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Time-Frequency Energy Distributions Meet

Compressed Sensing
Patrick Flandrin, Fellow, IEEE and Pierre Borgnat, Member, IEEE

Abstract—In the case of multicomponent signals with ampli-
tude and frequency modulations, the idealized representation
which consists of weighted trajectories on the time-frequency
(TF) plane, is intrinsically sparse. Recent advances in optimal
recovery from sparsity constraints thus suggest to revisit the
issue of TF localization by exploiting sparsity, as adapted to the
specific context of (quadratic) TF distributions. Based on classical
results in TF analysis, it is argued that the relevant information is
mostly concentrated in a restricted subset of Fourier coefficients
of the Wigner-Ville distribution neighbouring the origin of the
ambiguity plane. Using this incomplete information as the pri-
mary constraint, the desired distribution follows as the minimum
ℓ1-norm solution in the transformed TF domain. Possibilities
and limitations of the approach are demonstrated via controlled
numerical experiments, its performance is assessed in various
configurations and the results are compared with standard
techniques. It is shown that improved representations can be
obtained, though at a computational cost which is significantly
increased.

Index Terms—time-frequency, localization, sparsity.

EDICS Category: SSP-NSSP

I. INTRODUCTION

C
HIRPS (i.e., transient amplitude and frequency modu-

lated (AM-FM) signals) are ubiquitous in nature and

man-made systems. They are commonly encountered in a

variety of fields ranging from audio (speech, music) to wave

physics (whistling atmospherics, gravitational waves), from

engineering (radar, sonar) to biology and medicine (EEG

epilectic seizures, EMG uterine contractions), or even in math-

ematics (Weierstrass and Riemann functions), see, e.g., [3] and

references therein. From the point of view of exploratory data

analysis, a fine and non parametric characterization of chirps is

often needed, e.g., as a hint for some further modeling. Since

chirps are waveforms whose structure explicitly involves time-

varying properties with respect to both amplitude and spectral

content, they naturally call for time-frequency (TF) analysis

tools. Because of the Fourier uncertainty between time and

frequency, any TF approach is however faced with difficulties

which become all the more challenging as signals are of a

shorter duration. Albeit standard in its motivation, this problem

has not yet received its ultimate solution, and the purpose of

this paper is to revisit it in a new way that combines basics of
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“classical” TF analysis with recent advances from Compressed

Sensing (CS) (for a general overview of CS, the interested

reader is referred to [4], [5], as well as to the resources

webpage [6]).

It is worth stressing the fact that the approach reported

here differs in several respects from related attempts. First,

as compared to Gabor-based approaches (see, e.g., [7]) which

assume sparsity in linear representations, we make here the

choice of working with quadratic energy distributions as

TF representations, the rationale being to favor structured

components in the form of localized chirps along TF trajec-

tories rather than independent atoms. Second, whereas most

“classical” CS-based methods involve random measurements,

a deterministic approach will be followed here for the selection

of a small subset of observed values used as constraints. For

sake of incoherence between the targeted representation and

its measurements, such a selection will be done in the Fourier

domain in the spirit of the emblematic examples of phantom

recontruction from Fourier slices discussed in [9] or of “Com-

pressed Sensing MRI” [11], [12], thus contrasting with other

possibilities of deterministic sensing [13]. A major difference

exists however with such Fourier-based CS approaches since,

as it will be made explicit in Sect. IV-B2, the addressed

problem will be shown to differ from a classical reconstruction

by moving to the construction of a TF distribution which

would not be attainable otherwise, regardless of the number of

measurements in the Fourier domain. Finally, whereas specific

improvements to Fourier-like TF methods could be obtained

by means of model-based approaches, we will adopt here a

model-free perspective, the only assumption being that the

representation which of interest for is intrinsically sparse in

the TF domain since the energy of a chirp is expected to be

essentially distributed along a 1D curve of the 2D plane.

More precisely, the paper is organized as follows. In Section

II, the issue of chirp localization is addressed and classical

TF solutions are briefly recalled. Considering that localized

TF distributions of chirps are sparse in the TF plane, Section

III gives the rationale for revisiting the problem from a CS

perspective. This is detailed further in Section IV where the

effectiveness and performance of the approach are discussed,

in particular with respect to the selection of Fourier samples

for which a rule-of-thumb criterion is proposed. Whereas this

paper is not focused on the algorithmic part of the method,

some computational issues are addressed, and limitations as

well as possible extensions are finally discussed in Section V.
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II. TIME-FREQUENCY LOCALIZATION

A. AM-FM signals as time-frequency trajectories

If we consider a signal made of the superimposition of a

finite number of AM-FM components:

x(t) =

K
∑

k=1

ak(t) eiϕk(t),

it is natural to attach to it an idealized TF distribution (TFD)

ρx(t, f) which essentially distributes the total energy along TF

trajectories according to:

ρx(t, f) =

K
∑

k=1

a2
k(t) δ (f − ϕ̇k(t)/2π) . (1)

In such a picture, each component is characterized at each

time instant by essentially one instantaneous frequency (which,

in a first approximation, can be identified to the phase deriva-

tive), weighted by the corresponding instantaneous power.

Except for very special cases, there is no general method-

ology to automatically get a distribution as in (1). In the case

of a single component (K = 1), it is well-known [14] that a

perfect localization can be attained for pure FM signals with

a linear modulation (a1(t) = 1 and ϕ̇1(t) = 2π(f0 + α t)) by

using the Wigner-Ville Distribution (WVD):

Wx(t, f) =

∫ +∞

−∞

x
(

t +
τ

2

)

x∗

(

t −
τ

2

)

e−i2πfτ dτ. (2)

Although this property can be extended to some forms

of nonlinear FMs (e.g., Bertrands’ distributions for power-

laws [15]), it is generally at the expense of a substantially

increased complexity in the definition (and the computation)

of the distributions, with furthermore the limitation of being

adapted to some specific type of FM only and to not extend

to multicomponent situations. For this last point, the well-

known drawback of energy distributions is to obey a quadratic

superposition principle which creates cross-terms in between

any two components of a signal, and thus significantly reduces

the readability of Wigner-type distributions [16].

B. Classical techniques of TF localization

The aforementioned difficulties have led to many devel-

opments during the last 20 years but, unfortunately, since

both localization and creation of cross-terms result from the

very same mechanism [17], it turns out that trying to impose

simultaneously localization and cross-terms reduction is faced

with a trade-off that can be viewed as a form of time-frequency

uncertainty principle. The simplest way to understand where

this trade-off comes from (and how to manage it) is to interpret

the WVD in its 2D Fourier transform domain.

By definition, the WVD admits a 2D Fourier transform

which is referred to as the ambiguity function (AF) and reads

Ax(ξ, τ) =

∫ +∞

−∞

x
(

t +
τ

2

)

x∗

(

t −
τ

2

)

ei2πξt dt.

If we introduce the TF shift operator Tξ,τ which acts on

signals x(t) ∈ L2(R) as

(Tξ,τx) (t) := x(t − τ) e−i2πξ(t−τ/2),

we readily get that Ax(ξ, τ) = 〈x,Tξ,τx〉, i.e., that the AF is

nothing but the inner product between the analyzed signal and

its TF shifted versions. By construction, the AF can thus be

viewed as a TF correlation function and, as such, it exhibits

most properties of a correlation function, including hermitian

symmetry and the fact that its modulus is maximum at the

origin. Moreover, in the case of multicomponent signals, the

total AF consists of both auto-components neighbouring the

origin of the plane and cross-components mostly located at a

TF distance from the origin which directly depends on the

TF separation between the individual components and that

are the Fourier images of the undesired cross-terms in the

TF plane. This observation early prompted [18] to propose

improvements upon the WVD by weighting the AF around

the origin of the plane prior to applying an inverse 2D Fourier

transform: the more restricted the weighting domain, the more

effective the cross-terms suppression but, at the same time, the

more decreased the TF localization. This procedure (which

defines Cohen’s class [14] on geometrical grounds and can

be improved by adapting the weighting domain to the signal

structure [19]) proved reasonably effective, but it basically

faces a trade-off between cross-terms reduction and localiza-

tion. This motivated the search for improved techniques and,

amongst the other approaches that have been proposed, the one

that is referred to as reassignment plays a prominent role. The

rationale behind reassignment (see [20] for a comprehensive

presentation of reassignment techniques) is that it basically

exploits the phase information that is usually discarded in

simple quadratic distributions such as spectrograms (or scalo-

grams). In this respect, reassigned spectrograms (RSP) proved

in particular extremely efficient to approach (1) and will thus

be used in Section IV for the sake of comparison.

III. LOCALIZATION FROM SPARSITY CONSTRAINTS

If the analyzed signal is given in discrete-time and supposed

to be of dimension N in time, its TFD is of dimension N2

when computed over N frequency bins. However, assuming

that K ≪ N , i.e., that the number of components is much

smaller than the dimension of the signal, the targeted TFD

which is supposed to satisfy (1) is distributed over the plane

in a very sparse way, with only K 1D trajectories where at

most KN values are expected to be non-zero. Imposing such

a sparsity is therefore a new way of approaching the problem.

A. Principle

Based on the arguments recalled in Section II-B, the prin-

ciple of the proposed sparsity-based approach to TF local-

ization is thus very simple: it simply consists of selecting

a suitable collection of AF samples neighbouring the origin

of the plane in a given domain Ω(ξ, τ) and searching for

the sparsest TFD ρ such that its 2D Fourier transform F{ρ}
coincides with the original AF over Ω. As has been mentioned

previously, masking AF around the origin has the desired

effect of reducing cross-terms, but at the expense of degrading

localization if a crude Fourier inversion is performed without

any constraint. Selecting a few samples only of the AF around
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Fig. 1. Example with a 128 points 2-component signal — Different TFDs are displayed in the case of a 128 points signal whose TF model (1) is given in
the top row, in between the Wigner-Ville Distribution (WVD) and the reassigned spectrogram (RSP) that has been “optimized” as explained in Sect. IV-A.
The corresponding total ambiguity function (AF) of size 128 × 128 (defined as the 2D Fourier transform of the WVD) is given on the left of the top row,
with its restriction to a domain Ω consisting of 13 × 13 samples neighbouring the origin of the plane on the left of the bottom row. The rest of the bottom
row presents the results obtained from optimizations based on the only knowledge of this restriction of the AF, with the exact minimum ℓ1-norm solution
according to (3) in between the minimum ℓ2-norm solution and the approximate minimum ℓ1-norm solution according to (4) with ǫ = 0.05 ‖x‖2. For all
diagrams, amplitudes are grey coded logarithmically, with a dynamic range of 18 dB.

the origin is therefore the first ingredient for ensuring cross-

terms reduction, and it is the further assumption of few

chirp components that is instrumental for guaranteeing TF

localization. In this respect, the recourse to CS algorithms can

be viewed as a form of constrained AF extrapolation.

B. Constraints

Looking for a perfectly localized solution such as (1) would

require minimizing the total number of non-zero coefficients,

i.e., the ℓ0-“norm” of the TFD. While this turns out not to be

practicable from a computational viewpoint, a series of recent

works (see, e.g., [8], [9], [10], and [6] for a comprehensive

list of references) have shown that a near-optimal solution can

be attained at a sensibly more affordable cost by minimizing

the ℓ1-norm, reducing the problem to the solving of a linear

program. It is this technique which is proposed to be followed

here, the desired localized TFD ρx(t, f) being therefore the

solution of the constrained minimization problem:

ρx = arg min
ρ

‖ρ‖1 ; F{ρ} − Ax = 0|(ξ,τ)∈Ω . (3)

The primary constraint which is given by (3) imposes a

strict equality over Ω in the AF domain. This however can be

relaxed [10] according to

ρx = arg min
ρ

‖ρ‖1 ; ‖F{ρ} − Ax‖2 ≤ ǫ|
(ξ,τ)∈Ω

, (4)

where ǫ is a user-specified bound. Both possibilities (3) and

(4) will be considered in the following, with the corresponding

ℓ1 solutions referred to as, respectively, ℓ1-eq (for ℓ1 with

equality) and ℓ1-app (for ℓ1 with approximation).

One can remark that, the present approach being based on

optimization, it is possible to easily impose further constraints

besides (3) or (4). This has not been followed in this work,
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Fig. 2. Rényi entropy and ℓ1-distance — Using the same signal as in Figure
1, the localization properties and proximity from the model of the different
TFDs are quantified in terms of the Rényi entropy of order 3 (left, with the
model entropy in thick black line) and ℓ1-distance (right), as a function of
the relative number of AF samples card(Ω)/N2 used in the optimizations.

but it should certainly be interesting to explore further such a

possibility (with respect, e.g., to regularity, marginals, . . . ).

IV. CS-BASED TF ANALYSIS IN ACTION

The feasability of the method has been tested on simple,

yet informative examples. Since the purpose of this paper

is not to contribute in a new way to the solving of opti-

mization problems such as those stated in (3) and (4), the

reported examples are based on a straightforward application

of existing solutions. For the sake of completeness, basics

of the corresponding methods are however briefly recalled in

the Appendix. All the computations presented in this section

have been made in MATLAB, with the TIME-FREQUENCY

TOOLBOX [21] for the TF computations and the ℓ1-MAGIC

TOOLBOX [22] for the optimization, but alternative algorith-

mic procedures have been considered as well, with similar

results: this will be detailed further in Section IV-D.

A. A first comparison

Figure 1 illustrates the principle of the proposed approach

and compares different TFDs in the case of a 128 points

waveform made of the superimposition of a linear and of a

sinusoidal FM, both modulated in amplitude with a Gaussian.

In this example, the different optimizations have been based

on the only knowledge of the 13 × 13 Fourier samples of

the WVD neighbouring the origin of the AF plane, i.e.,

on a subset of about 1% only of the total number of AF

coefficients. With so few AF coefficients, it is clear that a

crude Fourier inversion (which corresponds to the ℓ2-norm

solution of the optimization problem) ends up with a very

poor TFD. From a qualitative point of view, it then turns

out from this figure that the minimum ℓ1-norm solutions

(either exact, according to (3) or approximate, according to

(4)) are much more effective in terms of localization, even

as compared to the reassigned spectogram which is known to

usually behave best for this kind of signal. It has to be noted

that, since a reassigned spectrogram depends on the choice

of a window length, experiments have been conducted with

various lengths and the reported quantitative results correspond

to the best performance that has been obtained. In practice,

such an optimization cannot be achieved, but making use of

this “optimum” reassigned spectrogram has been chosen so

as to get a form of bounds on the achievable performance

(such bounds are likely not to be attained in real situations).

Comparing the exact and approximate ℓ1 solutions, it also

appears that the former is in some sense “too sparse” as

compared to the latter, with energy contributions well localized

on the TF trajectories, but in a discontinuous, spiky fashion.

B. Selection of Fourier samples

The result reported in Figure 1 can be thought of as very

peculiar in the sense that it heavily relies on the specific

choice of a domain, regarding area (why 13 × 13 Fourier

samples?) as well as shape (why a fixed square domain?).

All the appreciations commented above can then be quantified

further in terms of both the achieved performance with respect

to the actual model, and the influence of the AF domain from

which the optimization is conducted.

1) Heisenberg cardinality: Concerning the cardinality of

the domain (first assumed to be square), the result is reported

in Figure 2 which displays a localization measure (the Rényi

entropy of order 3, which has proved to be a good measure

of localization for energy TFDs [23]) together with the ℓ1-

distance to the model, both as functions of the relative sparsity

measure card(Ω)/N2. What is revealed by this figure is that

both minimum ℓ1-norm solutions are generally better localized

(i.e., have a smaller Rényi entropy) than the other considered

TFDs, with even an entropy that might be smaller than the

model one whose value is in this case 6.37. In particular,

the exact ℓ1 solution has always the minimum entropy but,

as evidenced by Figure 1, this is due to an oversparse,

discontinuous structure which results in a larger distance to

the actual model. The evolution of this distance shows that

the best behavior is obtained with the approximate minimum

ℓ1-norm solution, the minimum being obtained when using

only about 1% of the N2 AF samples. The small value of this

sparsity measure is indeed a consequence of the fact that, as it

will be justified further in Sect. IV-B2, the required number of

measurements in the Fourier domain scales as card(Ω) ≈ N .

Additionnally, it is worth noticing that, while the WVD we

started with is known to attain negative values and whereas

no positivity constraint has been imposed, the minimum ℓ1-

norm solutions happen to be almost positive.

A qualitative interpretation of why a cardinality of the

order of the signal length leads to the best result can come

from an uncertainty argument. Indeed, AFs (as TFDs) are

known to obey uncertainty principles which prevent them to be

pointwise localized in their respective planes [24]. Auto-terms

of a multicomponent signal are thus expected to exist over

a domain (neighbouring the origin of the plane, see Section

II-B) whose area is at least of the order of a “Heisenberg cell”,
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i.e., roughly N if the AF of a N points signal is computed

over a N × N grid. Most of the information in such a cell

being coded by the modulus and the phase of the AF, there

is no point in enlarging further the domain, since the main

effect of such an enlargement would be to possibly include

undesired cross-terms influences in the constraints.

2) Oracle: Some further appreciation can be gained from a

comparison with an “oracle”, based on the assumed knowledge

of the ideal distribution. In this case, the linear program (4) is

run exactly as in Figure 1, while replacing mutatis mutandis

the WVD by the TF model (1). This is illustrated in Figure 3,

where an optimum cardinality (namely |Ω|∗ ≈ N2/100 ≈ N )

is shown to exist, at least qualitatively, for trading off auto-

terms localization and cross-terms reduction.

The compared evolutions of the ℓ1 solutions derived from

the WVD and the model are clearly similar in a first regime,

whereas they diverge after the domain cardinality has attained

some critical value, the higher localization expected for auto-

terms being hampered by the off-spring of cross-terms that

appear as spikes in the representation due to their oscillatory

nature. If no such spiky terms would be present, a useful

criterion for choosing the cardinality of Ω could be the

entropy: the smaller the entropy, the more localized the TFD.

In order to prevent possible values of entropy due the spiky

structure stemming from undesired additional cross-terms, the

sole entropy has to be penalized in some way. This has

been investigated in [2] (but not reported here) by using

total variation as such a penalty function, ending up with the

identification of an optimum cardinality |Ω|∗ that is consistent

with the results displayed in Figures 2 and 3.

At this point, it might be worth stressing the fact that the

approach described here differs from a reconstruction problem

(as those considered, e.g., in [9], [11], [12]) in the sense that

there would be no point in exactly recovering the whole WVD

from a limited set of measurements (in fact, such a perfect

reconstruction is of course obtained when the entire ambiguity

plane is chosen as the measurement domain, see the far right

solutions of Figure 3). The situation is much more that of a

construction problem in which is created some idealized object

which does not exist per se prior optimization. From the oracle

perspective, a suitable selection of AF samples should thus

explicitly correspond to a subset of the Fourier transform of

the ideal localized TFD, and no more of the WVD. Based on

fundamental CS results for partial Fourier coefficients (see [9]

and the review in [5]), the cardinality of the domain Ω should

be therefore card(Ω) = O
(

KN log(N2)
)

for the recovery

of K AM-FM trajectories of N points each in a TF domain

of size N2. In practice, the typical value obtained from this

formula seems to be higher that the previous findings reported

in Figure 2 and those based on the oracle. This is first related

to the construction nature of our problem, when the CS results

are given for a reconstruction problem. Second, a lower limit

for a ℓ1 minimization problem to find the sparsest solution is

given by a phase transition behaviour, as discussed in [5]. In

that case, the cardinality of the domain Ω could be as low

as card(Ω) = O (KN log(N/K)) in this problem. With the

numerical values used in Figure 1, this leads to a magnitude of

order 10KN (up to a constant of O(1)), that is of the same

order of magnitude as the Heisenberg cardinality discussed

before.

3) Domain geometry: Up to now, emphasis has been put

on the area of a domain Ω assumed to be square. This is of

course an unnecessary restriction that has to be questioned.

To this end, Figure 4 displays ℓ1 distances to the model, as in

Figure 2, with a domain Ω whose area is kept fixed and equal

to its “optimum” value 169, but with a rectangular or elliptic

shape with a varying aspect ratio. The latter being computed

as “r = Doppler semi-axis/delay semi-axis”, it turns out that

the best performance is obtained when the selected ambiguity

domain is slightly elongated along the delay axis, with almost

uniformly improved results within the range 1/3 . r . 1 (i.e.,

equivalently, −0.4 . log10(r) . 0). While such numerical

values are likely not to be universal and might depend on the

analyzed signal, the interpretation is believed to be general in

the sense that aspect ratios r < 1 tend to favor TF coherence

in the time direction, a feature that is characteristic of most

chirps which are naturally considered as “frequencies that

vary with time”. Would the signal TF structure be organized

differently as, e.g., in dispersive systems where frequency-

dependent epochs are the most relevant signatures, aspect

ratios greater than one would be better. When some anisotropy

is expected in a TFD, the recipe is that this should be taken

into account as a prior when choosing Ω.

A further remark can be done in the same direction, which

points to a basic difference between the approaches based on

linear decompositions and the quadratic one proposed here. If

sparsity was assumed to exist with respect to some dictionary

of TF atoms, their identification (via matching or basis pursuit)

would end up with a collection of elementary components

(typically, Gabor logons) that could be located along the TF

trajectories of interest but as independent components rather

than as a globally coherent structure. From a quadratic TF

perspective [17], and in the spirit of the “cross-terms deleted

representations” [25], this corresponds to a situation where

the inner interference terms that guarantee the coherently

organized TF structure of chirps are just ignored. In this

respect, a flexible improvement can come from the taking

into account of such terms that, by nature, have short (TF)

distance interactions [26]. This is also what is done in the

present approach since, by nature, inner interference terms

mix up with auto-terms in the vicinity of the origin of the

ambiguity plane, without any clear-cut separation. They are

thus automatically taken into account when restricting Ω to an

Heisenberg cell, with a representation all the more satisfactory

in terms of chirp continuity as the geometry of the domain is

adapted to the TF correlation structure of the analyzed signal.

This last remark prompts to look for even more adaptivity

in the domain geometry, beyond convex domains whose main

axes would necessarily coincide with those of the ambiguity

plane. At first sight, it might be expected that the use of

adapted kernels (as proposed, e.g., in [19]) would prove useful.

This however seems not to be the case, which does not neces-

sarily come as a surprise. Indeed, besides an assumed sparsity

of the solution, the other ingredient for a successful CS-based

approach is that of its incoherence with the measurements on

which it is based. Operating in the Fourier domain clearly
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the whole AF plane. Bottom row: companion “oracle” solutions obtained the same way, but based on the ideal distribution in place of the WVD. Comparison
of both evolutions evidences that an optimum cardinality |Ω|∗ exists for trading off auto-terms localization and cross-terms reduction (about 1% of the AF
support in the present case). For all diagrams, amplitudes are grey coded logarithmically, with a dynamic range of 18 dB.
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Fig. 4. Influence of the anisotropy of Ω — Given a domain Ω (rectangular
or elliptic) whose area is kept fixed (and equal to 169), the ℓ1 distances of
the resulting TFDs to the actual model are plotted as a function of the aspect
ratio “Doppler semi-axis/delay semi-axis” of Ω in the ambiguity plane.

goes this way, but adapting the selected subset to the signal

structure goes the opposite.

C. More examples

Another example is shown in Figure 5 about the application

of the method to a synthetic signal with crossing chirps, a

case that is known to be difficult to recover from quadratic

TF distributions (due to the interferences, [16]). The optimum

magnitude for the Heisenberg cardinality is, for this example

with two linear chirps with Gaussian modulated amplitudes,

card(Ω) ≃ 0.005 N2, in agreement with the previous dis-

cussions. The distribution resulting of ℓ1-app is satisfactorily

close to the model one, see the quantitative results given in

the following Table:

model RSP ℓ1-app

ℓ1-distance to model 0 1.016 1.164

Rényi entropy 7.435 7.769 7.853

Simulation examples of this kind could of course be mul-

tiplied, and we will give only one more (already considered

as a test-signal for reassignment methods in [20]). It consists

of a signal that is similar to the one used in the first part of

this paper, while having a structure that is more complex (and

difficult to deal with) in three respects:

1) it has three components, with one of them embedded in

the cross-terms resulting from the interference between

the two other ones;
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Fig. 5. Crossing chirps example — This Figure compares, for a signal
composed of the 2 linear crossing chirps represented in the model (top left),
its Wigner-Ville Distribution (top right), its reassigned spectrogram (bottom
left) and the approximate minimum ℓ1-norm solution (4) with ǫ = 0.05 ‖x‖2

(bottom right). The number of data points is N = 128 and the optimization is
based on the knowledge of the 9×9 Fourier samples of the WVD neighbouring
the origin of the AF plane, i.e, card(Ω) ≃ 0.005 N2. For all diagrams,
amplitudes are grey coded logarithmically, with a dynamic range of 18 dB.

2) the newly introduced component is a Gabor logon,

which a priori does not enter directly the AM-FM model

considered so far (no TF “trajectory” in the plane);

3) some noise is added (with a SNR fixed to 10 dB).

As for the previous example, results are plotted in Figure

6, with a performance summarized in the following Table:

model RSP ℓ1-app

ℓ1-distance to model 0 1.599 1.554

Rényi entropy 8.065 9.298 9.406

As a complement to the synthetic examples of Figures 1,

5 and 6, Figure 7 is concerned with some real data, namely

the classical benchmark signal of a bat echolocation call1 of

effective length 400, zero-padded to N = 512 data points. In

this case too, the approximate minimum ℓ1-norm solution (4)

with card(Ω) = 23 × 23 ≈ N compares very favorably with

a reassigned spectrogram in terms of localization, with even

some smoother regularity along TF trajectories.

D. Computational cost

Given the above reported findings, the new discussed ap-

proach is no doubt attractive in terms of its ability to give

sharply localized TFDs in the case of transient, short duration

AM-FM multicomponent signals. There is however a price to

pay for this performance, which is a quite heavy computational

1The authors wish to thank Curtis Condon, Ken White, and Al Feng of
the Beckman Institute of the University of Illinois for the bat data and for
permission to use it in this paper.
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Fig. 6. Noisy 3-components example — This Figure compares, for a signal
composed of 2 chirps and 1 Gabor logon represented in the model (top left),
its Wigner-Ville Distribution (top right), its reassigned spectrogram (bottom
left) and the approximate minimum ℓ1-norm solution (4) with ǫ = 0.05 ‖x‖2

(bottom right), when the observation is the signal embedded in white Gaussian
noise with SNR = 10 dB. The number of data points is N = 256 and the
optimization is based on the knowledge of the 14×14 Fourier samples of the
WVD neighbouring the origin of the AF plane, i.e, card(Ω) ≃ 0.0035 N2.
For all diagrams, amplitudes are grey coded logarithmically, with a dynamic
range of 18 dB.

cost. To illustrate this point, one can report the average

computation times associated to the simulations of Figure 2, all

computations having been performed with MATLAB R2008a

in similar conditions (Intel Core 2 Duo 3.06 GHz on Mac OS

10.5). The result is that, whereas such an average time is 0.007
s for a WVD and 0.23 s for a reassigned spectrogram, it goes

up to 50 s for the exact ℓ1 solution and even to 152 s for the

approximate one, using the implementation of the ℓ1-MAGIC

TOOLBOX [9]. It thus turns out that computing a CS-based

TFD may differ from a classical approach by several orders

of magnitude.

There is an increasing literature about alternative algorithms

that could be used to solve programs having the form of

(4) and this could lead to improvement in that respect. For

instance, using the GPSR algorithm proposed in [27] to solve

the quadratic program associated to (4), the computational cost

goes down to 43 s (using the GPSR-BB with continuation)

and, for a suitable choice of the regularization parameter (see

Appendix), the results are identical in terms of ℓ1 distance

to the model and Rényi entropy of the resulting sparse TF

distribution. Other approaches (see a comprehensive list on the

CS resource page [6]) based on greedy strategies (for instance

refinements on Matching Pursuit, e.g., [28], [29], [30]), or

on different strategies for convex relaxation such as Iterative

Thresholding (e.g., [31], [32], [33] and contributions improv-

ing those), could lead to more efficient recovery procedures in

the current context, though we do not pursue here this question

further on. Our discussion about the obtained non-negativity

of the minimum ℓ1-norm solutions can be complemented by
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Fig. 7. Real data example — This Figure compares a reassigned spectrogram
(left column) and the approximate minimum ℓ1-norm solution (4) with ǫ =
0.05 ‖x‖2 (right column) in the case of a bat echolocation call of effective
length N = 400, the optimization being based on the knowledge of the 23×
23 Fourier samples of the WVD neighbouring the origin of the AF plane. The
bottom row displays enlarged versions of the distributions within the boxes
in the top row. For all diagrams, amplitudes are grey coded logarithmically,
with a dynamic range of 18 dB.

noting that using some algorithms would make it possible

to impose a condition on non-negativity of the solution, as

proposed, for instance, in the GPSR method [27]. The issue

of the choice of the better algorithm for the study proposed

here is only sketched and will be part of further work.

V. CONCLUSION AND PERSPECTIVES

A new approach has been proposed for getting sharply

localized TFDs in the case of multicomponent AM-FM signals

by making use of the assumed sparsity of their energy distri-

bution in the TF plane. Once the principle of the method has

been given, there is clearly plenty of room for more thorough

investigations and further developments.

As has been briefly mentioned in Section III-B, one par-

ticular interest of the present approach which is based on

optimization, is that further constraints can be imposed besides

(3) or (4). One can think, e.g., of the marginalization prop-

erties attached to unit cross-sections in the AF plane [14].

This however is not necessarily relevant in the context of a

sharp TF localization since, in the case of multicomponent

signals, highly oscillatory behaviours along TF trajectories will

be favored. A more interesting variation is to favor regular

time evolutions, what can be achieved explicitly by imposing

specific AF cross-sections or, implicitly, by using as a starting

point a time smoothed WVD.

Such extensions would also suggest to conduct further

experiments in comparison with distributions within Cohen’s

class (with fixed or adapted kernels): a comprehensive treat-

ment of this point is clearly beyond the scope of this paper,

but this is a perspective that is certainly worth investigating in

future developments. In a different direction, one can mention

that CS-based approaches have been very recently proposed

for the purpose of nonstationary spectral estimation in the

case of stochastic processes [34], [35], in place of the time-

frequency localization problem that has been considered here

for deterministic chirp signals. While their objectives are

somehow different, it turns out that the CS-based rationale of

the two approaches is quite similar, and it would be interesting

to merge them in a common perspective.

Whereas the heavy computational load can be considered as

a severe drawback, it has been mentioned that improving upon

this limitation is a current topic of very active research, with

advances in this direction expected to be most benefitial for the

present method. Moreover, it is worth stressing that the pro-

posed optimization-based approach is not primarily intended to

long duration signals. It is rather relevant for transient, highly

nonstationary signals and, as such, it is expected to provide

some nice addition to the existing toolbox of non-parametric

TF methods aimed at exploratory data analysis.

APPENDIX

There has been a considerable interest in the solving of

optimization problems such as the ones in eqs. (3) and (4) in

the past years, thanks to the emergence of the “Compressed

Sensing” (also called “Compressive Sampling”, and referred

to as CS) [4], [8], [9]. The purpose of this Appendix is to

provide the reader with an overview of this domain and of

some methods used to solve these optimization problems, and

to refer to the articles proposing them.

A. Review on Compressed Sensing and optimization problems

with ℓ1 norm

The minimization problem ℓ1-eq of eq. (3) is known as

“Basis Pursuit” since it corresponds to [37]:

min
ρ

‖ρ‖1 ; subject to O{ρ} = b, (5)

where ρ ∈ R
n, b ∈ R

k and O is an operator associated to a

k × n matrix representation. The ℓ1-app problem of eq. (4)

is a relaxed version of ℓ1-eq, where the equality constraint is

replaced by a quadratic constraint:

min
ρ

‖ρ‖1 ; subject to ‖O{ρ} − b‖2 ≤ ǫ. (6)

Both problems are related in the sense that eq. (5) has the

form (6) with ǫ = 0.

Compressed Sensing (CS) deals with these problems when

the number k of linear measurements available is much smaller

than the number n of unknowns [4], and many methods have

been proposed to solve both of them. Note that, in our context,

O being a Fourier transform on the limited set Ω in the

ambiguity domain, the number of measurements k = card (Ω)
is indeed much smaller than n = N2, the number of points of

the TFD; the situation is thus equivalent to a CS one.

B. A short lecture guide for optimization with ℓ1-norm

A review of all the algorithmic procedures that have been

proposed so far is outside the scope of this Appendix, see for

instance discussions in [27], [28], [22] or the PhD thesis [36]

for a comprehensive discussion on modern algorithms. Here,

we will discuss how the two optimization problems stated
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above can be solved for our work, using classical techniques

from the CS field.

When b is real, the problem ℓ1-eq can be recast and solved

as a Linear Program, as shown in the seminal work on Basis

Pursuit [37], and solved using interior point methods. In our

context, the operator O is the Fourier transform and the

constraint b corresponds to a restriction to some observations

in the Fourier domain. This situation was considered in [9],

proving that sparse vectors can then be recovered exactly

through ℓ1 minimization (see also [11], [12] for use of

CS principles in the Fourier domain). When separating on

different coordinates in b the mean and the real and imaginary

parts of the Fourier transform, b turns out to be real and the

primal-dual interior point method proposed in l1eq_pd.m

of [22] can be used to solve (5), once recast as a constrained

linear program.

As argued in the article, the solutions of (5) being often too

sparse to be considered as a good TFD, solving the problem (6)

is more relevant. It is a convex optimization problem, an

instance of a second order cone program as considered in [38],

[39]. Many approaches are now standard to solve it, including

the log-barrier algorithm implemented in [22], interior-point

algorithms as proposed in [37] or Iteratively-Reweighted Least

Squares (see Appendix B of [38]). Also, using results from

convex optimization, it is shown that the problem ℓ1-app is

related to the LASSO problem (minimization of the error with

a ℓ1-norm constraint) [40] and to the Basis Pursuit Denoising

(BPDN) [37]:

min
ρ

λ‖ρ‖1 +
1

2
‖O{ρ} − b‖

2
2. (7)

Namely, solutions of (6) are either 0 or a minimizer of (7)

for some λ ≥ 0 [27]. As a consequence, any method that

can find a solution to the BPDN problem of eq. (7) can be

adapted for solving our original ℓ1-app problem. For instance,

homotopy methods originally proposed for the LASSO prob-

lem were considered in [28], [36]. Various modern instances

of (Orthogonal) Matching Pursuit were proposed also to solve

BPDN, e.g. [28], [29], [30], as well as iterative Shrinkage and

Thresholding methods, e.g. [31], [32], [33].

Given the tremendous amount of works done on the algo-

rithmic part of BP and BPDN problems, it was not possible to

compare the behaviours of all the algorithms in our context.

We limited ourselves to two approaches for the solving of

ℓ1-app with Fourier domain measurements:

• The l1qc_logbarrier.m software of the ℓ1-MAGIC

toolbox [22] that looks for a solution of ℓ1-app as a

second order cone program, solved with a log-barrier

algorithm.

• The GPSR_BB.m software of the GPSR toolbox [27] as

an instance of an efficient gradient projection algorithm

that solves BPDN (expressed as a bound-constrained

quadratic program) for a sequence of values of λ. This

allows a reduction of the computational time to obtain

solutions of ℓ1-app, at the expense of not knowing a priori

how to select λ.

When properly selecting λ, the results obtained for the TFD

built from solving ℓ1-app, as formulated in eq. (4), were

similar. Such a proper choice can be made by following the

guidelines reported in [27], i.e.,

λ = α‖F−1{Ax}‖∞,

with α ≈ 0.1. In practice, it happened that a smaller value

α ≈ 0.02 gave the best results for the considered examples.

The question of finding in an automatic, data-driven way, the

best regularization parameter and, more generally, the best

algorithm for the specific context of TF analysis (especially

in terms of trade-off between computational cost and localiza-

tion), is left open to future works.
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Trans. on Info. Theory, Vol. 47, No. 4, pp. 1391–1409, 2001.
[24] R. Price and E.M. Hofstetter, “Bounds on the volume and height

distribution of the ambiguity function,” IEEE Trans. on Info. Theory,
Vol. 11, pp. 207–214, 1965.

[25] S. Qian and J.M. Morris, “Wigner distribution decomposition and cross-
terms deleted representation,” Sig. Proc., Vol. 27, pp. 125–144, 1992.

[26] S. Qian and D. Chen, “Decomposition of the Wigner distribution and
time-frequency distribution series,” IEEE Trans. on Sig. Proc., Vol. 42,
pp. 2836–2842, 1994.

[27] M. Figueiredo, R. Nowak and S. Wright, “Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse
problems,” IEEE J. of Select. Topics in Signal Proc.: Special Issue on

Convex Optimization Methods for Signal Processing, Vol. 1, No 4, pp.
586–598, 2007.

[28] D. Donoho, Y. Tsaig, I. Drori and J.-L. Starck, “Sparse
solution of underdetermined linear equations by stagewise
orthogonal matching pursuit,” Report preprint available from
http://www-stat.stanford.edu/˜donoho/reports.html,
2006.

[29] J. A. Tropp and A. Gilbert, “Signal recovery from random measure-
ments via orthogonal matching pursuit,” IEEE Trans. on Info. Theory,
Vol. 53, No. 12, pp. 4655–4666, 2007.

[30] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples,” Appl. Comp. Harm. Anal., Vol. 26,
No. 3, pp. 301–321, 2009.

[31] I. Daubechies, M. Defrise and C. DeMol, “An iterative thresholding
algorithm for linear inverse problems,” Comm. Pure Appl. Math., Vol.
57, No. 11, pp. 1413–1457, 2004.

[32] I. Daubechies, M. Fornasier and I. Loris, “Accelerated Projected Gra-
dient Method for Linear Inverse Problems with Sparsity Constraints,” J.

Fourier Anal. Appl., Vol. 14, No. 5–6, pp. 764-792, 2008.
[33] T. Blumensath and M. E. Davies, “Iterative Thresholding for Sparse

Approximations,” J. Fourier Anal. Appl., Vol.14, No 5, pp. 629–654,
2008.

[34] A. Jung, G. Taubck, and F. Hlawatsch, “Compressive spectral estimation
for nonstationary random processes,” in Proc. IEEE Int. Conf. on Acoust.,

Speech and Signal Proc. ICASSP-09, pp. 3029–3032, Taipei (Taiwan,
R.O.C.), 2009.

[35] A. Jung, G. Taubck, and F. Hlawatsch, “Compressive nonstationary
spectral estimation using parsimonious random sampling of the ambiguity
function,” in Proc. IEEE Statistical Signal Processing Workshop SSP-09,
pp. 642–645, Cardiff (Wales UK), 2009.

[36] Y. Tsaig, “Sparse solution of underdetermined linear systems: Algo-
rithms and applications,” PhD Thesis, Stanford University, 2007.

[37] S. S. Chen, D. L. Donoho and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Sci. Comput., Vol. 20, pp. 33–61, 2001.

[38] D. L. Donoho, M. Elad and V. N. Temlyakov, “Stable Recovery of
Sparse Overcomplete Representations in the Presence of Noise,” IEEE

Trans. on Info. Theory, Vol. 52, No. 1, pp. 6–18, 2006.
[39] E. Candès, J. Romberg and T. Tao, “Stable signal recovery from

incomplete and inaccurate measurements” Comm. Pure Appl. Math., Vol.
59, No. 8, pp. 1207–1223, 2006.

[40] R. Tibshirani, “Regression shrinkage and selection via the lasso”, J.

Royal Statist. Soc. B., Vol. 58, No. 1, pp. 267–288, 1996.

Pierre Borgnat was born in Poissy, France, in 1974.
He made his studies at the École Normale Supérieure
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