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Abstract

A general class of unidirectional transforms is presentet tan be computed in a distributed
manner along an arbitrary routing tree. Additionally, wepde a set of conditions under which these
transforms are invertible. These transforms can be cordpagedata is routed towards the collection
(or sink) node in the tree and exploit data correlation betweodes in the tree. Moreover, when used
in wireless sensor networks, these transforms can alsoalgeedata received at nodes via broadcast
wireless communications. Various constructions of ueictional transforms are also provided for use
in data gathering in wireless sensor networks. New wavedeistorms are also proposed which provide

significant improvements over existing unidirectionahsirms.
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. INTRODUCTION

In networks such as wireless sensor networks (WSNs), onerraagllenge is to gather data from a set
of nodes and transfer it to a collection (or sink) node asiefiity as possible. Efficiency can be measured
in terms of bandwidth utilization, energy consumption, &% refer to this as théata gathering problem
The gathering is typically done in data gathering roundgpochsalong a collection of routing paths
to the sink, i.e., in every epoch each node forwards dataithes measured along a multi-hop path

to the sink. A simple gathering strategy is to have each nodérraw data to the sink in a way that
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minimizes some cost metric, e.g., number of hops to the sinkrgy consumption. This minimizes the
amount of resources nodes use to transfer raw data to thesthls the basis for many practical systems
used in WSN such as the Collection Tree Protocol (CTP) [1)wéler, it has been recognized in the
literature [2], [3] that, in a WSN, (i) spatial data corrédet may exist across neighboring nodes and
(i) nodes that are not adjacent to each other in a routing pan still communicate due to broadcasted
wireless transmissioHsRaw data forwarding does not make use of these two facts, thwill not be
the most efficient data gathering method in general.

When spatial data correlation exists, it may be useful tolyajp-network compressiodistributed
across the nodes to reduce this data redundarncy [2]. Morfisply, nodes can exchange data with
their neighbors in order to remove spatial data correlatidris will lead toa representation requiring
fewer bits per measurement as compared to a raw data repiasem also leading to reduced energy
consumption, bandwidth usage, delay, etc. Since nodes irSB e severely energy-constrained [2],
[3], [6], some form of in-network processing that removetad&@dundancy will help reduce the amount
of energy nodes consume in transmitting data to the sinkhith way the lifetime of a WSN can be
extended. This could also be useful in bandwidth-limitegdligptions [7], [8].

Generally speaking, distributed spatial compression reelserequire some form of data exchange
between nodes. Therefore, one needs to select dothuting strategyand a processing strategyl he
routing strategy defines what data communications nodestogaake and the processing strategy defines
how each node processes data. There are a variety of appeoadilable, e.g., distributed source coding
(DSC) techniques [9]/[10], transform-based methods lik&ributed KLT [11], Ken [12], PAQ[[18], and
wavelet-based approaches|[14],/[15]./[16]./[17].! [1B].][120]. Note that DSC techniques do not require
nodes to exchange data in order to achieve compressioeathstach node can compress its own data
using some statistical correlation model. Note, howeVvert &n estimate of these models must be known
at every node, so nodes will still need to do some initial @atzhange in order to learn the models (after
which compression can be done independently at each nodew@k only considers transform-based
methods, which use linear transforms to decorrelate daile @istributing transform computations across
different nodes. While we do not consider DSC approachesalgorithms could be useful in the training
phase of these methods to estimate correlation. Ken and PA@xamples of approaches we consider,
where data at each node is predicted using a linear combinafi measurements from the node and

measurements received from its neighbors. Similarly, tieributed KLT, wavelet-based methods and

IData transmissions in a WSN are typically broadcast [4], $6] multiple nodes can receive a single data transmission.
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many other related methods also use linear transforms toriddate data. Therefore, we can restrict
ourselves to linear in-network transforms while still emgaassing a general class of techniques.

Many of the existing transform-based methguepose a specific transform firghen design routing
and processing strategies that allow the transform to beguated in the network. Some examples are the
wavelet transforms proposed [n [14], [15], [18], the Distiied KLT, Ken and PAQ. While these methods
are good from a data decorrelation standpading routing and processing strategies that are used to
facilitate distributed processing may not always be efficia terms of data transport caslin particular,
nodes may have to transmit their own data multiple times, [[ll4], nodes may need to transmit multiple
copies of the same coefficienis [18], or nodes may even ne@dnemit data away from the sink J11],
[14], [15]. As discussed in_[15], this sort of strategy carpauform raw data gathering for very dense
networks, but it can lead to significant communication oeechfor small to medium sized ones.

The results of our previous work [20], [21] and of [15] demivate why transport costs cannot be
ignored. One simple way to work around these issues is todasign an efficient routing tree (e.g., a
shortest path routing tree, or SPT), then allow the transfomputations to occur only along the routing
paths in the tree. We call these types of schearesoute in-network transform3hese transforms (e.g.,
the wavelet transforms in_[16], [17],_[18], [19], [20]) willypically be more efficient since they are
computed as data is routed to the sink along efficient roupiatips. In addition to overall efficiency,
these transforms can be easily integrated on top of existinting protocols, i.e., a routing tree can be
given by a protocol, then the transform can be constructedgathe tree. This allows such schemes to
be easily usable in a WSN - as demonstrated by the SenhZip [@Bpression tool, which includes an
implementation of our algorithm in_[20] - as well as otheragpof data gathering networks [7], [8].

We note that all existing en-route transforms start fromlakebwn transforms, then modify them to
work on routing trees. Instead, in this work we start from atirgg tree’7” and additional links given by
broadcast (e.g., Fi@l 1). We then pose the following questi@) what is the full set of transforms that
can be computed as data is routed towards the sink abagd (ii) what are conditions for invertibility
of these transformsPhe main goal of this work is to determine this general senheéitible, en-route
in-network transformsNote that in many transform-based compression systersgrder selection of a
transform is considered separately from the design of atqadion and encoding strategy. This is done
in practice in order to simplify the system design (elg.]J2B general certain properties of the transform
(energy compaction, orthogonality) can serve as indisatdrachievable performance in the lossy case.
We adopt a similar approach in our work, choosing to only foom the transform design. Simple

guantization and encoding schemes can then be applied toathe&form coefficients, as demonstrated in
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our experimental results. Joint optimization of routinglampression is also possible, aslin![24],/[25]

and our previous work [21], but this is beyond the scope o tdrk.

K\ /’/ N
///’
/
/
// A
After adding ¥
@\‘ broadcast links @\‘

e Sink Node
Sensor Node
e
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Fig. 1. Example of routing tree and a tree augmented withdwasts. Solid arrows denote forwarding links along the tree

and dashed arrows denote broadcast links.

In order to formulate this problem, we first note that the dg#thering process consists of data
measurement at each node and routing of data to the sink &lodgne in accordance with some
transmission scheduling, i.e., nodes transmit data albnip a certain order. Also note that data is
only transmitted alond” in the direction of the sink, i.e., data transmissions @mairectionaltowards
the sink. Moreover, each node can only process its own détadeita received from other nodes that
transmit before it, i.e., processing of data mustchesalin accordance with the transmission schedule.
In particular, before each node transmits it will only haweess to data received from nodes that use
it as a relay in a multi-hop path to the sink (i.e., “descenslgrand nodes whose data it receives but
is not responsible for forwarding to the sink (i.e., “broast? neighbors). Whenever broadcast is used,
data from a single node will often be available at multipledes. While this can help to decorrelate
data even further (since more data will be available fordfamm computations at each node), it would
be undesirable to transmit this same piece of data throudtipfeupaths since this would increase the
overall communication cost. Thus, in addition to causadibd unidirectionality, the transform should
also becritically sampled i.e., the number of transform coefficients that are congbated routed to the
sink is equal to the number of nodes in the network. We refezatosal, critically-sampled transforms
that are computed in a unidirectional mannemagirectional transforms

As we will show, unidirectional transforms can be defineddamts of the routing tree, the broadcast
links induced by the routing and the transmission scheduiias, given a tree and transmission schedule,

the main problem we address in this work is to determine a Setecessary and sufficient conditions
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under which an arbitrary unidirectional transform is irtilde. While unidirectional transforms have been
proposed, to the best of our knowledge, none of the existiatksvhave attempted to define the most
general set of unidirectional transforms, nor has any gitdreen made to find conditions under which
such transforms are invertible. Our proposed theory alsorporates the use of broadcast data in a general
setting. This leads us to develop transforms that use bastsliin a manner not previously considered.
This contribution is discussed in detail in Sectian II.

In the context of wavelet transforms for WSNs, early wark][J&7], [18], [19] developed unidirec-
tional wavelet transforms on 1D routing paths in WSNs. Egimms to 2D routing paths on arbitrary
routing trees were made by the authors|inl [20],/ [21]. The sapty of these 1D [[18] and 2D[[20]
transforms over the method in_[15] (which requires a greatl @ backward communication) was
demonstrated in[[20]. General unidirectional transformesewinitially proposed by us i _[26], in the
context of lifting transformg [27], and conditions for slagevel invertible unidirectional lifting transforms
were initially proposed there. However, no invertibilitgraditions were provided for general unidirectional
transforms, nor were any conditions given for invertibleltidevel unidirectional lifting transforms. We
provide such conditions here (Sectioh Il dnd 1lI-C) as wslinew transform designs (Sectionl 1V) which
outperform our previously proposed transforms.

General unidirectional transforms with a set of necessary sufficient invertibility conditions are
presented in Sectidnlll. In order to demonstrate the geihedlour proposed theory, Sectidnllll shows
how existing unidirectional transforms (e.g., the treedzthKLT [28], tree-based differential pulse code
modulation (T-DPCM)[[28],[22] and lifting transform5_[26[28]) can be mapped into our framework.
Moreover, our proposed formalism is used to construct gangridirectional lifting transforms. Some of
the inefficiencies of existing lifting transforms are theésadissed. In order to address these inefficiencies,
we define a new Haar-like wavelet transform in Secfioh IV whis analogous to the standard Haar
wavelet when applied to 1D paths. As is shown in Sedfidn I\, fotmalization guarantees invertibility
of these Haar-like transforms, and also leads to an extenshich incorporates broadcast. Sectioh V

provides experimental results that demonstrate the beregfiising our proposed transforms.

Il. EN-ROUTE IN-NETWORK TRANSFORMS

In this section, assuming a fixed routing tr€eand schedule(n) are given, we provide a definition
of unidirectional transforms and determine conditionstfair invertibility. Some notation is established
in SectiorI[-A. Unidirectional transforms are then define®ection 1I-B. Section II-C presents a set of

conditions under which these transforms are invertibleotighout this discussion, the configuration of
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the network in terms routing and scheduling is assumed tbe/k. Sectiof II-ID addresses how this can

be achieved in practice and how our approach can be used edtntralized initialization approaches.

A. Notation

Assume there areV nodes in the network with a given routing trdé = (V, Er), whereV =
{1,2,...,N,N + 1}, each node is indexed by € Z = {1,2,..., N}, the sink node is indexed by
N +1, and(m,n) € Er denotes an edge from node to noden along7'. We also assume that there
is a graphG = (V, E)) which is defined by the edges i,y and any additional edges that arise from the
broadcast nature of wireless communications. An examg@lphgis shown on the right side of FIg. 1. We
observe that data gathering consists of three key compsanEne first isdata measuremenivhere each
noden measures some scalar datg:) that it must send to the sink in each epoch (these ideas can be
easily generalized to non-scalar (%IaAdditionally, noden must route its data to the sink alofi§g The
treeT is defined by assigning to every node parentp(n). We assume that these trees are provided by a
standard routing protocol such as CTP. Finally, we assumatedita transmissions are scheduled [4]] [29]
in some manner, i.e., nodewill transmit data to its pareni(n) at timet(n) according to dransmission
schedulgsee Definitioril). CTP is a practical example that can be etikin terms of this formalization:
nodes are assigned parents in a distributed manner, datenigrtied to the sink along the corresponding
routing paths and the times at which nodes transmit serven asalicit transmission schedule.

Definition 1 (Transmission Schedule) transmission schedule is a functionZ — {1,2,..., Mg},
such that(n) = j when noden transmits in thej-th time sIcH. Moreover, node: transmits data before
nodem whenevert(n) < t(m).

Note that, along the tre€, each node has a set déscendant®,, which use node: as a data relay
to the sink and a set aincestorsA4,, that noden uses for relaying data to the sink. Moreover, we only
consider to be descendantsrothose nodes that are descendants on the tree and transieit #wem .
Also let each node: be h(n) hops away from the sink node, i.e.,has depthi(n) in 7. We also letC*
denote the descendants@fwhich are exactlyc hops away fromn, i.e.,Ck = {m € D,|p*(m) = n},

where p*(m) is the k-th ancestor of noden (e.g., p'(m) is the parent ofn, p?(m) is the grandparent

20ne straightfoward extension is to use a “separable” taansfwhere a transform is first applied in one dimension (e.g.
over time or across dimensions of a multivariate input) dr&htin the other (i.e., spatially).

3Note that these time slots are not necessarily of equal Heritjey simply allow us to describe the order in which
communications proceed in the network; before time $(et), noden is listening to other nodes, and at timié:) node

n starts transmitting its own data, and potentially data fitsrdescendants in the routing tree.
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of m, etc). For instance! is the set of children of, C2 is the set of grandchildren of, etc, and
for simplicity we letC,, = C}. Also note that data can be heard via broadcast in many nkgwerg.,
WSNSs), so we IeB£ define thefull set of broadcast neighborghose data node can overhear due to
broadcast.

Under this formulation, each nodecan process its own daign) together with data received frof,,
and ;. This yields transform coefficient(n) for noden and transform coefficients for its descendants,
i.e.,y(m) for all m € D,,. We make an abuse of notation by lettingD,,) = {y(m)|m € D,,}. Note that
noden is only responsible for forwarding(n) andy(D,,) to its parentp(n), thus, it should not transmit
any data received from broadcast neighbors. In particwlarassume that nodetransmits theransform
coefficient vectoy,, = [y(n) y(D,)]" to its parenip(n) at timet(n). We refer to this asritical-sampling
where in each epoch only one transform coefficient per sapg@ode is generated and then transmitted
to the sink. In our formulation, we also allow(n) (andy(D,,)) to be further processed at the ancestors
of n. We refer to this type of processing dselayed processing

Note that data is only transmitted alofigtowards the sink, i.e., data relayusidirectionaltowards the
sink. The existence of a transmission schedule - given @iplior implicitly - also induces a notion of
causalityfor transform computations. In particular, the computagiperformed at each nodecan only
involve z(n) and anyy,, received from a node that transmits data before node More specifically,
nodes can only use data from € B if t(m) < t(n) (we assume that(m') < t(n) for all m’ € D,,).
These constraints (i.e., causality and unidirectionayeinducecausal neighborhoodshose data each
noden can use for processing, where we I8t = {m € Bj|t(m) < t(n)} denote theset of causal

t
broadcast neighborsThese can be abstracted as in Fig. 2 where = |:thn(1) ytcn(|cn|)] and

t
yB, = y%n(l) ygn(wn')] . These are formally defined as follows.

Dn
Yo,
Yn A n ;
— /// S—
/ Y8,
(Bn >///

Fig. 2. Example of causal neighborhoods for each node. Nodeceivesyp, andyg, from D, and B,, respectively,

processes:(n) together withyp,, andys,,, then forwards its transform coefficient vectpy, through its ancestors idl,,.
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Definition 2 (Causal Neighborhoods¥iven a routing treel” and schedule(n), the causal neigh-
borhoodof each node: is the union of the descendari, and the set of causal broadcast neighbors
B, = {m € Bl|t(m) < t(n)}, i.e., D, UB,. We also define3,, = B, Upcp, Dn, for future discussions.

These ideas are illustrated in Fig. 3. For instance, where iotbrwards data to node 1, its commu-
nication is also overheard by nodes 4 and 12. However, nodesl42 will not receive data from node

2 before they transmit, thus, they cannot use it for proogssi

t4)=8 (4)=8

(3)=2 @ (3)=2
3
12)=9 @ 12)=9(2)
1(6)=7 1(6)=7
// After removing
/ S < forbidden links N
v JEERN P
“12)@\; \\\\ 1(12)@\‘ ¥ ’,/
= I t(11) = 10 [(7) cu @
P 1(10)=5 1(10)=5
ENGICE: @ Sink Node @@=
- (O sensor Node -
(13)=3 X . (13)=3
—  Forwarding Link
© --> Broadcast Link
Q=1 19) =1
Fig. 3. lllustration of causal neighborhoods. Noderansmits at timet(n). The left figure shows the full communication

graph. The right figure shows the graph after removing brastdiinks that violate causality and step by step decoding.

B. Definition of Unidirectional Transforms

We define aunidirectional transform(not necessarily invertible) as any transform that (i) isnpoted
unidirectionally along a tre& and (ii) satisfies causality and critical sampling. Now we eatablish the
general algebraic form of unidirectional transforms. Withloss of generality, assume that node indices
follow a pre-order numbering [30] of, i.e.,D, = {n+ 1,n+2,...,n+ |D,|} for all n (see Fig[B
for an example of pre-order numbering). A pre-order nunmgealways exists, and can be found via
standard algorithmg_[30]. For the sake of simplicity, weoadssume that the transmission schedule
provides a unique time slot to each nB,diae., t(n) # t(m) for all n # m.

Recall that each node receivesyp, andyg, from its descendants and (causal) broadcast neighbors,
respectively (see Fid.] 2). Thus, in a general unidirectidremsform, each node processes its own

dataz(n) along withyp, andyg,. Then, it will transmit transform coefficient vectgr, at time¢(n).

“We note that the time slot assignment need not be unique. ¥owehis assumption significantly simplifies the transform
construction and invertibility conditions. It is easy tovdip similar transform constructions when multiple nodes assigned

the same time slots, and similar invertibility conditionsa.
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We omitt(n) from the notation ofy,, since the timing is implicit. In order to satisfy criticadusipling,
it is necessary that each node only forwdrd- |D,,| coefficients to the sink. Thereforg,, must be a
(1+1|D,]) x 1 dimensional vector. A unidirectional transform can now kpressed as follows.
Definition 3 (Unidirectional Transform)Let T be a routing tree with a unique time slot assignment
given by ¢(n), and suppose that the causal neighborhood of each nodeds by Definition[2. A
unidirectional transform of" is a collection of local transformations done at each nedgven by
z(n)
yo=[AnBL L BE Ly (1)
Y8,
wherey,, has dimensior{1 + |D,|) x 1, A,, has dimensior{1 + |D,|) x (1 + |D,|) and eachBi, has
dimension(1 + |D,[) x (1+|Dg, ;)|)- The transform is computed starting from the node at the tfirss

slot up through the nodes in the remaining time slots 2,3,..., N.

C. Invertibility Conditions for Unidirectional Transforsn

We now establish a set of invertibility conditions for umittional transforms. Note that these trans-
forms are always computed in a particular order, e.g.,istaftom nodes furthest from the sink (i.e.,
“leaf” nodes), up to nodes which are 1-hop from the sink. Same of interleaved scheduling (where
one set of nodes transmits before the rest) could also be[@%gdTherefore, it would also be desirable
to have step by step decoding in the reverse order, sincevtul simplify the transform constructions.
In particular, if the overall transform can be inverted byerting the computations done at each node in
the reverse order, then invertibility will be ensured byigesg invertible transforms at each node.

Step by step decoding in the reverse order is trivially got@ed when no broadcast data is used since
the transform at each nodeis simplyy, = A,, - [w(n) ytDn]t. Thus, if eachA,, is invertible, we can
invert the operations done at nodes [z(n) ytDn]t = (A,,)"'-y,. This becomes more complicated when
broadcast data is used. By examiniip (1), we observeythat A, - [z(n) y%n]t+ [B,l1 .. B ys
whereyps, = [Y%n(l) yltBn(an\)r' In order to have step by step decodability, we need to be table
recover (for every node) z(n) andyp, fromy, andyz,. Note that this fails whenever we cannot decode
some transform coefficient vectet,, from broadcast node: € 5,, before decoding,,. It will also fail
if the matrix operations performed at any given node are matrtible. Thus, in order to guarantee step
by step decodability, we need to ensure that (i) the matreraions at each node are invertible, and (ii)
it is possible to decode eagh, before decodings,. As we now show, (i) is guaranteed by ensuring

that eachA,, matrix is invertible and (ii) is guaranteed by imposing aitigncondition.
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Proposition 1 (Step by Step Decodability§uppose that we have the transform in Definition 3 and
assume that(p(m)) > t(n) for every broadcast node: € B,,. Then we can recover(n) andyp, as
[2(n) v " = (Ap) ™" yu — (A) - |BL ... B,LB"‘] .y, if and only if A-! exists.

Proof: Note that the vector transmitted by any broadcast nede B, will be processed at its
parent, nodep(m), and this processing will occur at timép(m)). Moreover, node: will generate its
own transform coefficient vectoy,, at time ¢(n), and by assumption we have thdp(m)) > t(n).
Thus, it is possible to decodg,, beforey,, for every broadcast neighbet € 15,,. Thus, we can always
form yp = [y%n(l) y%n(\Bnl)]t before decodingy,. Therefore, we can recovef(n) andyp, as
[2(n) ¥ 1" = (An) ™"y — (An) " [B; Bl?n‘] _yg, if and only if A1 exists. n

To simplify our transform constructions, vedso assuméhat nodes use the latest version of broadcast
data that they receive, i.en, € B,, only if A,,NB,, = 0. This second constrainprecludes the possibility
that a noden receives broadcast data from nodeand from an ancestor of noda. Removing the
broadcast links which violate these constraints gives el#ied communication graph as shown on
the right side of Fig[13. Removal of these links can be donedgyllinformation exchange within the
network; examples of how this can be achieved are discuss&gction I-D). Under the constraint of
Prop.[1 and this second constraint, we can represent thalglalmsform taking place in the network as
follows. Since the time slot assignment is unique, at tif@ only data fromn and its descendants will
be modified, i.e., onlyz(n) andy(D,,) will be changed at time(n). Since pre-order indexing is used,
we have thatyp, = [y(n + 1), ..., y(n + |Dy|)]'. Therefore, the global transform computations done

at timet(n) are given by[(R), where eagh corresponds to data which is not processed at titng.

[ - 1 [ T Y1
Vi I o ... 0o 0 0 ... 0 0
YB.(1)
~ Yk
Vi o o0 ... I 0 o0 ... 0 0
1 1Ba| z(n)
Yn =10 B} 0 A, O ... B, 0 (2
~ yDn
Yi+1 o 0 ... 0 0 I .. 0 0 ~
Yk+1
an(\BnD 0 0 ... 0 0 0o ... 1 0
~ YB..(1Bxl)
YK o 0o ... 0o 0 o0 ... 0 I ~
B N B N YK
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The global transform matrixC,,,y at timet(n) is just the matrix shown ir({2), i.e.,

I 0 .0 0 0 .. 0 O
oI ..00O0.. 0 O
o0 ..I 0 0.. 0 0

Cimy=|0 Bl 0 A, 0 ... BP! o]. 3)
00 ...0 0 I.. 0 O
00 ..0 0 O0.. I 0
00 ..0 0 O0.. 0 I

This yields theglobal transform_coefﬁcient vector

Fig. @ illustrates these transform computations. Inifia$t = x = [z(1) z(2) ... =(5)]". At times 1
and 2, nodes 3 and 5, respectively, transmit raw data to geegnts. Therefore, the global matrices at

times 1 and 2 are simpl¢; = C, = 1. At time 3, node 4 produces

z(3)
y(4) bi a1 as
y(5) by a3z a4

z(5

wherea; andb; represent arbitrary values of the transform matrix usedoderd. Then at time 4, node

2 produces transform coefficieny$2) andy(3) (and coefficient vectoys) as

(2)

gy — y2) | _ | @ ey Vb || 2(3) 7
y(3) ag ay by b y(4)

L y(5) |

wherea; and b, are the values of the matrix used at node 2. Node 1 then compuytat time 5. The

global transform is given by

10 0 0 0][100 0 0]]azq
0 d) dy V) Y 01 0 0 O x(2)
y=A1|0 a d b U 00 1 0 0 z(3) | - 5)
0O 0 0 1 0 0 0 b1 a1 a9 x(4)
|00 0 0 1|00 by a3 as | _w(5)_
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t(3)=1 1(2) =4

x(3)
\\\ A Y2
AN t(1)=5
NXE@)

\\\ i ya @ Y1 ‘
™ I Ya
t(5) =2 t(4) =3

Fig. 4. Example to illustrate unidirectional transform qartations. Nodes generate and transmit transform coefticia the

order specified by the transmission schedule.

It is now rather simple to show that the transform is invéetis long as each matrix,, is invertible.

Proposition 2 (Invertible Unidirectional TransformsBuppose that we have the transform in Déf. 3,
the second timing constraint( € B,, only if A, N B, = 0) is met, and Profd.]1 is satisfied for every
noden. Then the overall transform given byl (4) is invertible.

Proof: Under the two broadcast timing assumptions, the globalsfoam is given by [(4).[(4) is
invertible if and only if everyC,,, in @) is invertible.C,, is invertible if and only if de(Ct(n)) # 0.
Recall that adding a multiple of one row to another does naingk the determinant [32]. Given the
structure of theC,,,) matrices, using such row operations to eliminate dafhmatrix, it is easy to show
that det(C,,,)) = det(A,,). Moreover, Propl]1 implies tha,, is invertible. [

Propositiori 2 shows that locally invertible transformsyide globally invertible transforms. Moreover,
under our stated timing constraints, broadcast data daeafieat invertibility. Therefore, broadcast data
at each node: can be used in an arbitrary manner without affecting inlséityy. So in order to design
an invertible unidirectional transform, all that one mustid design invertible matriced,,. This is an
encouraging result since it essentially means that bratdizda can be used in any way a node chooses.

In particular, broadcast data can always be used to achieve data decorrelation.

D. Discussion

The theory presented thus far assumes that the routing andntission scheduling are known, and
that all of the transform matrices are known both at the na@dakat the sink. In practice, the routing,
scheduling and transforms must be initialized. Moreoves, ietwork may need to re-configure itself if,
for example, nodes die or link conditions change drasticéll addition, packet losses will often occur.
Nodes typically deal with this (as in CTP) by re-transmdtia packet until an acknowledgement (ACK)

is received from the intended recipient. While these thssaes pose no significant problems for routing,
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they all have an impact on our proposed transform due to thengstions we make about timing. We
now provide some discussion of how this affects our theon faow it can be handled.

We first address the impact that initialization and recomfigan have on the routing and scheduling,
as well as what can be done to address it. We assume thatgastinitialized and reconfigured in a
distributed manner using standard protocols such as CBRilRited scheduling protocols for WSNs also
exist [29], [33]. However, the resulting schedules may rotbnsistent with Definitiohl 2 (i.e., they may
not provide timings for whicht(m) < t(n) for all m € D,,), so in practice we would need to enforce
such timings. One way to achieve this is to force nodes to r@gspransmission (in a given epoch) until
they have received data from all of their descendants. Aesradtiernative would be to determine such a
transmission schedule at the sink, then to disseminatdrttiegt information to the nodes.

Whenever timing and routing information is establishedréestablished due to re-configuration), it
is also necessary to check our main broadcast timing canistta., m € B, only if t(n) < t(p(m)). We
describe one way in which this information can be dissemithdab each node in a distributed manner.
First, whenever the timeé(n) at noden is initialized or changes, it broadcasts a small packet, (ae
beacon which containst(n) to its children. Then, any child of which broadcasts data will send the
same beacon to all of its neighbors. This requires a total afe®sages for each broadcasting node.
Note that protocols such as CTP already use control beadoreddition to data packets) to update
stale routing information. Thus, nodes could potentialigggback timing information on these control
beacons whenever they are generated, or otherwise useaepantrol beacons to disseminate timing
information. This will incur an additional cost, althougas(was shown in_[1]) the per packet cost for
control beacons is typically much smaller than the cost fitadorwarding.

Initialization and re-configuration also impacts the tfam® matrices that are used. Each node could
transmit the values of its matrix to the sink, or viceversat this may be very costly. Instead, the
construction of each transform matrix should be based onal ssmount of information which is made
common to the nodes and to the sink. For example, the valueadh transform matrix could be based
on the number of 1-hop neighbors that each node [has [20] orefaéve node positions [14]. In this
way each matrix can be constructed at each node and at thevithdut explicitly communicating the
matrix values. However, additional information (e.g., aqubsitions, number of neighbors) would need
to be communicated to the sink whenever the network is liziéie or re-configured. For example, each
node could construct a transform using only the number okadtat it receives data from (as in [20],
[14]) and would send the set of nodes whose data it used akeaeito the sink. Then, assuming that

the nodes and the sink construct the matrices accordingetedme rules, the sink can re-construct the
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matrix used at each node.

Packet loss is the last practical issue which impacts oupgwed transforms. We do not consider the
effects of channel noise on the data since these can be llausiiey a wide variety of existing techniques.
Moreover, packet losses and channel noise will impact adaéx gathering schemes (e.g., CTP), and we
expect that the penalty due to packet losses will be similanur scheme and in other data gathering
schemes. Packet losses are typically handled (as in CTPgnamsmitting a packet until an ACK is
received from the desired destination. Thus, if neddoes not receive data from descendant k by
the time that it transmits, due to packet re-transmissions. - k, the data from node + k& cannot be
combined with data available at node This is equivalent to not using the data from nade k in the
transform computation (i.eA,,(j,k+1) = A, (k+1,j) =0forall j # k+1andA,(k+1,k+1) =1)
and does not affect our proposed theory. However, this ahamgst be signaled to the sink so that it
knows how to adjusA,, accordingly. This can be done by including some additionfdrmation in the
packet headers for nodeandn + k to signify this change.

Packet losses also have an impact on the use of broadcasSdataose that node does not receive

a data packet from broadcast neighbpibut the packet fronb, does reach the intended recipieiby).
In this case, node(by) will send an ACK back to nodé; and nodeb; will no longer re-transmit (note
that nodeb;, will not expect an ACK from node:). Thus, data from nodg, can not be combined with
data available at node. This is equivalent to not using data from ndgein the transform computation
(i.e., BF = 0) and our proposed theory is not affected. However, this ghanust be signaled to the
sink so that it knows to sdBf = 0.

One way to work around these issues (initialization, refigoimation and packet losses) is to design
transforms that can work under arbitrary timing and withitaay uses of broadcast data. However,
under arbitrary timing and use of broadcast data, it is ngéorpossible to guarantee global transform
invertibility by designing invertible transforms at eacbde. More specifically, we must ensure that the
transform computations done at different nodes are joiimertible. This leads to a set of complex
conditions. The cost to determine such conditions and tadioate nodes so that they satisfy these
conditions could be very high, perhaps even much higher thanadditional coordination needed to
implement our proposed transforms. However, it is still ol to design simple versions of such
transforms by using constructions such as lifting. Our meeeork [31] is one particular example. Given
this high degree of complexity to ensure an invertible tfams when using broadcast, broadcast data
should probably only be used with our proposed transforngg it is possible to fix the timing in the

network in accordance with the Definitiom 2, and, (ii) theitimis very stable.
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[1l. UNIDIRECTIONAL TRANSFORMDESIGNS

Propositiori 2 provides simple conditions for invertiblartsform design, i.eA,, is invertible for every
noden. This is a simple design constraint thatifies many existing unidirectional transformia this
section, we demonstrate how existing unidirectional fianss can be mapped to our formulation. In
particular, we focus on the tree-based Karhunen-Loévasfoam (T-KLT) [28], T-DPCM [22], [28] and
early forms of tree-based wavelet transforing [16], [178][120] constructed using lifting [27].

In order to exploit spatial correlation to achieve reduttio the number of bits per measurement, nodes
must first exchange data. Therefore, some nodes must triaraswlata to their neighbors before any form
of spatial compression can be performed. Since raw dataalypirequires many more bits than encoded
transform coefficients, it would be desirable to minimize thumber of raw data transmissions that nodes
must make to facilitate distributed transform computatidbherefore, oumain design consideratiois

to minimize the number of raw data transmissions that araired, to compute the transform.

A. Tree-based Karhunen-kBwe Transform

Since transforms that achieve data decorrelation potgniizad to better coding efficiency [34],
we consider now the design of unidirectional transformg #hieve the maximum amount of data
decorrelation. This can be achieved by applying, at eacle nod transformA,, that makes all of the
coefficients iny,, statistically uncorrelated (or “whitened”), e.g., by ugia Karhunen-Loéve transform
(KLT) at each node, leading to the T-KLT described in our pyag work [28]. In this transform, each node
n computes and transmits a set of “whitened” coefficigniswhich will then have to be “unwhitened”
and then re-whitened atn) to produce a new set of whitened coefficients. Whitening @addne using a
KLT and unwhitening can be achieved using an inverse KLT.dv&pecifically, this is done at each nade
by (i) finding the whitening transforril,, and unwhitening transforms of each chi& ;, (i) applying
an unwhitening transform to each child to recover the odgmeasurements ag, ;) = Ge, ;) " ¥e, (i)
and then (iii) rewhitening these measurementyas- H,, - |z(n) Xtcna) ---xtcn(\cn\) t. This transform

(without quantization) can then be expressed in terms off@unulation as

1 0 0 1T x(n) ]
0 G¢,) - 0 ye. (1
0 0 Gy ] L Yeaqe)

with A,, = H,,-diag(1, Ge, (1, - - - » Ge, (c,)) - EachA,, is trivially invertible sinceH,, and eactGe,(;

are invertible by construction. Therefore, the tree-baskd is trivially invertible.
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B. Tree-based DPCM

A simpler alternative to the T-KLT is T-DPCM [22], [28]. A raled DPCM based method was proposed
in [35]. This particular method is not designed for any mattir communication structure, but it can
easily be adapted to take the form of a unidirectional tr@msf In contrast to the method ih_[35], the
T-DPCM methods in[[22],[[28] compute differentials dirgctn a tree such as an SPT.

In the T-DPCM method of [28], each nodecomputes its difference with respect to a weighted average
of its children’s data, i.ey(n) = x(n) = >_, .cc an(m)x(m). For this to be possible, one of two things
must happen: either every nodemust decode the differentials received from its childrerré¢oover
x(m) for eachm € C,,, or, every node: must transmit raw data two hops forward to its grandparent (a
which pointy(n) can be computed) to avoid decoding data at every node. Irr twdavoid each node
having to forward raw data two hops, at each nagéhe inverse transform on the data of each child
Cn(i) must be computed first using the inverse ma(cixcn(i))_l of each child. The forward transform

is then designed accordingly. We can express this versiorRPCM as in [¥).

r -1 —1 B T
1 (Ac,y) - (Acqe.) z(n)
1 —an(Dy) 0 I 0 yeu (1
0 I
| 0 0 1 1 L yee.n

The matrixA,, is just the product of these triangular matrices, hence, itivially invertible. Moreover,

only leaf nodes need to forward raw data and the rest trarmmhjttransform coefficients.
Alternatively, in the T-DPCM scheme aof [22], each noddirst forwards raw data:(n) to its parent

p(n), then nodep(n) computes a differential for and forwards it to the sink, i.e., nogén) computes

y(n) = z(n) — an(p(n))z(p(n)). This transform can also be mapped to our formalism as

1 0 x(n)
—ap,(n) 1 YD,

This eliminates the computational complexity of the pregiol-DPCM method since no decoding of
children data is required. However, every node must now dotraw data one hop. Moreover, it will

not decorrelate the data as well as the first method sincedatly from one neighbor is used.

C. Unidirectional Lifting-based Wavelets

We now describe how unidirectional wavelet transforms calcdnstructed under our framework. This

can be done using lifting [27]. Lifting transforms are cansted bysplitting nodes into disjoint sets of
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evenand odd nodes, by designingrediction filters which alter odd data using even data, amtiate
filters, which alter even data based on odd data. They are invetipleonstruction[[27].

First, nodes are split into odd and even sétsand &, respectively. This can be done completely
arbitrarily. One example from our previous wofk [20] is tdispccording to the depth in the tree, e.g.,
O ={n:h(n) mod2 =1} and€ = {m : h(m) mod 2 = 0}, as illustrated in Figl]5. Data at each
odd noden € O is then predicted using data from even neighb®fsc &, yielding detail coefficient

d(n) = (n) = 3 pali)r(i) ©)
ieN,
The prediction vectop,, can provide a simple averade [20], i.p, (i) = Wln_\ for eachi € N,,, a planar
prediction [15] of the data at node using data from its neighbors, or can even be data adapt8je [2
Incorporating some broadcast data into the predictionss akeful since it allows odd nodes to achieve
even further decorrelation. After the prediction step,adat each even node € £ is updated using
details from odd neighbor4/,,, C O, yielding smooth coefficient

s(m) = z(m) + > um(f)d(j). (10)

JENm
The update vectou,, can provide simple smoothing [20], i.e1,,(j) = ﬁ—‘ for all j € N,,,, or could

provide orthogonality between smooth (i.e., low-pass) detil (i.e., high-pass), coefficien{s [36].

Fig. 5. Example of splitting based on the depth of the routieg. White (odd depth) nodes are odd, gray (even depth)snode
are even and the black center node is the sink.

By the lifting construction, invertibility will be guaraeed as long as (i) odd node data is only predicted

using even node data, and (ii) even node data is only updaied details from odd nodes. So&fand
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O is an arbitrary even and odd split, the transform computeghah node will be invertible as long as
the computations satisfy (i) and (ii). More formally, |1&, = (n U D, ) N O be the set of odd nodes
whose data is available atfrom its subtree. Let,, = (n U D, ) N E be defined similarly. Moreover, let
OB = B,,nO denote the set of odd nodes whose dataceives via broadcast. Similarly, 8f = B,,N¢.
Then the computations at will be invertible as long as it only predictg©,,) from y(&,) andy(£5)

and only updateg(&,,) from y(0,,) andy(OZ). Let M,, and MZ be permutation matrices such that

y(On)
z(n)
y(&En) M, O
= | (D) |- (11)
y(OF) 0 M7 (B.)
Y(On
| y(ED) |
Thenn can compute transform coefficients as[in](12).
(1P, 0 PE[ 40, ]
I 0 0 O 0 I 0 O y(&En)
U, I UB o 0 0 I 0 y(05)
0 0 0 I y(EB)

By multiplying the matrices in[(11) and {l12) together, we ggt=[A,, B,] - [z(n) y} ygn]t, with

. I 0 I P,
U, I 0 I
0 P5
B, = (M,)"- " M5B,
us u,pB

Since detA,,) = 1, single-level unidirectional lifting transforms are alygainvertible.

The transform given by (12) corresponds to only one level efainposition. In particular, at each
noden the transform of{(12) will yield a set of smooth (or low-pasegfficients{y(k)}rce, and a set of
detail (or high-pass) coefficien{g/(!) };co, . The high-pass coefficients will typically have low energy i
the original data is smooth, so these can be encoded usipdevebits and forwarded to the sink without
any further processing. However, there will still be somerelation between low-pass coefficients. It
would therefore be useful to apply additional levels of &fanm to the low-pass coefficients at node
n to achieve more decorrelation. This will reduce the numbenits needed to encode these low-pass
coefficients, and will ultimately reduce the number of biéele node must transmit to the sink.

Suppose each node performs an additiohdévels of lifting transform on the low-pass coefficients

{y(k)}ree,. At each levelj = 2,3,...,J + 1, suppose that nodes &, ' are split into even and odd
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sets&) and 0, respectively. We assume thg} = &,. For each odd nodec O, we predicty(l) using
even coefficients from some set of even neighbvis C &7, i.e., y(1) = y(I) — Lpens Prs(K)y (k).
Then for each even nodec &, we updatey(k) using odd coefficients from some set of odd neighbors
N,g c O, ie.,yk) =yk)+ ZleNg uy, ;(1)y(1). This decomposition is done starting from leyek 2

uptolevelj=J+1. Forallj=223,...,J+1, let M, be a permutation matrix such that
y(&%) = M% “Yn, (13)

whereR}, = (nUD,) — (O} UE),) is the set of nodes whose coefficients are not modified at lgvel

Then we can express the levetransform computations in matrix form as

I 00 I P, o y(O%)
vo=(M)"- Ul T ol |0 1 ol-| &) |, (14)
0 0 I 0 0 I y(R3)

whereP?, and U?, represent the prediction and update operations used atjevespectively.

By combining [(11), [(12) [(T3) and {114), we finally get that = [A,, B,,]- [z(n) ¥} ygn}t, with A,
andB,, defined in[(1b) and (16).

. I 00 I P, o
i L . . .| I o I P,
A=TI| ™M) Ui 100 T ofM,|M,) M, (15)
e U, I 0 I
0 0 I 0 0 I
§ I 00 I P, o
+1 0 PB
_ AN j j t n B
B,=[[[(M) | vl 100 1 ofM|M,) ME  (16)
i U8 u,p58
0 0 I 0 0 I

Prop.[2 implies that the overall transform is invertibleAf, given in [15%) is invertible. Since eadhl,
is a permutation matrix|,de1(M¥L)| = 1. Moreover, the remaining matrices are triangular. Thusagily

follows that detA,,) = 1. Therefore, unidirectional, multi-level lifting transfos are always invertible.

D. Unidirectional 5/3-like Wavelets

Our previous work[[20] provides &/3-like transformon a tree. First, nodes are split into odd and even
setsO and¢&, respectively, by assigning nodes of odd depth as odd anelsmaiceven depth as even. More
specifically,O = {n : h(n) mod 2 =1} and€ = {m : h(m) mod 2 = 0}. This is illustrated in Figl15.
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The transform neighbors of each node are simply = {p(n)} U C, for every noden. This provides

a 5/3-like wavelet transform on a tree since whenever averaging gieascand smoothing updates are
used along a 1D path, the transform reduces to the 5/3 wavefetform [37]. Nodes can compute these
transforms in a unidirectional manner, but doing so regutl@at some nodes forward raw data 1 or 2

hops. This is illustrated in Fid.] 6.

=il (3) / Y5 = O X(7) XOF
@ y3 = [X(3) X(4) x5)] @
Nodes 4, 5, 7, 8 tx raw data Nodes 3, 6 tx raw data

Fig. 6. Raw data transmissions for 5/3-like transform. No8eand 6 need:(2) to compute detailg/(3) and d(6), so they
must forward raw data over 1-hop to node 2. Nodes 4 and 5 dé&dto computes(4) and s(5), so they must forward raw

data over 2-hops.

Data from each odd node is predicted using data(C,) (from childrenC,) and z(p(n)) (from
parentp(n)). However, odd node: will not have z(p(n)) locally available for processing. Therefore,
we require that each odd nodetransmit raw data(n) one hop forward to its parent(n), at which
point nodep(n) can compute the detail coefficient eof Each even noden will then compute detail
d(j) = z(j) = Xec, Pi(i)z(j) — pj(m)z(m) for every childj € Cp,. Similarly, the smooth coefficient
of each even node: requires details from its parem{m) and childrenC,,, so it can not be locally
computed either. Moreover, detai{p(m)) can only be computed at nogé(m), i.e., at the grandparent
of m. Therefore, we require that even nodetransmit raw datar(m) two hops forward top?(m), at
which pointd(p(m)) will be available ang?(m) can compute(m) = z(m)+> et pmyuc,, Um(7)d(f).
Note that each of these operations are trivially invertiblled easily lead to local transform matricas
which are invertible by construction. However, the numbkrasv data transmissions is relatively high,

i.e., 1-hop for odd nodes and 2-hops for even nodes. We althissinefficiency in the next section.
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IV. UNIDIRECTIONAL HAAR-LIKE WAVELETS

For the transform in Sectidn II[dD, raw data from even and addes must be forwarded over 2-hops
and 1-hop, respectively. This can be inefficient in termsrafigport costs. Instead, it would be better to
construct a lifting transform which directly minimizes thember of raw data transmissions each node
must make. We use the splitting method in Seclion 1lI-D. Nib@t some form of data exchange must
occur before the transform can be computed, i.e., evens trargmit raw data to odds, or viceversa.
Suppose that even nodes forward raw data to their parentkislitase, the best we can do is to design
a transform for which even nodes transmit raw data over oftipd, and odd nodes do not transmit any
raw data. This will minimize the number of raw data transioiss that nodes need to make, leading to
transforms which are more efficient than the 5/3-like transfin terms of transport costs. We note that
minimizing raw data only serves as a simple proxy for the rofation. A more formal optimization

which relies on this same intuition is undertaken in our réaeork [31].

A. Transform Construction

A design that is more efficient than the 5/3-like transform ba achieved as follows. Note that an odd
noden has data from its childre6@,, and/or even broadcast neighbdtsn £ locally available, so it can
directly compute a detail coefficient for itself, i.€(n) = z(n)—>_;cc. Pn(0)z(i) =3  ;cp,ne Pr(d)z(d)-
Thus, the detaili(n) is computed directly at, is encoded, and then is transmitted to the sink. These
details require fewer bits for encoding than raw data, hettie reduces the number of bits that odd
nodes must transmit for their own data. Since data from ewele m is only used to predict data at its
parentp(m), we simply have thatV,,, = {p(m)} ands(m) = z(m) + u,,(p(m))d(p(m)). Moreover,
these smooth coefficients can be computed at each odd modeerefore, even nodes only need to
forward raw data over one hop, after which their smooth coefits can be computed. Note that not all
odd nodes will have children or even broadcast neighbars,there may exist some odd nodesuch
thatC,, = § andB,, N €& = . Such odd nodes can simply forward raw data) to their parento(n),
then p(n) can compute their details a§n) = z(n) — p,(p(n))x(p(n)). Thus, there may be a few odd
nodes that must send raw data forward one hop. This leadsHaaglike transformwhich is exactly
the Haar wavelet transform when applied to 1D paths.

Odd nodes can also perform additional levels of decompositin the smooth coefficients of their
descendants. In particular, every odd nedeill locally compute the smooth coefficients of its children
Therefore, it can organize the smooth coefficiefték)}rcc, onto another tred? and perform more

levels of transform decomposition alofffj. In this work, we assumé? is a minimum spanning tree. This
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produces detail coefficientsdz (k) breoz, {d3(k)}reos, - - {ds+1(k)}peps+ and smooth coefficients
{5741(k)},ces+ for someJ > 0. In this way, odd nodes can further decorrelate the dataedrf dhildren
before they even transmit. This reduces the resources thesume in transmitting data. An example of
this separable transform fof = 1 is illustrated in Fig[l7. By choosing averaging predictidiefs and

the orthogonalizing update filter design in [36], we get thabgl equation in[{17).

100 10 0 100 1 -3 -1 z(3)
y3=|0 1 0|-|]0 1 -1 rol-jo 1 o0 z(4) 17)
011 00 1 $ 01 0 0 1 z(5)

The coefficient vectolyg is obtained in a similar manner. More generally, these softmulti-level

transform computations can always be formulated into wedrias described in Sectibn 11I-C.

/® © ® /e
@\?Vs =[x(5)] Vs = [X(8)] @\4,:———— .'

ya=ix@l - (3) | T
\ Yo = [d(6) da(7) so(8)]'
@ ya = [d(3) dy(4) s(5)]
@ @

d(3) = x(3) - [x(4) + x(5)] / 2 d(6) = x(6) - [X(7) + x(8)] / 2

IR DA G2 ) = s@) - s(s) da(7) = S(7) - 5(8)

s(5) = x(5) + d(3) / 3 s(8) = x(8) + d(6) / 3 s2(5) = s(5) + d2(4) / 2 $2(8) = s(8) + d2(7) / 2

(a) 1%*-level alongT (b) 2"¢-level “orthogonal” toT

Fig. 7. Unidirectional Computations for Haar-like Transfo In (a), nodes 3 and 6 compute a first level of transform.nThe

in (b), nodes 3 and 6 compute a second level of transform orognmefficients of their children.

B. Discussion

The transform computations that each node performs can &l eaapped into our standard form
yn = [An By - [2(n) Yo, ygn]t by appropriately populating the matrices in](15) ahd (16)efEfore,
they will always yield invertible transforms. For exampsince each odd node predicts its own data
x(n) using data from its childred,, and even broadcast neighbds N £, then updates the data of its

children from its own detail, the operations for a singleeleransform at odch can be expressed as

_ x(n)
1 0 1 —pn(Dn) _pn(Bn)
Yn = Yo, : (18)
up,(n) I 0 I 0
Y.
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By choosing

A, = : " (19)
up, (n) 1 0 I
and
1 0 —pn(B,
B, — | —Pa(Bn) 7 (20)
up, (n) I I

we have thaty, = [A, B,] - [z(n) Yo, ygn]t. Note that [(IB) covers all of the cases discussed in
Sectior1V-A for each odd node, that is to say: (i)C,, # 0 andB,,NE # 0, (i) C,, = 0 andB,NE # 0,
(i) C,, # 0 andB,NE =0, and (iv)C,, = 0 andB,,NE = (. In particular, whenevet,, # (), p,,(D,,) and
up, (n) will have some non-zero entries. Otherwisehas no descendants and s(D,,) andup, (n)
will just be vectors of zeros. Similarly, whenevBy, N € # 0, p,(B,,) will have some non-zero entries.
Otherwise,n has no even broadcast neighbors and3,,) will be a vector of zeros.

Similarly, each even nodes may need to compute predictions for its odd children, soatagutations

for a single level transform can be expressed as

1 0 x(m)
Ym = ' . (21)
—pp,.(m) I YD,

Also note that[(Zl1) covers all of the cases for each even modbscussed in Sectidn IV3A, i.e., when
m has to compute predictions for children thpp, (m) # 0, otherwise pp, (m) = 0.

Note that, when broadcast data is used, the decorrelatideved at odd nodes may still be comparable
to the 5/3-like transform since the same number of neighf@smnore) will be used. Moreover, broadcasts
are particularly useful for odd nodesthat have no children, i.en for which C,, = 0 but B,, N &€ # 0.

If broadcast data is not used when it is available, nedeill have to transmitz(n) to its parent. Since
x(n) requires more bits for encoding than does a detail coefficién), n will consume more resources
during data transmission. By using broadcasts, these odésnohich have no children can still use data
overheard from even broadcast neighbors, allowing thenvaadransmitting raw data to their parents.
This is illustrated in Fig.18, where node 11 has no childrendwerhears data from node 12. The example

in Fig.[8(a) will consume more resources at node 11 than héléxample in Fig. 8(b).

V. EXPERIMENTAL RESULTS

This section presents experimental results that comparéraimsforms proposed here against existing

methods. Source code used to generate these results canrizedn our webpage In particular, we

®http://biron.usc.edu/wiki/index.php/Wavelets Trees
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X(11) : d(11) :/\«
\
\
\

\
x(12)\\

11)] [x(10), d(ll)]

x(12) x(lZ)

[d(9), s(10), d(11), s(12)] [d(9), s(10), d(11), s(12)]

(a) Without Broadcasts (b) With Broadcasts

Fig. 8. No broadcasts are used in (a), so node 11 consumesresmérces when transmitting raw datél1). Broadcasts are
used in (b), so node 11 consumes less resources when trangrditail d(11).

focus on comparing the proposed multi-level Haar-likeirlgt transforms against the multi-level 5/3-
like transform from [[20], [[26], the T-DPCM scheme in_[28] amalw data gathering. We consider the

application of distributed data gathering in WSNs. Perfamge is measured by total energy consumption.

A. Experimental Setup

For evaluation, we consider simulated data generated freetand order AR model. This data consists
of two 600 x 600 2D processes generated by a second order AR model with lovhighdspatial data
correlation, e.g., nodes that are a certain distance aweas higher inter-node correlation for the high

correlation data than for the low correlation data. MorecHfmally, we use the second order AR filter

H(z) = (l_pejwoZ,l)(ll_pe,jwoz,l), with p = 0.99 andwy = 99 (resp.wy = 359) to produce data with
low (resp. high) spatial correlation. The nodes were planeti600 x 600 grid, with node measurements
corresponding to the data value from the associated positicthe grid. Each network used in our
simulations is generated from a set of random node positissisbuted in the500 x 600 grid. An SPT
is constructed for each set of node positions. We considetypes of networks: (iyariable radio range
networks in which each node can have a diferent radio ramgk(ia fixed radio rangenetworks in which
each node has the same radio range. In the variable radie @asg, the radio range that each nede
uses for transmission is defined by the distance frono its parent in the SPT. Additional broadcast
links induced by the SPT are also included, i.e., a broadtdsbetween node: andm exists if m is
not a direct neighbor of. in the SPT but is within radio range of.

In order to measure energy consumption, we use the cost rfad&SN devices proposed ihl[6], [38],
where the energy consumed in transmittingits over a distanc® is Er(k, D) = Eejec-k~+Eamp - k- D?
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Joules and the energy consumed in receivingits is Er(k) = Ege. - k Joules. TheE,.. - k terms
capture the energy dissipated by the radio electronicsdogssk bits. Thes,,,, - k- D? term captures the
additional energy for signal amplification needed to enseasonable signal power at the receiver. WSN
devices also consume energy when performing computatmristhese costs are typically very small
compared with transmission and reception costs. Theretegeignore them in our cost computations.
Also note that all data gathering schemes will suffer froraratel noise and attenuation, so a no-channel-
loss comparison is still valid. Thus, we do not consider ¢heects in our experiments.

Comparisons are made with the Haar-like transforms of 8egll] against the 5/3-like transform with
delayed processing proposed inl[26] and the T-DPCM schewgoped in[[28]. Predictions for each of
these transforms are made using the adaptive predictien didtsign in[[2B]. Updates are made using the
“orthogonalizing” update filter design in [36]. In each eppwe assume that each node transmits= 50
measurements taken af different times. Also, each raw measurement is represamedy B, = 12
bits. We assume each odd node encatedetail coefficients together with an adaptive arithmetidexo
Smooth coefficients are treated like raw data, i.e., eachuseeB,. bits. Since we only seek to compare

the performance of spatial transforms, we do not considgrt@mporal processing.

B. Simulation Results

In the case of lossless compression, the average cost i@tuatios taken over multiple uniformly
distributed networks are shown in F[g. 9 for high and low deadarelation. These are expressed as the
average of multiple values ¢ft”, — C;)/C,., whereC, is the cost for joint routing and transform antl
is the cost for raw data forwarding. Results for variabléaaenges (each node has different radio range)
are shown in Fig. 9(&). Results for fixed radio ranges (eacke ias the same radio range) are given in
Fig.[9(b). T-DPCM does the worst overall. The 5/3-like tf@ns1 provides significant improvement over
the simple T-DPCM scheme. The Haar-like transforms havehifest average cost reduction ratio, or
equivalently, the lowest average cost. Moreover, we naé bhoadcast is not very helpful (on average)
when nodes have variable radio ranges (Fig.]9(a)), but tiseaesignificant gain when nodes use a fixed
radio range (Figl 9(b)). This is mainly because, in the fixadio range case, (i) there are many more
opportunities for using broadcast data and (ii) each nodenfiare broadcast neighbors.

Note that the amount of raw data forwarding needed to contpetélaar-like transform is significantly
reduced compared with the 5/3-like transform. Therefdre,Haar-like transform will do better than the
5/3-like transform in terms of transport costs. Grante@, #3-like transform will use data from more

neighbors for processing, so the decorrelation given by5iBdike transform will be greater than that
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Fig. 9. Average percent cost reductioﬁ%c'). Solid and dashed lines correspond to high and low spadite dorrelation,
respectively. Best performance achieved by Haar-likesftams, followed by 5/3-like transform and T-DPCM. High eation

data also gives greater cost reduction than low correlataia.

given by the Haar-like transform. However, in our experitsethe average reduction in rate that the
5/3-like transform provides over the Haar-like transfosnrather small. The Haar-like transform with
broadcast also provides additional cost reduction overhar-like transform without broadcasts since
less raw data forwarding is needed on average. Moreoverart@munt of cost reduction achievable is
higher for the high correlation data than for the low cortiela data.

Lossy coding is also possible and can provide even greatdrreductions while introducing some
reconstruction error. In this case, we quantize transfooefficients with a dead-zone uniform scalar
guantizer. Performance is measured by the trade-off betietal cost and distortion in the reconstructed
data, which we express as the signal to quantization nois® (8NR). Sample 50 node networks are
shown in Figs[ 10(&) ar{d 10[c) and, in the case of high cdielalata, the corresponding performance
curves are shown in Figs. 10(b) and 10(d). The Haar-likesftams do the best among all transforms.

When using broadcasts with the Haar-like transform, theniadditional 1 dB (resp. 2.5 dB) gain in
SNR for the variable (resp. fixed) radio range network at adfigest, i.e., by using broadcasts we can
increase the quality in the reconstructed data for a fixedneonication cost. Thus, for these networks,
using broadcast is quite helpful. Also note that there onlgr@dcast links used in the transform for
the variable radio range network (Fjg. 10(a)), whereasetlaee over 10 broadcast links used in the fixed
radio range network (Fig. 10(c)). Thus, broadcast provielen greater gains for the fixed radio range
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Transform Structure on SPT (Variable RR) SNR vs. Energy Consumption (Variable RR)
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Transform Structure on SPT (Fixed RR) SNR vs. Energy Consumption (Fixed RR)
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Fig. 10. Sample networks with corresponding Cost-Distartturves. In (a) and (c), blue lines denote forwarding lidashed

magenta lines are broadcast links, green circles are eveesnoed x’s are odd nodes, and the black center node is tke sin

network (2.5 dB versus 1dB) since there are more broadaast. liMore generally, broadcast should
provide more gains in networks where many broadcast oppities are available.

Also note that in this particular network for the variablelimrange case, T-DPCM actually does
better than the 5/3-like transform. Note that in T-DPCM,yotiie leaf nodes forward raw data to the
sink; so if there are only a few leaf nodes, the raw data fodimgr cost for T-DPCM may not be very
high compared with the raw data forwarding cost for the 88-transform. In this particular network,
only 19 of the 50 nodes are leaves in the tree. Therefore,avedata forwarding cost for T-DPCM in

this case is lower than that for the 5/3-like transform. Hegreon average the raw data forwarding cost
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for T-DPCM will be very high (see Fid.]9), leading to highetabcost on average as compared with the

5/3-like transform.

V1. CONCLUSIONS

A general class of en-route in-network (or unidirectionainsforms has been proposed along with
a set of conditions for their invertibility. This covers adei range of existing unidirectional transforms
and has also led to new transform designs which outperfoemettisting transforms in the context
of data gathering in wireless sensor networks. In particue have used the proposed framework to
provide a general class of invertible unidirectional wavdtansforms constructed using lifting. These
general wavelet transforms can also take into account besadlata without affecting invertibility. A
unidirectional Haar-like transform was also proposed Wisignificantly reduces the amount of raw data
transmissions that nodes need to make. Since raw dataesquany more bits than encoded transform
coefficients, this leads to a significant reduction in thaltaiost. Moreover, our proposed framework
allows us to easily incorporate broadcasts into the H&erdiansforms without affecting invertibility.

This use of broadcast data provides further performanceowements for certain networks.
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