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Abstract— Time delay estimation arises in many applications
in which a multipath medium has to be identified from pulses
transmitted through the channel. Various approaches have been
proposed in the literature to identify time delays introduced by
multipath environments. However, these methods either operate
on the analog received signal, or require sampling at the Nyquist
rate of the transmitted pulse. In this paper, our goal is to develop
a unified approach to time delay estimation from low rate samples
of the output of a multipath channel. Our methods result in
perfect recovery of the multipath delays from samples of the
channel output at the lowest possible rate, even in the presence
of overlapping transmitted pulses. This rate depends only on the
number of multipath components and the transmission rate, but
not on the bandwidth of the probing signal. In addition, our
development allows for a variety of different sampling methods.
By properly manipulating the low-rate samples, we show that
the time delays can be recovered using the well-known ESPRIT
algorithm. Combining results from sampling theory with those
obtained in the context of direction of arrival estimation methods,
we develop sufficient conditions on the transmitted pulse and the
sampling functions in order to ensure perfect recovery of the
channel parameters at the minimal possible rate. Our results
can be viewed in a broader context, as a sampling theorem for
analog signals defined over an infinite union of subspaces.

I. I NTRODUCTION

Time delay estimation is an important signal processing
problem, arising in various applications such as radar [1],
underwater acoustics [2], wireless communications [3], and
more. In a typical scenario, pulses with a priori known shape
are transmitted through a multipath medium, which consists
of several propagation paths. As a result the received signal is
composed of delayed and weighted replicas of the transmitted
pulses. In order to identify the medium, the time delay and gain
coefficient of each multipath component has to be estimated
from the received signal.

In this paper we consider recovery of the parameters defin-
ing such a multipath medium from samples of the channel
output. Specifically, we assume that pulses with known shape
are transmitted at a constant rate through the medium, and
our aim is to recover the time delays and time-varying gain
coefficients of each multipath component, from samples of
the received signal. We focus on the sampling stage, and
derive methods that ensure perfect recovery from samples
of the channel output at the minimal possible rate. The
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proposed sampling schemes are flexible, so that a variety
of different sampling techniques can be accommodated. Our
main contribution is the development of efficient sampling
schemes for the received signal. The resulting sampling rate
is generally much lower than the traditional Nyquist rate
of the transmitted pulses, and depends only on the number
of multipath components and the transmission rate, but not
on the bandwidth of the transmitted pulse. This can lead to
significant sampling rate reduction, comparing to the Nyquist
rate, in applications where only small number of propagation
paths exists, or when the bandwidth of the transmitted pulse
is relatively high. This reduction is desirable for practical
implementation. Sampling at lower rates allows for analog-to-
digital converters (ADCs) that are more precise (i.e. use more
bits), and with lower power consumption. In addition, lowering
the sampling rate can reduce the load on both hardware and
further digital processing units.

A classical solution for the time delay estimation problem
is based on correlation between the received signal and the
transmitted pulse [1]. However, the time resolution of this
method is limited by the inverse of the transmitted pulse
bandwidth. Therefore, this technique is effective only when
the multipath components are well separated in time, or when
only one component is present. This approach was originally
motivated in the analog domain, where the entire analog
correlation is computed. Performing the correlation in the
digital domain requires samples of the data at a high sampling
rate, in order to approximate the continuous correlation.

In order to resolve closely spaced multipath components,
various superresolution estimation algorithms were proposed.
In [4], [5], the MUSIC [6] method was applied in the time
domain in order to estimate the time delay of each multipath
component. Hou and Wu [7] were the first to convert the
time estimation problem to model-based sinusoidal parameter
estimation, and used an autoregressive method in order to
estimate the model’s parameters. Other works, such as [5],
[8], [9], relied on the same principle, but different estimation
algorithms were used: Tufts-Kumaresan SVD algorithm [10],
TLS-ESPRIT method [11] and a modification of MUSIC,
respectively.

In the above superresolution approaches, the sampling stage
was typically not directly addressed. Most of these works rely
on uniform pointwise samples of the received signal, at a high
sampling rate. In [7] and [9] the required sampling rate is the
Nyquist rate of the transmitted pulse. Since often the pulses are
chosen to have small time support, the bandwidth can be quite
large, corresponding to a high Nyquist rate. In [8] and in the
frequency domain algorithm proposed in [5], the sampling of
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the received analog signal is not mentioned explicitly. Since
these algorithms involve operations in the analog frequency
domain, effectively they also require sampling at the Nyquist
rate. The time domain algorithms proposed in [4] and [5] can
theoretically recover the time delays from a low sampling rate,
which depends on the number of multipath components. How-
ever, the sampling considerations were not directly addressed
in these works, and no concrete conditions on the transmitted
pulse and the samples were given, in order to ensure unique
recovery of the delays from the samples.

Besides the sampling stage which is not studied in previous
works, another assumption underlying all the methods aboveis
that the receiver has access to a single experiment ([7], [8], [9])
or multiple non-overlapping experiments ([4], [5], [9]) onthe
channel. In each experiment a pulse is transmitted through the
multipath medium, and it is required that all the returns vanish
before the next experiment is conducted. This imposes the
constraint that the transmitted pulse is sufficiently time limited,
which can be problematic in certain scenarios. For example,
in wireless communications, modulated pulses are transmitted
at a constant symbol rate through the medium. In this case, we
cannot consider the observed signal over one symbol period as
an independent experiment, since it will generally be affected
by reflections caused by adjacent symbols.

In Section II we propose a general signal model, that can
describe the received signal from a time-varying multipath
medium. An advantage of our model is that it does not require
the assumption of non-overlapping experiments, and allows
for general pulse shapes. We then formulate the medium
identification problem as a sampling problem, in which the set
of parameters defining the medium have to be recovered from
samples of the received signal at the lowest possible rate. To
this end we develop a general sampling scheme, which consists
of filtering the received signal with a bank ofp sampling
filters and uniformly sampling their outputs. This class of
sampling methods is common in sampling theory [12] and can
accommodate a wide variety of sampling techniques, including
pointwise uniform sampling. GivenK multipath components,
we show that at least2K sampling filters are required in order
to perfectly recover the time delays. We then develop explicit
sampling strategies that achieve this minimal rate. In particular,
we derive sufficient conditions on the transmitted pulse andthe
choice of sampling filters, which guarantee unique recoveryof
the channel parameters.

In order to recover the channel parameters from the given
samples we combine results from standard sampling theory,
with those of direction of arrival (DOA) algorithms [6], [11],
[13], [14]. Specifically, by appropriate manipulation of the
sampling sequences, we show that we can formulate our
problem within the framework of DOA methods. We then rely
on the estimation of signal parameters via rotational invariance
techniques (ESPRIT) [11], developed in that context. The
unknown delays are recovered from the samples by first
applying a digital correction filter bank, and then applyingthe
ESPRIT algorithm. Once the time delays are identified, the
gain coefficients are recovered using standard sampling tools.

The sampling schemes we develop for the channel identi-
fication problem treated in this paper, can be viewed in the

broader context of sampling theory. In Section V we discuss
in detail the relationship between our problem and previous
related setups treated in the sampling literature: sampling
signals from a union of subspaces [15], [16], compressed
sensing of analog signals [17], [18], [19], [20], [21], [22],
and finite-rate of innovation (FRI) sampling [23], [24]. The
results we develop here can be viewed as a special case of
analog compressed sensing over an infinite union of spaces,
and therefore extends previous work, which focused on finite
unions, to a broader setting. In comparison with FRI tech-
niques, our approach allows for lower sampling rates and at
a lower computational cost. Furthermore, we do not need to
impose stringent conditions on the pulse shapes, as required
by FRI methods.

This paper is organized as follows. In Section II, we
describe our signal model. A general sampling scheme of
the received signal is proposed in Section III. Section IV
describes the recovery of the unknown delays from the sam-
ples, and provides sufficient conditions ensuring a unique
recovery. Relation to previous work is discussed in detail in
Section V. Section VI describes an application example of
channel identification in wireless communications. Numerical
experiments are described in Section VII.

II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Notations and Definitions

Matrices and vectors are denoted by bold font, with lower-
case letters corresponding to vectors and uppercase letters to
matrices. Thenth element of a vectora is written asan, and
theijth element of a matrixA is denoted byAij . Superscripts
(·)

∗, (·)
T and (·)

H represent complex conjugation, transpo-
sition and conjugate transposition, respectively. The Moore-
Penrose pseudo-inverse of a matrixA is written asA†. The
identity matrix of sizen is denoted byIn.

The Fourier transform of a continuous-time signalx (t) ∈
L2 is defined byX (ω) =

�∞

−∞
x (t) e−jωtdω, and

〈x (t) , y (t)〉 =

� ∞

−∞

x (t) y∗ (t) dt, (1)

denotes the inner product between two continuous-time sig-
nals. The discrete-time Fourier transform (DTFT) of a se-
quencea [n] ∈ ℓ2 is defined by

A
(

ejωT
)

=
∑

n∈Z

a [n] e−jωnT , (2)

and is periodic with period2π/T .

B. Signal model

We consider the class of signals that can be written in the
form

x (t) =

K
∑

k=1

∑

n∈Z

ak [n] g (t − tk − nT ) , (3)

whereτ = {tk}
K
k=1 is a set ofK distinct unknown time delays

in the continuous interval[0, T ), ak [n] is an arbitrary sequence
in ℓ2, andg (t) ∈ L2 is a known function. Each signal from
this class can describe the propagation of a pulse with known
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shapeg (t) which is transmitted at a constant rate of1/T
through a medium consisting ofK paths. Each path has a
constant delaytk, and a time-varying gain, which is described
by the sequenceak [n]. In cases where the transmitted pulses
are amplitude modulated, the sequenceak [n] describes the
multiplication between the pulse amplitude and the gain co-
efficient of each path. In Section VI we will discuss more
thoroughly an example of a communication signal transmitted
through a multipath time-varying channel.

Our problem is to determine the delaysτ and the gains
ak[n] from samples of the received signalx(t), at the minimal
possible rate. Since these parameters uniquely definex(t), our
channel identification problem is equivalent to developingef-
ficient sampling schemes for signals of the form (3), allowing
perfect reconstruction of the signal from its samples.

The model (3) is more general than that described in
previous work [7], [4], [5], [8], [9], which is based on single or
multiple experiments on the medium. In each experiment the
received signal is observed over a finite time window, which
is synchronized to the transmission time of the pulse. More
precisely, the received signal in thenth experiment is given
by

xn (t) =
K
∑

k=1

akng (t − tk) , t ∈ [0, T ) , (4)

wheretk is the delay of thekth multipath component which is
constant in all the experiments, andakn is the gain coefficient
of thekth multipath component at thenth experiment, which is
generally varying from one experiment to another. This model
can be seen as a special case of (3) with additional constraints
on the pulseg (t) and the transmission rate1/T . Indeed, we
can write the received signal on thenth experiment as

xn (t) = x (t − nT ) t ∈ [0, T ) , (5)

if we require that

g (t − tk − nT ) = 0 for all n 6= 0. (6)

This requirement means that the pulseg (t) has finite time
support, and that the repetition period of the pulsesT , is long
enough such that all the reflections from one pulse vanish
before the next pulse is transmitted. On the other hand, our
signal model does not require these constraints, so that it can
support infinite length pulses and allows interference between
experiments.

III. SAMPLING SCHEME

A. Known delays

Before we treat our sampling problem of signals of the
form (3), we first consider a simpler setting in which the
delaystk are known. In this case our signal model is a special
case of the more general class of signals that lie in a shift-
invariant (SI) subspace. For such signals classes, there are well
known sampling schemes that guarantee perfect recovery at the
minimal possible rate [12], [17], [25]. Below, we review the
main results in this setting which will serve as a basis for our
development in the case in which the delays are unknown.

A finitely-generated SI subspace ofL2 is defined as [26],
[27], [28]

A =

{

x (t) =

K
∑

k=1

∑

n∈Z

ak [n] gk (t − nT ) : ak [n] ∈ ℓ2

}

.

(7)
The functionsgk (t) are referred to as the generators ofA.
In order to guarantee a unique stable representation of any
signal x (t) ∈ A by coefficientsak [n], the generatorsgk (t)
are typically chosen to form a Riesz basis ofA [26], [27].
Clearly, the signal model in (3) is a special case of (7) with
generatorsgk(t), obtained fromK delayed versions ofg (t):

gk (t) = g (t − tk) , 1 ≤ k ≤ K. (8)

One way to sample a signal of the form (7) is to useK
parallel sampling channels [17]. In each channel the signal
is first filtered with an impulse responses∗ℓ (−t), and then
sampled uniformly at timest = nT to produce the sampling
sequencecℓ [n], as depicted in the left-hand side of Fig. 1.
The sampling sequence at the output of theℓth channel can
be written as

cℓ [n] = 〈x (t) , sℓ (t − nT )〉 , 1 ≤ ℓ ≤ K. (9)

By analyzing the DTFTsCℓ

(

ejωT
)

of the sequences
cℓ[n], 1 ≤ ℓ ≤ K, it was shown in [17] that the sequences
aℓ [n] , 1 ≤ ℓ ≤ K, which define the signalx (t), can be
recovered fromcℓ[n] using an adequate multichannel filter
bank. Specifically, letc

(

ejωT
)

,a
(

ejωT
)

denote the length-K
column vectors whoseℓth elements areCℓ

(

ejωT
)

, Aℓ

(

ejωT
)

respectively. Then, it can be shown that

c
(

ejωT
)

= MSG

(

ejωT
)

a
(

ejωT
)

, (10)

whereMSG

(

ejωT
)

is a K × K matrix with ℓkth element

ΦSℓGk

(

ejωT
)

=
1

T

∑

m∈Z

S∗
ℓ

(

ω −
2π

T
m

)

Gk

(

ω −
2π

T
m

)

.

(11)
HereGk (ω) andSℓ (ω) denote the Fourier transforms ofgk (t)
andsℓ (t) respectively. If this matrix is stably invertible a.e in
ω, then the sequencesaℓ [n] can be recovered from the samples
using the multichannel filter bank whose frequency response
is given byM

−1
SG

(

ejωT
)

, as depicted in the right-hand side
of Fig. 1.

The proposed sampling scheme achieves an average sam-
pling rate ofK/T since there areK sampling sequences each
at rate1/T . Intuitively, this approach requires one sample per
degree of freedom of the signalx (t): for a signal of the form
(3), under the assumption that the time delays are known, or
a signal of the form (7), in each time periodT there areK
new parameters.

B. Unknown delays

We now address our original problem of designing a sam-
pling scheme for signals of the form (3) with unknown delays.
We propose a system similar to that used in the case of
known delays, comprised of parallel sampling channels. Since
now there are more degrees of freedom in the signalx (t),
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s
∗

1
(−t)

...
x (t)

t = nT

t = nT

...

c1 [n]

s
∗

K (−t)

M
−1

SG

(

e
jωT

)

a1 [n]

aK [n]cK [n]

Fig. 1. Sampling and reconstruction scheme for the case of known delays

intuitively we will require at least the same number of channels
as in the case of known delays. Denoting the number of
channels byp, this implies thatp ≥ K. As we will see,
under certain conditions on the sampling filters and pulseg(t),
p = 2K sampling filters are sufficient to guarantee perfect
recovery ofx(t) from the samples. We will also show that this
is the minimal possible rate achievable for all signalsx(t).

In each channel of our sampling system the signalx (t)
is pre-filtered using the filters∗ℓ (−t) and sampled uniformly
at timest = nT resulting in the samples (9). In the Fourier
domain, we can write (9) as

Cℓ

(

ejωT
)

=
1

T

∑

m∈Z

S∗
ℓ

(

ω −
2π

T
m

)

X

(

ω −
2π

T
m

)

.

(12)
From the definition ofx(t), its Fourier transform can be
written as

X (ω) =

K
∑

k=1

∑

n∈Z

ak [n] G (ω) e−jω(tk+nT )

=

K
∑

k=1

Ak

(

ejωT
)

G (ω) e−jωtk , (13)

whereAk

(

ejωT
)

denotes the DTFT of the sequenceak [n],
andG (ω) denotes the Fourier transform ofg (t). Substituting
(13) into (12), we have

Cℓ

(

ejωT
)

=

K
∑

k=1

Ak

(

ejωT
) 1

T

∑

m∈Z

S∗
ℓ

(

ω −
2π

T
m

)

·G

(

ω −
2π

T
m

)

e−j(ω− 2π
T

m)tk

=

K
∑

k=1

Ak

(

ejωT
)

e−jωtk
1

T

∑

m∈Z

S∗
ℓ

(

ω −
2π

T
m

)

·G

(

ω −
2π

T
m

)

ej 2π
T

mtk , (14)

where the first equality is a result of the fact thatAk

(

ejωT
)

is 2π/T -periodic.
From now on, we will assume thatω ∈

[

0, 2π
T

)

, and all the
expressions in the DTFT domain are2π/T periodic. Denoting
by c

(

ejωT
)

the length-p column vector whoseℓth element is
Cℓ

(

ejωT
)

and bya
(

ejωT
)

the length-K column vector whose
kth element isAk

(

ejωT
)

, we can write (14) in matrix form
as

c
(

ejωT
)

= M
(

ejωT , τ
)

D
(

ejωT , τ
)

a
(

ejωT
)

. (15)

HereM
(

ejωT , τ
)

is a p × K matrix with ℓkth element

Mℓk

(

ejωT , τ
)

=
1

T

∑

m∈Z

S∗
ℓ

(

ω −
2π

T
m

)

·G

(

ω −
2π

T
m

)

ej 2π
T

mtk , (16)

and D
(

ejωT , τ
)

is a diagonal matrix withkth diagonal
element equal toe−jωtk . Defining the vectorb

(

ejωT
)

as

b
(

ejωT
)

=D
(

ejωT , τ
)

a
(

ejωT
)

, (17)

we can rewrite (15) in the form

c
(

ejωT
)

= M
(

ejωT , τ
)

b
(

ejωT
)

. (18)

Our problem can then be reformulated as that of recovering
b
(

ejωT
)

and the unknown delay setτ from the vectors
c
(

ejωT
)

, for all ω ∈
[

0, 2π
T

)

. Once these are known, the
vectorsa

(

ejωT
)

can be recovered using the relation in (17).
To proceed, we focus our attention on sampling filtersSℓ(ω)

with finite support in the frequency domain, contained in the
frequency range

F =

[

2π

T
γ,

2π

T
(p + γ)

]

, (19)

where γ ∈ Z is an index which determines the working
frequency bandF . This choice should be such that it matches
the frequency occupation ofg (t) (althoughg(t) does not have
to be bandlimited). This freedom allows our sampling scheme
to support both complex and real valued signals. Under this
choice of filters, each elementM

(

ejωT , τ
)

of (16) can be
expressed as

Mℓk

(

ejωT , τ
)

=

p
∑

m=1

Wℓm

(

ejωT
)

Nmk (τ) , (20)

whereW
(

ejωT
)

is a p × p matrix whoseℓmth element is
given by

Wℓm

(

ejωT
)

=
1

T
S∗

ℓ

(

ω +
2π

T
(m − 1 + γ)

)

·G

(

ω +
2π

T
(m − 1 + γ)

)

, (21)

andN (τ) is ap×K Vandermonde matrix withmkth element

Nmk (τ) = e−j 2π
T

(m−1+γ)tk . (22)

Substituting (20) into (18),

c(ejωT ) = W
(

ejωT
)

N (τ)b(ejωT ). (23)

If W
(

ejωT
)

is stably invertible, then we can define the
modified measurement vectord

(

ejωT
)

as

d
(

ejωT
)

= W
−1
(

ejωT
)

c
(

ejωT
)

. (24)

This vector satisfies

d
(

ejωT
)

= N (τ)b
(

ejωT
)

. (25)

Since N (τ) is independent ofω, from the linearity of the
DTFT, we can express (25) in the time domain as

d [n] = N (τ)b [n] , n ∈ Z. (26)
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s∗
1
(−t)

...
x (t)

t = nT

t = nT

...

c1 [n]

s∗p (−t)
cp [n]

W
−1

(

ejωT
)

d1 [n]

dp [n]

D
−1

(

ejωT , τ
)

N
† (τ) ...

a1 [n]

aK [n]

Fig. 2. Sampling and reconstruction scheme for the case of unknown delays

The elements of the vectorsd [n] and b [n] are the discrete
time sequences, obtained from the inverse DTFT of the
elements of the vectorsb

(

ejωT
)

andd
(

ejωT
)

respectively.
Equation (25) and its equivalent time domain representation

(26), describe an infinite set of measurement vectors, each ob-
tained by the same measurement matrixN (τ), which depends
on the unknown delaysτ . This problem is reminiscent of the
type of problems that arise in the field of DOA estimation
[14], as we discuss in the next section. One class of efficient
methods for DOA recovery, are known as subspace methods
[14]. These techniques have subsequently been applied to
many other problems such as spectral estimation [29], system
identification [30] and more. Our approach is to rely on these
methods in order to first recoverτ from the measurements.
After τ is known, the vectorsb

(

ejωT
)

anda
(

ejωT
)

can be
found using linear filtering relations by

b
(

ejωT
)

= N
† (τ)d

(

ejωT
)

. (27)

SinceN (τ) is a Vandermonde matrix, its columns are linearly
independent, and consequentlyN

†
N = IK . Using (17),

a
(

ejωT
)

= D
−1
(

ejωT , τ
)

N
† (τ)d

(

ejωT
)

. (28)

The resulting sampling and reconstruction scheme is depicted
in Fig. 2.

Our last step, therefore, is to derive conditions on the
filters s∗ℓ (−t) and the functiong (t) in order that the matrix
W
(

ejωT
)

is stably invertible. To this end, we can decompose
the matrixW

(

ejωT
)

as

W
(

ejωT
)

= S
(

ejωT
)

G
(

ejωT
)

(29)

whereS
(

ejωT
)

is a p × p matrix with ℓmth element

Sℓm

(

ejωT
)

=
1

T
S∗

ℓ

(

ω +
2π

T
(m − 1 + γ)

)

(30)

andG
(

ejωT
)

is ap× p diagonal matrix whosemth diagonal
element is given by

Gmm

(

ejωT
)

= G

(

ω +
2π

T
(m − 1 + γ)

)

. (31)

Each one of these matrices needs to be stably invertible.
Therefore, from (31) the condition that the functiong (t) needs
to satisfy is that

0 < a ≤ |G (ω)| ≤ b < ∞ a.eω ∈ F . (32)

In addition the filterss∗ℓ (−t) should be chosen in such a way
that they form a stably invertible matrixS

(

ejωT
)

. Examples
of such filters are given in the next subsection.

We note here that the conditions given above guarantee
a stable digital correction filter bankW−1

(

ejωT
)

, however
generally it will be comprised of infinite length digital filters.
Practical implementation of these filters can be achieved by
truncating the impulse response. The length of the resulting
filters will affect the total delay of our proposed method, which
will generally be longer than that of the methods described in
Section I, due to the additional digital filtering stage.

We summarize the results so far in the following proposi-
tion.

Proposition 1: Let cℓ [n] = 〈x (t) , sℓ (t − nT )〉 , 1 ≤ ℓ ≤
p be a set ofp sequences obtained by filtering the signal
x (t) defined by (3) with p filters s∗ℓ (−t) and sampling
their outputs at timesnT . Let Sℓ(ω) be supported onF =
[

2π
T γ, 2π

T (p + γ)
]

, and letΩ = [0, 2π
T ). If the functiong (t)

satisfies the condition in (32) and the matrixS
(

ejωT
)

, defined
by (30), is stably invertible a.eω ∈ Ω, then the delaysτ and
vectorb

(

ejωT
)

can be found from the set of equations

d
(

ejωT
)

= N(τ)b
(

ejωT
)

, (33)

using subspace methods, described in the next section. Here
N (τ) is a p × K Vandermonde matrix withmkth element
e−j 2π

T
(m−1+γ)tk , and

d
(

ejωT
)

= W
−1
(

ejωT
)

c
(

ejωT
)

, (34)

with W
(

ejωT
)

defined by (21). The sequencesaℓ[n] can then
be recovered by

a
(

ejωT
)

= D
−1
(

ejωT , τ
)

N
†(τ)d

(

ejωT
)

, ω ∈ Ω (35)

whereD(ejωT,τ ) is a diagonal matrix with diagonal elements
e−jωtk .

C. Examples of filters

We now provide some examples of filterssℓ (t) satisfying
the required conditions.

1) Complex bandpass filter-bank:The first example is a set
of complex bandpass filters. We assume that the working band
is F =

[

0, 2π
T p
]

(γ = 0), and the functiong (t) satisfies (32)
on that frequency range. We choose the filterss∗ℓ (−t) as ideal
bandpass filters, covering consecutive frequency bands:

Sℓ (ω) =

{

T, ω ∈
[

(ℓ − 1) 2π
T , ℓ 2π

T

]

0, otherwise.
(36)

The resulting matrixS
(

ejωT
)

is diagonal, and stably invert-
ible. This example generalizes to any valid working band,
given by (19), by shifting the frequency response of the filters.

We now provide an example demonstrating the importance
of the sampling filter.

Example 1:We consider the case whereg(t) = δ(t) and
there areK = 2 diracs per period ofT = 1, as illustrated in
Fig. 3(a). The sampling scheme described above, consisting
of a complex bandpass filter-bank, is used. In Figs. 3(b)–
(d), we show the outputs of the first3 sampling channels.
This example demonstrates the need for the sampling filters
when sampling short-length pulses at a low sampling rate.
The sampling kernels have the effect of smoothing the short
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Fig. 3. Stream of diracs. (a)K = 2 diracs per periodT = 1. (b)-(d)
The outputs of the first three sampling channels. The dashed lines denote the
sampling instants.

pulses (diracs in this example). Consequently, even when the
sampling rate is low, the samples contain information aboutthe
signal. In contrast, if we were to sample the signal in Fig. 3(a)
directly at a low rate, then we would often obtain only zero
samples which contain no information about the signal.

2) Delayed channels:In this example we assumep is even
and define the working band as

F =
[

−
π

T
p,

π

T
p
]

(37)

(γ = −p/2). We also assume thatg (t) satisfies (32). We
choose theℓth filter as a delay of∆ℓ ∈ [0, T ) followed by an
ideal low pass filter. Thus,

Sℓ (ω) =

{

Te−jω∆ℓ , ω ∈ F

0, otherwise.
(38)

With this choice of filters, theℓmth element of the matrix
S
(

ejωT
)

defined in (30) is given by

Sℓm

(

ejωT
)

= ej(ω+ 2π
T

(m−1−p/2))∆ℓ

= ej(ω− 2π
T

(p/2))∆ℓej 2π
T

(m−1)∆ℓ . (39)

The matrixS
(

ejωT
)

can be expressed as

S
(

ejωT
)

= Φ
(

ejωT
)

F, (40)

whereΦ
(

ejωT
)

is a diagonalp×p matrix whoseℓth diagonal

element isej(ω− 2π
T

(p/2))∆ℓ , andF is a Vandermonde matrix
whoseℓmth element is given byej 2π

T
(m−1)∆ℓ . From (40) it

can be seen thatS
(

ejωT
)

is invertible for all ω ∈ Ω, when
the delays in each channel∆ℓ are distinct.

One special case of this choice of sampling filters is when
the delays are uniformly spaced, i.e∆ℓ = (ℓ − 1)T/p. In this
case our sampling scheme can be implemented by an ideal low

pass filter with cutoffπp/T , followed by a uniform sampler
at a rate ofp/T .

IV. RECOVERY OF THEUNKNOWN DELAYS

We have seen in the previous section that perfect recon-
struction of a signalx (t) of the form (3), is equivalent to that
of recovering the delaysτ from the modified measurements of
(26). As we now show, this problem is similar to that arising
in DOA estimation.

A. Relation to direction of arrival estimation

In DOA estimation [6], [11], [13], [14],K narrow band
sources impinge on an array, composed ofp sensors, from
distinct DOAs. The goal is to estimate the DOAs of the sources
from a set ofM measurements, obtained from the sensors
outputs at distinct time instants.

The DOA estimation problem can be formulated using the
following measurement model

X = A (Θ)S (41)

whereX is a p× M matrix, composed of the measurements
in its columns,S is aK×M matrix consisting of the sources
signals in its columns andA (Θ) is a p × K matrix which
depends on the set of unknown DOAsΘ. The structure of
A (Θ) is such that itskth column, denoteda (θk), depends
only on the DOA θk of the kth source. The vectora (θk)
is referred to as the steering vector of the array toward
directionθk. The set containing all possible steering vectors,
i.e, {a (θ) , θ ∈ [0, 2π)} is referred as the array manifold.
Given X, the problem is to recover the DOAsθk, and the
sourcesS.

The set of equations in (26) has the same form as (41).
Thekth column of the matrixN (τ) depends only on thekth
unknown delaytk, and can be described by the vectorn (tk),
where

n (t) =
[

e−j 2π
T

γt e−j 2π
T

(1+γ)t · · · e−j 2π
T

(p−1+γ)t
]T

.
(42)

The array manifold in our setting is the set of vectors
{n(t), t ∈ [0, T )}. Therefore, we can adopt DOA methods
to estimate the unknown delays. The only difference between
the two problems is that in our setting, we have infinitely
many measurement vectors, in contrast to the DOA problem in
which X has finitely many columns. This will require several
adjustments, which we will detail in the ensuing subsections.

Two prominent methods used for DOA estimation are
MUSIC (MUltiple Signal Classification) [6] and ESPRIT (Es-
timation of Signal Parameters via Rotational Invariance Tech-
niques) [11]. These algorithms belong to a class of techniques,
known as subspace methods, which are based on separating
the space containing the measurements into two subspaces, the
signal and noise subspaces. Estimating the unknown set of pa-
rameters using MUSIC involves a continuous one-dimensional
search over the parameter range. This procedure can be costly
from a computational point of view. The ESPRIT approach
can estimate the unknown set of parameters more efficiently,
by imposing the additional requirement that the measurement
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matrix is rotationally invariant. We describe this property in
subsection IV-C and show that in our caseN (τ) satisfies this
condition, and therefore we use the ESPRIT approach.

We note that although the MUSIC and ESPRIT meth-
ods were originally developed as DOA estimators, these ap-
proaches and other subspace methods have been used success-
fully in other fields.

B. Sufficient conditions for perfect recovery

We now rely on results obtained in the context of DOA
estimation in order to develop sufficient conditions for a
unique solution to (26). Such a solution consists of the infinite
set of vectorsb [n] , n ∈ Z and the unknown delaysτ.

Conditions for a unique solution(Θ,S) for (41) where
derived in [31]. Since [31] deals with a finite number of
measurements, we have to extend the results to our case, which
consists of an infinite number of measurements. The analysis
in [31] requires a preliminary condition that any subset ofp
distinct steering vectors from the array manifold is linearly
independent. In our case this condition translates into the
requirement that any set ofp vectors n (ti) , 1 ≤ i ≤ p
associated with distinct delaysti ∈ [0, T ) , 1 ≤ i ≤ p are
linearly independent. From (42), any such set forms ap × p
Vandermonde matrix, and are therefore linearly independent.
Therefore, this condition automatically holds in our problem
without forcing any additional constraints.

To derive sufficient conditions for a unique solution of the
set of infinite equations (26) we introduce some notation. We
define the measurement setd [Λ] as the set containing all
measurement vectorsd [Λ] = {d [n] , n ∈ Z}. Similarly, we
define the unknown vector setb [Λ] asb [Λ] = {b [n] , n ∈ Z}.
We may then rewrite (26) as

d [Λ] = N (τ)b [Λ] . (43)

The following proposition provides sufficient conditions for a
unique solution to (43).

Proposition 2: If
(

τ̄ , b̄ [Λ]
)

is a solution to (43),

p > 2K − dim
(

span
(

b̄ [Λ]
))

(44)

and
dim

(

span
(

b̄ [Λ]
))

≥ 1, (45)

then
(

τ̄ , b̄ [Λ]
)

is the unique solution of (43).
The notation span

(

b̄ [Λ]
)

is used for the minimal dimension
subspace containing the unknown vector setb̄ [Λ]. The condi-
tion (45) is needed to avoid the case whereb̄ [Λ] = 0. In this
case clearly the setτ can not recovered uniquely.

Proof: We denoter = dim
(

span
(

b̄ [Λ]
))

. From (45)
r ≥ 1. Therefore, there exist a finite subsetΛ̃ = {ni}

r
i=1 ⊂ Λ,

such that the vector set̄b ˜[Λ] spans anr-dimensional subspace:

dim
(

span
(

b̄ ˜[Λ]
))

= r. (46)

By defining the matricesB andD as the matrices consisting
of the vector sets̄b ˜[Λ] and d̄ ˜[Λ], we can write

D = N (τ̄ )B. (47)

Clearly, from its construction, the rank of the matrixB is r.
From (44),

p > 2K − r. (48)

According to Theorem 1 in [31], the solution(τ̄ ,B) is the
unique solution to (47) under the condition (48).

Since the set of unknown delaysτ̄ is the unique solution to
the finite set of equations (47), it is also a unique solution to the
infinite set of equations (43). Oncēτ is uniquely determined,
the matrixN (τ̄ ) is known. Since every vector of the vector
set b̄ ˜[Λ] is contained inCK ,

dim
(

span
(

b̄ ˜[Λ]
))

≤ K. (49)

Therefore, according to (44)p > K. The matrix N (τ̄ ) is
a p × K Vandermonde matrix which consist ofK linearly
independent vectors. Therefore, for everyn ∈ Λ, if b̄ [n] is a
solution to

d [n] = N (τ̄)b [n] (50)

then it is the unique solution.
Proposition 2 suggests that a unique solution to the set of
equations (26) is guaranteed, under proper selection of the
number of sampling channelsp. This parameter, in turn,
determines the average sampling rate of our sampling scheme,
which is given byp/T . The condition (44) depends on the
value of dim(span(b [Λ])), which is generally not known in
advance. According to our assumption dim(span(b̄ ˜[Λ])) ≥ 1,
therefore in order to satisfy the uniqueness condition (44)for
every signal of the form (3), we must havep > 2K − 1
sampling channels or a minimal sampling rate of2K/T .
Comparing this result to the minimal sampling rate in the case
when the delays are known in advance, there is a penalty of
2 in the minimal rate.

In Section V-A we show that our signal model, described
in (3), can be considered as part of a more general framework
of signals that lie in a union of SI subspaces [15]. It was
shown in [15] that the theoretical minimum sampling rate
required for perfect recovery of such a signal from its samples
is 2K/T . Therefore, according to the results of Proposition 2,
our sampling scheme can achieve the minimal sampling rate
required for signals of the form (3).

The minimal sampling rate of2K/T , which is achieved
by our scheme, does not depend on the bandwidth of the
pulse g (t), but only on the number of propagation paths
K. In applications where the number of propagation paths
is relatively small, or the bandwidth of the transmitted pulse
is high, our approach can provide a sampling rate lower
than the Nyquist rate. More precisely, when2K/T < W ,
whereW is the bandwidth of transmitted pulse, our method
can reduce the sampling rate relatively to the Nyquist rate.
For example, the setup in [32], used for characterization of
ultra-wide band (UWB) wireless indoor channels, consists of
pulses with bandwidth ofW = 1GHz transmitted at a rate
of 1/T = 2MHz. Under the assumption that there are32
significant multipath components, our method can reduce the
sampling rate down to128MHz compared with the2GHz
Nyquist rate.
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Beside the theoretical interest, sampling rate reduction is
also important for implementation considerations. For practical
ADCs, which perform the sampling process, there is a trade-
off between sampling rate and resolution [33]. Therefore,
reducing the sampling rate allows the use of more precise
ADCs, which can improve the time delay estimation. The
power consumption of an ADC can also be reduced by
lowering the sampling rate [33]. In addition, a lower rate leads
to more efficient digital processing hardware, since a smaller
number of samples has to be processed. This also allows
performing the digital processing operations in real time.

C. Recovering the unknown delays

According to Proposition 2, in order be able to perfectly
reconstruct every signal of the form (3), our sampling scheme
must havep ≥ 2K sampling channels. We assume throughout
that this condition holds.

We now describe an algorithm for the recovery of the un-
known delays from the measurement setd [Λ], which is based
on the ESPRIT [11] algorithm. One of the conditions needed
in order to use the ESPRIT method is that the correlation
matrix

Rbb =
∑

n∈Z

b [n]bH [n] , (51)

is positive definite. In order to relate this condition to our
problem, we state the following proposition from [21].

Proposition 3: If the sum (51) exists, then every matrixV
satisfyingRbb = VV

H has column span equal to span(b [Λ]).
An immediate corollary from Proposition 3 is thatRbb ≻ 0

is equivalent to the condition dim(span(b [Λ])) = K. In this
case, which we refer to as theuncorrelated case, we can apply
the ESPRIT algorithm on the measurement setd [n] in order to
recover the unknown delays. The case dim(span(b [Λ])) < K,
will be referred to as thecorrelated case. In this setting the
conditionRbb ≻ 0 doest not hold, and the ESPRIT algorithm
cannot applied directly. Instead, we will use an additionalstage
originally proposed in [34], [35].

Note, that

Rdd =
∑

n∈Z

d [n]dH [n]

= N (τ)

(

∑

n∈Z

b [n]bH [n]

)

N
H (τ)

= N (τ)RbbN
H (τ) . (52)

Since for any set of delaystk, the matrix N (τ) has full
column-rank, the ranks of the matricesRdd andRbb are equal.
Therefore, the decision whether we are in the uncorrelated or
correlated case can made directly from the given measure-
ments by forming the matrixRdd.

1) Uncorrelated Case:From (52), under the assumption
that the matrixRbb is positive definite, it can be shown that
the rank of the matrixRdd is K. Moreover, the matricesRdd

and N (τ) have the same column span which is referred as
the signal subspace. By performing a singular value decom-
position (SVD) of the matrixRdd, we can obtainK vectors,
which span the signal subspace, by taking theK left singular

vectors associated to the non-zero singular values ofRdd. We
define thep × K matrix Es as the matrix containing those
vectors in its columns.

Now, we will the exploit the special structure of the Vander-
monde matrix. We denote the matrixN↓ (τ) as the sub matrix
extracted fromN (τ) by deleting its last row. In the same way
we defineN↑ (τ) as the sub matrix extracted fromN (τ) by
deleting its first row. The Vandermonde matrixN (τ) satisfies
the following rotational invariance property:

N↑ (τ) = N↓ (τ)R (τ) (53)

whereR (τ) is a diagonalK ×K matrix, whosekth diagonal
element is given byRkk (τ) = e−j2πtk/T . Since the matrices
N (τ) and Es have the same column span, there exists an
invertibleK × K matrix T such that

N (τ) = EsT. (54)

By deleting the last row in (54) we get

N↓ (τ) = Es↓T. (55)

Similarly, deleting the first row in (54) and using the rotational
invariance property (53), we have

N↓ (τ)R (τ) = Es↑T. (56)

Combining (55) and (56) leads to the following relation
between the matricesEs↑ andEs↓:

Es↑ = Es↓TR (τ)T−1. (57)

The matrixEs↑ is a (p − 1) × K (p > K) matrix with full
column rank. ThereforeE†

s↓Es↑ = IK . Using (57) we define
the following K × K matrix Φ as

Φ = E
†
s↓Es↑ = TR (τ)T−1. (58)

From (58) it is clear that the diagonal matrixR (τ) can be
obtained from the matrixΦ by performing an eigenvalue
decomposition. Once the matrixR (τ) is known, the unknown
delays can be retrieved from its diagonal elements as

tk = −
T

2π
arg(Rkk (τ)) . (59)

In summary, our algorithm consist of the following steps:
1) Construct the correlation matrix Rdd =
∑

n∈Z
d [n] dH [n].

2) Perform an SVD decomposition ofRdd and construct
the matrixEs consisting of theK singular vectors asso-
ciated with the non-zero singular values in its columns.

3) Compute the matrixΦ = E
†
s↓Es↑.

4) Compute the eigenvalues ofΦ, λi, i = 1, 2, . . . , K.
5) Retrieve the unknown delays byti = − T

2π arg(λi).

2) Correlated Case:When the conditionRbb ≻ 0 is not
satisfied the ESPRIT algorithm cannot be applied directly on
the vector setd [Λ]. In this case the rank ofRdd is smaller
than K, and therefore its column span is no longer equal
to the entire signal subspace. To accommodate this setting,
we perform an additional stage before applying the ESPRIT
method, based on the spatial smoothing technique proposed in
[35], [34].
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To proceed, we defineM = p − K length-(K + 1) sub
vectors

di [n] =
[

di [n] di+1 [n] . . . di+K [n]
]T

. (60)

We define the smoothed correlation matrixRdd as

Rdd =
1

M

M
∑

i=1

∑

n∈Z

di [n]dH
i [n] . (61)

Under our assumptionsp ≥ 2K, thereforeM ≥ K.
According to [35], whenM ≥ K the rank of the smoothed
correlation matrix isK regardless of the rank of the matrix
Rbb. We will refer now to column rank ofRdd as the signal
subspace, and can then apply the ESPRIT algorithm on this
matrix.

V. RELATED SAMPLING PROBLEMS

In the introduction, we outlined previous approaches to
time-delay estimation. In this section, we explore in more
detail the relationship between our sampling problem and pre-
vious related setups treated in the sampling literature: sampling
signals from a union of subspaces [15], [16], compressed
sensing of analog signals [17], [18], [19], [20], and FRI
sampling [23], [24].

A. Sampling signals from a union of subspaces

A signal model which received growing interest recently is
that of signals that lie in a union of subspaces [15], [16], [20],
[18], [19], [22]. Under this model each signalx (t) can be
described as [15]

x (t) ∈
⋃

γ∈Γ

Sγ , (62)

whereSγ are subspaces of a given Hilbert space andΓ is
an index set. The signalx(t) lies in one of the subspaces
Sγ , however it is not known in advance in which one. Thus,
effectively, to determinex(t), we first need to find the active
subspace, or the indexγ.

Our signal model, given by (3), can be formulated as in
(62). As described in Subsection III-A once the time delays
are fixed, each signalx (t) lies in a SI subspace spanned by
K generators. Therefore, the set of all signals of the form (3)
constitute an infinite union of SI subspaces, whereγ is the set
of delaysτ , which can take on any continuous value in the
interval [0, T ], andSγ is the corresponding SI subspace.

In [15], [16] necessary and sufficient conditions are derived
for a sampling operator to be invertible over a union of
subspaces. For the case of a union of SI subspaces, [15]
suggests a sampling scheme, similar to that used in [17]
and in this paper, comprised of parallel sampling channels.
Conditions on the sampling filters are then given in order
to ensure reconstruction of the signals from its samples. In
addition, the minimal number of sampling channels allowing
perfect recovery of the signal from its samples is shown to be
2K. This leads to a minimal sampling rate of2K/T which
is achieved by our scheme. However, in [15] no concrete
reconstruction algorithms were given that can achieve this
rate. Furthermore, although conditions for invertibilitywere

provided, these do not necessarily imply that there exists an
efficient recovery algorithm, which can recover the signal from
its samples at the minimal rate. Our aim in this work, is
to provide concrete recovery techniques, that are simple to
implement, for signals over an infinite union of SI subspaces.

In summary, in this work we focus on a special case of
signals that lie in an infinite union of SI subspaces. For this
case, in contrast to [15], we provide a concrete reconstruction
method. This method achieves the minimal theoretical sam-
pling rate derived in [15]. In addition, while other works [20],
[18], [19], [17], [22] provided reconstruction algorithmsonly
for signals defined over a finite union of subspaces, here we
provide a first systematic sampling and reconstruction method
for signals in an infinite union of subspaces.

B. Compressed sensing of analog signals

The sampling problem in [17] also deals with signals that
lie in a union of SI spaces and provides recovery algorithms.
However in the setting of [17] there are finite number of
possible subspaces, in contrast to our case, where there are
an infinite number of possible subspaces.

The signal model in [17] can be described in terms ofN
generating functionsaℓ(t) as

x (t) =
∑

|ℓ|=K

∑

n∈Z

dℓ [n]aℓ (t − nT ) , (63)

where the notation|ℓ| = K means a sum over at most
K elements. Thus, for each signal there are onlyK active
generating functions out ofN total possible functions, but
we do not know in advance which generators are active. In
principle, such signals can be sampled and recovered using
the paradigm described in Section III corresponding toN gen-
erating functions. Indeed, any signal of the form (63) clearly
also lies in the SI subspace spanned by theN generatorsaℓ(t),
where some of the sequencesdℓ[n] are identically0. However,
this would require a sampling rate ofN/T , obtained byN
sampling filters. Since onlyK of the generators are active,
intuitively, we should be able to reduce the rate and still be
able to recover the signal. The main contribution of [17] is a
sampling scheme consisting of2K filters that is sufficient in
order to recoverx(t) exactly.

We can formulate our problem as a finite union of SI spaces
of the form (63) if we assume that theK unknown delays are
taken from a discrete grid containingN possible time delays.
Under this assumption the generating functions in (63) can be
expressed as

aℓ (t) = g (t − tℓ) , 1 ≤ ℓ ≤ N. (64)

Therefore, under a discrete setting, the method of [17] can
provide a sampling and reconstruction scheme for a signal of
the form (3) with rate2K/T .

Similar to our approach here, the sampling scheme in [17]
is based on2K parallel channels, each comprised of a filter
and a uniform sampler at rate1/T . However, in order to
achieve this minimum sampling rate, the reconstruction in
[17] involves brute-force solving an optimization problem
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with combinatorial complexity. The complexity of the recon-
struction stage can be reduced by increasing the number of
channels, which entails a price in terms of sampling rate. In
contrast, our reconstruction algorithm is based on the ESPRIT
algorithm, and can obtain the minimal sampling rate of2K/T
in polynomial complexity. Furthermore, we do not require
discritization of the time delays but rather can accommodate
any continuous set of delays. In this sense we can view our
sampling paradigm as a special case of compressed sensing
for an infinite union of SI spaces. Since previous work in this
area has focused on sampling methods for finite unions, this
appears to be a first systematic example of a sampling theory
where the subspace is chosen over an infinite union.

Another difference with the approach of [17] is the design
of the sampling filters. In our method, we have seen that
simple sampling filters can be used, such as low pass filter or
bandpass filter-bank. In contrast, the scheme of [17] requires
proper design of the sampling filters, which is obtained in
two stages. In the first stage,N filters hℓ (t) , 1 ≤ ℓ ≤ N
are chosen that satisfy some conditions with respect to theN
possible generating functions. At the second stage, a smaller
set ofp ≥ 2K filters si(t) is constructed fromhℓ(t), via

si (t) =
N
∑

ℓ=1

N
∑

m=1

∑

n∈Z

A
∗
iℓcim [n]hm (t − nT ) , (65)

where A is a p × N matrix that satisfies the requirements
of compressed sensing in the appropriate dimension [36], and
cim [n] are a set of sequences given explicitly in [17]. In order
to arrive at filters that are easy to implement, a careful choice
of the parameters is needed, which may be difficult to obtain.

C. Signals with finite rate of innovation

Another interesting class of signals that has been treated
recently in the sampling literature are FRI signals [23], [24].
Such signals have a finite number of degrees of freedom per
unit time, referred to as the rate of innovation. Examples of
FRI signals include streams of diracs, nonuniform splines,and
piecewise polynomials. A general form of an FRI signal is
given by [23]

x (t) =
∑

n∈Z

cnφ (t − tn) , (66)

whereφ (t) is a known function,tn are unknown time shifts
andcn are unknown weighing coefficients. Recovery of such
signals from their samples is equivalent to the recovery of the
delaystn and the weightscn.

Our signal model (3) can be seen as a special case of
(66), where additional shift invariant structure is imposed.
This means that in each periodT the time delays are constant
relative to the beginning of the period, whereas in a general
FRI signal the time delay can vary from period to period. Our
method is designed in such a way that it utilizes this extra
structure to reduce the rate, while still guaranteeing perfect
recovery.

The FRI signals dealt with in [23], [24] are divided into
three main classes: periodic, finite length and infinite length. If
we address our signal model as an FRI signal it will generally

fall into the third category of infinite length FRI signals.
Some special classes of finite (and periodic) FRI signals where
treated in [23], such as streams of diracs. For these special
settings sampling theorems where derived with very specific
kernels, that achieve the minimal rate (the rate of innovation).
However, these methods are not adapted to the general model
(66).

Sampling and reconstruction of infinite length FRI signals
was treated in [24]. The method in [24] is based on the use
of specific sampling kernels which have finite time support:
kernels that can reproduce polynomials or exponentials. In
addition the functionφ (t) is limited to diracs, differentiated
diracs, or short pulses with compact support and no DC
component. The reconstruction algorithm proposed in [24] is
local, namely it recovers the signal’s parameters in each time
interval separately. Naive use of this approach in our context
has two main disadvantages. First, in our method the unknown
delays are recovered from all the samples of the signalx (t).
A local algorithm is less robust to noise and does not take
the shared information into account. In addition, in terms of
computational complexity, in our method all the samples are
collected to form a finite size correlation matrix, and then the
ESPRIT algorithm is applied once. Using the local algorithm
requires applying the annihilating filter method, used for FRI
recovery, on each time interval over again.

A final disadvantage of the FRI approach is the higher
sampling rate required. In order to discuss the sampling rate
achieved by the local algorithm proposed in [24], we limit
our discussion to the case where the functionφ (t) is a dirac,
which is the main case dealt with in [24]. The theorems for
unique recovery of the signal from its samples in [24] require
that in each interval of size2KLTs there are at mostK diracs,
whereL is the support of the sampling kernel andTs is the
sampling period. Since in each interval of sizeT we haveK
diracs, it can be easily shown that the minimal sampling rate
is 2KL/T , which is a factor ofL larger than the rate achieved
by our scheme. For example, when using a B-spline kernel,
which is the function with the shortest time support that can
reproduce polynomials of a certain order, an order of at least
N = 2K − 1 is needed, which has time supportL = 2K.
Thus, the sampling rate is2K times larger than our approach.

VI. A PPLICATION

In this section we describe a possible application of the
proposed signal model and sampling scheme to the problem of
channel estimation in wireless communication [37]. In suchan
application a transmitted communication signal passes through
a multipath time-varying channel. The aim of the receiver is
to estimate the channel’s parameters from the samples of the
received signal.

We consider a baseband communication system operating in
a multipath fading environment with pulse amplitude modula-
tion (PAM). The data symbols are transmitted at a symbol
rate of 1/T , modulated by a known pulseg (t). For this
communication system the transmitted signalxt (t) is given
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by

xT (t) =

Nsym
∑

n=1

d [n] g (t − nT ) (67)

whered [m] are the data symbols taken from a finite alphabet,
andNsym is the total number of transmitted symbols.

The transmitted signalxT (t) passes through a baseband
time-varying multipath channel whose impulse response is
modeled as [38]

h(τ, t) =

K
∑

k=1

αk (t) δ (τ − τk) (68)

whereαk (t) is the path time varying complex gain for thekth
multipath propagation path andτk is the corresponding time
delay. The total number of paths is denoted byK. We assume
that the channel is slowly varying relative to the symbol rate,
so that the path gains are considered to be constant over one
symbol period:

αk (t) = αk [nT ] for t ∈ [nT, (n + 1)T ] . (69)

In addition, we assume that the propagation delays are con-
fined to one symbol, i.eτk ∈ [0, T ). Under these assumptions,
the received signal at the receiver is given by

xR (t) =
K
∑

k=1

Nsym
∑

n=1

ak [n] g (t − τk − nT ) + n (t) (70)

where
ak [n] = αk [nT ]d [n] (71)

andn (t) denotes the channel noise.
The received signalxR (t) fits the signal model described in

(3). Therefore, if the pulse shapeg (t) satisfies the condition
(32) with p = 2K, our sampling scheme can recover the time
delays of the propagation paths. In addition, if the transmitted
symbols are known to the receiver, the time varying path gains
can be recovered from the sequencesak [n].

As a result our sampling scheme can estimate the channel’s
parameters from samples of the output at a low rate, propor-
tional to the number of paths. As an example, we can look
at the channel estimation problem in code division multiple
access (CDMA) communication. This problem was handled
using subspace techniques in [39], [40]. In these works the
sampling is done at the chip rate1/Tc or above, whereTc

is the chip duration given byTc = T/N and N is the
spreading factor which is usually high (1023, for example,
in GPS applications). In contrast, our sampling scheme can
provide recovery of the channel’s parameters at a sampling
rate of 2K/T . For a channel with a small number of paths,
this sampling rate can be significantly lower than the chip rate.

Another example is UWB [41] communications which has
gained popularity recently. In this technology the bandwidth
of the transmitted pulse can be up to several gigahertz.
Current technology commercial ADCs cannot operate at these
sampling rates. For example, the highest sampling rate ADC
device, manufactured by National Semiconductor, supports
sampling rates of up to3GHz at a relatively low resolution of
8 bits and high power consumption. In contrast, our proposed

method, has a potential of reducing the sampling rate, into
rates which can be achieved by lower rate ADCs with better
resolution and lower power consumption.

VII. N UMERICAL EXPERIMENTS

We now provide several experiments in which we exam-
ine various aspects of our proposed method. The numerical
experiments are divided into4 parts:

1) demonstration of a channel estimation application;
2) evaluation of performance in the presence of noise;
3) effects of approximation of the matrixRdd using only

a finite number of measurement vectors;
4) effects of imperfect digital correction filtering, using

finite length filters.
In all the simulations, except for the one in VII-D, we

use the sampling scheme described in Section III-C.1, which
consists of a bank of ideal band-pass filters. We assume that
the working band isF =

[

0, 2π
T p
]

, and that the functiong (t)
has constant frequency response on that frequency range, i.e,
G (ω) = T, ω ∈ F . In order to improve the robustness to
noise in the delay recovery stage, we use the total least-squares
(TLS) version of the ESPRIT algorithm described in [11]. All
the results are based on averaging1000 experiments.

A. Channel estimation

In the first simulation we demonstrate a channel estimation
application. We consider a time-varying channel of the form
(68), with K = 4 paths. In order to simulate a time varying
channel, the channel’s gain coefficientsαk [nT ] are modeled
according to the Jakes’ model [42] as a zero-mean complex-
valued Gaussian stationary process with the classical U-shape
power spectral density. In such a model the varying rate of
each gain coefficient depends on the maximal Doppler shift
fd. In order to simulate a slow varying channel, relatively
to the symbol rate1/T , we used for each path a maximal
Doppler shift of fd = 0.05/T . The energy of each time-
varying path gain coefficient was normalized to(1/2)

−k+1.
The path delays were drawn uniformly in the range[0, T ].
For the estimationNsym = 100 symbols were used where the
data symbols are assumed to be known. The samples at the
output of each of the sampling channels were corrupted by
complex-valued Gaussian white noise with an SNR of15dB.

The number of sampling channels is taken to bep =
5, which is only one more than the number of unknown
delays. Although we have seen that2K sampling channels are
required for perfect recovery of every signal of the form (3),
for some signals lowering the number of sampling channels
is possible. Indeed, according to Proposition 2, for signals
with dim(span(b [Λ])) = K, the minimal number of sampling
channels required isK + 1. We will demonstrate that for this
example,K + 1 channels are sufficient.

In Fig. 4 the original and estimated channels are shown.
Since the gain coefficients of the channel are time-varying,
only their averaged energy over time is shown in the figure.
In Fig. 5, we plot the magnitude of the original and estimated
gains of the first path versus time. From Figs. 4 and 5 it is
evident that our method can provide a good estimate of the
channel’s parameters, even when the samples are noisy.
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Fig. 4. Channel estimation withp = 5 sampling channels, and SNR=15dB.
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Fig. 5. Estimation of the time-varying gain coefficient of the first path,
p = 5, SNR=15dB.

B. Performance in the presence of noise

In the next simulations we examine the effect of SNR and
the number of sampling channels on the error in the delays
estimation. We chooseK = 2 close delays,t1 = 0.4352T and
t2 = 0.521T . The sequencesak[n], k = 1, 2, n = 1, 2, . . . 100
are finite length sequences with unit power chosen according
to Jakes’ model withfd = 0.05/T .

Under the setting of the simulation, which consists of a
pulse with constant frequency response and ideal band-pass
filters, from (23) it can be verified that the sampling sequences
satisfy the following relation in the time domain

c [n] = N (τ)b [n] , n ∈ Z. (72)

The Cramer-Rao bound (CRB) for unbiased estimators of
θk = 2π

T tk from the datac [n], was derived in [43] for
this data model. The TLS-ESPRIT algorithm, used for the
delays estimation in our method, is known to be asymptotically
unbiased [44]. Experimentally we verified that, under the
simulation setup, the bias of the delays estimation is low
enough for SNRs above15dB. Therefore, in this range of
SNRs, the CRB derived in [43] can give a lower bound on the
MSE of the delays estimation (up to factor of2π

T ), assuming
our specific sampling scheme.
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Fig. 6. MSE of the delays estimation versus SNR, forK = 2 andp = 4.
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Fig. 7. MSE of the delays estimation versus the number of sampling channels
p, for K = 2 and SNR=10dB.

In Fig. 6, the mean-squared error (MSE) of the time delays
estimation is shown versus the SNR, when usingp = 4
sampling channels. For comparison we also plot the CRB.
The figure demonstrates that our method achieves the CRB
for SNR> 15dB, which is the range that delays estimation
can be considered as unbiased.

In Fig. 7, the MSE of the estimation of the time delays
is shown versus the number of sampling channels, for a
constant SNR of10dB. The results demonstrate that the
estimation error can be improved by increasing the number
of channels. Therefore, oversampling improves the robustness
of our method to noise.

C. Effects of imperfect approximation ofRdd

Next, we investigate the influence of estimating the matrix
Rdd using only a finite number of measurement vectorsd [n].
This number effects the total delay of our method, since
reconstruction of the sequencesak [n] is performed only after
the unknown delaysτ are recovered. In Fig. 8 the MSE of the
delays estimation is shown versus the number of measurement
vectors used for estimation ofRdd. A constant SNR of
20dB and p = 4 sampling channels are used. Two cases
are illustrated: in the first, the sequencesak [n] are taken
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Fig. 8. MSE of the delays estimation versus the number of samples used,
for K = 2, p = 4 and SNR=20dB.

according to the Jakes’ model with parameterfd = 0.05/T
and in the second casefd = 0.1/T is used, which corresponds
to sequences with faster variation rate. Fig. 8 demonstrates
that the MSE depends on the variation rate of the sequences.
Intuitively the faster the sequences vary, the more information
each new measurement vectord [n] contains, improving the
estimation ofRdd. In addition, it can be seen that using only
50 measurement vectors, yields a reasonable estimation of the
delays in the case offd = 0.1/T . The same estimation error
is achieved using80 measurement vectors, when using slow
varying sequences. This result can be further improved by
increasing the SNR or the number of sampling channels.

D. Effects of imperfect digital filtering correction

In the next simulation we examine the effects of approxi-
mating the digital correction filter bankW−1

(

ejωT
)

by finite
length digital filters. The length of the filters affects the delay
of our scheme. To demonstrate this point, we arbitrarily choose
a sampling scheme composed of3 non ideal band-pass filters
with a frequency response given by

Sℓ (ω) =

{

1.1 − (1 − 0.4ℓ) cos
(

ω − 2π
T ℓ
)

ω ∈ Fℓ

0 otherwise,
(73)

where

Fℓ =

[

(ℓ − 1)
2π

T
, ℓ

2π

T

]

. (74)

These filters satisfy the conditions of Proposition 1 and
can model realistic sampling filters with non-flat frequency
response. In this case a non trivial digital correction filter bank
is required, whose coefficients are calculated using the inverse
DTFT of W

−1
(

ejωT
)

.
In Fig. 9 the MSE of the delays estimation versus the SNR

is plotted for different lengths of filters. At low SNRs the
dominant error is caused by the noise, while for high SNRs the
error is mostly a result of the correction filter approximation. It
can be seen that a49 taps filters provide a good approximation
to the correction filter bank, resulting in a delay of24 samples.
When working at SNRs below40dB, filters with 11 taps
provide a reasonable approximation.

0 10 20 30 40 50 60 70 80
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

SNR [dB]

M
S

E
 [d

B
]

 

 

49 taps
25 taps
11 taps
1 tap

Fig. 9. MSE of the delays estimation versus SNR for differentlengths of
digital correction filter bank approximations.

VIII. C ONCLUSION

In this paper, we considered the problem of estimating
the time delays and time varying coefficients of a multipath
channel, from low-rate samples of the received signal. We
showed that this problem can be formulated within the broader
context of sampling theory, in which our goal is to recover an
analog signalx(t) that lies in a SI subspace, spanned byK
generators with unknown delays. This class of problems can
be viewed as an infinite union of subspaces.

We showed that if the channel hasK multipath compo-
nents, or equivalently, if the SI subspace is generated byK
generators, than under appropriate conditions on the sampling
filters, a sampling rate of2K/T is necessary and sufficient
to guarantee perfect recovery of any signalx(t). Here T is
the transmission rate, or the period of the generators. We
developed sufficient conditions on the generators and the
sampling filters in order to guarantee perfect recovery at the
minimal possible rate. To recover the unknown time delays, we
showed that our problem can be formulated within the context
of DOA estimation. Using this relationship, we proposed an
ESPRIT-type algorithm to determine the unknown delays from
the given low rate samples. Once the delays are properly
identified, the time varying coefficients can be found by digital
filtering.

Besides the application to time delay estimation, the prob-
lem we treated here can be seen as a first example of a system-
atic sampling theory for analog signals defined over an infinite
union of subspaces. Recently, there has been growing interest
in sampling theorems for signals over a union of subspaces
[15], [16], [20], [18], [19], [17], [22]. However, previouswork
addressing stability issues and concrete recovery algorithms
have focused on finite unions. Here, we take a first step in
the direction of extending these ideas to a broader setting that
treats analog signals lying in an infinite union.
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