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An adaptive greedy algorithm with application to
nonlinear communications

Gerasimos Mileounis, Student Member, IEEE, Behtash Babadi,
Nicholas Kalouptsidis, and Vahid Tarokh, Fellow, IEEE,

Abstract—Greedy algorithms form an essential tool for com-
pressed sensing. However, their inherent batch mode discour-
ages their use in time-varying environments due to significant
complexity and storage requirements. In this paper a powerful
greedy scheme developed in [1], [2], is converted into an adaptive
algorithm which is applied to estimation of a class of nonlinear
communication systems. Performance is assessed via computer
simulations on a variety of linear and nonlinear channels; all
confirm significant improvements over conventional methods.

Index Terms—Adaptive filters, ARMA processes, Nonlinear
systems, Equalizers, Compressed Sensing.

I. INTRODUCTION

Many real-life systems admit sparse representations, that
is they are characterized by small number of non-zero coeffi-
cients. Sparse systems can be found in many signal processing
[3] and communications applications [4]–[6]. For instance,
in High Definition Television the significant echoes form a
cluster, yet interarrival times between different clusters can
be very long [4]. In wireless multipath channels there is a
relatively small number of clusters of significant paths [5].
Finally, underwater acoustic channels exhibit long time delays
between the multipath terms due to reflections off the sea
surface or sea floor [6].

Two major algorithmic approaches to compressive sensing
are `1-minimization (basis pursuit) and greedy algorithms
(matching pursuit). Basis pursuit methods solve a convex
minimization problem, which replaces the `0 quasi-norm by
the `1 norm. The convex minimization problem can be solved
using linear programming methods, and is thus executed in
polynomial time [7]. Greedy algorithms, on the other hand,
iteratively compute the support set of the signal and construct
an approximation to it, until a halting condition is met [1],
[2], [8]–[11]. Both of the above approaches pose their own ad-
vantages and disadvantages. `1-minimization methods provide
theoretical performance guarantees, but they lack the speed
of greedy techniques. Recently developed greedy algorithms,
such as those developed in [1], [2], [10], deliver some of
the same guarantee as `1-minimization approaches with less
computational cost and storage.

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

G. Mileounis and N. Kalouptsidis are with the Department of Informatics
and Telecommunications, Division of Communications and Signal Processing,
University of Athens, Greece (email:{gmil,kalou}@di.uoa.gr).

B. Babadi and V. Tarokh are with the School of Engineering and Ap-
plied Sciences, Harvard University, Cambridge, MA02138 USA (e-mail:
{behtash,vahid}@seas. harvard.edu).

Many signal processing applications [4]–[6] require adap-
tive estimation with minimal complexity and small memory re-
quirements. Existing approaches to sparse adaptive estimation
use the `1-minimization technique, in order to improve the per-
formance of conventional algorithms. Chen et al. [12] incorpo-
rated two different sparsity constraints (the `1 and the log-sum
penalty functions) into the quadratic cost of the standard Least
Mean Squares (LMS) to improve the filtering performance
on sparse systems. In [13], Angelosante et al. developed a
recursive subgradient-based approach for solving the batch
Lasso estimator. An `1-regularized RLS type algorithm based
on a low complexity Expectation-Maximization is derived in
[14] by Babadi et al. Sparse adaptive `1-regularized algorithms
based on Kalman filtering and Expectation Maximization are
reported in [15] by Kalouptsidis et al.

In contrast to the above work on adaptive sparse identifi-
cation, this paper focuses on the greedy viewpoint. Greedy
algorithms in their ordinary mode of operation, have an
inherent batch mode, and hence are not suitable for time-
varying environments. This paper establishes a conversion pro-
cedure that turns greedy algorithms into adaptive schemes for
sparse system identification. In particular, a Sparse Adaptive
Orthogonal Matching Pursuit (SpAdOMP) algorithm of linear
complexity is developed, based on existing greedy algorithms
[1], [2], that provide optimal performance guarantees. Also,
the steady-state Mean Square Error (MSE) of the SpAdOMP
algorithm is studied analytically. The developed algorithm is
used to estimate ARMA and Nonlinear ARMA channels. It
is shown that channel inversion for these channels, maintains
sparsity and that it is equivalent to channel estimation. Com-
puter simulations reveal that the proposed algorithm outper-
forms most existing adaptive algorithms for sparse channel
estimation.

The paper is structured as follows. The problem formulation
and literature review are addressed in section II. Section III
describes the established algorithm, the steady-state error anal-
ysis and applications to nonlinear communication channels.
Computer simulations are presented in section IV. Conclusions
and future work are discussed in section V.

II. GREEDY METHODS AND THE COSAMP ALGORITHM

Consider the noisy representation of a vector y(n) =
[y1, · · · , yn]T in terms of a basis arranged in the columns of
a matrix Φ(n) at time n

y(n) = Φ(n)c + η(n) (1)
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where c is the parameter vector, Φ(n) = [φ(1), . . . , φ(n)]T

and η(n) = [η1, . . . , ηn]T is the additive noise. The measure-
ment matrix Φ(n) ∈ Cn×N is often referred to as dictionary
and the parameter vector c is assumed to be sparse, i.e.,
‖c‖`0 ¿ N , where ‖ · ‖`0 = |supp(·)| is the `0 quasi-norm.
We will call the parameter vector s-sparse when it contains at
most s non-zero entries.

Recovery of the unknown parameter vector c can be pursued
by finding the sparsest estimate of c which satisfies the `2
norm error tolerance δ

min
c
‖c‖`0 subject to ‖y(n)−Φ(n)c‖`2 ≤ δ. (P`0 )

Convex relaxation methods cope with the intractability of the
above formulation by approximating the `0 quasi-norm by the
convex `1 norm. The set of resulting techniques is referred
to as `1-minimization. The `2 constraint can be interpreted
as a noise removal mechanism when δ ≥ ‖η(n)‖`2 . The
`1-minimization approach is a convex optimization problem
and can be solved by linear programming methods [7], [16],
projected gradient methods [17] and iterative thresholding
[18].

The exact conditions for retrieving the sparse vector rely
either on the coherence of the measurement matrix [19] or on
the Restricted Isometry Property (RIP) [16]. A measurement
matrix Φ(n) satisfies the Restricted Isometry Property for
δs(n) ∈ (0, 1) if we have

(
1− δs(n)

)‖c‖2`2 ≤ ‖Φ(n)c‖2`2 ≤
(
1 + δs(n)

)‖c‖2`2 (2)

for all s-sparse c. When δs(n) is small, the restricted isometry
property implies that the set of columns of Φ(n) approxi-
mately form an orthonormal system.

A. The CoSaMP greedy algorithm

Greedy algorithms provide an alternative approach to `1-
minimization. For the recovery of a sparse signal in the
presence of noise, greedy algorithms iteratively improve the
current estimate for the parameter vector c by modifying one
or more parameters until a halting condition is met. The basic
principle behind greedy algorithms is to iteratively find the
support set of the sparse vector and reconstruct the signal
using the restricted support Least Squares (LS) estimate. The
computational complexity of these algorithms depends on the
number of iterations required to find the correct support set.
One of the earliest algorithms proposed for sparse signal
recovery is the Orthogonal Matching Pursuit (OMP) [8], [9],
[19]. At each iteration, OMP finds the column of Φ(n) most
correlated with the residual, v(n) = y(n)−Φ(n)ĉ, using the
proxy signal p(n) = Φ∗T (n)v(n) (where A∗T (n) denotes the
conjugate transpose of the matrix A(n) ∈ Cn×N ), and adds it
to the support set. Then, it solves the following least squares
problem:

ĉ = arg min
z
‖y(n)−Φ(n)z‖`2

and finally updates the residual by removing the contribution
of the latter column. By repeating this procedure a total of s
times, the support set of c is recovered. Although OMP is quite
fast, it is unknown whether it succeeds on noisy measurements.

An alternative algorithm, called Stagewise OMP (StOMP),
was proposed in [11]. Unlike OMP, it selects all components
of the proxy signal whose values are above a certain threshold.
Due to the multiple selection step, StOMP achieves better
runtime than OMP. Parameter tuning in StOMP might be
difficult and there are rigorous asymptotic results available.

A more sophisticated algorithm has been recently developed
by Needell and Vershynin, and it is known as Regularized
OMP (ROMP) [10]. ROMP chooses the s largest components
of the proxy signal, followed by a regularization step, to
ensure that not too many incorrect components are selected.
For a measurement matrix Φ(n) with RIP constant δ2s =
0.03/

√
log s, ROMP provides uniform and stable recovery

results. The recovery bounds obtained in [10] are optimal up
to a logarithmic factor. Tighter recovery bounds which avoid
the presence of the logarithmic factor are obtained by Needell
and Tropp via the Compressed Sampling Matching Pursuit
algorithm (CoSaMP) [1]. CoSaMP provides tighter recovery
bounds than ROMP optimal up to a constant factor (which is
a function of the RIP constants). An algorithm similar to the
CoSaMP, was presented by Dai and Milenkovic and is known
as Subspace Pursuit (SP) [2].

As with most greedy algorithms, CoSaMP takes advantage
of the measurement matrix Φ(n) which is approximately
orthonormal (Φ∗T (n)Φ(n) is close to the identity). Hence, the
largest components of the signal proxy p(n) = Φ∗T (n)Φ(n)c
is most likely to correspond to the non-zero entries of c. Next,
the algorithm adds the largest components of the signal proxy
to the running support set and performs least squares to get
an estimate for the signal. Finally, it prunes the least square
estimation and updates the error residual. The main ingredients
of the CoSaMP algorithm are outlined below:

1) Identification of the largest 2s components of the proxy
signal

2) Support Merger, which forms the union of the set of
newly identified components with the set of indices
corresponding to the s largest components of the least
square estimate obtained in the previous iteration

3) Estimation via least squares on the merged set of com-
ponents

4) Pruning, which restricts the LS estimate to its s largest
components

5) Sample update, which updates the error residual.
The above steps are repeated until a halting criterion is met.
The main difference between CoSaMP and SP is in the
identification step where the SP algorithm chooses the s largest
components.

In a time-varying environment, the estimates must be up-
dated adaptively to take into consideration system variations.
In such cases, the use of existing greedy algorithms on a
measurement block requires that the system remain constant
within that block. Moreover, the cost of repetitively applying a
greedy algorithm after a new block arrives becomes enormous.
Adaptive algorithms, on the other hand, allow online operation.
Therefore, our primary goal is to convert existing greedy
algorithms into an adaptive mode, while maintaining their
superior performance gains. We demonstrate below that the
conversion is feasible with linear complexity. We focus our
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TABLE I
SPADOMP ALGORITHM

Algorithm description Complexity
c(0) = 0, w(0) = 0, p(0) = 0 {Initiliazation}
v(0) = y(0) {Initial residual}
0 < λ ≤ 1 {Forgetting factor}
0 < µ < 2λ−1

max {Step size}
For n := 1, 2, . . . do
1: p(n) = λp(n− 1) + φ∗(n− 1)v(n− 1) {Form signal proxy} N
2: Ω = supp(p2s(n)) {Identify large components} N
3: Λ = Ω ∪ supp(c(n− 1)) {Merge supports} s
4: ε(n) = y(n)− φT

|Λ(n)w|Λ(n− 1) {Prediction error} s
5: w|Λ(n) = w|Λ(n− 1) + µφ∗|Λ(n)ε(n) {LMS iteration} s
6: Λs = max(|w|Λ(n)|, s) {Obtain the pruned support} s
7: c|Λs(n) = w|Λs(n), c|Λc

s
(n) = 0 {Prune the LMS estimates}

8: v(n) = y(n)− φT (n)c(n) {Update error residual} s
end For O(N)

analysis on CoSaMP/SP due to their superior performance,
but similar ideas are applicable to other greedy algorithms as
well.

III. SPARSE ADAPTIVE ORTHOGONAL MATCHING
PURSUIT ALGORITHM

This section starts by converting CoSaMP and SP algo-
rithms [1], [2] into an adaptive scheme. The derived algorithm
is then used to estimate sparse Nonlinear ARMA channels.

The proposed algorithm relies on three modifications to the
CoSaMP/SP structure: the proxy identification, estimation and
error residual update. The error residual is now evaluated by

v(n) = y(n)− φT (n)c(n). (3)

The above formula involves the current sample only, in
contrast to the CoSaMP/SP scheme which requires all the
previous samples. Eq. (3) requires s complex multiplications,
whereas the cost of the sample update in the CoSaMP/SP is
sn multiplications. A new proxy signal that is more suitable
for the adaptive mode, can be defined as:

p(n) =
n−1∑

i=1

λn−1−iφ∗(i)v(i)

and is updated by

p(n) = λp(n− 1) + φ∗(n− 1)v(n− 1)

where the forgetting factor λ ∈ (0, 1] is incorporated in order
to give less weight in the past and more weight to recent
data. This way the derived algorithm is capable of capturing
variations on the support set of the parameter vector c. In the
case of a time-invariant environment, λ should be set to 1. The
addition of the forgetting factor mechanism requires redefining
the Restricted Isometry Property as follows:

Definition 1. A measurement matrix Φ(n) satisfies the
Exponentially-weighted Restricted Isometry Property (ERIP)
for λ ∈ (0, 1] and δs(λ, n) ∈ (0, 1), if we have
(
1− δs(λ, n)

)‖c‖2`2 ≤ ‖D1/2(n)Φ(n)c‖2`2 ≤
(
1 + δs(λ, n)

)‖c‖2`2
(4)

where D(n) := diag(1, λ, · · · , λn−1).

The last modification attacks the estimation step. The esti-
mate w(n) is updated by standard adaptive algorithms such as
the LMS and RLS [20]. LMS is one of the most widely used
algorithm in adaptive filtering due to its simplicity, robustness
and low complexity. On the other hand, the RLS algorithm is
an order of magnitude costlier but significantly improves the
convergence speed of LMS. The LMS algorithm replaces the
exact signal statistics by approximations, whereas RLS updates
the inverse covariance matrix. The update rule for RLS cannot
be directly restricted to the index support set Λ. Hence, a more
sophisticated mechanism is required like the one proposed in
[14]. For reasons of simplicity and complexity we focus on
the LMS algorithm. At each iteration the current regressor
φ(n) and the previous estimate w(n − 1) are restricted to
the instantaneous support originated from the support merging
step.

The resulting algorithm, the Sparse Adaptive Orthogonal
Matching Pursuit (SpAdOMP), is presented in Table I. Note
that φ|Λ and w|Λ denote the sub-vectors corresponding to
the index set Λ, max(|a|, s) returns s indices of the largest
elements of a and Λc represents the complement of set Λ. An
important point to note about step 5 of Table I is that, although
it is simple to implement, it is difficult to choose the step-size
parameter µ which assures convergence. The Normalized LMS
(NLMS) update addresses this issue by scaling with the input
power

w|Λ(n) = w|Λ(n− 1) +
µ

ε + ‖φ|Λ(n)‖2 φ∗|Λ(n)ε(n)

where 0 < µ < 2 and ε is a small positive constant (to
avoid division by small numbers for stability purposes). NLMS
may be viewed as an LMS with time-varying step-size. This
observation justifies the superior tracking ability of NLMS
with respect to LMS in non-stationary environments.
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A. Compressed Sensing Matrices satisfying the ERIP

We find it useful to provide an example of measurement ma-
trices satisfying the ERIP, before proceeding with the steady-
state analysis of SpAdOMP. Consider an n×N matrix Φ(n)
whose rows are i.i.d. samples from a random Gaussian vector
process distributed according to N (0, R). Let Λ := supp(c).
Now, consider the matrix ΨΛ(n) := Φ∗T

Λ (n)D(n)ΦΛ(n),
where ΦΛ(n) is the sub-matrix of Φ(n) corresponding to the
index set Λ. The matrix ΨΛ(n) appears in the definition of
the ERIP and its eigen-distribution is of interest. The matrix
ΨΛ(n) can be expressed as follows:

ΨΛ(n) =
n∑

k=1

λn−kφ|Λ(k)φ∗T|Λ (k) (5)

where φ|Λ(k) is the kth row of ΦΛ(n). Hence, the
(i, j)th element of ΨΛ(n) can be expressed as ΨΛ,ij(n) =∑n

k=1 λn−kφ|Λ,i(k)φ∗T|Λ,j(k). For simplicity, we assume that
R = σ2

φI , hence the elements of each row of Φ(n) are
distributed i.i.d. and according to N (0, σ2

φ). Hence, the set
{φi(k)} for i = 1, 2, · · · , N and k = 1, 2, · · · , n consists of
i.i.d. zero mean Gaussian random variables with variance σ2

φ.
The exponentially weighted random matrix ΨΛ(n) formed

by the set {φ|i(k)}i∈Λ, can be identified as the empirical
estimate of the covariance matrix through an exponentially
weighted moving average. Such random matrices often arise
in portfolio optimization applications (See, for example, [21]).
In [21], using the resolvent technique (See, for example [22])
the eigen-distribution of such matrices is studied and compared
to that of Wishart ensembles. The main result of [21] implies
that in the limit of N → ∞ and λ → 1, with β := s/N < 1
and Q := 1/(s(1 − λ)) fixed, and n → ∞, the eigenvalues
of the matrix (1 − λ)ΨΛ(n) (denoted as x) are distributed
according to the density

ρ(x) =
Qv

π
(6)

where v is the solution to the non-algebraic equation
x

σ2
φ

− vx

tan(vx)
+ log(vσ2

φ)− log sin(vx)− 1
Q

= 0. (7)

For example, by solving the above equation numerically for
Q = 100 and σφ = 1, the range of the eigen-distribution of
(1−λ)ΨΛ(n) is found to be [0.8652, 1.1482]. By appropriately
scaling the elements of Φ(n), e.g. σ2

φ = 1/N , one can obtain
an upper bound of δs(λ, n) ≤ 0.1482 on the ERIP constant,
as n →∞ and λ → 1 while β and Q are fixed and β < 1/Q.
As it is shown in [21], for finite but large values of N and
n and λ close enough to 1, the empirical eigen-distribution
is very similar to the asymptotic limit. Therefore, by the
standard continuity characteristics of the eigen-distribution of
random matrices, one expects to have δs(λ, n) ≤ 0.1482
for finite but large values of n and N , and λ sufficiently
close to 1, with overwhelming probability. Note that the above
concentration result can be extended to the case of correlated
input sequences, which is studied in [22].

In parallel to the above limit process for the matrix ΨΛ(n),
one can consider the alternate limit process of λ = 1, s/n
and N/n fixed, and n → ∞. This limit process gives rise to

the well-known Wishart ensemble, whose eigen-distribution is
known [23]. In fact, as it is argued in [21], in first limit process
the parameter 1/ log(1/λ) can be intuitively interpreted as the
effective row dimension of ΦΛ(n) as n → ∞. Simulation
results in [21] show that the eigen-distribution of the exponen-
tially weighted random matrix ΨΛ(n) is indeed very similar
to that of the corresponding Wishart ensemble, by considering
1/ log(1/λ) as the effective row dimension.

The above example reveals that there is a close connec-
tion between the RIP and ERIP conditions (by interpreting
1/ log(1/λ) as the effective row dimension). The RIP constant
of Gaussian measurement matrices has been extensively stud-
ied by Blanchard et al. [24]. The above parallelism suggests
that one might be able to extend such results regarding the
RIP of random measurement matrices to those satisfying ERIP.
However, study of the eigen-distribution of the exponentially
weighted matrices seems to offer more difficulty than their
non-weighted counterparts.

B. Steady-State MSE of SpAdOMP

The following Theorem establishes the steady-state MSE
performance of the SpAdOMP algorithm:

Theorem 1. (SpAdOMP). Suppose that the input sequence
φ(n) is stationary, i.e., its covariance matrix R(n) :=
E{φ(n)φ∗T (n)} = R is independent of n. Moreover, assume
that R is non-singular. Finally, suppose that for n large
enough, the ERIP constants δs(λ, n), δ2s(λ, n), · · · , δ4s(λ, n)
exist. Then, the SpAdOMP algorithm, for large n, produces a
s-sparse approximation c(n) to the parameter vector c that
satisfies the following steady-state bound:

ε1(n) := ‖c− c(n)‖`2 (8)

. C1(n)
∥∥D1/2(n)η(n)

∥∥
`2

+ C2(n)
∥∥φ|Λ(n)(n)

∥∥
`2
|eo(n)|

where eo(n) is the estimation error of the optimum Wiener
filter, and C1(n) and C2(n) are constants independent of c
(which are explicitly given in the Appendix) and are functions
of λM > 0 (the minimum eigenvalue of R), the ERIP constants
δs(λ, n), δ2s(λ, n), · · · , δ4s(λ, n) and the step size µ. The
approximation in the above inequality is in the sense of the
Direct-averaging technique [20] employed in simplifying the
LMS iteration.

The proof is supplied in the Appendix. The above bound
can be further simplified if one considers the normalization
‖φ(n)‖2`2 = 1 for all n. Such a normalization is implicitly
assumed for the above example on the i.i.d. Gaussian mea-
surement matrix as n,N → ∞ with σ2

φ = 1/N . In this case,∥∥φ|Λ(n)(n)
∥∥

`2
≤ 1 and thus the second term of the error

bound simplifies to C2(n)|eo(n)|. Note that for large values
of n, the isometry constants can be controlled. As shown in
the example above, for a suitably random input sequence (e.g.,
i.i.d. Gaussian input) and for n large enough, the restricted
isometry constants can be sufficiently small. For example, if
for n large enough, δ4s(λ, n) ≤ 0.01 and µλM = 0.75, then
C1(n) ≈ 38.6 and C2(n) ≈ 7.7. The corresponding coefficient
for the CoSaMP algorithm will be C1(n) ≈ 6.1. Hence, the
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parameters C1(n) and C2(n) can be well controlled by feeding
enough number of measurements to the SpAdOMP algorithm.

The first term on the right hand side of the Eq. (8) is anal-
ogous to the steady-state error of the CoSaMP/SP algorithm,
corresponding to a batch of data of size n. The second term
is the steady-state error induced by performing a single LMS
iteration, instead of using the LS estimate. This error term does
not exist in the error expression of the CoSaMP/SP algorithm.
However, this excess MSE error can be compromised by the
significant complexity reduction incurred by removing the
LS estimate stage. Note that the promising support tracking
behavior of the CoSaMP/SP algorithm is inherited by the LMS
iteration, where only the sub-vector of φ(n) corresponding to
Λ(n) and w|Λ(n) participate in the LMS iteration, and hence
the error term. In other words, the SpAdOMP enjoys the low
complexity virtue of LMS, as well as the support detection
superiority of the CoSaMP/SP. Indeed, this observation is
evident in the simulation results, where the MSE curve of
SpAdOMP is shifted from that of LMS towards that of the
genie-aided LS estimate (See Section IV).

C. Sparse NARMA identification

The nonlinear model that we will be concerned with, consti-
tutes a generalization of the class of linear ARMA models [25]
and is known as Nonlinear AutoRegressive Moving Average
(NARMA) [26]. The output of NARMA models depends on
past and present values of the input as well as the output

yi = f(yi−1, . . . , yi−My , xi, . . . , xi−Mx) + ηi (9)

where yi, xi and ηi are the system output, input and noise,
respectively; My , Mx denote the output and input memory
orders; ηi is Gaussian and independent of xi; and f(·) is a
sparse polynomial function in several variables with degree
of nonlinearity p. Known linearization criteria [25] provide
sufficient conditions for the Bounded Input Bounded Output
stability of (9).

Using Kronecker products, we write Eq. (9) as a linear
regression model

yi = φT (i)c + ηi (10)

where

φT (i) =
[

φT
y (i) φT

x (i) φT
yx(i)

]

yi =
[
yi−1, · · · , yi−My

]T
and xi = [xi, · · · , xi−Mx ]T .

Consider the pth order Kronecker powers y
(p)
i = y⊗p

i and
x

(p)
i = x⊗p

i . Then, the output and input regressor vectors
are respectively given by φT

y (i) = [y(1)
i , · · · , y

(p)
i ] and

φT
x (i) = [x(1)

i , · · · , x
(p)
i ]. φT

yx(i) denotes all possible Kro-
necker product combinations of yi and xi of degree up to
p. The components of c = [ cT

y cT
x cT

yx]T correspond to
the coefficients of the polynomial f(·). Hence, if we collect
n successive observations, recovery of the sparsest parameter
vector can be accomplished by solving the mathematical
program (P`0 ).

It must be noted that in NARMA models, the input se-
quence is non-linearly related to the measurement matrix

Φ(n) through the multi-fold Kronecker product procedure.
Thus, the effective measurement matrix generated by an i.i.d.
input sequence, will not necessarily maintain the i.i.d. struc-
ture. Nevertheless, in case of linear models, by invoking the
frequently adopted independence assumption [20], the i.i.d.
property of the input sequence is carried over to the corre-
sponding measurement matrix, and thus one might be able
to guarantee analytically-provable controlled ERIP constants
for the measurement matrix (as in the example of Section
III-A). Although we have not mathematically established any
results regarding the isometry of such structured matrices,
simulation results reveal that input sequences which give rise
to measurement matrices satisfying the ERIP in linear models
(e.g., i.i.d. Gaussian), also perform well in conjunction with
non-linear models (See Section IV). Nevertheless, the problem
of designing input sequences, with mathematical guarantees on
the ERIP of the corresponding measurement matrices in the
non-linear models, is of interest and remains open.

D. Equalization/Predistortion in nonlinear communication
channels

Nonlinearities in communication channels are caused by
Power Amplifiers (PA) operating near saturation [27] and
are addressed by channel inversion. Right inverses are called
predistorters and are placed at the transmitter side; left inverses
are termed equalizers and are part of the receiver. Predistorters
are the preferred solution in single transceiver multiple receiver
systems, such as a base station and multiple GSM receivers.

Channel inversion is conveniently effected when Eq. (9) is
restricted to

yi = b0xi + f(yi−1, . . . , yi−My , xi−1, . . . , xi−Mx) + ηi.
(11)

In the above equation the present input sample enters linearly.
If xi entered polynomially, inversion would require finding the
roots of a polynomial which does not always result in a unique
solution and is computationally expensive. The inverse of Eq.
(11) is given by

xi = b−1
0

[
yi − f(yi−1, . . . , yi−My , xi−1, . . . , xi−Mx)− ηi

]
,

iff b0 6= 0. (12)

Note that modulo the scaling by b0 correction, the system
and its inverse are generated by the same function. Hence,
estimation of the direct process is equivalent to the estimation
of the reverse process.

IV. EXPERIMENTAL RESULTS

In this section we compare through computer simulations
the performance of existing algorithms and the algorithm
proposed in this paper. Experiments were conducted on both
linear and nonlinear channel setups. In all experiments the
output sequence is disturbed by additive white Gaussian noise
for various SNR levels ranging from 5 to 26dB. SNR is the
ratio of the noiseless channel output power to the noise power
corrupting the output signal (σ2

y/σ2
η). The Normalized Mean

Square Error, defined as

E[‖c(n)− c‖2`2 ]/E[‖c‖2`2 ]
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Fig. 1. NMSE of the channel estimates versus SNR on a linear channel

TABLE II
CHOICE OF SPARSE PARAMETERS FOR LOG-LMS

SNR 5-8 11-17 20-26

γa 7× 10−4 8× 10−4 9× 10−4

aµ = 2× 10−2, ε = 10

is used to assess performance.

A. Sparse ARMA channel identification

In the first experiment sparse ARMA channel estimation is
considered. The channel memory is My = Mx = 50 and the
channel to be estimated is given by

yn = a1yn−6 + a2yn−48 + xn + b1xn−13 + b2xn−34

where [a1, a2] = [−0.5167− j0.2828, 0.1801 + j0.1347] and
[b1, b2] = [−0.5368− j0.9198, 1.0719+ j0.0318]. The system
is stable as the roots of the AR part are inside the unit circle.

The input sequence is drawn from a complex Gaussian dis-
tribution, CN (0, 1/5). To reduce the realization dependency,
the parameter estimates were averaged over 30 Monte Carlo
runs. Program (P`0 ) is solved by the CoSaMP [1], OMP [8],
[9], log-LMS [12] and SpAdOMP. Moreover, two conventional
methods were used, namely, the Least Squares (LS) and the
LMS algorithm. The number of samples processed was 500.
The sparsity tuning parameter required by the log-LMS is
summarized in Table II. The step size for the conventional
LMS and the SpAdOMP was set to µLMS = 1 × 10−2 and
µSpAdOMP = 7× 10−2. Note that the choice of the step size µ
is made near the instability point of each algorithm to provide
the maximum possible convergence speed.

Fig. 1(a) shows the excellent performance match between
the Genie LS, CoSaMP and OMP, all of which have quadratic
complexity. The LMS, log-LMS and SpAdOMP have an
order of magnitude less computational complexity, but only
SpAdOMP achieves a performance gain close to Genie LS
(9dB less). If we repeat this experiment for a fixed SNR level
of 23dB and process 2000 samples, then as shown in Fig.
1(b), log-LMS improves by 20dB; however, it achieves 4dB
less performance gain than SpAdOMP.

To demonstrate the support tracking ability of SpAdOMP,
we run this experiment and after 300 iterations we set a1 to
zero. This time, since we have a support varying environment,
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Fig. 2. Time evolution of a1 signal entry on a linear ARMA channel
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Fig. 3. NMSE of the channel estimates versus SNR on nonlinear channels

λ is set to λ = 0.8 in SpAdOMP. Fig. 2 illustrates the time
evolution of the estimates of a1. We note from Fig. 2, that
the conventional LMS does not take into account sparsity
and hence the estimates are nonzero; while log-LMS and
SpAdOMP succeed in estimating the zero entries. However,
SpAdOMP has a much faster support tracking behavior for
the estimation of the zero entries in comparison to log-LMS.

B. Sparse NARMA channel identification

In the second experiment the following NARMA channel is
considered

yn = a1yn−50 + a2y
2
n−9 + b1xn−8 + b2|xn−21|2xn−21

where [a1, a2] = [−0.1586 − j0.7064,−0.1428 − j0.0478]
and [b1, b2] = [−0.8082 − j0.5221,−0.5177 + j0.7131] and
the channel memory is My = Mx = 50.

The experiment is based on 30 Monte Carlo runs and
the input sequence is generated from a complex Gaussian
distribution, CN (0, 1/4), consisting of 1000 samples. This
time, the methods used are CoSaMP, OMP and SpAdOMP,
along with the standard LMS algorithm and least squares. The
step size parameters µLMS = 6×10−3 and µSpAdOMP = 0.3
are used for the conventional LMS and SpAdOMP. OMP
and SpAdOMP lag behind Genie LS by 5dB and 12dB
respectively in performance. It is worth pointing out that
SpAdOMP obtains an average gain of nearly 19dB over the
conventional LMS. Note that this significant NMSE gain is the
product of both the denoising mechanism and the compressed
sampling virtue of the CoSaMP algorithm, which are lacking
in conventional adaptive algorithms such as LMS.
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C. Sparse nonlinear multipath channel identification

In this channel setup, a cubic baseband Hammerstein wire-
less channel with four Rayleigh fading rays (two on the liner
and two on the cubic part) is employed; all rays fade at
the same Doppler frequency of fD = 80Hz with sampling
period Ts = 0.8µs. The channel memory length is equal
to M1 = M3 = 50 (for both the linear and cubic parts)
and the position of the fading rays is randomly chosen.
In this experiment, 2000 samples from a complex Gaussian
distribution CN (0, 1/4) were processed. Fig. 3(b) illustrates
that SpAdOMP provides an average gain of 11dB, over the
conventional LMS and 5dB over the log-LMS developed in
[12].

V. CONCLUSIONS

In this paper, an adaptive algorithm for sparse approx-
imations with linear complexity was developed using the
underlying principles of existing batch-greedy algorithms.
Analytical bounds on the steady-state MSE are obtained,
which highlight the superior performance of the proposed
algorithm. The proposed algorithm was applied to sparse
NARMA identification and in particular to NARMA channel
equalization/predistortion. Simulation results validated the su-
perior performance of the new algorithm. Future research is
focused on blind algorithms for sparse system identification.

APPENDIX
PROOF OF THEOREM 1

Note that, unlike CoSaMP, the iterations of SpAdOMP are
not applied to a fixed batch of measurements. Hence, we need
to revisit the error analysis of CoSaMP taking into account
the time variations. Recall that the LMS update for w|Λ(n)(n)
is given by

w|Λ(n)(n) = w|Λ(n)(n− 1) (13)

+ µφ∗|Λ(n)(n)
(
y(n)− φT

|Λ(n)(n)w|Λ(n)(n− 1)
)

Suppose that the estimate at time n is given by c(n). Let

ε1(n) := ‖c− c(n)‖`2 , ε2(n) := ‖w|Λ(n)(n)−wo|Λ(n)‖`2

(14)
where wo|Λ(n) is the optimum Wiener solution restricted to
the set Λ(n), given by

wo|Λ(n) := R−1
|Λ(n)r (15)

with R := E{φ(n)φ∗T (n)} and r := E{φ∗(n)y(n)}. One
can write

w|Λ(n)(n)−wo|Λ(n) =
(
I |Λ(n) − µφ|Λ(n)(n)φ∗T|Λ(n)(n)

)

×
{(

w|Λ(n−1)(n− 1)−wo|Λ(n−1)

)

+
(
w|Λ(n)(n− 1)−w|Λ(n−1)(n− 1)

)

+
(
wo|Λ(n−1) −wo|Λ(n)

)}
+ µφ∗|Λ(n)eo(n) (16)

where eo(n) is the estimation error of the optimum Wiener
filter, given by eo(n) := (y(n) − φT

|Λ(n)wo|Λ). Invoking

the Direct-Averaging approximation [20], one can substitute
φ|Λ(n)(n)φ∗T|Λ(n)(n) with R|Λ(n). Hence,

ε2(n) ≤ (1− µλM )ε2(n− 1) + µ‖φ|Λ(n)‖2|eo(n)|
+ (1− µλM )

{∥∥w|Λ(n)(n− 1)−w|Λ(n−1)(n− 1)
∥∥

`2

+
∥∥wo|Λ(n−1) −wo|Λ(n)

∥∥
`2

}
(17)

where λM is the minimum eigenvalue of R. Here we assume
that the covariance matrix R is non-singular, i.e., λM > 0.
Note that the direct-averaging method yields a reasonable
approximation particularly when µ ¿ 1 [28]. A more direct
and rigorous convergence analysis of the LMS algorithm is
possible, which is much more complicated [29]. Hence, for
the sake of simplicity and clarity of the analysis, we proceed
with the direct-averaging approach.

In order to obtain a closed set of difference equations for
ε1(n) and ε2(n), we need to express the third and fourth
terms of Eq. (17) in terms of ε1(n) and ε2(n) (and time-shifts
thereof). First, we consider the third term. Let

δ(n− 1) := w(n− 1)− c. (18)

Note that w(n − 1) is supported on the index set Λ(n − 1).
Hence,

∥∥w|Λ(n)(n− 1)−w|Λ(n−1)(n− 1)
∥∥

`2

=
∥∥cΛ(n)∆Λ(n−1) + δΛ(n)∆Λ(n−1)(n− 1)

∥∥
`2

≤
∥∥cΛ(n)∆Λ(n−1)

∥∥
`2

+
∥∥δ(n− 1)

∥∥
`2

(19)

where ∆ represents the symmetric difference of Λ(n) and
Λ(n− 1). The key here is the fact that the support estimates
Λ(n − 1) and Λ(n) contain most of the energy of the true
vector c, due to the restricted isometry of the measurement
matrix and the construction of the proxy signal. Consider the
squared form of the first term in the above equation:
∥∥cΛ(n)∆Λ(n−1)

∥∥2

`2
=

∥∥cΛ(n)∩Λc(n−1)

∥∥2

`2
+

∥∥cΛ(n−1)∩Λc(n)

∥∥2

`2

≤ ∥∥cΛc(n−1)

∥∥2

`2
+

∥∥cΛc(n)

∥∥2

`2
(20)

Hence,
∥∥cΛ(n)∆Λ(n−1)

∥∥
`2
≤
√

2max
{∥∥cΛc(n−1)

∥∥
`2

,
∥∥cΛc(n)

∥∥
`2

}

(21)
Lemmas 4.2 and 4.3 of [1] provide the following bound on

‖cΛc(n)‖`2 :
∥∥cΛc(n)

∥∥
`2
≤ γ(n)ε1(n− 1) + ξ(n)

∥∥η′(n)
∥∥

`2
(22)

where

γ(n) :=
δ2s(λ, n) + δ4s(λ, n)

1− δ2s(λ, n)
, ξ(n) :=

2
√

1 + δ2s(λ, n)
1− δ2s(λ, n)

,

(23)
and

η′(n) := D1/2(n)η(n) + Diag
(
Φ(n)Θ(n)

)
(24)

with Θij(n) := λn−j−1
(
ci(n) − ci(j)

)
, for i = 1, 2, · · · , N

and j = 1, 2, · · · , n−1. The effective noise vector η′(n) con-
sists of two parts: the first term is the exponentially-weighted
additive noise vector, and the second term is the excess error
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due to the adaptive update of the proxy signal (in contrast
to the batch construction used in the CoSaMP algorithm).
Note that the isometry constants δs(λ, n), · · · , δ4s(λ, n) are
all functions of n, since the matrix Φ(n) depends on n. If the
input sequence is generated by a stationary source, for n large
enough, one can approximate the covariance matrix R by the
exponentially weighted sample covariance Φ∗T (n)D(n)Φ(n).
Similarly, one can approximate r by Φ∗T (n)D(n)r(n). In
this case, we have wo|Λ(n) ≈ b(n), where b(n) is the
exponentially-weighted least squares solution restricted to the
index set Λ(n), given by

b(n) :=

{(
D1/2(n)Φ(n)

)†
|Λ(n)

D1/2(n)r(n), on Λ(n)

0, elsewhere
(25)

Using this approximation, the `2-norm of δ(n − 1) can be
bounded as follows:
∥∥δ(n− 1)

∥∥
`2
≤ ∥∥w(n− 1)− b(n− 1)

∥∥
`2

+
∥∥b(n− 1)− c

∥∥
`2

≤ ε2(n− 1) +
∥∥b(n− 1)− c

∥∥
`2

(26)

Moreover, using Lemmas 4.2, 4.3, and 4.4 of [1], one can
express ‖c− b(n)‖`2 in terms of ε1(n) and η′(n) as follows:

‖c− b(n)‖2 ≤ 1
2
α(n)ε1(n− 1) +

1
2
β(n)

∥∥η′(n)
∥∥

`2
, (27)

where

α(n) := 2
(
1 +

δ4s(λ, n)
1− δ3s(λ, n)

)
γ(n), (28)

β(n) :=
2√

1− δ3s(λ, n)
+ 2

(
1 +

δ4s(λ, n)
1− δ3s(λ, n)

)
ξ(n).

(29)

Denoting ‖c − b(n)‖`2 by ε3(n) and using Eqs. (21), (26),
and (27), one can obtain the following recurrence relation for
ε2(n):

ε2(n) ≤ (1− µλM )ε2(n− 1) + µ‖φ|Λ(n)‖2|eo(n)|
+ (1− µλM )

{∥∥wo|Λ(n−1) − c
∥∥

`2
+

∥∥wo|Λ(n) − c
∥∥

`2

+
∥∥w|Λ(n)(n− 1)−w|Λ(n−1)(n− 1)

∥∥
`2

}

≤ (1− µλM )ε2(n− 1) + µ
∥∥φ|Λ(n)

∥∥
`2
|eo(n)|

+ (1− µλM )
{

ε3(n) + 2ε3(n− 1) + ε2(n− 1)
}

+
√

2(1− µλM ) max
{

γ(n)ε1(n− 1) + ξ(n)‖η′(n)‖`2 ,

γ(n− 1)ε1(n− 2) + ξ(n− 1)‖η′(n− 1)‖`2

}
(30)

From Lemma 4.5 of Needell et al. [1], one can write

ε1(n) := ‖c− c(n)‖`2 (31)
≤ ‖c− bs(n)‖`2 + ‖bs(n)− c(n)‖`2

≤ 2‖c− b(n)‖`2 + 4‖b(n)−w(n)‖`2

≤ 2‖c− b(n)‖`2 + 4‖wo|Λ(n) −w(n)‖`2

+ 4‖wo|Λ(n) − b(n)‖`2

where the last line of Eq. (31) is obtained from the second
line by adding and subtracting wo|Λ(n) from b(n)−w(n), and

using the triangle inequality. The last term on the right hand
side of Eq. (31) denotes the difference between the optimum
Wiener solution and the LS solution, both restricted to the
index set Λ(n). As mentioned earlier, one can approximate
the covariance matrix R by the exponentially weighted sample
covariance Φ∗T (n)D(n)Φ(n), and the correlation vector r by
Φ∗T (n)D(n)r(n). In this case, we have wo|Λ(n) ≈ b(n), and
hence the contribution of the last term on the right hand side of
Eq. (31) to the steady-state error becomes negligible. Also, by
construction, the estimate w(n) is supported on the index set
Λ(n). Hence, the second term of Eq. (31) can be identified
as 4‖wo|Λ(n) − w|Λ(n)(n)‖2 = 4ε2(n). With the above-
mentioned simplifications, one can arrive at the following set
of non-linearly coupled difference equations for ε1(n), ε2(n)
and ε3(n):




ε1(n) ≤ 2ε3(n) + 4ε2(n)

ε2(n) ≤ (1− µλM )
{

2ε2(n− 1) + 2ε3(n− 1) + ε3(n)
}

+
√

2(1− µλM ) max
{

γ(n)ε1(n− 1) + ξ(n)‖η′(n)‖`2 ,

γ(n− 1)ε1(n− 2) + ξ(n− 1)‖η′(n− 1)‖`2

}

+µ
∥∥φ|Λ(n)(n)

∥∥
`2
|eo(n)|

ε3(n) ≤ 1
2α(n)ε1(n− 1) + 1

2β(n)
∥∥η′(n)

∥∥
`2

(32)
Although the above set of difference equations is sufficient to
obtain the error measures ε1(n), ε2(n), and ε3(n) for all n,
the solution is non-trivial for general n due to its high non-
linearity. However, for large n, it is possible to obtain the
steady-state solution. It is easy to substitute ε3(n) in terms
of ε1(n). Also, for large enough n, the arguments of the
max{·, ·} operator do not vary significantly with n. Hence, we
can substitute the maximum with the second argument. Hence,
the steady-state values of ε1(n) and ε2(n) can be obtained
from the following equation:
(

1− α(n) −4
−(1− µλM )

(
3
2
α(n) +

√
2γ(n)

)
1− 2(1− µλM )

) (
ε1(n)
ε2(n)

)

≤
∥∥D1/2(n)η(n)

∥∥
`2

(
β(n)

(1− µλM )
(

3
2
β(n) +

√
2ξ(n)

)
)

+ µ
∥∥φ|Λ(n)(n)

∥∥
`2
|eo(n)|

(
0
1

)
(33)

Note that, the contribution of proxy error term in η′(n)
becomes negligible for large n, due to the effect of forgetting
factor, and the fact that the estimates c(n) do not vary much
with n. Hence, we can approximate η′(n) by D1/2(n)η(n)
for large n. In particular, the asymptotic solution to ε1(n) is
given by:

ε1(n) . C1(n)
∥∥D1/2(n)η(n)

∥∥
`2

+C2(n)
∥∥φ|Λ(n)(n)

∥∥
`2
|eo(n)|

(34)
where,

C1(n) :=
4(1− µλM )

(
3
2β(n) +

√
2ξ(n)

)

∆(n)

+

(
1− 2(1− µλM )

)
β(n)

∆(n)
, (35)

C2(n) :=
4µ

∆(n)
, (36)
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and

∆(n) := (2µλM−1)−(5−4µλM )α(n)−4
√

2(1−µλM )γ(n).
(37)

Note that a sufficient condition for the above bound to hold
is ∆(n) > 0.
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