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Kernel-Induced Sampling Theorem
Akira Tanaka, Hideyuki Imai, and Masaaki Miyakoshi

Abstract—A perfect reconstruction of functions in a reproducing
kernel Hilbert space from a given set of sampling points is dis-
cussed. A necessary and sufficient condition for the corresponding
reproducing kernel and the given set of sampling points to per-
fectly recover the functions is obtained in this paper. The key idea
of our work is adopting the reproducing kernel Hilbert space cor-
responding to the Gramian matrix of the kernel and the given set
of sampling points as the range space of a sampling operator and
considering the orthogonal projector, defined via the range space,
onto the closed linear subspace spanned by the kernel functions
corresponding to the given sampling points. We also give an error
analysis of a reconstructed function by incomplete sampling points.

Index Terms—Gramian matrix, Hilbert space, orthogonal pro-
jection, reproducing kernel, sampling theorem.

I. INTRODUCTION

S HANNON’s sampling theorem [1] claims that

(1)

holds for any -bandlimited function with finite energy.
This theorem plays a crucial role not only in the filed of signal
processing but also in many other scientific areas. There exist
so many generalizations and extensions of this theorem such as
nonuniform sampling (see [2], [3], and their references cited in).
Among them, a reformulation of sampling theorem, using a re-
producing kernel Hilbert space (RKHS), presented by Nashed
and Walter [4] is one of the most important milestones in the
history of the sampling theorem. Their formulation enables us
to obtain a rigorous description of a sampling process by using
the reproducing property of a reproducing kernel and gives us
a unified viewpoint for many generalizations and extensions of
the sampling theorem including the subsequent wavelet-based
sampling theories [2], [5]. In the literature, they discussed the
relationship between a given system of kernel functions corre-
sponding to a given set of sampling points and a reproducing
kernel (or RKHS), which leads a perfect reconstruction of any
function in the RKHS (or its subspaces). However, we do not
have a necessary and sufficient condition, that is easy to check
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in a general and practical case, for a given system of kernel func-
tions corresponding to a given set of sampling points to be com-
plete in the corresponding RKHS.

On the other hand, as one of different approaches of a gener-
alization of the sampling theorem using a RKHS, Ogawa [6], [7]
and Hirabayashi et al. [8] introduced a framework of the optimal
approximation of a function in the RKHS, instead of a perfect
reconstruction. The key idea of this framework is the orthogonal
projection onto the linear subspace spanned by the given system
of kernel functions corresponding to sampling points which may
be incomplete for the RKHS. However, this framework is only
for a finite number of sampling points. It is caused by an ad hoc
treatment of the range space of a sampling operator.

In this paper, we extend the framework of [6]–[8] to infinite
sampling points by adopting the RKHS corresponding to the
Gramian matrix of the given kernel and a given set of infinite
sampling points as the range space of a sampling operator; and
on the basis of the extension, we give a necessary and sufficient
condition for the kernel and the given set of sampling points to
obtain the sampling theorem for the RKHS corresponding to the
adopted kernel. We also give an error analysis for incomplete
sampling points. Moreover, on the basis of our results, we show
another proof of Shannon’s sampling theorem and introduce a
sampling theorem for a RKHS corresponding to a polynomial
kernel; we also show that Sobolev spaces do not have a sampling
theorem by equally spaced sampling points; and also show a
numerical example of the reconstruction error with incomplete
sampling points for the RKHS corresponding to the Gaussian
kernel.

II. MATHEMATICAL PRELIMINARIES FOR THE THEORY OF

REPRODUCING KERNEL HILBERT SPACES

In this section, we prepare some mathematical tools con-
cerned with the theory of reproducing kernel Hilbert spaces
[9]–[11].

Definition 1: [9] Let be an -dimensional real vector
space and let be a class of functions defined on ,
forming a Hilbert space of real-valued functions. The function

is called a reproducing kernel of , if
1) For every fixed

(2)

2) For every and every ,

(3)

where denotes the inner product of the Hilbert space
.

The Hilbert space that has a reproducing kernel is called
a reproducing kernel Hilbert space (RKHS), denoted by .
The reproducing property (3) enables us to treat a value of a
function at a point in , while we can not deal with a value
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Authorized licensed use limited to: HOKKAIDO DAIGAKU KOHGAKUBU. Downloaded on July 05,2010 at 06:41:34 UTC from IEEE Xplore.  Restrictions apply. 



3570 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 7, JULY 2010

of a function in a general Hilbert space such as . Note that
reproducing kernels are positive definite [9]

(4)

for any , , and . In addition,
for any is followed [9]. If a repro-

ducing kernel exists, it is unique [9]. Conversely, every
positive definite function has the unique corresponding
RKHS [9]. The following lemma is one of important properties
of a RKHS.

Lemma 1: is complete in .
Proof: Let be an arbitrary function in , which is

orthogonal to for any . Then the reproducing
property (3) and the orthogonality yield

for any , which concludes the proof.
Next, we introduce the Schatten product [12] that is a conve-

nient tool to reveal the reproducing property of kernels.
Definition 2: [12] Let and be Hilbert spaces. The

Schatten product of and is defined by

(5)

Note that is a linear operator from onto . It is
easy to show that the following relations hold for ,

:

(6)

(7)

where the superscript denotes the adjoint operator.

III. RKHS-BASED FORMULATION OF SAMPLING PROCESS AND

OPTIMAL APPROXIMATION BY ORTHOGONAL PROJECTION

In this section, we formulate the sampling process of a func-
tion by using a reproducing kernel Hilbert space and discuss the
orthogonal projection of the function onto the closed linear sub-
space spanned by the basis functions corresponding to sampling
points. These discussions are basically along with the frame-
work of [6]–[8] with an extension to infinite sampling points.

Let be an arbitrary real-valued function belonging to
some class of functions defined on and let

be a set of sampling points, where denotes the set
of natural numbers.

The goal of sampling theorem is to clarify a necessary and
sufficient condition to perfectly reconstruct the function by
using the function values at each point in and some basis
functions specified by .

In this paper, we concentrate on the RKHS corre-
sponding to some reproducing kernel as a class of function
to which the target functions belong. According to the repro-
ducing property (3)

(8)

is obtained. Let be the unit vector in with only the th
component being unity and let

with denoting the transposition operator. Then, (8) is
rewritten as

(9)

by using the Schatten product [6]–[8]. For a convenience of de-
scription, we write

(10)

is a linear operator defined by and that maps an element
of onto ; and (9) can be rewritten as

(11)

which represents the sampling process of with the
sampling points . Therefore, function reconstruction process
can be regarded as an inversion problem for (11) [6]–[8].

Here, we introduce three other spaces defined as follows.
Let be a closed linear subspace in , spanned by the basis

functions , defined as

(12)

Note that holds, where and denote the
orthogonal complement of in and the null space of ,
respectively. Any function can be represented by

(13)

with coefficients . Let denotes the induced norm
in , then, for any

holds, where and
denotes the Gramian matrix of the

kernel with sampling points . We intend to use as a
linear subspace to which a reconstructed function belongs.
Note that since is closed

(14)

is also a Hilbert space which is homeomorphic with .
Here, we introduce the theorem shown by Aronszajn for the

properties of .
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Theorem 1: [9] If is the reproducing kernel of the class
of functions defined in the set with the norm , then
restricted to a subset is the reproducing kernel of the
class of all restrictions of functions of to the subset . For
any such restriction , the norm is the minimum
of for all whose restriction to is .

According to Theorem 1, it is concluded that is also a re-
producing kernel since . Thus, has the unique cor-
responding RKHS denoted by . Note that is a subset
of . Also note that since is a Hilbert space, it is com-
plete and closed, which implies that there exist a symmetric and
non-negative matrix that specifies the metric of . Thus,

is characterized as

(15)

According to (2) in Definition 1

(16)

holds for any , which implies that each column of
belongs to ; and (3) in Definition 1 yields

(17)

for any . The summation of (17),
premultiplied by , with respect to produces

(18)

for any . Therefore, since

(19)

holds for any ; and the summation of (19), postmultiplied
by , with respect to yields

(20)

which implies that is a 1-inverse [13] of .1 Note that (20)
for corresponds to the property

(21)

for .
Lemma 2: is a closed linear operator from onto .

Proof: Let be an arbitrary vector. Then

(22)

is obtained, which implies , where denotes
the domain of . Let be a Cauchy sequence in

. Assume that

(23)

with and

(24)

1Note that it is not required that � is a 2-inverse [13], which is defined as
��� � � .

with . Then

is obtained, which implies that and is closed.
On the basis of the above preliminaries, we have the following

theorem.
Theorem 2:

(25)

where denotes the set of bounded linear operators
from onto .

Proof: Since is a closed linear subspace in , any
is uniquely decomposed as

(26)

Since , is represented as

(27)

with . Thus

(28)

holds with some non-negative constant corresponding to
. Since , holds. Thus, from

Lemma 2

is obtained and well-defined. Therefore, from (20)
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is followed. Thus

(29)

is obtained, which implies .
According to Theorem 2, it immediately follows that:

Theorem 3: is the orthogonal projector onto the
closed linear subspace in .

Proof: Let be an arbitrary func-
tion in with respect to , then

where

Since and for any

is followed with an arbitrarily fixed . Thus, from (18)

is obtained for any .
On the other hand, for any

trivially holds for any , since . Thus, it is
concluded that is the orthogonal
projector onto the closed linear subspace along with .

Since is a bijection from onto , is an in-
jection at least. Therefore, if is
arbitrarily fixed and is obtained, then is the
unique element in satisfying . Accordingly, any

function satisfying can be represented
as

(30)

where . Thus, for any satisfying
, we have

where denotes ; and is
achieved when , which implies that the norm of
surely satisfies the property in Theorem 1.

Note that the closed form of is written as

(31)

and that of is written as

(32)

Also note that

(33)

holds with , since

is followed.
Since is the orthogonal projector onto the closed linear sub-

space , gives the optimal approximation of any
in . Thus, the above discussion is an extension of the

framework shown in [6]–[8] to infinite sampling points. Fig. 1
illustrates the relationship between operators , , and
with RKHS’s and .
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In order for (32) to perfectly reconstruct any function

(34)

must hold. Thus, what we have to clarify to obtain the sampling
theorem in this framework is a necessary and sufficient condi-
tion for and to obtain (34).

IV. KERNEL-INDUCED SAMPLING THEOREM

In this section, on the basis of the discussions in the previous
section, we give a necessary and sufficient condition for a repro-
ducing kernel and a set of sampling points to perfectly recon-
struct any function in the corresponding RKHS. The following
theorem is the main result of this paper.

Theorem 4: if and only if

(35)

holds for any .
Proof: Since for any , if

holds

(36)

must hold for any at least.
On the other hand, if we assume that (36) holds, then

is obtained for any and any since is an
orthogonal projector, which implies .

It is trivial that (36) is identical to

(37)

and the Pythagorean theorem and (33) yield

which concludes the proof.
According to Theorem 4, we can confirm whether a given

reproducing kernel and a set of sampling points can perfectly
reconstruct all functions in the corresponding RKHS or not by
checking (35) for all .

Some Remarks: In case of (finite sampling points),
the above discussions can be applied as it is with (the

Moore–Penrose generalized inverse matrix [14] of ), which is
reduced to an extension of the framework shown in [6]–[8] for
a perfect reconstruction with finite sampling points.

When the set is an orthonormal system as
in (1), the Gramian matrix is reduced to the (infinite dimen-
sional) identity matrix . In this case, the matrix that specifies
the metric in is also reduced to , which implies that is
identical to , the Hilbert space of square summable vectors.

Note that when , with infinite sampling points, is not the
identity matrix, is not always a subset of . In fact, an
extreme example yields

and

(38)

when , which implies . On the other
hand, the Gramian matrix of corresponding to is reduced
to

...
. . .

... (39)

and its Moore–Penrose generalized inverse matrix is given as

...
. . .

... (40)

when , then

(41)

holds, which implies . When ,
is reduced to the zero matrix, which trivially im-

plies that and .
The key idea that makes our framework consistent for all cases
is adopting as the range space of the sampling operator .

Since for any , it is obvious that (36)
holds when . In fact, formulas similar to (36) is given
in [4] for some cases. However, the sufficiency of (36) [or (35)]
for perfect reconstruction with infinite sampling points is never
mentioned before.2 Thus, the statement for its sufficiency in
Theorem 4, proved by incorporating the range space of the
sampling operator, is our main contribution.

V. ERROR ANALYSIS FOR INCOMPLETE SAMPLING POINTS

In this section, we give an error analysis for a reconstructed
function by the orthogonal projector with incomplete sam-
pling points, which is the case of .

When is incomplete for perfect reconstruction of a function
in , (35) and (36) do not hold. Thus, at an arbitrarily fixed

2Our main result given as Theorem 4 can be regarded as an extension of [4,
Prop. 4.2] with infinite sampling points. In fact, (35) is quite similar to the norm-
representation of [4, Eq. (4.6)] with infinite sampling points.
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Fig. 1. Relationship between�,� , and� �with the RKHS’s� and� .

, the absolute difference between and is
reduced to

by applying the Schwarz’s inequality, where

(42)
Thus, it is concluded that the absolute reconstruction error at the
point is bounded by the value proportional to and

. Accordingly, when the target function is normal-
ized by its norm, the absolute reconstruction error is bounded by

that only depends on the kernel and the set of sam-
pling points. This fact implies that we can identify the point

, where the absolute reconstruction error tends to be large,
without information of the target function , which may be
useful not only for applications in signal processing but also for
a model selection in the kernel-based learning theory (see [15]
for instance).

VI. EXAMPLES

In this section, we show four examples for our results.
Examples VI-A and VI-B give another proof of Shannon’s
sampling theorem and a sampling theorem for the RKHS
corresponding to a polynomial kernel, respectively. Example
VI-C reveals that the Sobolev space does not have a sampling
theorem with equally spaced sampling points whose interval
is larger than 0. Example VI-D gives an error analysis with an
incomplete set of sampling points.

A. Shannon’s Sampling Theorem

It is mentioned in [4] that sinc function written as

(43)

is the reproducing kernel of the class of -bandlimited func-
tions with finite energy. Let be the set

of sampling points with the Nyquist interval for -bandlimited
functions. Note that the Gramian matrix for these and is
reduced to the identity operator and the matrix is also re-
duced to the identity operator. It is trivial that for
any in the left-hand side of (35). The right-hand side of
(35) is reduced to

(44)
When , it is easy to show that (44) is equal to 1. On the
other hand, when

holds for any . Thus, it is concluded that (35) holds for
any , which gives an another proof of Shannon’s sampling
theorem.

B. Sampling Theorem for Polynomial Kernels

Let

(45)

be a polynomial kernel of degree 2 defined on [ 1, 1]. The
Mercer expansion [10], [11] of is given as

(46)

where

and

are orthonormal system in . Thus, it is suggested that
any function in the corresponding RKHS, denoted by ,
can be perfectly reconstructed by three sampling points.
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Let be an arbitrary set of
sampling points with for . It is trivial that

for any in the left-hand side
of (35). The Gramian matrix is given as

(47)

and its inverse matrix is reduced to

(48)

where

Thus, the right-hand side of (35) is reduced to

for any . Therefore, it is concluded that any func-
tion in can be perfectly reconstructed with arbitrary (but
different) three sampling points. This fact is consistent with the
suggestion by the Mercer expansion given above.

Note that these results for can be easily extended to a
polynomial kernel with higher degree.

C. Sampling Theorem for Sobolev Spaces

In [4], sampling theorem for subspaces of the Sobolev space
is obtained. Here, we discuss the sampling theorem for

itself based on Theorem 4. The reproducing kernel of is
given as

(49)

with . Let be the set of sampling
points and let , then the Gramian matrix of
and is written as

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

(50)

As shown in [4], is invertible and its inverse is given as

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

(51)

Thus, the right-hand side of (35) can be written as

(52)

Without loss of generality, we can assume . Thus,
(52) is reduced to

(53)

On the other hand, it is trivial that the left-hand side of (35) is
equal to 1/2. Thus, in order to obtain the sampling theorem for

with

(54)

must hold for any . Eq. (54) is identical to

(55)

It is obvious that when , (55) holds, which means
that function values at the sampling points can be perfectly
reconstructed. However, when , (55) never holds
with . Note that reconstruction of functions
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Fig. 2. An example of a target function.

in the RKHS corresponding to by is identical to
reconstruction of functions in the RKHS corresponding to
by . Accordingly, it is concluded
that the RKHS corresponding to does not have sampling
theorem by equally spaced sampling points whose interval is
larger than 0.

D. Incomplete Sampling Points for Gaussian Kernel

Consider the Gaussian kernel, written as

(56)

with the kernel parameter , and the corresponding RKHS
. Let

(57)

be the target function in , where and are
randomly generated with the constraint . Fig. 2
shows the instance of (57) used in the following contents. Let

be the examples of incomplete sampling points for perfect re-
construction of functions in and let be the optimal re-
constructed function with sampling points ( , 8, 16)
by the orthogonal projection (32). According to the analysis in
Section V

(58)

must hold with , 8, 16, where

Fig. 3. The target function, the reconstructed function, and the lower and the
upper bounds with� (upper),� (middle), and� (lower), respectively.

are the upper and the lower bound functions obtained in
Section V. Fig. 3 shows the graphs of , , ,
and with , 8, 16, respectively, which supports
the validity of the contents in Section V since it is confirmed
numerically that (58) is satisfied in all cases. According to
Fig. 3, seems near complete for functions in with [0,
15], while seems quite insufficient for function reconstruc-
tion in this case. These results also reveal the overestimation
of the error bound due to the approximation by Schwarz’s
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inequality. Again note that does not depend on the
target function.

VII. CONCLUSION

In this paper, we gave a necessary and sufficient condition
for the pair of a reproducing kernel and a set of sampling points
to perfectly reconstruct any function in the reproducing kernel
Hilbert space corresponding to the adopted kernel. We also
gave an error analysis of the optimal approximation given by
incomplete sampling points. On the basis of our results, we
showed another proof of Shannon’s sampling theorem and
introduced a sampling theorem for the reproducing kernel
Hilbert spaces corresponding to a polynomial kernel; and also
showed that Sobolev spaces do not have a sampling theorem
by equally spaced sampling points. An error analysis with
incomplete sampling points for the reproducing kernel Hilbert
space corresponding to the Gaussian kernel was also given.
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