (e/T) andd (e/“T) respectively. their outputs at times:T. Let 5;(w) be supported o =
Equation[[2b) and its equivalent time domain representati(ﬁ%”% %” (p+ 7)], and letQ = [0, %”). If the functiong (¢)
(26), describe an infinite set of measurement vectors, elach gatisfies the condition if (82) and the matgixe’~”), defined
tained by the same measurement malixr), which depends by (30), is stably invertible a.e € (2, then the delays and
on the unknown delays. This problem is reminiscent of thevectorb (e/“*) can be found from the set of equations
type of problems that arise in the field of DOA estimation T T
[14], as we discuss in the next section. One class of efficient d (ej ) =N(7)b (ej ) ’ (33)
methods for DOA recovery, are known as subspace methagisng subspace methods, described in the next section. Here
[14]. These techniques have subsequently been appliedNQr) is a p x K Vandermonde matrix withnkth element
many other problems such as spectral estimation [29], syste—7 % (m—1+"tx and
identification [30] and more. Our approach is to rely on these T T T
methods in order to first recover from the measurements. d (63 ) =W (63 )e (), (34)

After 7 is known, the vectors (?ij) anda (e/“") can be iy w (e7<T) defined by[(211). The sequencegn] can then
found using linear filtering relations by be recovered by

jwTY __ T JjwT . . .
b (ej ) =N'(7)d (e7 ) : (27) a (e-wT) =D! (erT,T) Nf(r)d (e-wT) , weN (35
SinceN (1) is a Vandermonde matrix, its columns are linearl
independent, and consequenMy N = I,. Using [17),
a (e-j“’T) =D! (ej“’T, T) N (r)d (ej“’T) . (28)
The resulting sampling and reconstruction scheme is dsgpicC. Examples of filters

in Fig.[2. . . - We now provide some examples of filtess(¢) satisfying

Our last step, therefore, is to derive conditions on thfie required conditions.
fiIters.s;;(—.t) and the functiory () in order that the matrix 1) Complex bandpass filter-banfhe first example is a set
W (e/“") is stably invertible. To this end, we can decomposgs complex bandpass filters. We assume that the working band

s5(-1)

}/lvhereD(ej‘“T’T) is a diagonal matrix with diagonal elements
e Iwt,

the matrixW (e/“") as is F = [0,Zp] (v = 0), and the functiory (t) satisfies[(32)
W (eij) -s (eij) el (eij) (29) ©On that frequency range. We choose the filt€ré—t) as ideal

_ bandpass filters, covering consecutive frequency bands:
whereS (e/7) is ap x p matrix with émth element

T, wel(l—1)Z, 2]
; 1 2 S, =< reer 36
Sem (eWT) = TSZ (w + % (m—1+ 'y)) (30) ¢(w) {O, otherwise. (36)

andG (e7“7) is ap x p diagonal matrix whosenth diagonal The resulting matrixS (") is diagonal, and stably invert-
element is given by ible. This example generalizes to any valid working band,

5 given by [19), by shifting the frequency response of therflte
G (eij) -G (w + n (m—1+ 7)) ) (31) We now provide an example demonstrating the importance
T of the sampling filter.
Each one of these matrices needs to be stably invertibleExample 1:We consider the case wheggt) = §(¢) and
Therefore, from[(31) the condition that the functip(¥) needs there areK = 2 diracs per period of" = 1, as illustrated in
to satisfy is that Fig.[3(a). The sampling scheme described above, consisting
of a complex bandpass filter-bank, is used. In Figs. 3(b)—
(d), we show the outputs of the first sampling channels.
In addition the filterss; (—t) should be chosen in such a wayThis example demonstrates the need for the sampling filters
that they form a stably invertible matri& (e-j‘“T). Examples when sampling short-length pulses at a low sampling rate.
of such filters are given in the next subsection. The sampling kernels have the effect of smoothing the short

0<a<|Gw)|<b<ooaeweF. (32)



pass filter with cutoffrp/T", followed by a uniform sampler

50 . /\A at a rate ofp/T.
. /\ IV. RECOVERY OF THEUNKNOWN DELAYS

0 We have seen in the previous section that perfect recon-
o2 ‘[ struction of a signak (¢) of the form [3), is equivalent to that

of recovering the delays from the modified measurements of
(28). As we now show, this problem is similar to that arising
@) (b) in DOA estimation.

s A. Relation to direction of arrival estimation

/\ /\ /\ A [\ /\/\ In DOA estimation [6], [11], [13], [14],K narrow band
» [ AL A /\ /\ 7 sources impinge on an array, composedpo$ensors, from
/ v W \/ \/ U V v V \} \/ v \/ V distinct DOAs. The goal is to estimate the DOAs of the sources

from a set of M measurements, obtained from the sensors
outputs at distinct time instants.

The DOA estimation problem can be formulated using the
(c) (d) following measurement model
Fig. 3. Stream of diracs. (a){ = 2 diracs per periodl’ = 1. (b)-(d) X=A (@) S (42)
The outputs of the first three sampling channels. The dashes tienote the
sampling instants. where X is ap x M matrix, composed of the measurements

in its columns S is a K x M matrix consisting of the sources

signals in its columns andi (©) is ap x K matrix which
pulses (diracs in this example). Consequently, even when ffepends on the set of unknown DOAL The structure of
sampling rate is low, the samples contain information atioeit A (©) is such that itskth column, denotech (6;), depends
signal. In contrast, if we were to sample the signal in Eig)3(only on the DOA®,. of the kth source. The vectoa (6y)
directly at a low rate, then we would often obtain only zer& referred to as the steering vector of the array toward
samples which contain no information about the signal.  directiond,.. The set containing all possible steering vectors,

2) Delayed channelstn this example we assumeis even i.€, {a(f),6 € [0,2m)} is referred as the array manifold.

and define the working band as Given X, the problem is to recover the DOA%;, and the
P sourcesS.
F = [—Tp, Tp] (37) The set of equations if_(26) has the same form[as$ (41).

The kth column of the matriXN () depends only on théth

(v = —p/2). We also assume that(t) satisfies [(32). We ynknown delayt;, and can be described by the vectoft; ),
choose the'th filter as a delay of\, € [0,7") followed by an \ynere

ideal low pass filter. Thus,

. n(t)=[ e ¥ IFUN L i F @l T
Spw) = | e we (38) (42)
¢ ~ o, otherwise. The array manifold in our setting is the set of vectors

, . : _ . {n(t),t € [0,7)}. Therefore, we can adopt DOA methods
With t;us chplce _Of fllter_s, t_hefmth element of the matrix to estimate the unknown delays. The only difference between
S (eaw ) defined in [(3D) is given by the two problems is that in our setting, we have infinitely
Som (77) = i (w0t B (m—1-p/2)) A, many measurement vectors, in contrast to the DOA problem in
. which X has finitely many columns. This will require several
T (m=1A:(39)  adjustments, which we will detail in the ensuing subsestion
Two prominent methods used for DOA estimation are
MUSIC (MUltiple Signal Classification) [6] and ESPRIT (Es-
S (eij) — P (ea'wT) F, (40) timation of Signal Parameters via Rotational Invariancefife
‘ nigues) [11]. These algorithms belong to a class of techesqu
where® (/") is a diagonap x p matrix whose/th diagonal known as subspace methods, which are based on separating
element iSej(WzT”(”/Q))A@, andF is a Vandermonde matrix the space containing the measurements into two subsphees, t
whose/mth element is given byej%”(m*m@. From [40) it signal and noise subspaces. Estimating the unknown set of pa
can be seen tha (¢/“7) is invertible for allw € ©, when rameters using MUSIC involves a continuous one-dimensiona
the delays in each channdl, are distinct. search over the parameter range. This procedure can bg costl
One special case of this choice of sampling filters is whdrom a computational point of view. The ESPRIT approach
the delays are uniformly spaced, e = (¢ — 1) T/p. In this can estimate the unknown set of parameters more efficiently,
case our sampling scheme can be implemented by an ideal lsyvimposing the additional requirement that the measurémen

(= FE®/2)A i

The matrixS (e/“7) can be expressed as



matrix is rotationally invariant. We describe this progein Clearly, from its construction, the rank of the matiiis r.
subsectiof IV-C and show that in our caser) satisfies this From [43),
condition, and therefore we use the ESPRIT approach. p>2K —r. (48)
We note that although the MUSIC and ESPRIT meth-
ods were originally developed as DOA estimators, these apecording to Theorem 1 in [31], the solutiofr, B) is the
proaches and other subspace methods have been used sucgeigie solution to[(47) under the conditidn48).
fully in other fields. Since the set of unknown delayss the unique solution to
the finite set of equations (U7), it is also a unique solutmtine
infinite set of equationg_(43). Ongeis uniquely determined,
the matrixIN (7) is known. Since every vector of the vector
We now rely on results obtained in the context of DOAetb[A] is contained inC%,
estimation in order to develop sufficient conditions for a
unique solution to[{26). Such a solution consists of the it&in dim (span(l_)[[\])) < K. (49)
set of vectord [n],n € Z and the unknown delays
Conditions for a unique solutio®,S) for (@1) where Therefore, according td_(#4) > K. The matrix N (7) is
derived in [31]. Since [31] deals with a finite number ofi p x K Vandermonde matrix which consist df linearly
measurements, we have to extend the results to our caséy wiridependent vectors. Therefore, for everg A, if b [n] is a
consists of an infinite number of measurements. The analys@ution to

B. Sufficient conditions for perfect recovery

in [31] requires a preliminary condition that any subsetpof d[n] = N (7)b|[n] (50)
distinct steering vectors from the array manifold is lingar
independent. In our case this condition translates into tHen it is the unique solution. [ |

requirement that any set of vectorsn (¢;),1 < i < p Proposition[2 suggests that a unique solution to the set of
associated with distinct delays € [0,7),1 < i < p are equations[(26) is guaranteed, under proper selection of the
linearly independent. Froni_(#2), any such set forms>ap number of sampling channels. This parameter, in turn,
Vandermonde matrix, and are therefore linearly independetietermines the average sampling rate of our sampling scheme
Therefore, this condition automatically holds in our peshl which is given byp/T. The condition [(44) depends on the
without forcing any additional constraints. value of dim(span(b [A])), which is generally not known in

To derive sufficient conditions for a unique solution of thedvance. According to our assumption dapar{b[A])) > 1,
set of infinite equationg (26) we introduce some notation. Wherefore in order to satisfy the uniqueness conditioh (44)
define the measurement sdfA] as the set containing all every signal of the form[{3), we must haye > 2K — 1
measurement vectord [A] = {d[n],n € Z}. Similarly, we sampling channels or a minimal sampling rate 2K /7.
define the unknown vector sbfA] asb [A] = {b[n],n € Z}. Comparing this result to the minimal sampling rate in theecas
We may then rewrite (26) as when the delays are known in advance, there is a penalty of
2 in the minimal rate.

In SectionfV-A we show that our signal model, described
in (@), can be considered as part of a more general framework
of signals that lie in a union of Sl subspaces [15]. It was

d[A]=N(r)b[A]. (43)

The following proposition provides sufficient conditiore fa
unique solution to[{43).

Proposition 2: If (% B[A]) is a solution to[(4B) shown in [15] that the theoretical minimum sampling rate
’ ' required for perfect recovery of such a signal from its saspl
p > 2K — dim (span(b [A])) (44) is 2K/T. Therefore, according to the results of Proposifibn 2,
our sampling scheme can achieve the minimal sampling rate
and - required for signals of the forni](3).
dim (span(b [A])) > 1, (45)  The minimal sampling rate o2k /T, which is achieved

by our scheme, does not depend on the bandwidth of the
pulse g (t), but only on the number of propagation paths
K. In applications where the number of propagation paths
is relatively small, or the bandwidth of the transmitted saul
is high, our approach can provide a sampling rate lower
) . _ than the Nyquist rate. More precisely, whei/T < W,
Proof. We denoter - d|m(span(b~[A])). Fiom (43) whereW is the bandwidth of transmitted pulse/, our method
r 2 1. Therefore, there exist a finite Su_bS‘Et:_{ni}izl S A can reduce the sampling rate relatively to the Nyquist rate.
such that the vector s&{A] spans am-dimensional subspace: gqr example, the setup in [32], used for characterization of

dim (span(B[]\])) . (46) ultra-wide band (UWB) wireless indoor channels, consists o

pulses with bandwidth of%/ = 1GHz transmitted at a rate
By defining the matrice® andD as the matrices consisting

then (7, b [A]) is the unique solution of{43).

The notation spa(B [A]) is used for the minimal dimension
subspace containing the unknown vectorlsét|. The condi-
tion (@8) is needed to avoid the case whbr\] = 0. In this
case clearly the set can not recovered uniquely.

of 1/T = 2MHz. Under the assumption that there &2
of the vector setsk_)[]\] and am, we can write significant multipath components, our method can reduce the
sampling rate down tal28MHz compared with the2GHz
D =N (7)B. (47) Nyquist rate.



Beside the theoretical interest, sampling rate reductionvectors associated to the non-zero singular valud® of We
also important for implementation considerations. Focfical define thep x K matrix E; as the matrix containing those
ADCs, which perform the sampling process, there is a tradeectors in its columns.
off between sampling rate and resolution [33]. Therefore, Now, we will the exploit the special structure of the Vander-
reducing the sampling rate allows the use of more precis®nde matrix. We denote the mati; () as the sub matrix
ADCs, which can improve the time delay estimation. Thextracted fromN (7) by deleting its last row. In the same way
power consumption of an ADC can also be reduced hye defineN; (7) as the sub matrix extracted frolN (7) by
lowering the sampling rate [33]. In addition, a lower ratade deleting its first row. The Vandermonde matt(7) satisfies
to more efficient digital processing hardware, since a ®mnalthe following rotational invariance property:
number of samples has to be processed. This also allows

performing the digital processing operations in real time. Ny (1) =N (1) R (7) (53)
whereR (7) is a diagonalK x K matrix, whosekth diagonal
C. Recovering the unknown delays element is given bR (7) = e727%/T', Since the matrices

. . _ N and E; have the same column span, there exists an
According to Propositioi]2, in order be able to perfeCt%v(eTr)tibleK « K matrix T such that P

reconstruct every signal of the forifl (3), our sampling sohem
must havep > 2K sampling channels. We assume throughout N (r) = E,T. (54)
that this condition holds.

We now describe an algorithm for the recovery of the u
known delays from the measurement déf\], which is based N, (r) =E4T. (55)

on the ESPRIT [11] algorithm. One of the conditions need . . ' . . .
in order to use the ESPRIT method is that the correlatieoéri{m”arly’ deleting the first row irt(34) and using the rovaal

matrix invariance property (33), we have

Ry = bn]b" [n], (51) N, (r)R (1) = E¢;T. (56)
nez

nE§y deleting the last row in(34) we get

_ N o ) N Combining [B5) and[(36) leads to the following relation
is positive definite. In order to relate this condition t0 OUpetween the matriceE,; andE,:

problem, we state the following proposition from [21]. )
Proposition 3: If the sum [51) exists, then every matix Eq =E, TR(7r) T (57)
satisfyingR;, = VV* has column span equal to SganA]).  The matrixEy; is a (p — 1) x K (p > K) matrix with full
An immediate corollary from Propositidd 3 is thRt,, = 0 column rank. ThereforEZlEsT — Ix. Using [5T) we define

is equivalent to the condition dispan(b [A])) = K. In this o following K x K matrix ® as
case, which we refer to as thuacorrelated casene can apply

the ESPRIT algorithm on the measuremenidspt] in order to ® =E[ Ey =TR(r)T". (58)
recover the unknown delays. The case @man(b [A])) < K, grom [58) it is clear that the diagonal mati (r) can be

will be referred to as theorrelated caseln this setting the obtained from the matrix® by performing an eigenvalue

conditionRy, - 0 doest not hold, and the ESPRIT algorithnye ;o mposition. Once the mati (7) is known, the unknown
cannot applied directly. Instead, we will use an additicstatje delays can be retrieved from its diagonal elements as
originally proposed in [34], [35].

Note, that te = _garg(Rkk (1)) . (59)
m
Ri = Y d[n]d”[n] In summary, our algorithm consist of the following steps:
nel 1) Construct the correlation matrix Rgq =
— H H ez dln]d” [n].
N(7) <7;Zb [n]b M) N () 2) Perform an SVD decomposition &,; and construct
_ N(r)RyN (7). (52) the matrixE, consisting of thei singular vectors asso-

ciated with the non-zero singular values in its columns.
Since for any set of delays;, the matrix N (7) has full ~ 3) Compute the matrix = EZLEST-
column-rank, the ranks of the matricBs;; andR,;, are equal. ~ 4) Compute the eigenvalues @, \;,i = 1,2,..., K.
Therefore, the decision whether we are in the uncorrelated 05) Retrieve the unknown delays by = —Larg(\;).
correlated case can made directly from the given measure-
ments by forming the matriR ;4. 2) Correlated Case:When the conditiorR;, > 0 is not

1) Uncorrelated Case:From [52), under the assumptionsatisfied the ESPRIT algorithm cannot be applied directly on
that the matrixRy;, is positive definite, it can be shown thathe vector sed [A]. In this case the rank dR,4 is smaller
the rank of the matriR 4 is K. Moreover, the matriceRy; than K, and therefore its column span is no longer equal
and N (7) have the same column span which is referred &s the entire signal subspace. To accommodate this setting,
the signal subspace. By performing a singular value decome perform an additional stage before applying the ESPRIT
position (SVD) of the matrixR 44, we can obtaink vectors, method, based on the spatial smoothing technique proposed i
which span the signal subspace, by taking fhdeft singular [35], [34].



To proceed, we defind/ = p — K length{K + 1) sub provided, these do not necessarily imply that there exists a
vectors efficient recovery algorithm, which can recover the signairf

B T its samples at the minimal rate. Our aim in this work, is
di[n]=[di[n] disa[n] ... dizx[n] |7 . (60) provide concrete recovery techniques, that are simple to
We define the smoothed correlation matfRy,; as implement, for signals over an infinite union of SI subspaces
M In summary, in this work we focus on a special case of
Ry = — Z Z d; [n] dfl ] . (61) S|gnal_s that lie in an infinite union of Sl subspaces. Eor this
M = case, in contrast to [15], we provide a concrete reconstruct

method. This method achieves the minimal theoretical sam-

pling rate derived in [15]. In addition, while other works0[2

[18], [19], [17], [22] provided reconstruction algorithnasly

or signals defined over a finite union of subspaces, here we
rovide a first systematic sampling and reconstruction oteth
?signals in an infinite union of subspaces.

Under our assumptiong > 2K, therefore M > K.
According to [35], whenM > K the rank of the smoothed
correlation matrix isK regardless of the rank of the matri
R4,. We will refer now to column rank oR4, as the signal
subspace, and can then apply the ESPRIT algorithm on t
matrix.

V. RELATED SAMPLING PROBLEMS B. Compressed sensing of analog signals

In the introduction, we outlined previous approaches to The sampling problem in [17] also deals with signals that
time-delay estimation. In this section, we explore in mor in a union of S| spaces and provides recovery algorithms.
detail the relationship between our sampling problem aed pHowever in the setting of [17] there are finite number of
vious related setups treated in the sampling literatureptiag possible subspaces, in contrast to our case, where there are
signals from a union of subspaces [15], [16], compressad infinite number of possible subspaces.
sensing of analog signals [17], [18], [19], [20], and FRI The signal model in [17] can be described in termsN\of

sampling [23], [24]. generating functions,(t) as
A. Sampling signals from a union of subspaces @ (t) = IEIZK ;ng [ ae (t =nT), (63)
A signal model which received growing interest recently is .

that of signals that lie in a union of subspaces [15], [16p]{2 Where the notation/| = K means a sum over at most

[18], [19], [22]. Under this model each signal(t) can be K elements. Thus, for each signal there are ohlyactive

described as [15] generating functions out oiV total possible functions, but
x(t) e U S, (62) we do not know in advance which generators are active. In

~er principle, such signals can be sampled and recovered using

. . . the paradigm described in Sectiof Il corresponding/tgen-
where S, are subspaces of a given Hilbert space &nds . . ;
an index set. The signat(t) lies in one of the subspaceseratlng functions. Indeed, any signal of the foiml(63) diear

S5, however it is not known in advance in which one. Thus'fﬂso lies in the Sl subspace spanned byAhgeneratora, ({),

effectively, to determine:(t), we first need to find the activewhere some of t_he sequencz_eign] are |dent|cally0._ However,

. this would require a sampling rate &f/7, obtained byN

subspace, or the index . ' . .
: . sampling filters. Since only< of the generators are active,
Our signal model, given by[{3), can be formulated as in, .- .
. . . . intuitively, we should be able to reduce the rate and still be
(62). As described in Subsectidn IlIFA once the time delay; . : - .
, . o able to recover the signal. The main contribution of [17] is a

are fixed, each signat () lies in a Sl subspace spanned b mpling scheme consisting 2f¢ filters that is sufficient in

K generators. Therefore, the set of all signals of the f@im ( ping 9

. Do : . ofder to recover:(t) exactly.
constitute an infinite union of Sl subspaces, wheie the set (*) Y - .
, : . We can formulate our problem as a finite union of Sl spaces
of delaysr, which can take on any continuous value in the

interval [0, T'], andS,, is the corresponding Sl subspace. of the form @) it we assume th_at_ the “”"UOW”_ delays are
o o . taken from a discrete grid containirg possible time delays.
In [15], [16] necessary and sufficient conditions are detiv . : : X
for a sampling operator to be invertible over a union o nder this assumption the generating functiond ij (63) @n b

subspaces. For the case of a union of S| subspaces, [%ﬁ)ressed as

suggests a sampling scheme, similar to that used in [17] ar(t)=g(t—t), 1<L<N. (64)
and in this paper, comprised of parallel sampling channels.

Conditions on the sampling filters are then given in ordd@iherefore, under a discrete setting, the method of [17] can
to ensure reconstruction of the signals from its samples. pnovide a sampling and reconstruction scheme for a signal of
addition, the minimal number of sampling channels allowintpe form [3) with rate2 K /T.

perfect recovery of the signal from its samples is shown to beSimilar to our approach here, the sampling scheme in [17]
2K. This leads to a minimal sampling rate ®f(/7T which is based or2K parallel channels, each comprised of a filter
is achieved by our scheme. However, in [15] no concretend a uniform sampler at rate/T. However, in order to
reconstruction algorithms were given that can achieve thashieve this minimum sampling rate, the reconstruction in
rate. Furthermore, although conditions for invertibilizere [17] involves brute-force solving an optimization problem
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with combinatorial complexity. The complexity of the reeonfall into the third category of infinite length FRI signals.
struction stage can be reduced by increasing the numberSafme special classes of finite (and periodic) FRI signhalgevhe
channels, which entails a price in terms of sampling rate. treated in [23], such as streams of diracs. For these special
contrast, our reconstruction algorithm is based on the EBPRsettings sampling theorems where derived with very specific
algorithm, and can obtain the minimal sampling rat@ &f/7° kernels, that achieve the minimal rate (the rate of innovati

in polynomial complexity. Furthermore, we do not requirélowever, these methods are not adapted to the general model
discritization of the time delays but rather can accommedagg).

any continuous set of delays. In this sense we can view ourSampling and reconstruction of infinite length FRI signals
sampling paradigm as a special case of compressed sengig treated in [24]. The method in [24] is based on the use
for an infinite union of SI spaces. Since previous work in thigf specific sampling kernels which have finite time support:
area has focused on sampling methods for finite unions, tRisrmels that can reproduce polynomials or exponentials. In
appears to be a first systematic example of a sampling theg@dition the functiony (¢) is limited to diracs, differentiated
where the subspace is chosen over an infinite union. diracs, or short pulses with compact support and no DC
Another difference with the approach of [17] is the desigBomponent. The reconstruction algorithm proposed in [84] i
of the sampling filters. In our method, we have seen thgjcal, namely it recovers the signal’s parameters in eaok ti
simple sampling filters can be used, such as low pass filterigterval separately. Naive use of this approach in our odnte
bandpass filter-bank. In contrast, the scheme of [17] requihas two main disadvantages. First, in our method the unknown
proper design of the sampling filters, which is obtained idelays are recovered from all the samples of the sigra).
two stages. In the first stagey filters h,(t),1 < £ < N A local algorithm is less robust to noise and does not take
are chosen that satisfy some conditions with respect ta\thethe shared information into account. In addition, in ternfis o
possible generating functions. At the second stage, a smajomputational complexity, in our method all the samples are

set ofp > 2K filters s,(¢) is constructed fronh,(t), via collected to form a finite size correlation matrix, and thiee t
N N ESPRIT algorithm is applied once. Using the local algorithm
si (t) = Z Z Z AlyCim [n] b (t — 0T, (65) requires applying the annihilating filter method, used f&d F
=1 m—1ncZ recovery, on each time interval over again.

where A is ap x N matrix that satisfies the requirements A final disadvantage of the FRI approach is the higher
of compressed sensing in the appropriate dimension [36], at##MPpling rate required. In order to discuss the sampling rat
com [n] are a set of sequences given explicitly in [17]. In ordetchieved by the local algorithm proposed in [24], we limit
to arrive at filters that are easy to implement, a careful@hoiOur discussion to the case where the functjoit) is a dirac,

of the parameters is needed, which may be difficult to obtaifyhich is the main case dealt with in [24]. The theorems for
unigque recovery of the signal from its samples in [24] reguir

that in each interval of siz&@K LT, there are at mosk™ diracs,
where L is the support of the sampling kernel afid is the
Another interesting class of signals that has been treaigghpling period. Since in each interval of sifewe havek
recently in the sampling literature are FRI signals [23}][2 dijracs, it can be easily shown that the minimal sampling rate
Such signals have a finite number of degrees of freedom peb 1, /T, which is a factor ofl, larger than the rate achieved
unit time, referred to as the rate of innovation. Examples gg, our scheme. For example, when using a B-spline kernel,
FRI signals include streams of diracs, nonuniform splisesl \yhich is the function with the shortest time support that can
piecewise polynomials. A general form of an FRI signal igeproduce polynomials of a certain order, an order of attleas
given by [23] N = 2K — 1 is needed, which has time suppdit= 2K.
2 (t) = Z enth (£ — 1), (66) Thus, the sampling rate 5K times larger than our approach.

C. Signals with finite rate of innovation

nez

where ¢ (t) is a known function¢,, are unknown time shifts
andc, are unknown weighing coefficients. Recovery of such
signals from their samples is equivalent to the recoverhef t
delayst,, and the weights;,. In this section we describe a possible application of the
Our signal model[{3) can be seen as a special casepPs®posed signal model and sampling scheme to the problem of
(68), where additional shift invariant structure is imptse channel estimation in wireless communication [37]. In saoh
This means that in each periddthe time delays are constantapplication a transmitted communication signal passeaitr
relative to the beginning of the period, whereas in a genefaimultipath time-varying channel. The aim of the receiver is
FRI signal the time delay can vary from period to period. OUf estimate the channel's parameters from the samples of the
method is designed in such a way that it utilizes this extfgceived signal.
structure to reduce the rate, while still guaranteeingqmérf We consider a baseband communication system operating in
recovery. a multipath fading environment with pulse amplitude modula
The FRI signals dealt with in [23], [24] are divided intotion (PAM). The data symbols are transmitted at a symbol
three main classes: periodic, finite length and infinitetentj rate of 1/7', modulated by a known pulse (¢). For this
we address our signal model as an FRI signal it will generalpmmunication system the transmitted sigmal¢) is given

VI. APPLICATION
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by method, has a potential of reducing the sampling rate, into

Neym rates which can be achieved by lower rate ADCs with better
er(t) =Y dnlg(t—nT) (67) resolution and lower power consumption.
n=1
whered [m] are the data symbols taken from a finite alphabet, VIl. NUMERICAL EXPERIMENTS

and N, is the total number of transmitted symbols. ~ We now provide several experiments in which we exam-
The transmitted signatr () passes through a baseban#i€ various aspects of our proposed method. The numerical
time-varying multipath channel whose impulse response §&Periments are divided inté parts:

modeled as [38] 1) demonstration of a channel estimation application;
K 2) evaluation of performance in the presence of noise;
3) effects of approximation of the matriR ;4 using only
h(r,t) = t)o(r— 68 o
(7,1) ;ak ()0 (T — 7h) (68) a finite number of measurement vectors;

) ) . ) 4) effects of imperfect digital correction filtering, using
whereqy, (t) is the path time varying complex gain for théh finite length filters.
multipath propagation path andg i_s the corresponding time In all the simulations, except for the one [AVII-D, we
delay. The total n_umber of paths is den_otedeyWe assume | <o the sampling scheme described in Sedfion 1-C.1, which
that the channel is slowly varying relative to the symbokrat ., sists of a bank of ideal band-pass filters. We assume that
so that the path gains are considered to be constant over : i« _ [ 21 ;
eymbol period: ¥ working band isF = [0, 2% p], and that the functiog (t) _
has constant frequency response on that frequency raege, i.
ay (t) = a [nT] fort € [nT,(n+1)T]. (69) G(w) = T,w € F. In order to improve the robustness to
N _ noise in the delay recovery stage, we use the total leastregu
In addition, we assume that the propagation delays are @it S) version of the ESPRIT algorithm described in [11]. All

fined to one symbol, i.e. € [0,T). Under these assumptionsihe results are based on averagimg0 experiments.
the received signal at the receiver is given by

A. Channel estimation

K Noym
TR (t) = Z Z ar[n]g(t—7 —nT)+n(t)  (70) In the first simulation we demonstrate a channel estimation
k=1 n=1 application. We consider a time-varying channel of the form
where (€8), with K = 4 paths. In order to simulate a time varying
_ channel, the channel’s gain coefficienig [nT] are modeled
ax [n] = ag [nT]d [n] (72) . ,
according to the Jakes’ model [42] as a zero-mean complex-
andn (t) denotes the channel noise. valued Gaussian stationary process with the classicaldpesh

The received signatr (¢) fits the signal model described inpower spectral density. In such a model the varying rate of
(3). Therefore, if the pulse shapgt) satisfies the condition each gain coefficient depends on the maximal Doppler shift
(32) with p = 2K, our sampling scheme can recover the timg;. In order to simulate a slow varying channel, relatively
delays of the propagation paths. In addition, if the trati®udi to the symbol ratel /T, we used for each path a maximal
symbols are known to the receiver, the time varying pathgyaiDoppler shift of f; = 0.05/T. The energy of each time-
can be recovered from the sequenag$n). varying path gain coefficient was normalized (tb/2) """,

As a result our sampling scheme can estimate the chann&fge path delays were drawn uniformly in the ran@eT).
parameters from samples of the output at a low rate, propéor the estimationV,,,,, = 100 symbols were used where the
tional to the number of paths. As an example, we can loelata symbols are assumed to be known. The samples at the
at the channel estimation problem in code division multipleutput of each of the sampling channels were corrupted by
access (CDMA) communication. This problem was handlegmplex-valued Gaussian white noise with an SNR &dB.
using subspace techniques in [39], [40]. In these works theThe number of sampling channels is taken to jbe=
sampling is done at the chip ratg'T, or above, wherél, 5, which is only one more than the number of unknown
is the chip duration given byl, = T/N and N is the delays. Although we have seen tldt sampling channels are
spreading factor which is usually high023, for example, required for perfect recovery of every signal of the foirh, (3)
in GPS applications). In contrast, our sampling scheme ctor some signals lowering the number of sampling channels
provide recovery of the channel’s parameters at a sampliisgpossible. Indeed, according to Propositidn 2, for signal
rate of 2K/T. For a channel with a small number of pathswith dim (span(b[A])) = K, the minimal number of sampling
this sampling rate can be significantly lower than the chip.ra channels required i& + 1. We will demonstrate that for this

Another example is UWB [41] communications which haexample, K + 1 channels are sufficient.
gained popularity recently. In this technology the bandid In Fig.[4 the original and estimated channels are shown.
of the transmitted pulse can be up to several gigaher&ince the gain coefficients of the channel are time-varying,
Current technology commercial ADCs cannot operate at themaly their averaged energy over time is shown in the figure.
sampling rates. For example, the highest sampling rate ADEFig.[H, we plot the magnitude of the original and estimated
device, manufactured by National Semiconductor, suppogains of the first path versus time. From Figk. 4 &hd 5 it is
sampling rates of up t8GHz at a relatively low resolution of evident that our method can provide a good estimate of the
8 bits and high power consumption. In contrast, our proposetlannel’s parameters, even when the samples are noisy.
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B. Performance in the presence of noise In Fig.[d, the mean-squared error (MSE) of the time delays
fRptimation is shown versus the SNR, when uspng= 4

mpling channels. For comparison we also plot the CRB.
he figure demonstrates that our method achieves the CRB

for SNR> 15dB, which is the range that delays estimation

In the next simulations we examine the effect of SNR a
the number of sampling channels on the error in the dela
estimation. We choosE = 2 close delayst; = 0.43527 and
to = 0.5217. The sequences;[n],k =1,2,n=1,2,...100

are finite length sequences with unit power chosen accordff! P€ considered as unbiased. _
to Jakes' model withf, = 0.05/T. n Fig. [, the MSE of the estimation of the time delays

Under the setting of the simulation, which consists of § Shown versus the number of sampling channels, for a
pulse with constant frequency response and ideal band-pﬁgQStant SNR 0fl10dB. The results demonstrate that the

filters, from [23) it can be verified that the sampling Seqlﬂasncestimation error can be improved_ by.increasing the number
satisfy the following relation in the time domain of channels. Therefore, oversampling improves the rolagstn

of our method to noise.

c[n]=N(1)bn], neZ. (72)

The Cramer-Rao bound (CRB) for unbiased estimators Gf Effects of imperfect approximation B

O = %’Ttk from the datac|n], was derived in [43] for  Next, we investigate the influence of estimating the matrix
this data model. The TLS-ESPRIT algorithm, used for thR,, using only a finite number of measurement vecibfs].
delays estimation in our method, is known to be asymptdgicalThis number effects the total delay of our method, since
unbiased [44]. Experimentally we verified that, under theeconstruction of the sequences|n] is performed only after
simulation setup, the bias of the delays estimation is lotlie unknown delays are recovered. In Fif] 8 the MSE of the
enough for SNRs abové5dB. Therefore, in this range of delays estimation is shown versus the number of measurement
SNRs, the CRB derived in [43] can give a lower bound on theectors used for estimation dR.q. A constant SNR of
MSE of the delays estimation (up to factor@i), assuming 20dB andp = 4 sampling channels are used. Two cases
our specific sampling scheme. are illustrated: in the first, the sequences[n] are taken
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Fig. 8. MSE of the delays estimation versus the number of fsngsed, Fig. 9. MSE of the delays estimation versus SNR for differiemgths of
for K =2, p =4 and SNR20dB. digital correction filter bank approximations.

according to the Jakes’ model with paramefgr= 0.05/T VIIl. CONCLUSION
and in the second cagg = 0.1/T is used, which corresponds In thi idered th bl f L
to sequences with faster variation rate. Hi§. 8 demonstrat n.t 'S paper, we considere the problem o est|m-at|ng
that the MSE depends on the variation rate of the sequenctég. time delays and time varying coefﬂments_ of a T““'“path
channel, from low-rate samples of the received signal. We

each new measurement vectdfn] contains, improving the showed that this problem can be formulated within the broade

estimation ofR44. In addition, it can be seen that using onlfontEXt of sampling theory, in which our goal s to recover an

50 measurement vectors, yields a reasonable estimation of ﬁpg\log S|gnal.r(t) that lies in a Sl supspace, spanned by
delays in the case of, — 0.1/T. The same estimation errorgenerators with unknown delays. This class of problems can

is achieved usin@0 measurement vectors, when using S|O\Be viewed as an infinite union of subspaces.

varying sequences. This result can be further improved béWe showed_ that if the channel h&s mu_|t|path compo-
increasing the SNR or the number of sampling channels. nents, or equivalently, if the S| subspace is generatedthy
generators, than under appropriate conditions on the &agnpl

filters, a sampling rate 02K /T is necessary and sufficient
to guarantee perfect recovery of any signét). Here T is

In the next simulation we examine the effects of approxihe transmission rate, or the period of the generators. We
mating the digital correction filter bar®& —* (e7“"') by finite developed sufficient conditions on the generators and the
length digital filters. The length of the filters affects thelal sampling filters in order to guarantee perfect recovery at th
of our scheme. To demonstrate this point, we arbitrarilyos®o minimal possible rate. To recover the unknown time delays, w
a sampling scheme composed3ohon ideal band-pass filtersshowed that our problem can be formulated within the context
with a frequency response given by of DOA estimation. Using this relationship, we proposed an

51 (0) — {1_1 —(1-040) COS(w _ QTW) weF ESPRIT-type algorithm to determine the unknown delays from

) (W) =

Intuitively the faster the sequences vary, the more infdiona

D. Effects of imperfect digital filtering correction

the given low rate samples. Once the delays are properly

0 otherwise identified, the time varying coefficients can be found by tigi
(73) filtering.
where om  or Besides the application to time delay estimation, the prob-
Fo= [(f -, f?] : (74) lem we treated here can be seen as a first example of a system-

) ) - N atic sampling theory for analog signals defined over an itefini
These filters satisfy the conditions of Propositibh 1 anghion of subspaces. Recently, there has been growing tere

can model realistic sampling filters with non-flat frequency, sampling theorems for signals over a union of subspaces
response. In this case a non trivial digital correctionffittank [15], [16], [20], [18], [19], [17], [22]. However, previousork
is required, whose coefficients are calculated using therss/ addressing stability issues and concrete recovery algosit

DTFT of W™! (ejWT)- have focused on finite unions. Here, we take a first step in

~ In Fig.[9 the MSE of the delays estimation versus the SNRe girection of extending these ideas to a broader settiag t
is plotted for different lengths of filters. At low SNRs theyaais analog signals lying in an infinite union.

dominant error is caused by the noise, while for high SNRs the
error is mostly a result of the correction filter approxiroatilt

can be seen that49 taps filters provide a good approximation
to the correction filter bank, resulting in a delay2dfsamples.  The authors would like to thank the anonymous reviewers
When working at SNRs below0dB, filters with 11 taps for their valuable comments which helped improve the pre-
provide a reasonable approximation. sentation.
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