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Abstract

A general class of unidirectional transforms is presented that can be computed in a distributed

manner along an arbitrary routing tree. Additionally, we provide a set of conditions under which these

transforms are invertible. These transforms can be computed as data is routed towards the collection

(or sink) node in the tree and exploit data correlation between nodes in the tree. Moreover, when used

in wireless sensor networks, these transforms can also leverage data received at nodes via broadcast

wireless communications. Various constructions of unidirectional transforms are also provided for use

in data gathering in wireless sensor networks. New wavelet transforms are also proposed which provide

significant improvements over existing unidirectional transforms.

Index Terms

Data Compression, Wavelet Transforms, Wireless Sensor Networks

EDICS Category: SEN-DIST

I. INTRODUCTION

In networks such as wireless sensor networks (WSNs), one major challenge is to gather data from a set

of nodes and transfer it to a collection (or sink) node as efficiently as possible. Efficiency can be measured

in terms of bandwidth utilization, energy consumption, etc. We refer to this as thedata gathering problem.

The gathering is typically done in data gathering rounds orepochsalong a collection of routing paths

to the sink, i.e., in every epoch each node forwards data thatit has measured along a multi-hop path

to the sink. A simple gathering strategy is to have each node route raw data to the sink in a way that
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minimizes some cost metric, e.g., number of hops to the sink,energy consumption. This minimizes the

amount of resources nodes use to transfer raw data to the sinkand is the basis for many practical systems

used in WSN such as the Collection Tree Protocol (CTP) [1]. However, it has been recognized in the

literature [2], [3] that, in a WSN, (i) spatial data correlation may exist across neighboring nodes and

(ii) nodes that are not adjacent to each other in a routing path can still communicate due to broadcasted

wireless transmissions1. Raw data forwarding does not make use of these two facts, thus, it will not be

the most efficient data gathering method in general.

When spatial data correlation exists, it may be useful to apply in-network compressiondistributed

across the nodes to reduce this data redundancy [2]. More specifically, nodes can exchange data with

their neighbors in order to remove spatial data correlation. This will lead toa representation requiring

fewer bits per measurement as compared to a raw data representation, also leading to reduced energy

consumption, bandwidth usage, delay, etc. Since nodes in a WSN are severely energy-constrained [2],

[3], [6], some form of in-network processing that removes data redundancy will help reduce the amount

of energy nodes consume in transmitting data to the sink. In this way the lifetime of a WSN can be

extended. This could also be useful in bandwidth-limited applications [7], [8].

Generally speaking, distributed spatial compression schemes require some form of data exchange

between nodes. Therefore, one needs to select botha routing strategyand a processing strategy. The

routing strategy defines what data communications nodes need to make and the processing strategy defines

how each node processes data. There are a variety of approaches available, e.g., distributed source coding

(DSC) techniques [9], [10], transform-based methods like Distributed KLT [11], Ken [12], PAQ [13], and

wavelet-based approaches [14], [15], [16], [17], [18], [19], [20]. Note that DSC techniques do not require

nodes to exchange data in order to achieve compression. Instead, each node can compress its own data

using some statistical correlation model. Note, however, that an estimate of these models must be known

at every node, so nodes will still need to do some initial dataexchange in order to learn the models (after

which compression can be done independently at each node). Our work only considers transform-based

methods, which use linear transforms to decorrelate data while distributing transform computations across

different nodes. While we do not consider DSC approaches, our algorithms could be useful in the training

phase of these methods to estimate correlation. Ken and PAQ are examples of approaches we consider,

where data at each node is predicted using a linear combination of measurements from the node and

measurements received from its neighbors. Similarly, the Distributed KLT, wavelet-based methods and

1Data transmissions in a WSN are typically broadcast [4], [5], so multiple nodes can receive a single data transmission.
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many other related methods also use linear transforms to decorrelate data. Therefore, we can restrict

ourselves to linear in-network transforms while still encompassing a general class of techniques.

Many of the existing transform-based methodspropose a specific transform first, then design routing

and processing strategies that allow the transform to be computed in the network. Some examples are the

wavelet transforms proposed in [14], [15], [18], the Distributed KLT, Ken and PAQ. While these methods

are good from a data decorrelation standpoint,the routing and processing strategies that are used to

facilitate distributed processing may not always be efficient in terms of data transport cost. In particular,

nodes may have to transmit their own data multiple times [14], [15], nodes may need to transmit multiple

copies of the same coefficients [18], or nodes may even need totransmit data away from the sink [11],

[14], [15]. As discussed in [15], this sort of strategy can outperform raw data gathering for very dense

networks, but it can lead to significant communication overhead for small to medium sized ones.

The results of our previous work [20], [21] and of [15] demonstrate why transport costs cannot be

ignored. One simple way to work around these issues is to firstdesign an efficient routing tree (e.g., a

shortest path routing tree, or SPT), then allow the transform computations to occur only along the routing

paths in the tree. We call these types of schemesen-route in-network transforms. These transforms (e.g.,

the wavelet transforms in [16], [17], [18], [19], [20]) willtypically be more efficient since they are

computed as data is routed to the sink along efficient routingpaths. In addition to overall efficiency,

these transforms can be easily integrated on top of existingrouting protocols, i.e., a routing tree can be

given by a protocol, then the transform can be constructed along the tree. This allows such schemes to

be easily usable in a WSN - as demonstrated by the SenZip [22] compression tool, which includes an

implementation of our algorithm in [20] - as well as other types of data gathering networks [7], [8].

We note that all existing en-route transforms start from well-known transforms, then modify them to

work on routing trees. Instead, in this work we start from a routing treeT and additional links given by

broadcast (e.g., Fig. 1). We then pose the following questions: (i) what is the full set of transforms that

can be computed as data is routed towards the sink alongT and (ii) what are conditions for invertibility

of these transforms?The main goal of this work is to determine this general set of invertible, en-route

in-network transforms. Note that in many transform-based compression systems, design or selection of a

transform is considered separately from the design of a quantization and encoding strategy. This is done

in practice in order to simplify the system design (e.g., [23]). In general certain properties of the transform

(energy compaction, orthogonality) can serve as indicators of achievable performance in the lossy case.

We adopt a similar approach in our work, choosing to only focus on the transform design. Simple

quantization and encoding schemes can then be applied to thetransform coefficients, as demonstrated in
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our experimental results. Joint optimization of routing and compression is also possible, as in [24], [25]

and our previous work [21], but this is beyond the scope of this work.
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Fig. 1. Example of routing tree and a tree augmented with broadcasts. Solid arrows denote forwarding links along the tree

and dashed arrows denote broadcast links.

In order to formulate this problem, we first note that the datagathering process consists of data

measurement at each node and routing of data to the sink alongT done in accordance with some

transmission scheduling, i.e., nodes transmit data alongT in a certain order. Also note that data is

only transmitted alongT in the direction of the sink, i.e., data transmissions areunidirectional towards

the sink. Moreover, each node can only process its own data with data received from other nodes that

transmit before it, i.e., processing of data must becausalin accordance with the transmission schedule.

In particular, before each node transmits it will only have access to data received from nodes that use

it as a relay in a multi-hop path to the sink (i.e., “descendants”) and nodes whose data it receives but

is not responsible for forwarding to the sink (i.e., “broadcast” neighbors). Whenever broadcast is used,

data from a single node will often be available at multiple nodes. While this can help to decorrelate

data even further (since more data will be available for transform computations at each node), it would

be undesirable to transmit this same piece of data through multiple paths since this would increase the

overall communication cost. Thus, in addition to causalityand unidirectionality, the transform should

also becritically sampled, i.e., the number of transform coefficients that are computed and routed to the

sink is equal to the number of nodes in the network. We refer tocausal, critically-sampled transforms

that are computed in a unidirectional manner asunidirectional transforms.

As we will show, unidirectional transforms can be defined in terms of the routing tree, the broadcast

links induced by the routing and the transmission schedule.Thus, given a tree and transmission schedule,

the main problem we address in this work is to determine a set of necessary and sufficient conditions
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under which an arbitrary unidirectional transform is invertible. While unidirectional transforms have been

proposed, to the best of our knowledge, none of the existing works have attempted to define the most

general set of unidirectional transforms, nor has any attempt been made to find conditions under which

such transforms are invertible. Our proposed theory also incorporates the use of broadcast data in a general

setting. This leads us to develop transforms that use broadcasts in a manner not previously considered.

This contribution is discussed in detail in Section II.

In the context of wavelet transforms for WSNs, early work [16], [17], [18], [19] developed unidirec-

tional wavelet transforms on 1D routing paths in WSNs. Extensions to 2D routing paths on arbitrary

routing trees were made by the authors in [20], [21]. The superiority of these 1D [18] and 2D [20]

transforms over the method in [15] (which requires a great deal of backward communication) was

demonstrated in [20]. General unidirectional transforms were initially proposed by us in [26], in the

context of lifting transforms [27], and conditions for single-level invertible unidirectional lifting transforms

were initially proposed there. However, no invertibility conditions were provided for general unidirectional

transforms, nor were any conditions given for invertible multi-level unidirectional lifting transforms. We

provide such conditions here (Section II and III-C) as well as new transform designs (Section IV) which

outperform our previously proposed transforms.

General unidirectional transforms with a set of necessary and sufficient invertibility conditions are

presented in Section II. In order to demonstrate the generality of our proposed theory, Section III shows

how existing unidirectional transforms (e.g., the tree-based KLT [28], tree-based differential pulse code

modulation (T-DPCM) [28], [22] and lifting transforms [26], [28]) can be mapped into our framework.

Moreover, our proposed formalism is used to construct general unidirectional lifting transforms. Some of

the inefficiencies of existing lifting transforms are then discussed. In order to address these inefficiencies,

we define a new Haar-like wavelet transform in Section IV which is analogous to the standard Haar

wavelet when applied to 1D paths. As is shown in Section IV, our formalization guarantees invertibility

of these Haar-like transforms, and also leads to an extension which incorporates broadcast. Section V

provides experimental results that demonstrate the benefits of using our proposed transforms.

II. EN-ROUTE IN-NETWORK TRANSFORMS

In this section, assuming a fixed routing treeT and schedulet(n) are given, we provide a definition

of unidirectional transforms and determine conditions fortheir invertibility. Some notation is established

in Section II-A. Unidirectional transforms are then definedin Section II-B. Section II-C presents a set of

conditions under which these transforms are invertible. Throughout this discussion, the configuration of
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the network in terms routing and scheduling is assumed to be known. Section II-D addresses how this can

be achieved in practice and how our approach can be used with decentralized initialization approaches.

A. Notation

Assume there areN nodes in the network with a given routing treeT = (V,ET ), where V =

{1, 2, . . . , N,N + 1}, each node is indexed byn ∈ I = {1, 2, . . . , N}, the sink node is indexed by

N + 1, and(m,n) ∈ ET denotes an edge from nodem to noden alongT . We also assume that there

is a graphG = (V,E) which is defined by the edges inET and any additional edges that arise from the

broadcast nature of wireless communications. An example graph is shown on the right side of Fig. 1. We

observe that data gathering consists of three key components. The first isdata measurement, where each

noden measures some scalar datax(n) that it must send to the sink in each epoch (these ideas can be

easily generalized to non-scalar data2). Additionally, noden must route its data to the sink alongT . The

treeT is defined by assigning to every noden a parentρ(n). We assume that these trees are provided by a

standard routing protocol such as CTP. Finally, we assume that data transmissions are scheduled [4], [29]

in some manner, i.e., noden will transmit data to its parentρ(n) at timet(n) according to atransmission

schedule(see Definition 1). CTP is a practical example that can be viewed in terms of this formalization:

nodes are assigned parents in a distributed manner, data is forwarded to the sink along the corresponding

routing paths and the times at which nodes transmit serve as an implicit transmission schedule.

Definition 1 (Transmission Schedule):A transmission schedule is a functiont : I → {1, 2, . . . ,Mslot},

such thatt(n) = j when noden transmits in thej-th time slot3. Moreover, noden transmits data before

nodem whenevert(n) < t(m).

Note that, along the treeT , each node has a set ofdescendantsDn which use noden as a data relay

to the sink and a set ofancestorsAn that noden uses for relaying data to the sink. Moreover, we only

consider to be descendants ofn those nodes that are descendants on the tree and transmit earlier thann.

Also let each noden beh(n) hops away from the sink node, i.e.,n has depthh(n) in T . We also letCk
n

denote the descendants ofn which are exactlyk hops away fromn, i.e., Ck
n = {m ∈ Dn|ρ

k(m) = n},

whereρk(m) is thek-th ancestor of nodem (e.g.,ρ1(m) is the parent ofm, ρ2(m) is the grandparent

2One straightfoward extension is to use a “separable” transform, where a transform is first applied in one dimension (e.g.,

over time or across dimensions of a multivariate input) and then in the other (i.e., spatially).

3Note that these time slots are not necessarily of equal length; they simply allow us to describe the order in which

communications proceed in the network; before time slott(n), noden is listening to other nodes, and at timet(n) node

n starts transmitting its own data, and potentially data fromits descendants in the routing tree.
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of m, etc). For instance,C1
n is the set of children ofn, C2

n is the set of grandchildren ofn, etc, and

for simplicity we letCn = C1
n. Also note that data can be heard via broadcast in many networks (e.g.,

WSNs), so we letBf
n define thefull set of broadcast neighborswhose data noden can overhear due to

broadcast.

Under this formulation, each noden can process its own datax(n) together with data received fromDn

andBf
n. This yields transform coefficienty(n) for noden and transform coefficients for its descendants,

i.e., y(m) for all m ∈ Dn. We make an abuse of notation by lettingy(Dn) = {y(m)|m ∈ Dn}. Note that

noden is only responsible for forwardingy(n) andy(Dn) to its parentρ(n), thus, it should not transmit

any data received from broadcast neighbors. In particular,we assume that noden transmits thetransform

coefficient vectoryn = [y(n) y(Dn)]
t to its parentρ(n) at timet(n). We refer to this ascritical-sampling,

where in each epoch only one transform coefficient per sampleper node is generated and then transmitted

to the sink. In our formulation, we also allowy(n) (andy(Dn)) to be further processed at the ancestors

of n. We refer to this type of processing asdelayed processing.

Note that data is only transmitted alongT towards the sink, i.e., data relay isunidirectionaltowards the

sink. The existence of a transmission schedule - given explicitly or implicitly - also induces a notion of

causalityfor transform computations. In particular, the computations performed at each noden can only

involve x(n) and anyym received from a nodem that transmits data before noden. More specifically,

nodes can only use data fromm ∈ Bf
n if t(m) < t(n) (we assume thatt(m′) < t(n) for all m′ ∈ Dn).

These constraints (i.e., causality and unidirectional relay) inducecausal neighborhoodswhose data each

noden can use for processing, where we letBn = {m ∈ Bf
n|t(m) < t(n)} denote theset of causal

broadcast neighbors. These can be abstracted as in Fig. 2 whereyDn
=

[

yt
Cn(1)

. . . yt
Cn(|Cn|)

]t

and

yBn
=

[

yt
Bn(1)

. . . yt
Bn(|Bn|)

]t

. These are formally defined as follows.

n An

Dn

Bn

yDn

yBn

yn

Fig. 2. Example of causal neighborhoods for each node. Noden receivesyDn and yBn from Dn and Bn, respectively,

processesx(n) together withyDn andyBn , then forwards its transform coefficient vectoryn through its ancestors inAn.
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Definition 2 (Causal Neighborhoods):Given a routing treeT and schedulet(n), the causal neigh-

borhoodof each noden is the union of the descendantsDn and the set of causal broadcast neighbors

Bn = {m ∈ Bf
n|t(m) < t(n)}, i.e.,Dn ∪Bn. We also definēBn = Bn ∪m∈Bn

Dm for future discussions.

These ideas are illustrated in Fig. 3. For instance, when node 2 forwards data to node 1, its commu-

nication is also overheard by nodes 4 and 12. However, nodes 4and 12 will not receive data from node

2 before they transmit, thus, they cannot use it for processing.
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Fig. 3. Illustration of causal neighborhoods. Noden transmits at timet(n). The left figure shows the full communication

graph. The right figure shows the graph after removing broadcast links that violate causality and step by step decoding.

B. Definition of Unidirectional Transforms

We define aunidirectional transform(not necessarily invertible) as any transform that (i) is computed

unidirectionally along a treeT and (ii) satisfies causality and critical sampling. Now we can establish the

general algebraic form of unidirectional transforms. Without loss of generality, assume that node indices

follow a pre-order numbering [30] onT , i.e., Dn = {n + 1, n + 2, . . . , n + |Dn|} for all n (see Fig. 3

for an example of pre-order numbering). A pre-order numbering always exists, and can be found via

standard algorithms [30]. For the sake of simplicity, we also assume that the transmission schedulet

provides a unique time slot to each node4, i.e., t(n) 6= t(m) for all n 6= m.

Recall that each noden receivesyDn
andyBn

from its descendants and (causal) broadcast neighbors,

respectively (see Fig. 2). Thus, in a general unidirectional transform, each noden processes its own

datax(n) along withyDn
andyBn

. Then, it will transmit transform coefficient vectoryn at time t(n).

4We note that the time slot assignment need not be unique. However, this assumption significantly simplifies the transform

construction and invertibility conditions. It is easy to develop similar transform constructions when multiple nodesare assigned

the same time slots, and similar invertibility conditions arise.
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We omit t(n) from the notation ofyn since the timing is implicit. In order to satisfy critical-sampling,

it is necessary that each node only forward1 + |Dn| coefficients to the sink. Therefore,yn must be a

(1 + |Dn|)× 1 dimensional vector. A unidirectional transform can now be expressed as follows.

Definition 3 (Unidirectional Transform):Let T be a routing tree with a unique time slot assignment

given by t(n), and suppose that the causal neighborhood of each node is given by Definition 2. A

unidirectional transform onT is a collection of local transformations done at each noden given by

yn =
[

An B1
n . . . B|Bn|

n

]

·











x(n)

yDn

yBn











, (1)

whereyn has dimension(1 + |Dn|) × 1, An has dimension(1 + |Dn|) × (1 + |Dn|) and eachBi
n has

dimension(1+ |Dn|)× (1+ |DBn(i)|). The transform is computed starting from the node at the firsttime

slot up through the nodes in the remaining time slotsk = 2, 3, . . . , N .

C. Invertibility Conditions for Unidirectional Transforms

We now establish a set of invertibility conditions for unidirectional transforms. Note that these trans-

forms are always computed in a particular order, e.g., starting from nodes furthest from the sink (i.e.,

“leaf” nodes), up to nodes which are 1-hop from the sink. Somesort of interleaved scheduling (where

one set of nodes transmits before the rest) could also be used[31]. Therefore, it would also be desirable

to have step by step decoding in the reverse order, since thiswould simplify the transform constructions.

In particular, if the overall transform can be inverted by inverting the computations done at each node in

the reverse order, then invertibility will be ensured by designing invertible transforms at each node.

Step by step decoding in the reverse order is trivially guaranteed when no broadcast data is used since

the transform at each noden is simply yn = An ·
[

x(n) yt
Dn

]t
. Thus, if eachAn is invertible, we can

invert the operations done at noden as
[

x(n) yt
Dn

]t
= (An)

−1 ·yn. This becomes more complicated when

broadcast data is used. By examining (1), we observe thatyn = An ·
[

x(n) yt
Dn

]t
+
[

B1
n . . . B

|Bn|
n

]

·yBn
,

whereyBn
=

[

yt
Bn(1)

. . . yt
Bn(|Bn|)

]t

. In order to have step by step decodability, we need to be ableto

recover (for every noden) x(n) andyDn
from yn andyBn

. Note that this fails whenever we cannot decode

some transform coefficient vectorym from broadcast nodem ∈ Bn before decodingyn. It will also fail

if the matrix operations performed at any given node are not invertible. Thus, in order to guarantee step

by step decodability, we need to ensure that (i) the matrix operations at each node are invertible, and (ii)

it is possible to decode eachym before decodingyn. As we now show, (i) is guaranteed by ensuring

that eachAn matrix is invertible and (ii) is guaranteed by imposing a timing condition.
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Proposition 1 (Step by Step Decodability):Suppose that we have the transform in Definition 3 and

assume thatt(ρ(m)) > t(n) for every broadcast nodem ∈ Bn. Then we can recoverx(n) andyDn
as

[

x(n) yt
Dn

]t
= (An)

−1 · yn − (An)
−1 ·

[

B1
n . . . B

|Bn|
n

]

· yBn
if and only if A−1

n exists.

Proof: Note that the vector transmitted by any broadcast nodem ∈ Bn will be processed at its

parent, nodeρ(m), and this processing will occur at timet(ρ(m)). Moreover, noden will generate its

own transform coefficient vectoryn at time t(n), and by assumption we have thatt(ρ(m)) > t(n).

Thus, it is possible to decodeym beforeyn for every broadcast neighborm ∈ Bn. Thus, we can always

form yBn
=

[

yt
Bn(1)

. . . yt
Bn(|Bn|)

]t

before decodingyn. Therefore, we can recoverx(n) and yDn
as

[

x(n) yt
Dn

]t
= (An)

−1 · yn − (An)
−1 ·

[

B1
n . . . B

|Bn|
n

]

· yBn
if and only if A−1

n exists.

To simplify our transform constructions, wealso assumethat nodes use the latest version of broadcast

data that they receive, i.e.,m ∈ Bn only if Am∩Bn = ∅. This second constraintprecludes the possibility

that a noden receives broadcast data from nodem and from an ancestor of nodem. Removing the

broadcast links which violate these constraints gives a simplified communication graph as shown on

the right side of Fig. 3. Removal of these links can be done by local information exchange within the

network; examples of how this can be achieved are discussed in Section II-D. Under the constraint of

Prop. 1 and this second constraint, we can represent the global transform taking place in the network as

follows. Since the time slot assignment is unique, at timet(n) only data fromn and its descendants will

be modified, i.e., onlyx(n) andy(Dn) will be changed at timet(n). Since pre-order indexing is used,

we have thatyDn
= [y(n + 1), . . . , y(n + |Dn|)]

t. Therefore, the global transform computations done

at time t(n) are given by (2), where each̃yi corresponds to data which is not processed at timet(n).

















































ỹ1

yBn(1)

...

ỹk

yn

ỹk+1

...

yBn(|Bn|)

ỹK


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
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
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
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













=




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
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...
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. . .
...

...
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0 B1
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|Bn|
n 0

0 0 . . . 0 0 I . . . 0 0

...
...

. . .
...

...
...

. . .
...

...

0 0 . . . 0 0 0 . . . I 0

0 0 . . . 0 0 0 . . . 0 I







































































































ỹ1

yBn(1)

...

ỹk




x(n)

yDn





ỹk+1

...

yBn(|Bn|)

ỹK























































(2)
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The global transform matrixCt(n) at time t(n) is just the matrix shown in (2), i.e.,

Ct(n) =

















































I 0 . . . 0 0 0 . . . 0 0

0 I . . . 0 0 0 . . . 0 0

...
...

.. .
...

...
...

. . .
...

...

0 0 . . . I 0 0 . . . 0 0

0 B1
n . . . 0 An 0 . . . B

|Bn|
n 0

0 0 . . . 0 0 I . . . 0 0

...
...

.. .
...

...
...

. . .
...

...

0 0 . . . 0 0 0 . . . I 0

0 0 . . . 0 0 0 . . . 0 I

















































. (3)

This yields theglobal transform coefficient vector

y = CN ·CN−1 · · ·C1 · x. (4)

Fig. 4 illustrates these transform computations. Initially, y = x = [x(1) x(2) . . . x(5)]t. At times 1

and 2, nodes 3 and 5, respectively, transmit raw data to theirparents. Therefore, the global matrices at

times 1 and 2 are simplyC1 = C2 = I. At time 3, node 4 produces

y4 =





y(4)

y(5)



 =





b1 a1 a2

b2 a3 a4



 ·











x(3)

x(4)

x(5)











,

whereai andbi represent arbitrary values of the transform matrix used at node 4. Then at time 4, node

2 produces transform coefficientsy(2) andy(3) (and coefficient vectory2) as

y2 =





y(2)

y(3)



 =





a′1 a′2 b′1 b′2

a′3 a′4 b′3 b′4



 ·

















x(2)

x(3)

y(4)

y(5)

















,

wherea′i and b′i are the values of the matrix used at node 2. Node 1 then computes y1 at time 5. The

global transform is given by

y = A1























1 0 0 0 0

0 a′1 a′2 b′1 b′2

0 a′3 a′4 b′3 b′4

0 0 0 1 0

0 0 0 0 1













































1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 b1 a1 a2

0 0 b2 a3 a4













































x(1)

x(2)

x(3)

x(4)

x(5)























. (5)
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3

5

2

4

1

t(3) = 1 t(2) = 4

t(5) = 2 t(4) = 3

t(1) = 5

x(3)

x(3)

x(5)

y4

y4

y2

y1

Fig. 4. Example to illustrate unidirectional transform computations. Nodes generate and transmit transform coefficients in the

order specified by the transmission schedule.

It is now rather simple to show that the transform is invertible as long as each matrixAn is invertible.

Proposition 2 (Invertible Unidirectional Transforms):Suppose that we have the transform in Def. 3,

the second timing constraint (m ∈ Bn only if Am ∩ Bn = ∅) is met, and Prop. 1 is satisfied for every

noden. Then the overall transform given by (4) is invertible.

Proof: Under the two broadcast timing assumptions, the global transform is given by (4). (4) is

invertible if and only if everyCt(n) in (3) is invertible.Ct(n) is invertible if and only if det
(

Ct(n)

)

6= 0.

Recall that adding a multiple of one row to another does not change the determinant [32]. Given the

structure of theCt(n) matrices, using such row operations to eliminate eachBi
n matrix, it is easy to show

that det
(

Ct(n)

)

= det(An). Moreover, Prop. 1 implies thatAn is invertible.

Proposition 2 shows that locally invertible transforms provide globally invertible transforms. Moreover,

under our stated timing constraints, broadcast data does not affect invertibility. Therefore, broadcast data

at each noden can be used in an arbitrary manner without affecting invertibility. So in order to design

an invertible unidirectional transform, all that one must do is design invertible matricesAn. This is an

encouraging result since it essentially means that broadcast data can be used in any way a node chooses.

In particular, broadcast data can always be used to achieve more data decorrelation.

D. Discussion

The theory presented thus far assumes that the routing and transmission scheduling are known, and

that all of the transform matrices are known both at the nodesand at the sink. In practice, the routing,

scheduling and transforms must be initialized. Moreover, the network may need to re-configure itself if,

for example, nodes die or link conditions change drastically. In addition, packet losses will often occur.

Nodes typically deal with this (as in CTP) by re-transmitting a packet until an acknowledgement (ACK)

is received from the intended recipient. While these three issues pose no significant problems for routing,
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they all have an impact on our proposed transform due to the assumptions we make about timing. We

now provide some discussion of how this affects our theory and how it can be handled.

We first address the impact that initialization and reconfiguration have on the routing and scheduling,

as well as what can be done to address it. We assume that routing is initialized and reconfigured in a

distributed manner using standard protocols such as CTP. Distributed scheduling protocols for WSNs also

exist [29], [33]. However, the resulting schedules may not be consistent with Definition 2 (i.e., they may

not provide timings for whicht(m) < t(n) for all m ∈ Dn), so in practice we would need to enforce

such timings. One way to achieve this is to force nodes to suppress transmission (in a given epoch) until

they have received data from all of their descendants. Another alternative would be to determine such a

transmission schedule at the sink, then to disseminate the timing information to the nodes.

Whenever timing and routing information is established (orre-established due to re-configuration), it

is also necessary to check our main broadcast timing constraint, i.e.,m ∈ Bn only if t(n) < t(ρ(m)). We

describe one way in which this information can be disseminated to each node in a distributed manner.

First, whenever the timet(n) at noden is initialized or changes, it broadcasts a small packet (i.e., a

beacon) which containst(n) to its children. Then, any child ofn which broadcasts data will send the

same beacon to all of its neighbors. This requires a total of 2messages for each broadcasting node.

Note that protocols such as CTP already use control beacons (in addition to data packets) to update

stale routing information. Thus, nodes could potentially piggyback timing information on these control

beacons whenever they are generated, or otherwise use separate control beacons to disseminate timing

information. This will incur an additional cost, although (as was shown in [1]) the per packet cost for

control beacons is typically much smaller than the cost for data forwarding.

Initialization and re-configuration also impacts the transform matrices that are used. Each node could

transmit the values of its matrix to the sink, or viceversa, but this may be very costly. Instead, the

construction of each transform matrix should be based on a small amount of information which is made

common to the nodes and to the sink. For example, the values ineach transform matrix could be based

on the number of 1-hop neighbors that each node has [20] or therelative node positions [14]. In this

way each matrix can be constructed at each node and at the sinkwithout explicitly communicating the

matrix values. However, additional information (e.g., node positions, number of neighbors) would need

to be communicated to the sink whenever the network is initialized or re-configured. For example, each

node could construct a transform using only the number of nodes that it receives data from (as in [20],

[14]) and would send the set of nodes whose data it used as overhead to the sink. Then, assuming that

the nodes and the sink construct the matrices according to the same rules, the sink can re-construct the

September 7, 2018 DRAFT



14

matrix used at each node.

Packet loss is the last practical issue which impacts our proposed transforms. We do not consider the

effects of channel noise on the data since these can be handled using a wide variety of existing techniques.

Moreover, packet losses and channel noise will impact otherdata gathering schemes (e.g., CTP), and we

expect that the penalty due to packet losses will be similar in our scheme and in other data gathering

schemes. Packet losses are typically handled (as in CTP) by re-transmitting a packet until an ACK is

received from the desired destination. Thus, if noden does not receive data from descendantn + k by

the time that it transmits, due to packet re-transmissions for n+ k, the data from noden+ k cannot be

combined with data available at noden. This is equivalent to not using the data from noden+ k in the

transform computation (i.e.,An(j, k+1) = An(k+1, j) = 0 for all j 6= k+1 andAn(k+1, k+1) = 1)

and does not affect our proposed theory. However, this change must be signaled to the sink so that it

knows how to adjustAn accordingly. This can be done by including some additional information in the

packet headers for noden andn+ k to signify this change.

Packet losses also have an impact on the use of broadcast data. Suppose that noden does not receive

a data packet from broadcast neighborbk but the packet frombk does reach the intended recipientρ(bk).

In this case, nodeρ(bk) will send an ACK back to nodebk and nodebk will no longer re-transmit (note

that nodebk will not expect an ACK from noden). Thus, data from nodebk can not be combined with

data available at noden. This is equivalent to not using data from nodebk in the transform computation

(i.e., Bk
n = 0) and our proposed theory is not affected. However, this change must be signaled to the

sink so that it knows to setBk
n = 0.

One way to work around these issues (initialization, re-configuration and packet losses) is to design

transforms that can work under arbitrary timing and with arbitrary uses of broadcast data. However,

under arbitrary timing and use of broadcast data, it is no longer possible to guarantee global transform

invertibility by designing invertible transforms at each node. More specifically, we must ensure that the

transform computations done at different nodes are jointlyinvertible. This leads to a set of complex

conditions. The cost to determine such conditions and to coordinate nodes so that they satisfy these

conditions could be very high, perhaps even much higher thanthe additional coordination needed to

implement our proposed transforms. However, it is still possible to design simple versions of such

transforms by using constructions such as lifting. Our recent work [31] is one particular example. Given

this high degree of complexity to ensure an invertible transform when using broadcast, broadcast data

should probably only be used with our proposed transforms if(i) it is possible to fix the timing in the

network in accordance with the Definition 2, and, (ii) the timing is very stable.
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III. U NIDIRECTIONAL TRANSFORM DESIGNS

Proposition 2 provides simple conditions for invertible transform design, i.e.,An is invertible for every

noden. This is a simple design constraint thatunifies many existing unidirectional transforms. In this

section, we demonstrate how existing unidirectional transforms can be mapped to our formulation. In

particular, we focus on the tree-based Karhunen-Loève Transform (T-KLT) [28], T-DPCM [22], [28] and

early forms of tree-based wavelet transforms [16], [17], [18], [20] constructed using lifting [27].

In order to exploit spatial correlation to achieve reduction in the number of bits per measurement, nodes

must first exchange data. Therefore, some nodes must transmit raw data to their neighbors before any form

of spatial compression can be performed. Since raw data typically requires many more bits than encoded

transform coefficients, it would be desirable to minimize the number of raw data transmissions that nodes

must make to facilitate distributed transform computation. Therefore, ourmain design considerationis

to minimize the number of raw data transmissions that are required to compute the transform.

A. Tree-based Karhunen-Loève Transform

Since transforms that achieve data decorrelation potentially lead to better coding efficiency [34],

we consider now the design of unidirectional transforms that achieve the maximum amount of data

decorrelation. This can be achieved by applying, at each node n, a transformAn that makes all of the

coefficients inyn statistically uncorrelated (or “whitened”), e.g., by using a Karhunen-Loève transform

(KLT) at each node, leading to the T-KLT described in our previous work [28]. In this transform, each node

n computes and transmits a set of “whitened” coefficientsyn, which will then have to be “unwhitened”

and then re-whitened atρ(n) to produce a new set of whitened coefficients. Whitening can be done using a

KLT and unwhitening can be achieved using an inverse KLT. More specifically, this is done at each noden

by (i) finding the whitening transformHn and unwhitening transforms of each childGCn(i), (ii) applying

an unwhitening transform to each child to recover the original measurements asxCn(i) = GCn(i) · yCn(i),

and then (iii) rewhitening these measurements asyn = Hn ·
[

x(n) xt
Cn(1)

. . . xt
Cn(|Cn|)

]t

. This transform

(without quantization) can then be expressed in terms of ourformulation as

yn = Hn ·

















1 0 · · · 0

0 GCn(1) · · · 0

...
...

. . .
...

0 0 · · · GCn(|Cn|)

















·

















x(n)

yCn(1)

...

yCn(|Cn|)

















, (6)

with An = Hn ·diag
(

1,GCn(1), . . . ,GCn(|Cn|)

)

. EachAn is trivially invertible sinceHn and eachGCn(i)

are invertible by construction. Therefore, the tree-basedKLT is trivially invertible.
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B. Tree-based DPCM

A simpler alternative to the T-KLT is T-DPCM [22], [28]. A related DPCM based method was proposed

in [35]. This particular method is not designed for any particular communication structure, but it can

easily be adapted to take the form of a unidirectional transform. In contrast to the method in [35], the

T-DPCM methods in [22], [28] compute differentials directly on a tree such as an SPT.

In the T-DPCM method of [28], each noden computes its difference with respect to a weighted average

of its children’s data, i.e.,y(n) = x(n)−
∑

m∈Cn
an(m)x(m). For this to be possible, one of two things

must happen: either every noden must decode the differentials received from its children torecover

x(m) for eachm ∈ Cn, or, every noden must transmit raw data two hops forward to its grandparent (at

which pointy(n) can be computed) to avoid decoding data at every node. In order to avoid each node

having to forward raw data two hops, at each noden, the inverse transform on the data of each child

Cn(i) must be computed first using the inverse matrix
(

ACn(i)

)−1
of each child. The forward transform

is then designed accordingly. We can express this version ofT-DPCM as in (7).

yn =





1 −an(Dn)

0 I



 ·

















1
(

ACn(1)

)−1
· · ·

(

ACn(|Cn|)

)−1

0 I · · · 0

...
...

. . .
...

0 0 · · · I

















·

















x(n)

yCn(1)

...

yCn(|Cn|)

















(7)

The matrixAn is just the product of these triangular matrices, hence, it is trivially invertible. Moreover,

only leaf nodes need to forward raw data and the rest transmitonly transform coefficients.

Alternatively, in the T-DPCM scheme of [22], each noden first forwards raw datax(n) to its parent

ρ(n), then nodeρ(n) computes a differential forn and forwards it to the sink, i.e., nodeρ(n) computes

y(n) = x(n)− an(ρ(n))x(ρ(n)). This transform can also be mapped to our formalism as

yn =





1 0

−aDn
(n) I



 ·





x(n)

yDn



 . (8)

This eliminates the computational complexity of the previous T-DPCM method since no decoding of

children data is required. However, every node must now forward raw data one hop. Moreover, it will

not decorrelate the data as well as the first method since onlydata from one neighbor is used.

C. Unidirectional Lifting-based Wavelets

We now describe how unidirectional wavelet transforms can be constructed under our framework. This

can be done using lifting [27]. Lifting transforms are constructed bysplitting nodes into disjoint sets of
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evenand odd nodes, by designingprediction filters, which alter odd data using even data, andupdate

filters, which alter even data based on odd data. They are invertibleby construction [27].

First, nodes are split into odd and even setsO and E , respectively. This can be done completely

arbitrarily. One example from our previous work [20] is to split according to the depth in the tree, e.g.,

O = {n : h(n) mod 2 = 1} andE = {m : h(m) mod 2 = 0}, as illustrated in Fig. 5. Data at each

odd noden ∈ O is then predicted using data from even neighborsNn ⊂ E , yielding detail coefficient

d(n) = x(n)−
∑

i∈Nn

pn(i)x(i). (9)

The prediction vectorpn can provide a simple average [20], i.e.,pn(i) =
1

|Nn|
for eachi ∈ Nn, a planar

prediction [15] of the data at noden using data from its neighbors, or can even be data adaptive [28].

Incorporating some broadcast data into the prediction is also useful since it allows odd nodes to achieve

even further decorrelation. After the prediction step, data at each even nodem ∈ E is updated using

details from odd neighborsNm ⊂ O, yielding smooth coefficient

s(m) = x(m) +
∑

j∈Nm

um(j)d(j). (10)

The update vectorum can provide simple smoothing [20], i.e.,um(j) = 1
2·|Nm| for all j ∈ Nm, or could

provide orthogonality between smooth (i.e., low-pass) anddetail (i.e., high-pass), coefficients [36].

17
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Fig. 5. Example of splitting based on the depth of the routingtree. White (odd depth) nodes are odd, gray (even depth) nodes

are even and the black center node is the sink.

By the lifting construction, invertibility will be guaranteed as long as (i) odd node data is only predicted

using even node data, and (ii) even node data is only updated using details from odd nodes. So ifE and
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O is an arbitrary even and odd split, the transform computed ateach node will be invertible as long as

the computations satisfy (i) and (ii). More formally, letOn = (n ∪ Dn) ∩ O be the set of odd nodes

whose data is available atn from its subtree. LetEn = (n ∪Dn)∩ E be defined similarly. Moreover, let

OB
n = B̄n∩O denote the set of odd nodes whose datan receives via broadcast. Similarly, letEB

n = B̄n∩E .

Then the computations atn will be invertible as long as it only predictsy(On) from y(En) andy(EB
n )

and only updatesy(En) from y(On) andy(OB
n ). Let Mn andMB

n be permutation matrices such that
















y(On)

y(En)

y(OB
n )

y(EB
n )

















=





Mn 0

0 MB
n



 ·











x(n)

y(Dn)

y(B̄n)











. (11)

Thenn can compute transform coefficients as in (12).

yn = (Mn)
t





I 0 0 0

Un I UB
n 0





















I Pn 0 PB
n

0 I 0 0

0 0 I 0

0 0 0 I

































y(On)

y(En)

y(OB
n )

y(EB
n )

















(12)

By multiplying the matrices in (11) and (12) together, we getyn = [An Bn] ·
[

x(n) yt
Dn

yt
Bn

]t
, with

An = (Mn)
t ·





I 0

Un I



 ·





I Pn

0 I



 ·Mn,

Bn = (Mn)
t ·





0 PB
n

UB
n UnP

B
n



 ·MB
n .

Since det(An) = 1, single-level unidirectional lifting transforms are always invertible.

The transform given by (12) corresponds to only one level of decomposition. In particular, at each

noden the transform of (12) will yield a set of smooth (or low-pass)coefficients{y(k)}k∈En
and a set of

detail (or high-pass) coefficients{y(l)}l∈On
. The high-pass coefficients will typically have low energy if

the original data is smooth, so these can be encoded using very few bits and forwarded to the sink without

any further processing. However, there will still be some correlation between low-pass coefficients. It

would therefore be useful to apply additional levels of transform to the low-pass coefficients at node

n to achieve more decorrelation. This will reduce the number of bits needed to encode these low-pass

coefficients, and will ultimately reduce the number of bits each node must transmit to the sink.

Suppose each node performs an additionalJ levels of lifting transform on the low-pass coefficients

{y(k)}k∈En
. At each levelj = 2, 3, . . . , J + 1, suppose that nodes inEj−1

n are split into even and odd
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setsEj
n andOj

n, respectively. We assume thatE1
n = En. For each odd nodel ∈ Oj

n, we predicty(l) using

even coefficients from some set of even neighborsN j
l ⊂ Ej

n, i.e., y(l) = y(l) −
∑

k∈N j

l
pl,j(k)y(k).

Then for each even nodek ∈ Ej
n, we updatey(k) using odd coefficients from some set of odd neighbors

N j
k ⊂ Oj

n, i.e., y(k) = y(k) +
∑

l∈N j

k
uk,j(l)y(l). This decomposition is done starting from levelj = 2

up to levelj = J + 1. For all j = 2, 3, . . . , J + 1, let Mj
n be a permutation matrix such that











y(Oj
n)

y(Ej
n)

y(Rj
n)











= Mj
n · yn, (13)

whereRj
n = (n ∪ Dn) − (Oj

n ∪ Ej
n) is the set of nodes whose coefficients are not modified at levelj.

Then we can express the levelj transform computations in matrix form as

yn =
(

Mj
n

)t
·











I 0 0

U
j
n I 0

0 0 I











·











I P
j
n 0

0 I 0

0 0 I











·











y(Oj
n)

y(Ej
n)

y(Rj
n)











, (14)

wherePj
n andUj

n represent the prediction and update operations used at level j, respectively.

By combining (11), (12), (13) and (14), we finally get thatyn = [An Bn] ·
[

x(n) yt
Dn

yt
Bn

]t
, with An

andBn defined in (15) and (16).

An =

J+1
∏

j=2











(

Mj
n

)t











I 0 0

U
j
n I 0

0 0 I





















I P
j
n 0

0 I 0

0 0 I











Mj
n











(Mn)
t





I 0

Un I









I Pn

0 I



Mn (15)

Bn =

J+1
∏

j=2











(

Mj
n

)t











I 0 0

U
j
n I 0

0 0 I





















I P
j
n 0

0 I 0

0 0 I











Mj
n











(Mn)
t





0 PB
n

UB
n UnP

B
n



MB
n (16)

Prop. 2 implies that the overall transform is invertible ifAn given in (15) is invertible. Since eachMj
n

is a permutation matrix,|det(Mj
n)| = 1. Moreover, the remaining matrices are triangular. Thus, iteasily

follows that det(An) = 1. Therefore, unidirectional, multi-level lifting transforms are always invertible.

D. Unidirectional 5/3-like Wavelets

Our previous work [20] provides a5/3-like transformon a tree. First, nodes are split into odd and even

setsO andE , respectively, by assigning nodes of odd depth as odd and nodes of even depth as even. More

specifically,O = {n : h(n) mod 2 = 1} andE = {m : h(m) mod 2 = 0}. This is illustrated in Fig. 5.

September 7, 2018 DRAFT



20

The transform neighbors of each node are simplyNn = {ρ(n)} ∪ Cn for every noden. This provides

a 5/3-like wavelet transform on a tree since whenever averaging predictions and smoothing updates are

used along a 1D path, the transform reduces to the 5/3 wavelettransform [37]. Nodes can compute these

transforms in a unidirectional manner, but doing so requires that some nodes forward raw data 1 or 2

hops. This is illustrated in Fig. 6.

Nodes 4, 5, 7, 8 tx raw data

5

3

6

2

1

7

8

4

y4 = [x(4)]

y5 = [x(5)]

y7 = [x(7)]

y8 = [x(8)]
5

3

6

2

1

7

8

4

y3 = [x(3) x(4) x(5)]t

y6 = [x(6) x(7) x(8)]t

Nodes 3, 6 tx raw data

Fig. 6. Raw data transmissions for 5/3-like transform. Nodes 3 and 6 needx(2) to compute detailsd(3) andd(6), so they

must forward raw data over 1-hop to node 2. Nodes 4 and 5 needd(3) to computes(4) and s(5), so they must forward raw

data over 2-hops.

Data from each odd noden is predicted using datax(Cn) (from children Cn) and x(ρ(n)) (from

parentρ(n)). However, odd noden will not have x(ρ(n)) locally available for processing. Therefore,

we require that each odd noden transmit raw datax(n) one hop forward to its parentρ(n), at which

point nodeρ(n) can compute the detail coefficient ofn. Each even nodem will then compute detail

d(j) = x(j) −
∑

i∈Cj
pl(j)x(j) − pj(m)x(m) for every childj ∈ Cm. Similarly, the smooth coefficient

of each even nodem requires details from its parentρ(m) and childrenCm, so it can not be locally

computed either. Moreover, detaild(ρ(m)) can only be computed at nodeρ2(m), i.e., at the grandparent

of m. Therefore, we require that even nodem transmit raw datax(m) two hops forward toρ2(m), at

which pointd(ρ(m)) will be available andρ2(m) can computes(m) = x(m)+
∑

j∈{ρ(m)}∪Cm
um(j)d(j).

Note that each of these operations are trivially invertible, and easily lead to local transform matricesAn

which are invertible by construction. However, the number of raw data transmissions is relatively high,

i.e., 1-hop for odd nodes and 2-hops for even nodes. We address this inefficiency in the next section.

September 7, 2018 DRAFT



21

IV. U NIDIRECTIONAL HAAR-LIKE WAVELETS

For the transform in Section III-D, raw data from even and oddnodes must be forwarded over 2-hops

and 1-hop, respectively. This can be inefficient in terms of transport costs. Instead, it would be better to

construct a lifting transform which directly minimizes thenumber of raw data transmissions each node

must make. We use the splitting method in Section III-D. Notethat some form of data exchange must

occur before the transform can be computed, i.e., evens musttransmit raw data to odds, or viceversa.

Suppose that even nodes forward raw data to their parents. Inthis case, the best we can do is to design

a transform for which even nodes transmit raw data over only 1-hop, and odd nodes do not transmit any

raw data. This will minimize the number of raw data transmissions that nodes need to make, leading to

transforms which are more efficient than the 5/3-like transform in terms of transport costs. We note that

minimizing raw data only serves as a simple proxy for the optimization. A more formal optimization

which relies on this same intuition is undertaken in our recent work [31].

A. Transform Construction

A design that is more efficient than the 5/3-like transform can be achieved as follows. Note that an odd

noden has data from its childrenCn and/or even broadcast neighborsBn ∩ E locally available, so it can

directly compute a detail coefficient for itself, i.e.,d(n) = x(n)−
∑

i∈Cn
pn(i)x(i)−

∑

j∈Bn∩E
pn(j)x(j).

Thus, the detaild(n) is computed directly atn, is encoded, and then is transmitted to the sink. These

details require fewer bits for encoding than raw data, hence, this reduces the number of bits that odd

nodes must transmit for their own data. Since data from even nodem is only used to predict data at its

parentρ(m), we simply have thatNm = {ρ(m)} and s(m) = x(m) + um(ρ(m))d(ρ(m)). Moreover,

these smooth coefficients can be computed at each odd noden. Therefore, even nodes only need to

forward raw data over one hop, after which their smooth coefficients can be computed. Note that not all

odd nodes will have children or even broadcast neighbors, i.e., there may exist some odd nodesn such

that Cn = ∅ andBn ∩ E = ∅. Such odd nodes can simply forward raw datax(n) to their parentρ(n),

thenρ(n) can compute their details asd(n) = x(n)− pn(ρ(n))x(ρ(n)). Thus, there may be a few odd

nodes that must send raw data forward one hop. This leads to aHaar-like transformwhich is exactly

the Haar wavelet transform when applied to 1D paths.

Odd nodes can also perform additional levels of decomposition on the smooth coefficients of their

descendants. In particular, every odd noden will locally compute the smooth coefficients of its children.

Therefore, it can organize the smooth coefficients{s(k)}k∈Cn
onto another treeT 2

n and perform more

levels of transform decomposition alongT 2
n . In this work, we assumeT 2

n is a minimum spanning tree. This
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produces detail coefficients{d2(k)}k∈O2
n
, {d3(k)}k∈O3

n
, . . ., {dJ+1(k)}k∈OJ+1

n
and smooth coefficients

{sJ+1(k)}k∈EJ+1
n

for someJ ≥ 0. In this way, odd nodes can further decorrelate the data of their children

before they even transmit. This reduces the resources they consume in transmitting data. An example of

this separable transform forJ = 1 is illustrated in Fig. 7. By choosing averaging prediction filters and

the orthogonalizing update filter design in [36], we get the global equation in (17).

y3 =











1 0 0

0 1 0

0 1
2 1











·











1 0 0

0 1 −1

0 0 1











·











1 0 0

1
3 1 0

1
3 0 1











·











1 −1
2 −1

2

0 1 0

0 0 1





















x(3)

x(4)

x(5)











(17)

The coefficient vectory6 is obtained in a similar manner. More generally, these sortsof multi-level

transform computations can always be formulated into matrices as described in Section III-C.

5

3

6

2

7

8

4

y4 = [x(4)]

y5 = [x(5)]

y7 = [x(7)]

y8 = [x(8)]

d(3) = x(3) - [x(4) + x(5)] / 2
s(4) = x(4) + d(3) / 3
s(5) = x(5) + d(3) / 3

d(6) = x(6) - [x(7) + x(8)] / 2
s(7) = x(7) + d(6) / 3
s(8) = x(8) + d(6) / 3

(a) 1st-level alongT

5

2

7

8

4

y3 = [d(3) d2(4) s2(5)]t

y6 = [d(6) d2(7) s2(8)]t

d2(4) = s(4) - s(5)
s2(5) = s(5) + d2(4) / 2

d2(7) = s(7) - s(8)
s2(8) = s(8) + d2(7) / 2

(b) 2nd-level “orthogonal” toT

Fig. 7. Unidirectional Computations for Haar-like Transform. In (a), nodes 3 and 6 compute a first level of transform. Then

in (b), nodes 3 and 6 compute a second level of transform on smooth coefficients of their children.

B. Discussion

The transform computations that each node performs can be easily mapped into our standard form

yn = [An Bn] ·
[

x(n) yt
Dn

yt
Bn

]t
by appropriately populating the matrices in (15) and (16). Therefore,

they will always yield invertible transforms. For example,since each odd noden predicts its own data

x(n) using data from its childrenCn and even broadcast neighborsBn ∩ E , then updates the data of its

children from its own detail, the operations for a single level transform at oddn can be expressed as

yn =





1 0

uDn
(n) I









1 −pn(Dn) −pn(B̄n)

0 I 0















x(n)

yDn

yBn











. (18)
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By choosing

An =





1 0

uDn
(n) I



 ·





1 −pn(Dn)

0 I



 , (19)

and

Bn =





1 0

uDn
(n) I



 ·





−pn(B̄n)

I



 , (20)

we have thatyn = [An Bn] ·
[

x(n) yt
Dn

yt
Bn

]t
. Note that (18) covers all of the cases discussed in

Section IV-A for each odd noden, that is to say: (i)Cn 6= ∅ andBn∩E 6= ∅, (ii) Cn = ∅ andBn∩E 6= ∅,

(iii) Cn 6= ∅ andBn∩E = ∅, and (iv)Cn = ∅ andBn∩E = ∅. In particular, wheneverCn 6= ∅, pn(Dn) and

uDn
(n) will have some non-zero entries. Otherwise,n has no descendants and sopn(Dn) anduDn

(n)

will just be vectors of zeros. Similarly, wheneverBn ∩ E 6= ∅, pn(B̄n) will have some non-zero entries.

Otherwise,n has no even broadcast neighbors andpn(B̄n) will be a vector of zeros.

Similarly, each even nodem may need to compute predictions for its odd children, so its computations

for a single level transform can be expressed as

ym =





1 0

−pDm
(m) I



 ·





x(m)

yDn



 . (21)

Also note that (21) covers all of the cases for each even nodem discussed in Section IV-A, i.e., when

m has to compute predictions for children thenpDm
(m) 6= 0, otherwise,pDm

(m) = 0.

Note that, when broadcast data is used, the decorrelation achieved at odd nodes may still be comparable

to the 5/3-like transform since the same number of neighbors(or more) will be used. Moreover, broadcasts

are particularly useful for odd nodesn that have no children, i.e.,n for which Cn = ∅ but Bn ∩ E 6= ∅.

If broadcast data is not used when it is available, noden will have to transmitx(n) to its parent. Since

x(n) requires more bits for encoding than does a detail coefficient d(n), n will consume more resources

during data transmission. By using broadcasts, these odd nodes which have no children can still use data

overheard from even broadcast neighbors, allowing them to avoid transmitting raw data to their parents.

This is illustrated in Fig. 8, where node 11 has no children but overhears data from node 12. The example

in Fig. 8(a) will consume more resources at node 11 than will the example in Fig. 8(b).

V. EXPERIMENTAL RESULTS

This section presents experimental results that compare the transforms proposed here against existing

methods. Source code used to generate these results can be found on our webpage5. In particular, we

5http://biron.usc.edu/wiki/index.php/Waveletson Trees
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(a) Without Broadcasts

11
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x(12)

d(11)

[x(10), d(11)]

x(12)

[d(9), s(10), d(11), s(12)]

(b) With Broadcasts

Fig. 8. No broadcasts are used in (a), so node 11 consumes moreresources when transmitting raw datax(11). Broadcasts are

used in (b), so node 11 consumes less resources when transmitting detaild(11).

focus on comparing the proposed multi-level Haar-like lifting transforms against the multi-level 5/3-

like transform from [20], [26], the T-DPCM scheme in [28] andraw data gathering. We consider the

application of distributed data gathering in WSNs. Performance is measured by total energy consumption.

A. Experimental Setup

For evaluation, we consider simulated data generated from asecond order AR model. This data consists

of two 600 × 600 2D processes generated by a second order AR model with low andhigh spatial data

correlation, e.g., nodes that are a certain distance away have higher inter-node correlation for the high

correlation data than for the low correlation data. More specifically, we use the second order AR filter

H(z) = 1
(1−ρejω0z−1)(1−ρe−jω0z−1) , with ρ = 0.99 andω0 = 99 (resp.ω0 = 359) to produce data with

low (resp. high) spatial correlation. The nodes were placedin a 600× 600 grid, with node measurements

corresponding to the data value from the associated position in the grid. Each network used in our

simulations is generated from a set of random node positionsdistributed in the600× 600 grid. An SPT

is constructed for each set of node positions. We consider two types of networks: (i)variable radio range

networks in which each node can have a diferent radio range, and (ii) fixed radio rangenetworks in which

each node has the same radio range. In the variable radio range case, the radio range that each noden

uses for transmission is defined by the distance fromn to its parent in the SPT. Additional broadcast

links induced by the SPT are also included, i.e., a broadcastlink between noden andm exists ifm is

not a direct neighbor ofn in the SPT but is within radio range ofn.

In order to measure energy consumption, we use the cost modelfor WSN devices proposed in [6], [38],

where the energy consumed in transmittingk bits over a distanceD is ET (k,D) = Eelec ·k+εamp ·k ·D
2
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Joules and the energy consumed in receivingk bits is ER(k) = Eelec · k Joules. TheEelec · k terms

capture the energy dissipated by the radio electronics to processk bits. Theεamp ·k ·D
2 term captures the

additional energy for signal amplification needed to ensurereasonable signal power at the receiver. WSN

devices also consume energy when performing computations,but these costs are typically very small

compared with transmission and reception costs. Therefore, we ignore them in our cost computations.

Also note that all data gathering schemes will suffer from channel noise and attenuation, so a no-channel-

loss comparison is still valid. Thus, we do not consider these effects in our experiments.

Comparisons are made with the Haar-like transforms of Section IV against the 5/3-like transform with

delayed processing proposed in [26] and the T-DPCM scheme proposed in [28]. Predictions for each of

these transforms are made using the adaptive prediction filter design in [28]. Updates are made using the

“orthogonalizing” update filter design in [36]. In each epoch, we assume that each node transmitsM = 50

measurements taken atM different times. Also, each raw measurement is representedusingBr = 12

bits. We assume each odd node encodesM detail coefficients together with an adaptive arithmetic coder.

Smooth coefficients are treated like raw data, i.e., each oneusesBr bits. Since we only seek to compare

the performance of spatial transforms, we do not consider any temporal processing.

B. Simulation Results

In the case of lossless compression, the average cost reduction ratios taken over multiple uniformly

distributed networks are shown in Fig. 9 for high and low datacorrelation. These are expressed as the

average of multiple values of(Cr −Ct)/Cr, whereCt is the cost for joint routing and transform andCr

is the cost for raw data forwarding. Results for variable radio ranges (each node has different radio range)

are shown in Fig. 9(a). Results for fixed radio ranges (each node has the same radio range) are given in

Fig. 9(b). T-DPCM does the worst overall. The 5/3-like transform provides significant improvement over

the simple T-DPCM scheme. The Haar-like transforms have thehighest average cost reduction ratio, or

equivalently, the lowest average cost. Moreover, we note that broadcast is not very helpful (on average)

when nodes have variable radio ranges (Fig. 9(a)), but thereis a significant gain when nodes use a fixed

radio range (Fig. 9(b)). This is mainly because, in the fixed radio range case, (i) there are many more

opportunities for using broadcast data and (ii) each node has more broadcast neighbors.

Note that the amount of raw data forwarding needed to computethe Haar-like transform is significantly

reduced compared with the 5/3-like transform. Therefore, the Haar-like transform will do better than the

5/3-like transform in terms of transport costs. Granted, the 5/3-like transform will use data from more

neighbors for processing, so the decorrelation given by the5/3-like transform will be greater than that
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(b) Fixed Radio Range

Fig. 9. Average percent cost reduction (Cr−Ct

Cr
). Solid and dashed lines correspond to high and low spatial data correlation,

respectively. Best performance achieved by Haar-like transforms, followed by 5/3-like transform and T-DPCM. High correlation

data also gives greater cost reduction than low correlationdata.

given by the Haar-like transform. However, in our experiments the average reduction in rate that the

5/3-like transform provides over the Haar-like transform is rather small. The Haar-like transform with

broadcast also provides additional cost reduction over theHaar-like transform without broadcasts since

less raw data forwarding is needed on average. Moreover, theamount of cost reduction achievable is

higher for the high correlation data than for the low correlation data.

Lossy coding is also possible and can provide even greater cost reductions while introducing some

reconstruction error. In this case, we quantize transform coefficients with a dead-zone uniform scalar

quantizer. Performance is measured by the trade-off between total cost and distortion in the reconstructed

data, which we express as the signal to quantization noise ratio (SNR). Sample 50 node networks are

shown in Figs. 10(a) and 10(c) and, in the case of high correlation data, the corresponding performance

curves are shown in Figs. 10(b) and 10(d). The Haar-like transforms do the best among all transforms.

When using broadcasts with the Haar-like transform, there is an additional 1 dB (resp. 2.5 dB) gain in

SNR for the variable (resp. fixed) radio range network at a fixed cost, i.e., by using broadcasts we can

increase the quality in the reconstructed data for a fixed communication cost. Thus, for these networks,

using broadcast is quite helpful. Also note that there only 2broadcast links used in the transform for

the variable radio range network (Fig. 10(a)), whereas there are over 10 broadcast links used in the fixed

radio range network (Fig. 10(c)). Thus, broadcast provideseven greater gains for the fixed radio range
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Fig. 10. Sample networks with corresponding Cost-Distortion curves. In (a) and (c), blue lines denote forwarding links, dashed

magenta lines are broadcast links, green circles are even nodes, red x’s are odd nodes, and the black center node is the sink.

network (2.5 dB versus 1dB) since there are more broadcast links. More generally, broadcast should

provide more gains in networks where many broadcast opportunities are available.

Also note that in this particular network for the variable radio range case, T-DPCM actually does

better than the 5/3-like transform. Note that in T-DPCM, only the leaf nodes forward raw data to the

sink; so if there are only a few leaf nodes, the raw data forwarding cost for T-DPCM may not be very

high compared with the raw data forwarding cost for the 5/3-like transform. In this particular network,

only 19 of the 50 nodes are leaves in the tree. Therefore, the raw data forwarding cost for T-DPCM in

this case is lower than that for the 5/3-like transform. However, on average the raw data forwarding cost
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for T-DPCM will be very high (see Fig. 9), leading to higher total cost on average as compared with the

5/3-like transform.

VI. CONCLUSIONS

A general class of en-route in-network (or unidirectional)transforms has been proposed along with

a set of conditions for their invertibility. This covers a wide range of existing unidirectional transforms

and has also led to new transform designs which outperform the existing transforms in the context

of data gathering in wireless sensor networks. In particular, we have used the proposed framework to

provide a general class of invertible unidirectional wavelet transforms constructed using lifting. These

general wavelet transforms can also take into account broadcast data without affecting invertibility. A

unidirectional Haar-like transform was also proposed which significantly reduces the amount of raw data

transmissions that nodes need to make. Since raw data requires many more bits than encoded transform

coefficients, this leads to a significant reduction in the total cost. Moreover, our proposed framework

allows us to easily incorporate broadcasts into the Haar-like transforms without affecting invertibility.

This use of broadcast data provides further performance improvements for certain networks.
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