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Abstract—Adaptive orthogonal frequency division multiple
access (OFDMA) has recently been recognized as a promising
technique for providing high spectral efficiency in future broad-
band wireless systems. The research over the last decade on
adaptive OFDMA systems has focused on adapting the allocation
of radio resources, such as subcarriers and power, to the instan-
taneous channel conditions of all users. However, such “fast”
adaptation requires high computational complexity and excessive
signaling overhead. This hinders the deployment of adaptive
OFDMA systems worldwide. This paper proposes a slow adaptive
OFDMA scheme, in which the subcarrier allocation is updated on
a much slower timescale than that of the fluctuation of instanta-
neous channel conditions. Meanwhile, the data rate requirements
of individual users are accommodated on the fast timescale with
high probability, thereby meeting the requirements except occa-
sional outage. Such an objective has a natural chance constrained
programming formulation, which is known to be intractable. To
circumvent this difficulty, we formulate safe tractable constraints
for the problem based on recent advances in chance constrained
programming. We then develop a polynomial-time algorithm for
computing an optimal solution to the reformulated problem. Our
results show that the proposed slow adaptation scheme drastically
reduces both computational cost and control signaling overhead
when compared with the conventional fast adaptive OFDMA. Our
work can be viewed as an initial attempt to apply the chance con-
strained programming methodology to wireless system designs.
Given that most wireless systems can tolerate an occasional dip in
the quality of service, we hope that the proposed methodology will
find further applications in wireless communications.

Index Terms—Adaptive orthogonal frequency division multiple
access (OFDMA), chance constrained programming, dynamic re-
source allocation, stochastic programming.
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I. INTRODUCTION

F UTURE wireless systems will face a growing demand
for broadband and multimedia services. Orthogonal fre-

quency division multiplexing (OFDM) is a leading technology
to meet this demand due to its ability to mitigate wireless
channel impairments. The inherent multicarrier nature of
OFDM facilitates flexible use of subcarriers to significantly
enhance system capacity. Adaptive subcarrier allocation, re-
cently referred to as adaptive orthogonal frequency division
multiple access (OFDMA) [1], [2], has been considered as a
primary contender in next-generation wireless standards, such
as IEEE802.16 WiMAX [3] and 3GPP-LTE [4].

In the existing literature, adaptive OFDMA exploits time,
frequency, and multiuser diversity by quickly adapting
subcarrier allocation (SCA) to the instantaneous channel state
information (CSI) of all users. Such “fast” adaptation suffers
from high computational complexity, since an optimization
problem required for adaptation has to be solved by the base
station (BS) every time the channel changes. Considering the
fact that wireless channel fading can vary quickly (e.g., at the
order of milliseconds in wireless cellular system), the
implementation of fast adaptive OFDMA becomes infeasible
for practical systems, even when the number of users is small.
Recent work on reducing complexity of fast adaptive
OFDMA includes [5], [6], etc. Moreover, fast adaptive
OFDMA requires frequent signaling between the BS
and mobile users in order to inform the users of their
latest allocation decisions. The overhead thus incurred is
likely to negate the performance gain obtained by the fast
adaptation schemes. To date, high computational cost and high
control signaling overhead are the major hurdles that pre-
vent adaptive OFDMA from being deployed in practical systems.

We consider a slow adaptive OFDMA scheme, which is moti-
vated by [7], to address the aforementioned problem. In contrast
to the common belief that radio resource allocation should be
readapted once the instantaneous channel conditions change, the
proposed scheme updates the SCA on a much slower timescale
than that of channel fluctuation. Specifically, the allocation deci-
sions are fixed for the duration of an adaptation window, which
spans the length of many coherence times. By doing so, compu-
tational cost and control signaling overhead can be dramatically
reduced. However, this implies that channel conditions over the
adaptation window are uncertain at the decision time, thus pre-
senting a new challenge in the design of slow adaptive OFDMA
schemes. An important question is how to find a valid alloca-
tion decision that remains optimal and feasible for the entire
adaptation window. Such a problem can be formulated as a sto-
chastic programming problem, where the channel coefficients
are random rather than deterministic.

1053-587X/$26.00 © 2010 IEEE
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Slow adaptation schemes have recently been studied in other
contexts such as slow rate adaptation [7], [8] and slow power
allocation [9]. Therein, adaptation decisions are made solely
based on the long-term average channel conditions instead of
fast channel fading. Specifically, random channel parameters are
replaced by their mean values, resulting in a deterministic rather
than stochastic optimization problem. By doing so, quality-of-
service (QoS) can only be guaranteed in a long-term average
sense, since the short-term fluctuation of the channel is not con-
sidered in the problem formulation. With the increasing popu-
larity of wireless multimedia applications, however, there will
be more and more inelastic traffic that require a guarantee on
the minimum short-term data rate. As such, slow adaptation
schemes based on average channel conditions cannot provide
a satisfactory QoS.

On another front, robust optimization methodology can be ap-
plied to meet the short-term QoS. For example, robust optimiza-
tion method was applied in [9]–[11] to find a solution that is fea-
sible for the entire uncertainty set of channel conditions, i.e., to
guarantee the instantaneous data rate requirements regardless of
the channel realization. Needless to say, the resource allocation
solutions obtained via such an approach are overly conserva-
tive. In practice, the worst-case channel gain can approach zero
in deep fading, and thus the resource allocation problem can
easily become infeasible. Even if the problem is feasible, the
resource utilization is inefficient as most system resources must
be dedicated to provide guarantees for the worst-case scenarios.

Fortunately, most inelastic traffic such as that from mul-
timedia applications can tolerate an occasional dip in the
instantaneous data rate without compromising QoS. This
presents an opportunity to enhance the system performance.
In particular, we employ chance constrained programming
techniques by imposing probabilistic constraints on user QoS.
Although this formulation captures the essence of the problem,
chance constrained programs are known to be computationally
intractable except for a few special cases [12]. In general,
such programs are difficult to solve as their feasible sets are
often nonconvex. In fact, finding feasible solutions to a generic
chance constrained program is itself a challenging research
problem in the Operations Research community. It is partly
due to this reason that the chance constrained programming
methodology is seldom pursued in the design of wireless
systems.

In this paper, we propose a slow adaptive OFDMA scheme
that aims at maximizing the long-term system throughput while
satisfying with high probability the short-term data rate require-
ments. The key contributions of this paper are as follows.

• We design the slow adaptive OFDMA system based on
chance constrained programming techniques. Our formu-
lation guarantees the short-term data rate requirements of
individual users except in rare occasions. To the best of
our knowledge, this is the first work that uses chance con-
strained programming in the context of resource allocation
in wireless systems.

• We exploit the special structure of the probabilistic
constraints in our problem to construct safe tractable
constraints (STC) based on recent advances in the chance
constrained programming literature.

• We design an interior-point algorithm that is tailored for
the slow adaptive OFDMA problem, since the formula-
tion with STC, although convex, cannot be trivially solved
using off-the-shelf optimization software. Our algorithm
can efficiently compute an optimal solution to the problem
with STC in polynomial time.

The rest of the paper is organized as follows. In Section II, we
discuss the system model and problem formulation. An STC is
introduced in Section III to solve the original chance constrained
program. An efficient tailor-made algorithm for solving the ap-
proximate problem is then proposed in Section IV. In Section V,
we reduce the problem size based on some practical assump-
tions, and show that the revised problem can be solved by the
proposed algorithm with much lower complexity. In Section VI,
the performance of the slow adaptive OFDMA system is inves-
tigated through extensive simulations. Finally, the paper is con-
cluded in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This paper considers a single-cell multiuser OFDM system
with users and subcarriers. We assume that the in-
stantaneous channel coefficients of user and subcarrier

are described by complex Gaussian1 random variables
, independent2 in both and . The param-

eter can be used to model the long-term average channel
gain as , where is the distance between
the BS and subscriber , is the reference distance, is
the amplitude path-loss exponent and characterizes the

shadowing effect. Hence, the channel gain is an
exponential random variable with probability density function
(PDF) given by

(1)

The transmission rate of user on subcarrier at time is given
by

where is the transmission power of a subcarrier, is the
channel gain at time , is the bandwidth of a subcarrier,
is the power spectral density of Gaussian noise, and is the
capacity gap that is related to the target bit error rate (BER) and
coding-modulation schemes.

In traditional fast adaptive OFDMA systems, SCA decisions
are made based on instantaneous channel conditions in order
to maximize the system throughput. As depicted in Fig. 1(a),
SCA is performed at the beginning of each time slot, where the
duration of the slot is no larger than the coherence time of the

1Although the techniques used in this paper are applicable to any fading dis-
tribution, we shall prescribe to a particular distribution of fading channels for
illustrative purposes.

2The case when frequency correlations exist among subcarriers will be dis-
cussed in Section VI.
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Fig. 1. Adaptation timescales of fast and slow adaptive OFDMA system
���� � �����		
�	 ���
���

��. (a) Fast adaptive OFDMA. (b) Slow
adaptive OFDMA.

channel. Denoting by the fraction of airtime assigned to
user on subcarrier , fast adaptive OFDMA solves at each
time slot the following linear programming problem:

(2)

(3)

where the objective function in (2) represents the total system
throughput at time , and (3) represents the data rate constraint
of user at time with denoting the minimum required data
rate. We assume that is known by the BS and can be different
for each user . Since (and hence ) varies on the order
of coherence time, one has to solve the Problem at the
beginning of every time slot to obtain SCA decisions. Thus,
the above fast adaptive OFDMA scheme is extremely costly in
practice.

In contrast to fast adaptation schemes, we propose a slow
adaptation scheme in which SCA is updated only every adap-
tation window of length . More precisely, SCA decision is
made at the beginning of each adaptation window as depicted
in Fig. 1(b), and the allocation remains unchanged till the next
window. We consider the duration of a window to be large
compared with that of fast fading fluctuation so that the channel
fading process over the window is ergodic; but small compared
with the large-scale channel variation so that path-loss and shad-
owing are considered to be fixed in each window. Unlike fast
adaptive systems that require the exact CSI to perform SCA,
slow adaptive OFDMA systems rely only on the distributional
information of channel fading and make an SCA decision for
each window.

Let denote the SCA for a given adaptation
window.3 Then, the time-average throughput of user during
the window becomes

where

is the time-average data rate of user on subcarrier during
the adaptation window. The time-average system throughput is
given by

Now, suppose that each user has a short-term data rate require-
ment defined on each time slot. If ,
then we say that a rate outage occurs for user at time slot ,
and the probability of rate outage for user during the window

is defined as

where is the beginning time of the window.
Inelastic applications, such as voice and multimedia, that are

concerned with short-term QoS can often tolerate an occasional
dip in the instantaneous data rate. In fact, most applications can
run smoothly as long as the short-term data rate requirement is
satisfied with sufficiently high probability. With the above con-
siderations, we formulate the slow adaptive OFDMA problem
as follows:

(4)

(5)

where the expectation4 in (4) is taken over the random channel
process for , and
in (5) is the maximum outage probability user can tolerate.
In the above formulation, we seek the optimal SCA that max-
imizes the expected system throughout while satisfying each
user’s short-term QoS requirement, i.e., the instantaneous data

3It is practical to assume � as a real number in slow adaptive OFDMA.
Since the data transmitted during each window consists of a large mount of
OFDM symbols, the time-sharing factor � can be mapped into the ratio of
OFDM symbols assigned to user � for transmission on subcarrier �.

4In (4), we replace the time-average data rate �� by its ensemble average
�� � due to the ergodicity of channel fading over the window.
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rate of user is higher than with probability at least .
The above formulation is a chance constrained program since a
probabilistic constraint (5) has been imposed.

III. SAFE TRACTABLE CONSTRAINTS

Despite its utility and relevance to real applications, the
chance constraint (5) imposed in makes the optimization
highly intractable. The main reason is that the convexity of the
feasible set defined by (5) is difficult to verify. Indeed, given a
generic chance constraint where is a
random vector, is the vector of decision variable, and is a
real-valued function, its feasible set is often nonconvex except
for very few special cases [12], [13]. Moreover, even with the
nice function in (5), i.e., is

bilinear in and , with independent entries in whose
distribution is known, it is still unclear how to compute the
probability in (5) efficiently.

To circumvent the above hurdles, we propose the following
formulation by replacing the chance constraints (5) with a
system of constraints such that (i) is feasible for (5) when-
ever it is feasible for , and (ii) the constraints in are convex
and efficiently computable.5 The new formulation is given as
follows:

(6)

(7)

(8)

(9)

where is the cumulant generating function of , and

(10)

In the following, we first prove that any solution that is fea-
sible for the STC (7) in is also feasible for the chance
constraints (5). Then, we prove that is convex.

Proposition 1: Suppose that (and hence ) are inde-
pendent random variables for different and , where the PDF
of follows (1). Furthermore, given , suppose that
there exists an

such that

(11)

5Condition (i) is referred to as “safe” condition, and condition (ii) is referred
to as “tractable” condition.

Then, the allocation decision satisfies

(12)

Proof: Our argument will use the Bernstein approximation
theorem proposed in [13].6 Suppose there exists an
such that , i.e.,

(13)

The function inside the is equal to

(14)

(15)

(16)

where the expectation can be computed using the distri-
butional information of in (1), and (15) follows from the

independence of random variable over .

Let . Then, (13) is equivalent
to

(17)

According to Theorem 2 in Appendix A, the chance constraints
(12) hold if there exists a satisfying (17). Thus, the va-
lidity of (12) is guaranteed by the validity of (11).

Now, we prove the convexity of (7) in the following proposi-
tion.

Proposition 2: The constraints imposed in (7) are convex in
.

Proof: The convexity of (7) can be verified as follows. We
define the function inside the in (11) as

(18)

It is easy to verify the convexity of in , since the
cumulant generating function is convex. Hence, in (11)
is convex in due to the preservation of convexity by minimiza-
tion over .

IV. ALGORITHM

In this section, we propose an algorithm for solving Problem
. In , the STC (7) arises as a subproblem, which by it-

self requires a minimization over . Hence, despite its convexity,
the entire problem cannot be trivially solved using stan-
dard solvers of convex optimization. This is due to the fact that
the subproblem introduces difficulties, for example, in defining

6For the reader’s convenience, both the theorem and a rough proof are pro-
vided in Appendix A.



3862 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 7, JULY 2010

Fig. 2. Flowchart of the algorithm for solving problem �� .

the barrier function in path-following algorithms or providing
the (sub-)gradient in primal-dual methods (see [14] for details
of these algorithms). Fortunately, we can employ interior point
cutting plane methods to solve Problem (see [15] for a
survey). Before we delve into the details, let us briefly sketch
the principles of the algorithm as follows.

Algorithm 1 Structure of the Proposed Algorithm

Require: The feasible solution set of Problem is a
compact set defined by (7)–(9).

1: Construct a polytope by (8) and (9). Set .

2: Choose a query point (Section IV-A-1) at the th iteration
as by computing the analytic center of . Initially, set

where is an -vector of ones.

3: Query the separation oracle (Section IV-A-2) with :

4: if then

5: generate a hyperplane (optimality cut) through to

remove the part of that has lower objective values.

6: else

7: generate a hyperplane (feasibility cut) through to
remove the part of that contains infeasible solutions.

8: end if

9: Set , and update by the separation hyperplane.

10: if termination criterion (Section IV-B) is satisfied then

11: stop.

12: else

13: return to step 2.

14: end if

Suppose that we would like to find a point that is feasible
for (7)–(9) and is within a distance of to an optimal so-
lution of , where is an error tolerance parameter
(i.e., satisfies ). We maintain the invariant that
at the beginning of each iteration, the feasible set is contained
in some polytope (i.e., a bounded polyhedron). Then, we gen-
erate a query point inside the polytope and ask a “separation or-
acle” whether the query point belongs to the feasible set. If not,
then the separation oracle will generate a so-called separating
hyperplane through the query point to cut out the polytope, so
that the remaining polytope contains the feasible set.7 Other-
wise, the separation oracle will return a hyperplane through the
query point to cut out the polytope towards the opposite direc-
tion of improving objective values.

We can then proceed to the next iteration with the new poly-
tope. To keep track of the progress, we can use the so-called
potential value of the polytope. Roughly speaking, when the po-
tential value becomes large, the polytope containing the feasible
set has become small. Thus, if the potential value exceeds a cer-
tain threshold, so that the polytope is negligibly small, then we
can terminate the algorithm. As will be shown later, such an al-
gorithm will in fact terminate in a polynomial number of steps.

We now give the structure of the algorithm. A detailed flow
chart is shown in Fig. 2 for readers’ interest.

A. Cutting-Plane-Based Algorithm

1) Query Point Generator: (Step 2 in Algorithm 1): In each
iteration, we need to generate a query point inside the poly-
tope . For algorithmic efficiency, we adopt the analytic center
(AC) of the containing polytope as the query point [17]. The AC
of the polytope at the th itera-
tion is the unique solution to the following convex problem:

(19)

We define the optimal value of the above problem as the po-
tential value of the polytope . Note that the uniqueness of

7Note that such a separating hyperplane exists due to the convexity of the
feasible set [16].
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the analytic center is guaranteed by the strong convexity of the
potential function , assuming that is
bounded and has a nonempty interior. The AC of a polytope can
be viewed as an approximation to the geometric center of the
polytope, and thus any hyperplane through the AC will separate
the polytope into two parts with roughly the same volume.

Although it is computationally involved to directly solve (19)
in each iteration, it is shown in [18] that an approximate AC is
sufficient for our purposes, and that an approximate AC for the

st iteration can be obtained from an approximate AC for
the th iteration by applying Newton steps.

2) Separation Oracle: (Steps 3–8 in Algorithm 1): The or-
acle is a major component of the algorithm that plays two roles:
checking the feasibility of the query point, and generating cut-
ting planes to cut the current set.

• Feasibility Check
We write the constraints of in a condensed form as
follows:

(20)

(21)

where

with and denoting the identity matrix and
-vector of ones respectively, and (21) is the combination8

of (8) and (9). Now, we first use (21) to construct a relaxed
feasible set via

(22)

Given a query point , we can verify its fea-
sibility to by checking if it satisfies (20), i.e.,
if is no larger than 0. This requires
solving a minimization problem over . Due to the
unimodality of in , we can simply take a line
search procedure, e.g., using Golden-section search or
Fibonacci search, to find the minimizer . The line search

8To reduce numerical errors in computation, we suggest normalizing each
constraint in (21).

is more efficient when compared with derivative-based
algorithms, since only function evaluations9 are needed
during the search.

• Cutting Plane Generation
In each iteration, we generate a cutting plane, i.e., a hyper-
plane through the query point, and add it as an additional
constraint to the current polytope . By adding cutting
plane(s) in each iteration, the size of the polytope keeps
shrinking. There are two types of cutting planes in the al-
gorithm depending on the feasibility of the query point.
If the query point is infeasible, then a hyperplane
called feasibility cut is generated at as follows:

(23)

where is the Euclidean norm,
is the set of

users whose chance constraints are violated, and
is

the gradient of with respect to ; see the equation
shown at the bottom of the page. The reason we call (23)
a feasibility cut(s) is that any which does not satisfy (23)
must be infeasible and can hence be dropped.
If the point is feasible, then an optimality cut is gener-
ated as follows:

(24)

where

is the derivative of the objective of
in (6) with respect to . The reason we call (24) an

optimality cut is that any optimal solution must satisfy
(24), and hence any which does not satisfy (24) can be
dropped.
Once a cutting plane is generated according to (23) or (24),
we use it to update the polytope at the th iteration as
follows:

9The cumulant generating function � ��� in (10) can be evaluated numeri-
cally, e.g., using rectangular rule, trapezoid rule, or Simpson’s rule, etc.
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Here, and are obtained by adding the cutting plane
to the previous polytope . Specifically, if the oracle
provides a feasibility cut as in (23), then

where is the number of rows in , and is the
number of elements contained in the given set; if the oracle
provides an optimality cut as in (24), then

B. Global Convergence & Complexity (Step 10 in Algorithm 1)

In the following, we investigate the convergence properties of
the proposed algorithm. As mentioned earlier, when the poly-
tope is too small to contain a full-dimensional closed ball of ra-
dius , the potential value will exceeds a certain threshold.
Then, the algorithm can terminate since the query point is within
a distance of to some optimal solution of . Such an
idea is formalized in [18], where it was shown that the analytic
center-based cutting plane method can be used to solve convex
programming problems in polynomial time. Upon following the
proof in [18], we obtain the following result:

Theorem 1: (cf. [18]) Let be the error tolerance param-
eter, and let be the number of variables. Then, Algorithm 1
terminates with a solution that is feasible for and satis-
fies for some optimal solution to after
at most iterations.

Thus, the proposed algorithm can solve Problem within
iterations. It turns out that the algorithm can

be made considerably more efficient by dropping constraints
that are deemed “unimportant” [19]. By incorporating such a
strategy in Algorithm 1, the total number of iterations needed
by the algorithm can be reduced to . We
refer the readers to [15] and [19] for details.

C. Complexity Comparison Between Slow and Fast Adaptive
OFDMA

It is interesting to compare the complexity of slow and fast
adaptive OFDMA schemes formulated in and , re-
spectively. To obtain an optimal solution to , we need to
solve a linear program (LP). This requires itera-
tions, where is number of bits to store the data defining the
LP [20]. At first glance, the iteration complexity of solving a fast
adaptation can be lower than that of solving when
the number of users or subcarriers are large. However, it should
be noted that only one needs to be solved for each adap-
tation window, while has to be solved for each time slot.
Since the length of adaptation window is equal to time slots,
the overall complexity of the slow adaptive OFDMA can be
much lower than that of conventional fast adaptation schemes,
especially when is large.

Before leaving this section, we emphasize that the advantage
of slow adaptive OFDMA lies not only in computational cost
reduction, but also in reducing control signaling overhead. We
will investigate this in more detail in Section VI.

V. PROBLEM SIZE REDUCTION

In this section, we show that the problem size of can be
reduced from variables to variables under some mild as-
sumptions. Consequently, the computational complexity of slow
adaptive OFDMA can be markedly lower than that of fast adap-
tive OFDMA.

In practical multicarrier systems, the frequency intervals be-
tween any two subcarriers are much smaller than the carrier fre-
quency. The reflection, refraction and diffusion of electromag-
netic waves behave the same across the subcarriers. This im-
plies that the channel gain are identically distributed over

(subcarriers), although this observation is not needed in our
algorithm derivations in the previous sections.

When for different are identically distributed, different
subcarriers become indistinguishable to a user . In this case,
the optimal solution, if exists, does not depend on . Replacing

by in , we obtain the following formulation:

Note that the problem structure of is exactly the
same as that of , except that the problem size is re-
duced from variables to variables. Hence, the algo-
rithm developed in Section IV can also be applied to solve

, with the following vector/matrix size reductions:
,

in (21), in (23), and

in (24). Com-
pared with , the iteration complexity of is now
reduced to . Indeed, this can even be lower
than the complexity of solving one — , since

is typically much smaller than in real systems. Thus, the
overall complexity of slow adaptive OFDMA is significantly
lower than that of fast adaptation over time slots.

Before leaving this section, we emphasize that the problem
size reduction in does not compromise the optimality of
the solution. On the other hand, is more general in the
sense that it can be applied to systems in which the frequency
bands of parallel subchannels are far apart, so that the channel
distributions are not identical across different subchannels.

VI. SIMULATION RESULTS

In this section, we demonstrate the performance of our pro-
posed slow adaptive OFDMA scheme through numerical sim-
ulations. We simulate an OFDMA system with four users and
64 subcarriers. Each user has a requirement on its short-term
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Fig. 3. Trace of the difference of objective value�� between adjacent iterations
�� � ����.

Fig. 4. Number of iterations for convergence of all the feasible windows �� �
����.

Fig. 5. Number of iterations for feasibility check of all the windows �� �
����.

data rate . The four users are assumed to be uni-
formly distributed in a cell of radius m. That is, the

distance between user and the BS follows the distribution10

. The path-loss exponent is equal to 4, and
the shadowing effect follows a log-normal distribution, i.e.,

dB . The small-scale channel fading is
assumed to be Rayleigh distributed. Suppose that the transmis-
sion power of the BS on each subcarrier is 90 dB measured at
a reference point 1 meter away from the BS, which leads to an
average received power of 10 dB at the boundary of the cell.11 In
addition, we set Hz and , and the capacity gap is

BER , where the target BER is set
to be . Moreover, the length of one slot, within which the
channel gain remains unchanged, is ms.12 The length
of the adaptation window is chosen to be s, implying
that each window contains 1000 slots. Suppose that the path
loss and shadowing do not change within a window, but varies
independently from one window to another. For each window,
we solve the size-reduced problem , and later Monte-Carlo
simulation is conducted over 61 independent windows that yield
nonempty feasible sets of when .

In Figs. 3 and 4, we investigate the fast convergence of the
proposed algorithm. The error tolerance parameter is chosen
as . In Fig. 3, we record the trace of one adapta-
tion window13 and plot the improvement in the objective func-
tion value (i.e., system throughput) in each iteration, i.e.,

. When is positive, the objective value increases
with each iteration. It can be seen that quickly converges to
close to zero within only 27 iterations. We also notice that fluctu-
ation exists in within the first 11 iterations. This is mainly be-
cause during the search for an optimal solution, it is possible for
query points to become infeasible. However, the feasibility cuts
(23) then adopted will make sure that the query points in sub-
sequent iterations will eventually become feasible. The curve
in Fig. 3 verifies the tendency. As is convex, this obser-
vation implies that the proposed algorithm can converge to an
optimal solution of within a small number of iterations. In
Fig. 4, we plot the number of iterations needed for convergence
for different application windows. The result shows that the pro-
posed algorithm can in general converge to an optimal solution
of within 35 iterations. On average, the algorithm con-
verges after 22 iterations, where each iteration takes 1.467 s.14

Moreover, we plot the number of iterations needed for
checking the feasibility of . In Fig. 5, we conduct a
simulation over 100 windows, which consists of 61 feasible
windows (dots with cross) and 39 infeasible windows (dots
with circle). On average, the algorithm can determine if

10The distribution of user’s distance from the BS ���� � ���� is de-
rived from the uniform distribution of user’s position ���	 
� � ���� , where
��	 
� is the Cartesian coordinate of the position.

11The average received power at the boundary is calculated by �� dB 	
�� 
�� ������� dB � �� dB due to the path-loss effect.

12The coherence time is given by � � �
��
�� �, where 
 is the speed
of light, � is the carrier frequency, and � is the velocity of mobile user. As an
example, we choose � � ��� GHz, and if the user is moving at 45 miles per
hour, the coherence time is around 1 ms.

13The simulation results show that all the feasible windows appear with sim-
ilar convergence behavior.

14We conduct a simulation on Matlab 7.0.1, where the system configurations
are given as: Processor: Intel(R) Core(TM)2 CPU P8400@2.26 GHz 2.27 GHz,
Memory: 2.00 GB, System Type: 32-bit Operating System.
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Fig. 6. Comparison of system spectral efficiency between fast adaptive
OFDMA and slow adaptive OFDMA.

Fig. 7. Outage probability of the four users over 61 independent feasible win-
dows.

is feasible or not after seven iterations. The quick feasibility
check can help to deal with the admission of mobile users in
the cell. Particularly, if there is a new user moving into the cell,
the BS can adopt the feasibility check to quickly determine if
the radio resources can accommodate the new user without sac-
rificing the current users’ QoS requirements.

In Fig. 6, we compare the spectral efficiency of slow adaptive
OFDMA with that of fast adaptive OFDMA,15 where zero
outage of short-term data rate requirement is ensured for each
user. In addition, we take into account the control overheads
for subcarrier allocation, which will considerably affect the
system throughput as well. Here, we assume that the control
signaling overhead consumes a bandwidth equivalent to 10%
of a slot length every time SCA is updated [21]. Note

15For illustrative purposes, we have only considered � as one of the typ-
ical formulations of fast adaptive OFDMA in our comparisons. However, we
should point out that there are some work on fast adaptive OFDMA which im-
pose less restrictive constraints on user data rate requirement. For example, in
[5], it considered average user data rate constraints that exploit time diversity to
achieve higher spectral efficiency.

Fig. 8. Spectral efficiency versus tolerance parameter � . Calculated from the
average overall system throughput on one window, where the long-term average
channel gain � of the four users are �65.11 dB, �56.28 dB, �68.14 dB, and
�81.96 dB, respectively.

that within each window that contains 1000 slots, the control
signaling has to be transmitted 1000 times in the fast adaptation
scheme, but once in the slow adaptation scheme. In Fig. 6,
the line with circles represents the performance of the fast
adaptive OFDMA scheme, while that with dots corresponds
to the slow adaptive OFDMA. The figure shows that although
slow adaptive OFDMA updates subcarrier allocation 1000
times less frequently than fast adaptive OFDMA, it can achieve
on average 71.88% of the spectral efficiency. Considering the
substantially lower computational complexity and signaling
overhead, slow adaptive OFDMA holds significant promise for
deployment in real-world systems.

As mentioned earlier, is more conservative than the
original problem , implying that the outage probability is
guaranteed to be satisfied if subcarriers are allocated according
to the optimal solution of . This is illustrated in Fig. 7,
which shows that the outage probability is always lower than
the desired threshold .

Fig. 7 shows that the subcarrier allocation via could still
be quite conservative, as the actual outage probability is much
lower than . One way to tackle the problem is to set to be
larger than the actual desired value. For example, we could tune

from 0.1 to 0.3. By doing so, one can potentially increase
the system spectral efficiency, as the feasible set of is en-
larged. A question that immediately arises is how to choose the
right , so that the actual outage probability stays right below
the desired value. Towards that end, we can perform a binary
search on to find the best parameter that satisfies the require-
ment. Such a search, however, inevitably involves high compu-
tational costs. On the other hand, Fig. 8 shows that the gain in
spectral efficiency by increasing is marginal. The gain is as
little as 0.5 bps/Hz/subcarrier when is increased drastically
from 0.05 to 0.7. Hence, in practice, we can simply set to the
desired outage probability value to guarantee the QoS require-
ment of users.

In the development of the STC (7), we considered that the
channel gain are independent for different ’s and ’s.
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While it is true that channel fading is independent across dif-
ferent users, it is typically correlated in the frequency domain.
We investigate the effect of channel correlation in frequency
domain through simulations. A wireless channel with an ex-
ponential decaying power profile is adopted, where the root-
mean-square delay is equal to 37.79 ns. For comparison, the
curves of outage probability with and without frequency corre-
lation are both plotted in Fig. 9. We choose the tolerance param-
eter to be . The figure shows that with frequency-do-
main correlation, the outage probability requirement of 0.3 is
violated occasionally. Intuitively, such a problem becomes neg-
ligible when the channel is highly frequency selective, and is
more severe when the channel is more frequency flat. To address
the problem, we can set to be lower than the desired outage
probability value.16 For example, when we choose in
Fig. 9, the outage probabilities all decreased to lower than the
desired value 0.3, and hence the QoS requirement is satisfied
(see the line with dots).

VII. CONCLUSION

This paper proposed a slow adaptive OFDMA scheme that
can achieve a throughput close to that of fast adaptive OFDMA
schemes, while significantly reducing the computational com-
plexity and control signaling overhead. Our scheme can sat-
isfy user data rate requirement with high probability. This is
achieved by formulating our problem as a stochastic optimiza-
tion problem. Based on this formulation, we design a polyno-
mial-time algorithm for subcarrier allocation in slow adaptive
OFDMA. Our simulation results showed that the proposed al-
gorithm converges within 22 iterations on average.

In the future, it would be interesting to investigate the chance
constrained subcarrier allocation problem when frequency cor-
relation exists, or when the channel distribution information
is not perfectly known at the BS. Moreover, it is worthy to
study the tightness of the Bernstein approximation. Another in-
teresting direction is to consider discrete data rate and exclusive
subcarrier allocation. In fact, the proposed algorithm based on
cutting plane methods can be extended to incorporate integer
constraints on the variables (see, e.g., [15]).

Finally, our work is an initial attempt to apply the chance
constrained programming methodology to wireless system de-
signs. As probabilistic constraints arise quite naturally in many
wireless communication systems due to the randomness in
channel conditions, user locations, etc., we expect that chance
constrained programming will find further applications in the
design of high performance wireless systems.

APPENDIX A
BERNSTEIN APPROXIMATION THEOREM

Theorem 2: Suppose that is a
function of and , and is a random vector

16Alternatively, we can divide � subcarriers into ��� subchannels (each
subchannel consists � subcarriers), and represent each subchannel via an av-
erage gain. By doing so, we can treat the subchannel gains as being independent
of each other.

Fig. 9. Comparison of outage probability of four users with and without fre-
quency correlations in channel model.

whose components are nonnegative. For every , if there
exists an such that

(25)

where

then .
Proof: (Sketch) The proof of the above theorem is given in

[13] in details. To help the readers to better understand the idea,
we give an overview of the proof here.

It is shown in [13] (see section 2.2 therein) that the probability
can be bounded as follows:

Here, is arbitrary, and is a nonnega-
tive, nondecreasing, convex function satisfying and

for any . One such is the exponential
function . If there exists a such that

then . By multiplying by on both
sides, we obtain the following sufficient condition for the chance
constraint to hold:

(26)
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In fact, condition (26) is equivalent to (25). Thus, the latter pro-
vides a conservative approximation of the chance constraint.
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