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Abstract

Multiuser diversity (MUDiv) is one of the central concepts in multiuser (MU) systems. In particular,

MUDiv allows for scheduling among users in order to eliminate the negative effects of unfavorable

channel fading conditions of some users on the system performance. Scheduling, however, consumes

energy (e.g., for making users’ channel state information available to the scheduler). This extra usage

of energy, which could potentially be used for data transmission, can be very wasteful, especially if

the number of users is large. In this paper, we answer the question of how much MUDiv is required

for energy limited MU systems. Focusing on uplink MU wireless systems, we develop MU scheduling

algorithms which aim at maximizing the MUDiv gain. Toward this end, we introduce a new realistic

energy model which accounts for scheduling energy and describes the distribution of the total energy

between scheduling and data transmission stages. Using thefact that such energy distribution can be

controlled by varying the number of active users, we optimize this number by either (i) minimizing the

overall system bit error rate (BER) for a fixed total energy ofall users in the system or (ii) minimizing

the total energy of all users for fixed BER requirements. We find that for a fixed number of available

users, the achievable MUDiv gain can be improved by activating only a subset of users. Using asymptotic

analysis and numerical simulations, we show that our approach benefits from MUDiv gains higher than

that achievable by generic greedy access algorithm, which is the optimal scheduling method for energy

unlimited systems.
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I. INTRODUCTION

In wireless systems, unfavorable channel conditions remain the main hinderance to achieving

desirable system throughput or bit error rate (BER). To overcome this problem in multiuser

(MU) wireless systems, resource scheduling strategies, which use channel fading conditions

as an opportunistic resource, have been proposed [1], [2]. Using the so-called opportunistic

transmission, advanced scheduling strategies along with closed-loop designs [3], [4] have been

developed in the literature (see [2], [5], [6] and references therein). The gain obtained by such

opportunistic transmission methods is known as multiuser diversity (MUDiv) gain.

For multi-point–to–point single–input single–output (SISO) wireless systems, the MUDiv gain

was first studied in [1]. The information theoretic results have shown that based on the optimal

transmit power control, the overall system throughput can be maximized by allowing only the

‘best’ user in a system to transmit at each time slot. For downlink MU systems, the MUDiv

has been recognized as an effective method of improving the system performance measures

such as spectral efficiency and quality of service over multipath fading channels [2]. As a result,

MUDiv approaches have been adopted in commercial systems, e.g., systems based on orthogonal

frequency division multiple access (OFDMA) [7].

Toward improving the MUDiv gain, various system performance measures and their tradeoffs

have been considered, as well as various algorithms have been developed [8]– [13]. In [8], the

problem of multiuser downlink beamforming based on the MUDiv has been studied. In [9], the

sum capacity caused by the MUDiv gain has been investigated with respect to two important MU

system performance measures such as fairness and scheduling complexity. In [10], the delay–

energy tradeoff in MUDiv systems has been analyzed. It has been shown that the energy required

for guaranteeing an acceptable rate per user decreases at the cost of a longer delay. In [11], [12],

low complexity scheduling strategies based on low rate channel feedback from users to the base

station (BS) have been developed. In [13], it has been arguedthat if the limited feedback is

used, then the use of instantaneous channel norm feedback provides additional spatial channel

information so that the MUDiv gain can be exploited efficiently in time, frequency, and space.

However, in the existing literature, the MUDiv has been investigated for the case of fixed transmit

resources, e.g., fixed transmit power andfixed number of active users.

Although it has never been discussed before, it is importantto note that the MUDiv gain
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relies on the total energy available at the users and, therefore, depends on this energy, especially

for the energy limited systems. Specifically, for scheduling purposes all users must share their

own channel state information (CSI) with the BS per each datatransmission. Then, a portion

of the energy available at each user must be used primarily for scheduling, while only the

remaining energy can be used for actual data transmission. Therefore, the important question is

how to distribute the limited total energy available at the users between scheduling and actual

transmission stages? If all users are active (available forscheduling) at all times, the waste of the

energy used primarily for scheduling may be very significant. The latter will reduce the system

performance. On the other hand, if only a small number of users is kept active per each data

transmission, the corresponding MUDiv can be insufficient that also leads to system performance

degradation. Therefore, the aforementioned question can be reformulated as the following signal

processing question: how much MUDiv is required for MU systems?

In this paper1, we develop methods which aim at maximizing the MUDiv gain inMU systems

by exploiting a realistic energy model. Unlike existing schemes, we consider also the energy

spent by users to make their CSIs available to the BS. By bringing this inherentenergy usage

into the picture, we find that it is better to choose (schedulefor data transmission) the ‘best’ user

from a subset of users (referred to as the set of active users)rather than among the entire set of

users. The intuition is that, if a small subset of users is required to send their CSIs to the BS,

more energy can be saved for actual data transmission and better overall system performance can

be achieved. This is especially true for the energy limited systems. Thus, there is an inevitable

tradeoff between the MUDiv and the energy saved for actual data transmission. Using this

tradeoff, we aim at finding the optimal size of the set of active users so that either the total

system bit error rate (BER) or the total energy of the users isminimized under practical system

constraints. Using asymptotic analysis, we also study how much MUDiv can be achievable in

various special cases of interest.

The paper is organized as follows. The system model is introduced and the problem is described

formally in Section II. In Section III, the systems performance measures such as BER, upper

bound on BER, and approximate BER are derived. Section IV contains the answer to the main

question of the paper, that is, how much MUDiv is required forMU systems, while Section V

1Some preliminary results of this work have been published in[15].
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provides some further analytical analysis. Extension to the case of multiple antenna MU systems

is given in Section VI. Section VII presents numerical results and is followed by conclusions in

Section VIII.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

A. System model

Let K̄ mobile users communicate with the BS. It is assumed for simplicity that each user

as well as the BS is equipped with a single antenna. Thus, we consider an MU SISO system.

This assumption, however, will be generalized to the case ofmultiple antenna MU systems in

Section VI, and it will be shown that such generalization is straightforward.

Suppose that the wireless channel between userk and the BS is flat fading. The received

signal at the BS from userk can be then represented as

xk = hksk + vk, k = 1, · · · , K̄ (1)

where the information–bearing symbolsk is a Gray–coded quadrature amplitude modulated

(QAM) symbol2 from a fixed constellation of sizeM , vk is the complex–valued zero–mean

additive white Gaussian noise (AWGN) with unit variance, i.e., vk ∼ CN (0, 1), and hk ∼
CN (0, σ2

k) is the channel gain between userk and the BS. We assume thathk, ∀k are independent

and known perfectly at the BS.

One of the main concerns for scheduling in the heterogeneousMU environments is fairness

among users. Among various fairness notions such as, for example, average throughput per

user [2], variance of short–term throughput per user [6], users’ channel accessing period [14],

our concern, in this paper, is fairness in terms of the equal user’s probability of accessing the

channel. According to this fairness notion, the schedulingis called fair if the channel accessing

probabilities are equal for all users in the MU system. To satisfy such fairness conditions, we use

an opportunistic scheduling (OS) scheme proposed in [1]. This scheme incorporates an average

power control which is instrumental for our further considerations of the energy distribution

between scheduling and transmission stages. According to this scheme, a ratio of the actual

signal-to-noise ratio (SNR) to its own average is used for both scheduling and data transmission.

2Note that the approach can be easily extended to other modulations.
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The aforementioned scheduling scheme (hereafter referredto as greedy access (GA) scheme)

gives equal chance to all users for accessing the channel. Thus, we employ it in this work.

Let userk employ the average power control of [1] assuming that the variance ofhk, i.e.,σ2
k,

is known to him. Thus, the power is allocated to symbolsk in (1) so to obtain a desired average

receive power at the receiver which must be the same for all users. Then, denoting the desired

average receive power for unit transmit power byω, the corresponding transmit power at userk

can be written as

λk =
ω

σ2
k

λ (2)

where λ is the transmit power before employing the average power control and ωλ is the

desired average receive power that is equalized for all users via the average power control

ω/σ2
k. Therefore, using (2) and instantaneous channel gain|hk|2, the instantaneous receive SNR

at the BS from userk can be written as

ρk , |hk|2λk. (3)

Since the variance of the AWGN in (1) is unit, (3) can be equivalently written as

ρk = |h̃k|2ωλ (4)

whereh̃k ∼ CN (0, 1). Therefore,∀k, the distribution ofρk is the same.

Using (4) as a scheduling metric, we consider the GA scheme, where at a given time slot,

the BS chooses only one out of multiple users for transmission. The user selection criterion is

based on finding the user with the most favorable channel gainversus its own average. That is,

userk∗ is scheduled for data transmission if

k∗ = argmax
k

ρk. (5)

In practical MU environments, the system resources such as the number of users in the system

and the total energy available at each user are usually limited. Under such system limitations,

one interesting question is how the existing limits on the total available energy of all users should

change the requirements on the MUDiv of the system. Indeed, one of the well known access

schemes, i.e., the random access (RA) scheme (see [19]), suggests to select users for transmission

randomly one at a time. This scheme provides no MUDiv, i.e.,K = 1, and, therefore, requires no

extra energy spending for extra communications between theusers and the BS at the scheduling
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stage. On the other hand, the GA scheme improves the performance of MU systems due to its

ability to select the ‘best’ user for transmission from the entire set of available users of sizēK

[1], [2]. The MUDiv of the GA scheme is thenK = K̄. Unfortunately, in this case, the BS has to

know the CSIs of all users in the system in the scheduling stage which requires additional energy

spending. Therefore, if the total energy of all users in the system is limited, the use of the GA

scheme may be very wasteful in terms of the energy spent at thescheduling stage. It reduces the

energy available for actual data transmission that can leadto the system performance degradation.

Therefore, the main query of this work is how much MUDivK is required to improve the MU

system performance? In other words, how many users should transmit their pilot symbols so to

make their CSIs available at the BS. Based on these CSIs at theBS, one of the users is selected

to access the channel.

The aforementioned query can be solved by finding an optimal energy distribution between

scheduling and data transmission, i.e., by selecting the cardinality K = |A| ∈ [1, K̄] of a subset

of active usersA which participate in the scheduling. Here| · | denotes the cardinality of a

set and the elements (users) ofA are selected randomly in the beginning of every time slot

according to a uniform distribution. Such random selectionin each time slot is considered in

order to achieve fairness among users in terms of equal channel accessing probability.

Toward this end, let us first write the energies used for scheduling and data transmission as

functions ofK. Taking into account the scheduling stage, the energy consumed by userk at

each time slot for both scheduling and data transmission canbe defined as

ET,k , Es,k + 1(k = k∗) Ed,k, ∀k (6)

whereEs,k denotes the energy spent for scheduling,Ed,k = Tsλk is the energy spent for data

transmission,Ts stands for the symbol duration, and1(k = k∗) is the indicator function which

is equal to 1 ifk = k∗ and 0 otherwise.3 Then, the total energy of all users over the time

interval during which the average channel gains remain constant can be found as the sum of

ET,k, ∀k over many time slotsN covering the whole interval. Since all users have equal chance

of accessing the channel, at a given time slot, any user has access to the channel with probability

1/K̄. Then, it can be found that duringN time slots, the energy used by each user for individual

3Note that without loss of generality,Es,k = Es,j , ∀k, j is assumed. It corresponds, for example, to the practical situation

when the codeword length of the transmitted symbol is long, while the number of pilot bits is relatively small.
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data transmission isλkTs · N/K̄ whereλk is the transmit power at userk which is equal to

the kth user SNR under the assumption of the unit variance of the AWGN in (1). Therefore,

asymptotically for largeN , we can write that forK ≤ K̄, the total energy is

EK−GA
T , N (λ1Ts + · · ·+ λK̄Ts) /K̄ +KEf = Ed +KEf (7)

where the superscript(·)K−GA stands for the GA amongK active users,Ef , NEs,k denotes

the energy consumed by each user for scheduling overN time slots,KEf denotes the total

energy consumed by all users for scheduling, andEd stands for the energy used by all users for

actual data transmission.

Although (7) is an asymptotic result, it is applicable to practical setups. Consider the random

variableX corresponding to the actual number of time slots that a user is accessing the channel

overN time slots. ThenX has a binomial distribution with averagemX = N/K̄ and standard

deviationσX =
√

N/K̄(1− 1/K̄) ≈
√

N/K̄ for large K̄. Therefore, forσX < mX/10, we

need,N/K̄ > 100 which is the realistic case in practical setups.

B. Problem description

Two different objectives can be considered for selectingK: (i) minimization of the system

BER and (ii) minimization of the total energy consumed by allusers in the system. Although the

users are not connected to the same energy source, given the finite energies at individual users,

the sum of individual user energies also determines the total energy consumed by all users. It

is worth stressing here that for system performance analysis in MU systems, the total energy

consumed by all users is more important than individual userenergies because the MUDiv gain

depends on the number of users participating in scheduling,and the energy which determines the

MUDiv gain is the total energy consumed by all users, rather than the individual user energies.

In addition, assume that for given channel statistics of allusers, the energy consumption by

each user over given time slot(s) is fixed on average. Then, the individual user energies are

also fixed fractions of the total energy of all users on average (see [1], [2], [6], and references

therein for similar observations for power or data rate). Since the individual user energies are

fixed fractions of the total energy, by minimizing the total energy, the individual user energies

are also minimized.
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1) System BER minimization:In this case, we aim at minimizing the system BER under a

constraint onEK−GA
T . Therefore,EK−GA

T is a constant independent ofK, and it is straightforward

to see thatEd in (7) as well asKEf depend onK since the energy distribution betweenEd

andKEf must be optimized by selecting suchK that minimizes the system BER. Thus, for

a given total energy consumed by all users, we first express the tradeoff betweenEd(K) and

KEf as a functionK. Let us define the ratioα , EGA
d /Ef whereEGA

d denotes the energy for

data transmission consumed in the generic GA scheme that holdsK = K̄ during all time slots.

Here, the superscript(·)GA stands for the GA scheme. Then, representingEf in terms ofEGA
d ,

EK−GA
T can be expressed as

EK−GA
T = Kα−1EGA

d + Ed. (8)

Due to the fact that in the generic GA schemeK = K̄ in all time slots, the total energy consumed

by all users is a constant (denoted byEGA
T ). Constraining (8) to be equal toEGA

T , we obtain

under such energy constraint

Kα−1EGA
d

︸ ︷︷ ︸

=KEf

+Ed

︸ ︷︷ ︸

=EK−GA
T

= K̄α−1EGA
d

︸ ︷︷ ︸

=K̄Ef

+EGA
d

︸ ︷︷ ︸

=EGA
T

(9)

where the two terms on the right hand side represent the totalenergyEGA
T consumed in the

generic GA scheme. It can be seen from (9) that ifK is selected such thatK ≤ K̄, then more

energy remains after scheduling, i.e.,Ed(K) = EGA
T −KEf . This extra energy can be assigned

for actual data transmission, andEd(K) can be expressed in terms ofK as

Ed(K) =
(
(K̄ −K)α−1 + 1

)
EGA

d . (10)

Therefore,Ed(K) benefits from the energy gain of(K̄ −K)α−1 + 1 if K < K̄. On the other

hand, assigning more energy for schedulingKEf increases the MUDiv gain. Therefore, there

exists a tradeoff betweenEd(K) andKEf , and the question now is where to spend the available

energy in order to minimize the total system BER. One of the possibilities is to find the optimal

value ofK ≤ K̄ which minimizes the total system BER, while satisfying the constraint on the

limited total energy of all users.

2) Minimization of the total energy consumed by all users in the system:In this case, we

aim at minimizing the total energy consumed by all users under the constraint that the system
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BER remains below a pre-determined threshold. In order to satisfy the BER requirement,Ed in

(7) must remain constant (i.e.,Ed = EGA
d ) for any number of active usersK. Therefore, the

total energyEK−GA
T can be minimized by selecting suchK which minimizesKEf . Therefore,

in this case, the total energyEK−GA
T is also a function ofK. More precisely, sinceEd = EGA

d

for all K, then, by selectingK, EK−GA
T can benefit from saving the energy at the scheduling

stage. Therefore,EK−GA
T can be expressed versusEGA

d as

EK−GA
T = KEf + EGA

d = (Kα−1 + 1)EGA
d . (11)

SinceEGA
T = (K̄α−1 + 1)EGA

d andEGA
T is a constant in the considered energy minimization-

based problem,EGA
d in (11) can be expressed viaEGA

T asEGA
d = (K̄α−1 + 1)−1EGA

T . Using

this relationship and (11),EK−GA
T can be further expressed versusEGA

T as

EK−GA
T =

Kα−1 + 1

K̄α−1 + 1
EGA

T . (12)

It can be seen from (12) that the energy saving gain is(Kα−1 + 1)/(K̄α−1 + 1) if K < K̄.

Therefore, the smallest possible subset of available userswhich satisfies the system target BER

requirements is optimal in terms of providing the minimumEK−GA
T .

In order to express the aforementioned problems of selecting optimum number of active users

formally, we first need to find an expression for the system BERas a function ofK.

III. SYSTEM PERFORMANCE MEASURES

In this section, we derive expressions for the exact, upper bound (UB), and approximate

BERs. The exact BER expression provides the highest accuracy for choosingK. However, it

may require intense computations, which may not be practical in real-time. Therefore, a simple

UB expression for BER is derived. The use of the UB BER expression instead of the exact

BER in our problem will guarantee that the system BER requirements will be satisfied, but the

resultingK may be sub-optimal. Therefore, approximate BER expressions, which require the

minimum computations, are also derived.

A. Exact BER expression

The exact BER of the M-ary modulation over the AWGN channel can be written as [16]

Prb(M, ρ) =

ΘM∑

i=1

CM,iQ(
√
cM,iρ) (13)
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whereQ(x) , π−1
∫ π/2

0
e−x2/2 sin2 θdθ is the error function. For a Gray-coded square M-ary

quadrature amplitude modulation (QAM), the constantsΘM , CM,i, and cM,i can be found in

[16].4

For a givenω, the average BER is given by

Prb =

∫ ∞

0

Prb(M, y)pρ(y)dy (14)

wherepρ(·) is the probability density function (pdf) ofρ.

Let ρK−GA denotesρ for K-GA scheme, i.e.,ρK−GA , ρk∗. Considering the average power

control, ρk, ∀k are independent and identically distributed (i.i.d.) random variables. Using this

fact and applying higher order statistics, the pdfpρK−GA(y) can be found, for a givenK, as

pρK−GA(y) = K
e−y/Ω

Ω

(

γ
(

1,
y

Ω

))K−1

(15)

whereΩ , ωλ, andγ(1, x) , (1− e−x). Using (15), the average BER can be written as [17]

PrK−GA
b,e (K) =

ΘM∑

i=1

CM,iπ
−1K

∫ π
2

0

a

∫ ∞

0

e−t (γ(1, at))K−1 dtd θ (16)

wherea , (Ωgθ + 1)−1 andgθ , cM,i/2 sin
2 θ. Moreover, using the expression (3.312.1) in [18,

p.305], after some algebraic manipulations, we obtain the following closed form expression for

(16):

PrK−GA
b,e (K) =

ΘM∑

i=1

CM,iπ
−1K

∫ π
2

0

B(K, 1 + gθΩ)dθ (17)

whereB(x, y) ,
∫ 1

0
tx−1(1 − t)y−1dt denotes the beta function. For a givenω, it is clear from

(17) thatPrK−GA
b,e (K) depends on bothK andλ. Note thatB(x, y) decreases exponentially with

x at a giveny. Therefore, for a givenλ, the system BER in (17) decreases exponentially with

respect toK due to improvements in the MUDiv at the cost of increasedEK−GA
T in (7).

B. Upper bound expression on BER

The finite range of the integral in (16) can be eliminated by considering the minimum value

of gθ. Thus, substitutingθ = π/2 in (16), we find the UB expression for (17) withgu , cM,i/2

4Note that the BER of a Gray-coded coherent M-ary phase-shiftkeying (PSK) modulation in AWGN channel can also be

expressed using (13). However, for brevity, only M-ary QAM modulation is considered here.
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(Chernoff bound) as

PrK−GA
b,e (K) ≤

ΘM∑

i=1

CM,iπ
−1K B(K, 1 + guΩ) = PrK−GA

b,u (K). (18)

This UB BER is clearly less complex than (17) since it does notcontain integration.

C. Approximate BER expression

Inserting (15) and the following approximation of (13) [6]:Prb(M, ρ) ≈ 0.2 e−gaρ, where

ga , 1.5/(M − 1), into (14), the approximate BER expression can be written as

PrK−GA
b,e (K) ≈ 0.2K B(K, 1 + gaΩ) = PrK−GA

b,a (K). (19)

Note that in comparison to the exact and UB BER expressions, which have multiple summation

terms of beta functions, the expression (19) requires minimum computations with a single beta

function.

Fig. 1 illustrates the exact, UB, and approximate BER’s, i.e., (17), (18), and (19), of theK-GA

scheme forK̄ = K = 1, 10, 50. It can be seen from this figure that the UB and approximate

expressions produce the BER curves which lay within 0.5 dB ofthe exact BER.

IV. OPTIMAL SELECTION OF THE NUMBER OF ACTIVE USERS

Two scenarios are considered in this section for selecting the number of active usersK

optimally: (i) minimizingPrK−GA
b (·) whileEK−GA

T remains constant and (ii) minimizingEK−GA
T

whilePrK−GA
b (·) is constrained to be acceptably small.5 Optimization problems for each scenario

are provided.

The set of candidate values ofK is the set of all positive integers smaller than or equal to

K̄, i.e, K , {1, · · · , K̄}. Note that due to hardware design limitationsK can be just a set of

some integers smaller than or equal toK̄. The latter case can be easily adopted in the methods

developed further.

5The exact, UB or approximate BER’s can be considered. We use the notationPrK−GA
b (·) to refer to any of these three BER

expressions, i.e.,PrK−GA
b (·) ∈ {PrK−GA

b,e (K), PrK−GA
b,u (K), PrK−GA

b,a (K)}.
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A. Optimal selection ofK based on system BER minimization

Using (2) and (10), under the finite energy constraint, we canfind that the achievable energy

gain forEd(K) determinesλ(K) in PrK−GA
b (·) as follows6

λ(K) = Ed(K) c/(NTs) =
(
(K̄ −K)α−1 + 1

)
EGA

d c/(NTs) (20)

wherec = K̄(
∑K̄

k=1 σ
−2
k )−1/ω. It is worth mentioning thatEGA

d /(NTs) in (20) stands for the

average transmit power overN slots whenK = K̄. Thus, it can be denoted asλGA. Using this

notation, (20) can be represented as

λ(K) =
(
(K̄ −K)α−1 + 1

)
c λGA. (21)

It can be seen from (21) that a power gain of
(
(K̄ −K)α−1 + 1

)
c in PrK−GA

b (·) is achieved

if K < K̄. DenotingPT = E/(NTs) as the totalaverage powerconsumed by all users during

one slot,λ(K) can be also expressed in terms ofPT asλ(K) = c(PT −Kα−1λGA).

Usingλ(K) in (21), we optimizeK for a givenω to minimize the system BER while satisfying

the finite energy constraint. The corresponding optimization problem can be mathematically

formulated as

K∗
b = argmin

K∈K
PrK−GA

b (K) subject to EK−GA
T = E. (22)

One way to solve (22) is to employ a binary search overK ∈ K through direct computation

of PrK−GA
b (·). However, direct evaluation ofPrK−GA

b (·) is computationally complex, and such

an approach can be inaccessible for applications sensitiveto high computational complexity.

Therefore, an approach, which avoids direct computation ofPrK−GA
b (·) for all K, is proposed.

To this end, let us relaxK to be a real number7 such thatK ∈ [1, K̄]. Let us also define

η(·) , ∂
∂K

PrK−GA
b (·). It can be observed thatPrK−GA

b (·) is convex with respect toK due to the

fact that ∂2

∂2K
PrK−GA

b (·) ≥ 0. Thus, the minimum ofPrK−GA
b (·) overK ∈ [1, K̄] can be found

by minimizing
∣
∣η(·)

∣
∣ for a given normalizedΩ, i.e., ΩN = ωλGA. Note that this minimum is

unique. Therefore, denotingK∗ as a real-valued solution, the corresponding optimal solution

can be given by

K∗ = arg min
K∈[Kn,K1]

∣
∣
∣η(K)

∣
∣
∣. (23)

6The argument K is added here to emphasize thatλ is a function ofK in the BER minimization-based problem.

7While relaxingK to be a real number, we also assume thatPrK−GA
b (·) is continuous onK and differentiable at all points

on K.
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Recall thatK is a finite set of integers, and the optimalK∗
b ∈ K may not be equivalent toK∗

in (23). Therefore, (23) should be reformulated as

K∗
b =







K̄, if sign(η(K = K̄)) = −1

1, else if sign(η(K = 1)) = 1

argminK∈{Ki,Ki+1} Pr
K−GA
b (K), otherwise

(24)

wheresign(a) = |a|/a for a ∈ R with sign(0) = 1, andKi ∈ K is the largest integer smaller

thanK∗ that satisfies the equalitysign(η(Ki))sign(η(Ki+1)) = −1.

In order to findK∗
b ∈ K, we first computesign(η(K)) at K = K̄ (and/orK = 1). If the

resultingsign(·) is −1 (or 1), then we selectK∗
b = K̄ (or 1). Otherwise,Ki ∈ K can be found

by binary search algorithm followed by selectingK∗
b at whichever ofKi or Ki+1 that has a

smallerPrK−GA
b (·).

Considering, for example, the case whenPrK−GA
b (·) = PrK−GA

b,a (K), it is shown in Appendix

that

η(K) =
1

K
−

f(K)
∑

l=0

1

K + l
− f ′(K)

K−1∑

l=0

1

1 + f(K) + l
(25)

wheref(K) , gaωλ.

GivenΩN and a finite setK = {1, 2, · · · , K̄}, η(K) is illustrated in Fig. 2. It is shown that

neitherK → 1 nor K → K̄ may minimizePrK−GA
b (·). Therefore, for a givenΩN , there exists

an optimal1 ≤ K∗
b ≤ K̄ minimizing PrK−GA

b (·). For example, it can be seen from the figure

that whenM = 4 andK̄ = 100, K∗
b ≈ 67 minimizesPrK−GA

b (·) at ΩN = 4 dB.

B. Optimal selection ofK based onEK−GA
T minimization

If an MU system is capable of recovering properly the transmitted information as long as the

system BER is less than or equal to a predefined desired level,the optimalK can be found

via minimization ofEK−GA
T in (7) subject to the constraintPrK−GA

b (·) ≤ BERt whereBERt

is the required target BER. In this problem, different from the previous problem,EK−GA
T is the

optimization variable, whileλ (equivalentlyΩN = Ω) is fixed.

Two cases of delay tolerant and delay sensitive systems are of interest.
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1) Delay tolerant (DT) systems:The constrained optimization problem for finding optimalK

can be written in this case as

K∗
dt = argmin

K∈K
EK−GA

T subject to PrK−GA
b (K) ≤ BERt. (26)

Note that for a givenΩ, PrK−GA
b (·) andEK−GA

T are, respectively, monotonically decreasing and

monotonically increasing functions ofK. Thus, among all values ofK satisfying the constraint

PrK−GA
b (·) ≤ BERt, the smallestK ∈ K which minimizesEK−GA

T is the solution of (26).

In order to findK∗
dt ∈ K, we first need to findPrK−GA

b (·) whenK = K̄. If K̄ does not satisfy

the system BER requirements, thenK∗
dt = 0. WhenK∗

dt = 0, the system may allow delays to

prevent the waste of the total energy of all users. Otherwise, the smallestK ≤ K̄, which satisfies

the system BER requirements, can be searched efficiently using, for example, a binary search

algorithm.

2) Delay sensitive (DS) systems:DS systems allow to transmit data even ifPrK−GA
b (·) > BERt

whenK = K̄. Then, the corresponding constrained optimization problemcan be written as

K∗
ds =







argminK∈K EK−GA
T subject toPrK−GA

b (K) ≤ BERt, if PrK−GA
b (K̄)≤BERt

K1, otherwise.
(27)

The problem (27) can be solved similar to the previous one. The only difference is thatK∗
ds = K̄

even ifK = K̄ is not sufficient to satisfy the constraintPrK−GA
b (·) ≤ BERt.

V. ASYMPTOTIC ANALYSIS

A. Asymptotic analysis of optimalK based onEK−GA
T minimization

In general, the optimumK based onEK−GA
T minimization under fixed system BER cannot be

found in closed form. However, its asymptotic behavior can be studied analytically. Recall that

the derived system BER expressions depend on the beta function B(·, ·). Thus, we first study

the asymptotic behavior ofB(·, ·) with respect toK.

The following theorem summarizes the asymptotic behavior of the beta function.

Theorem 1: Let x and y be two positive integers. Whenx→ ∞, we have

lim
x→∞

xy B(x, y) = Γ(y) (28)

whereΓ(y) =
∫∞

0
ty−1e−tdt denotes the complete gamma function.
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Proof: The beta function can be alternatively represented in termsof the following ratio of

complete gamma functions

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (29)

Using the expressionΓ(x) = (x− 1)! for the gamma function, we can find the following ratio

Γ(x)

Γ(x+ y)
=

(x− 1)!

(x+ y − 1)!
=

1

(x+ y − 1)(x+ y − 2) · · · (x+ 1)x
. (30)

Since(x+ y − 1)(x+ y − 2) · · · (x + 1)x in (30) is dominated by the first power termxy, the

ratio in (30), forx→ ∞, becomes

lim
x→∞

Γ(x)/Γ(x+ y) = x−y. (31)

Thus, whenx→ ∞, inserting (31) into (29) reveals the asymptotic behavior of (29) as

lim
x→∞

B(x, y) = lim
x→∞

Γ(x)

Γ(x+ y)
Γ(y) = x−y Γ(y). (32)

Since for a giveny, Γ(y) in (32) is fixed, (28) is obtained whenx→ ∞. �

Theorem 1 enables us to evaluate the system BER for two asymptotic cases of (i) largeK

and (ii) high SNR. We also aim at investigating how the optimal K scales asymptotically. For

simplicity, only the approximate BER expression (19) is considered in the further analysis.

For the case of largeK, we aim at analyzingPrK−GA
b,a (K) versusK and SNR. As per Theorem

1, for large values ofx, the following approximation holds trueB(x, y) ≈ x−yΓ(y). Then, when

interpretingx andy in (28) asK and1 + gaΩ, respectively, the system BER can be expressed

for large values ofK as

PrK−GA
b,a (K) = K−gaΩ0.2 Γ(1 + gaΩ)

= Θ
(
K−SNR

)
(33)

where we use the alternative notation SNR= Ω in the last expression. Therefore, (33) shows

how the system BER scales with respect to the MUDiv gain ifK is large.

For another asymptotic case of large SNR, PrK−GA
b,a (K) can also be expressed in terms of

SNR andK. Specifically, using the fact thatB(x, y) = B(y, x), it follows straightforwardly from

Theorem 1 that for largey, B(x, y) ≈ y−xΓ(x). Therefore, the system BERPrK−GA
b,a (K) can be

expressed for large SNR as

PrK−GA
b,a (K) = Ω−K0.2 g−K

a Γ(K + 1)

= Θ
(
SNR−K

)
.

(34)
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It follows from (34) that the total system BER scales inversely with the order of the SNR, i.e,

the MUDiv is equal toK.

Using (33) and (34), we can find the optimalK∗ ∈ K, i.e., eitherK∗
dt for the delay tolerant

or K∗
ds for the delay sensitive systems.

In the case whenK is large, it can be found using (33) that for givenω, λ, andBERt, the

optimalK∗ ∈ K, i.e., K∗
dt for the delay tolerant orK∗

ds for the delay sensitive systems, must

satisfy the following inequality

K∗ ≥ (0.2Γ(1 + gaΩ))
1

gaΩ BER
− 1

gaΩ

t

= Θ
(

BER
−1/SNR
t

)

.
(35)

It follows from (35) that for largeK and a given SNR,K∗ is an exponentially decreasing

function ofBERt.

In the case of high SNR, it can be found from (34) that the optimalK∗, which guarantees

that the target BER is archived, i.e., the constraintPrK−GA
b,a (K) ≤ BERt is satisfied, must obey

the following inequality

K∗ ≥ log BER−1
t

log gaΩ
= Θ

(
log BER−1

t

log SNR

)

. (36)

For a givenBERt, it follows from (36) that the corresponding optimalK∗, i.e., K∗
dt for the

delay tolerant orK∗
ds for the delay sensitive systems, is proportional to the inverse of log SNR.

Moreover, unlike the case of largeK, in the case of high SNR,K∗ decreases in a log-scale with

BERt.

B. Asymptotic analysis of optimalK based on the system BER minimization

We again consider two cases of (i) largeK and (ii) high SNR and study the asymptotic behavior

of optimalK∗
b , i.e., we study the asymptotic behavior of the solution of the optimization problem

(34). For simplicity, but without any loss of generality, weassume thatc = 1.

In the case whenK is large, we first determine how the system BER scales withK while

satisfying the finite energy constraint. The correspondingpower gain given by (21) isGp ,
(
(K̄ −K)α−1 + 1

)
. Using this notation and (33), the system BER can be asymptotically ex-

pressed as

PrK−GA
b,a (K) = 0.2Γ(1 + gaGpΩN )K

−gaGpΩN

= Θ
(
K−GpSNR

)
(37)
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where we use the alternative notation SNR= ΩN . Therefore, ifK ≫ K̄ − K, the achievable

MUDiv gain is determined byGp(K) · SNR =
(
(K̄ −K)α−1 + 1

)
· SNR instead ofSNR. It is

also worth mentioning that, for a given SNR, the asymptotic system BER scales exponentially

with K(K̄−K)/α. The latter means, in particular, that the achievable system BER is lower in the

case of using optimalK as compared to the case when all users are active, i.e.,K = K̄.

In the case of high SNR, usingGp and (34), the asymptotic expression for the system BER

can be obtained as

PrK−GA
b,a (K) = 0.2g−K

a Γ(K + 1)(GpΩN )
−K

= Θ
(
(GpSNR)

−K
)
.

(38)

It follows from (38) that the asymptotic system BER benefits from the MUDiv power gain

G−K
p =

(
(K̄ −K)α−1 + 1

)−K
at the cost of having the diversity orderK < K̄.

Finally, inserting (38) into (23), we obtain that

lim
SNR→∞

K∗
b = argmin

K

∣
∣
∣
∣

∂

∂K
(38)

∣
∣
∣
∣
= argmin

K
|Gp · SNR|

= K̄ + α

(39)

where0 ≤ α ≤ 1. Since optimal MUDivK is restricted to be integer, it can be concluded from

(39) that the MUDivK = K̄ is optimal when SNR→ ∞. The latter means that the maximum

available MUDiv should be used for energy unlimited systemsthat agrees with known results.

VI. EXTENSION TO MULTIPLE ANTENNA MU SYSTEMS

The optimization problems proposed in Section IV can be extended to multiple antenna MU

systems, which will also allow to use the benefits of multipleantenna techniques [19], [20].

Toward this end, a generalized expression for the average BER has to be derived. For brevity,

we consider only the approximate average system BER case.

Let D denote the multiple antenna diversity order. Then, in the multiple antenna case, the

degrees of freedom (DOF) ofy in (14) extends to2D, that is,y ∼ χ2
2D whereχ2

2D stands for

the Chi-squared distribution with2D DOF (refer also to [20]). Therefore, for givenK andD,

the expression forpK−GA
ρ (y) in (15) can be generalized as [19]

pK−GA
ρ (y) = K

e−y/Ω

Ω
γ (D, y/Ω)K−1 (y/Ω)

D−1

Γ(D)K
(40)

whereγ(a, b) ,
∫ b

0
ta−1e−tdt denotes the lower incomplete gamma function [18].
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Inserting (40) into (14), we obtain the average BER in the multiple antenna case as

PrK−GA
b (K) = 0.2K

∫ ∞

0

tD−1e−(1+gaΩ)tγ(D, t)K−1/Γ(D)K dt. (41)

Finally, the optimization problems proposed Section IV canbe straightforwardly extended to

the case of multiple antenna MU systems by using (41) insteadof the corresponding BER

expressions for the single antenna case. As an example, an extension of the problem (22) to the

case of multiple antenna MU systems will be investigated numerically in the following section.

VII. N UMERICAL RESULTS

Consider an MU system with Gray-coded square M-QAM of sizeM ∈ {4, 64}. Let (CM,1, cM,1)

in (13) be (1, 1) for M = 4, while {(CM,1, cM,1), · · · , (CM,5, cM,5)} be{(7/12, 1/21), (1/2, 3/7),
(−1/12, 25/21), (1/12, 92/21), (−1/12, 132/21)} for M = 64 [16]. Independent log–normal

distributed shadowing with meanµ = 1 and standard deviationν = 5 is assumed with pathloss

0 dB. Considering the approximate BER, i.e.,PrK−GA
b (·) = PrK−GA

b,a (K), the optimalK, i.e.,

K∗
b of (24), K∗

dt of (26), or K∗
ds of (27), are found. The setK = {1, 2, · · · , K̄}, c = 1,

α ∈ {1, 2, 7.81, 31.25}, and Ed(K)/Ef ∈ [α, K̄ − 1 + α] are used. Note that the parameter

α = 2 corresponds to the standard case when280 pilot sub-carriers and560 data sub-carriers

are used per one sub-channel in10 MHz uplink WiMAX (IEEE 802.16e) [21]. For comparisons,

we also consider other parameter values. For example, the parameterα = 7.81 can be obtained

by using 32 pilot and 250 data sub-carriers whileα = 31.25 results from using 32 pilot and

1000 data sub-carriers.

In the case when̄K = 100 andα = 1, the ratioλ(K)/λGA (or, equivalently,Ed(K)/EGA
d )

is set at the values between 0 dB and 20 dB depending onK. The generic GA scheme is also

depicted for comparison.

A. Minimizing the system BER

Example 1:In our first example, we consider the problem (24) and the casewhen for a given

ΩN ∈ {5, 10} dB andα = 2, total energy grows withK̄. Note thatEK−GA
T (or, equivalently,

the average powerPT (K)) is an increasing function of̄K.

Fig. 3 showsK∗
b of (24) versusPT for various values ofΩN . It can be seen from the figure that

K∗
b increases with respect toPT . The latter means that the maximum available MUDiv should

March 6, 2022 DRAFT



19

be used for energy unlimited systems, while the optimal MUDiv can be significantly smaller

than the maximum available MUDiv̄K for energy limited systems. It can also be observed that

for a givenPT and lowΩN , the optimal MUDivK∗
b is also small and more energy should be

allocated for actual data transmissionEd(K) in order to achieve better BER. Finally, it can be

also seen in this figure thatK∗
b of (24) that minimizes the approximate BER coincides withK∗

b

of (24) that minimizes the exact BER, which validates the useof approximate BER.

Fig. 4 illustrates the impact ofK∗
b on PrK−GA

b (·) versusPT . In this figure,ΩN = 5 dB and

α = 2 are taken. It can be seen from the figure thatPrK−GA
b (·) based onK∗

b is a decreasing

function of PT . Moreover, forM = 4 andPT ≤ 30.5 dB, the generic GA scheme is optimal

since it provides minimumPrK−GA
b (·) andK∗

b = K̄, in this case. However, whenPT ≥ 30.5 dB,

the optimalK∗
b < K̄ is obtained. For example, whenM = 4, K∗

b provides 3 dB power gain at

Prb = 10−5 as compared to the generic GA.

Example 2:In the second example, we consider the problem (24) and the case when for a

given maximum achievable MUDiv̄K, EK−GA
T grows withΩN . In this case,α ∈ {7.8125, 31.25}

and K̄ = 50 are used.

Fig. 5 showsK∗
b versusPT . It can be seen from the figure thatK∗

b is an increasing function

of PT and it converges tōK if more power (energy) is available for all users in the system. The

convergence rate depends onα and it is higher for largerα and slower for smallerα. Note that

the practical values ofα are smaller than both values tested in this example (see Example 1).

It can also be observed that for lowPT , lessK∗
bEf is required to achieve a better system BER

than the one achieved if all̄K users are active. For example, forPT = 28 dB andα = 7.8125,

the achievedK∗
bEf for K∗

b = 12 is significantly smaller than the one for the generic GA.

In Fig. 6, the impact ofK∗
b on PrK−GA

b (·) is illustrated versusPT . A significant power gain

is provided by the proposed method as compared to the genericGA scheme. For example, in

the case whenα = 7.8125, the use ofK∗
b provides6 dB power gain atPrK−GA

b (·) = 10−4. A

significant power gain can be observed even for largeα, i.e., α = 31.25. However, regardless

of α, the aforementioned power gain vanishes andK∗
b converges toK̄ if PT → ∞ (see also

Fig. 5).

B. Minimizing the total energy of all users in the system

Example 3:In the last example, we consider the problems (26) and (27) for the DT and DS
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MU systems, correspondingly. The proposedK-GA scheduling scheme based onK∗
dt of (26)

andK∗
ds of (27) is compared to the generic GA scheduling scheme.

Fig. 7 shows the error probability of the proposedK-GA scheduling schemePrK−GA
b (·)

averaged over variations of the channel meanω versusλ. The parameters̄K = 100 andBERt =

10−3 are taken. The average error probability of the generic GA iscomputed for two cases with

and without variations of the channel meanω. In can be seen from the figure that the average

PrK−GA
b (·) is maintained below the system requirements (i.e.,BERt = 10−3) for the DT MU

system. For the DS MU system, the averagePrK−GA
b (·) is close to the averagePrGA

b,a (·) at low

SNRs since in order to guarantee a given target BERBERt, the outage is not allowed even if

K̄ is not sufficiently large. It can be also seen that asλ increases, the DS MU system performs

closer to the DT MU system. It is becauseK ≤ K̄ is sufficiently large to guarantee the target

BERt in both cases.

Based onK∗
dt andK∗

ds, it can also be seen in Fig. 8 that the averagePT normalized by the

power required for the generic GA is a decreasing function ofλ for both the DT and DS MU

systems. Moreover, the DT MU system requires less power (energy) than the DS MU system

while satisfying the system requirement on target BERBERt. For example, atλ ≈ 10 dB, the

DS MU systems withBERt = 10−3 achieves a power saving gain of10 dB over the generic

GA for the same averagePrb = 4× 10−3 (see Figs. 7 and 8). Figs. 7 and 8 also depict that as

λ increases,PT converges to the power required for the RA scheduling scheme.

For the multiple antenna case, Fig. 9 showsPrK−GA
b (·) versus the diversity orderD for the

following parameters̄K = 5, ΩN = 5 dB, α = 1, andM = 4. It is also assumed that the energy

is distributed according to (22) withPrK−GA
b (·) as derived in Section VI. It can be seen from

this figure that our optimal energy distribution gives a boost in the system BER as compared to

the generic GA scheduling scheme.

VIII. C ONCLUSIONS

A new realistic energy model which describes the distribution of the total finite users’ energy

between scheduling and data transmission stages is developed for the energy limited uplink MU

wireless systems. MU scheduling algorithms which maximizethe MUDiv gain are derived for

the aforementioned systems to (i) minimize the overall system BER for a fixed total energy of all

users in the system or (ii) minimize the total energy of all users for fixed BER requirements. It
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is shown that for a fixed number of available users, an achievable MUDiv gain can be improved

by activating only a subset of users from the entire set of users. Using asymptotic analysis, it is

shown that our approach benefits from MUDiv gains higher thanthat achieved by the generic GA

algorithm, which is the optimal scheduling method for energy unlimited systems. In particular,

when minimizing the system BER, it is found that the achievedMUDiv gain is determined by
(
(K̄ −K)α−1 + 1

)
·SNR whenK is large. Moreover, in the case of high SNR, the MUDiv power

gain
(
(K̄ −K)α−1 + 1

)−K
can be archived while obtaining the diversity orderK. Simulation

results validate our theoretical observations and show that the proposedK-GA algorithm based

on optimizing the number of active users provides significant energy gains for energy limited

MU wireless systems over the generic GA algorithm.

APPENDIX: DERIVATIONS OF (23) AND (25)

Using (19), the first derivative ofPrK−GA
b,a (K) in the optimization problem (24) can be

expressed as

∂

∂K
PrK−GA

b,a (K) = bB(K, 1 + f(K)) + bK
∂

∂K
B (K, 1 + f(K)) . (42)

In turn, the first derivative ofB (K, 1 + f(K)) with respect toK in (42) can be written as

∂

∂K
B (K, 1 + f(K)) =

∂

∂K

∫ 1

0

tK−1(1− t)f(K)dt =

∫ 1

0

∂

∂K
tK−1(1− t)f(K)dt. (43)

or equivalently as

∂

∂K
B(K, 1 + f(K)) =

∫ 1

0

(1− t)f(K) tK−1 lnt dt+ f ′(K)

∫ 1

0

(1− t)K−1 tf(K) ln t dt (44)

wheref ′(·) denotes the first derivative off(·) with respect toK and ln(·) stands for the natural

logarithm8.

Using the relationship [18, (4.253.1)]
∫ 1

0

xu−1(1− xr)v−1lnx dx = B (u/r, v)
{
ψ(u/r)− ψ(u/r + v)

}
/r2 (45)

whereψ(z) = ∂
∂z
lnΓ(z) denotes the digamma function forz > 0, the first derivative of the beta

function in (44) can be written as
∂

∂K
B(K, 1 + f(K)) = B(K, 1 + f(K))

×
{
ψ(K)− (1 + f ′(K))ψ(K + 1 + f(K)) + f ′(K)ψ(1 + f(K))

}
.

(46)

8Note that a logarithm with any basis can replace the natural logarithm.
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Inserting (46) into (42), we find that the solution of (24) should satisfy the following equation

B(K, 1+f(K))
[

1+K
{
ψ(K)−(1+f ′(K))ψ(K+1+f(K))+f ′(K)ψ(1+f(K))

}]

= 0. (47)

Since in our system modelK ≥ 1 andf(K) ≥ 0, it follows from (47) thatB(K, 1+f(K)) ≥ 0.

Therefore, the equalityB(K, 1 + f(K)) = 0 holds if and only ifK goes to infinity. However,

for K → ∞ the assumption of the limited total system user energy is violated, and therefore,

B(K, 1 + f(K)) in (47) must always be positive. Thus, the problem of finding the solution of

(24) boils down to the problem of finding the number of users which satisfies the following

equation

ψ(K)− ψ(K + 1 + f(K)) + f ′(K)
{
ψ(1 + f(K))− ψ(K + 1 + f(K))

}
+ 1/K = 0. (48)

Using the following expression [18, (8.365.3)]

ψ(x+ n) = ψ(x) +

n−1∑

l=0

(x+ l)−1 (49)

the differences between the digamma functions in (48) can berepresented alternatively as

ψ(K + 1 + f(K))− ψ(1 + f(K)) =
K−1∑

l=0

(1 + f(K) + l)−1 . (50)

ψ(K + 1 + f(K))− ψ(K) =

f(K)
∑

l=0

(K + l)−1 . (51)

Finally, inserting (50) and (51) into (48), the left hand side of (48) can be rewritten as

η(K) =
1

K
−

f(K)
∑

l=0

1

K + l
− f ′(K)

K−1∑

l=0

1

1 + f(K) + l
. (52)

Therefore, for givenΩ andEK−GA
T , the optimization problem (22) can be rewritten as

K∗ = arg min
K∈[Kn,K1]

∣
∣η(K)

∣
∣ subject toEK−GA

T = E. (53)

This completes the derivation.
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[6] Y. Ko and C. Tepedelenlioğlu, “Distributed closed-loop spatial multiplexing for uplink multiuser systems,”IEEE Trans.

Wireless Commun., vol. 7, no. 2, pp. 290–295, Feb. 2008.

[7] Flarion Technologies, Inc. White paper, “Flash-OFDM for 450MHz: Advanced mobile broadband solution for 450MHz

operators,”www.flarion.com, Nov. 2004.

[8] G. Dimic and N. D. Sidiropoulos, “On downlink beamforming with greedy user selection: performance analysis and a

simple new algorithm,”IEEE Trans. Signal Processing, vol. 53, no. 10, pp. 3857–3868, Oct. 2005.

[9] L. Yang, M. Kang and M. S. Alouini, “On the capacity–fairness tradeoff in multiuser diversity systems,”IEEE Trans. Veh.

Technol., vol. 56, no. 4, pp. 1901–1907, Jul. 2007.

[10] P. Chaporkar and K. Kansanen and R. R. Muller, “Channel and multiuser diversities in wireless systems: delay–energy

tradeoff,” in Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks and Workshops, Apr. 2007, pp. 1–8.

[11] D. Gesbert and M. S. Alouini, “How much feedback is multi-user diversity really worth?” inProc. Inter. Conf. Commun.,

Paris, France, June 2004, pp. 234–238.

[12] L. Li and A. B. Gershman, “Downlink opportunistic scheduling with low-rate channel state feedback: Error rate analysis

and optimization of the feedback parameters,” inProc. IEEE Signal Processing Advances in Wireless Commun., Recife,

Brazil, July 2008, pp. 356–360.

[13] D. Hammarwall, M. Bengtsson, and B. Ottersten, “Acquiring partial CSI for spatially selective transmission by instantaneous

channel norm feedback,”IEEE Trans. Signal Processing, vol. 56, no. 3, pp. 1188–1204, Mar. 2008.

[14] R. Elliot, “A measure of fairness of service for scheduling algorithms in multiuser systems,” inProc. IEEE Canadian

Conference on Electrical and Computer Engineering, vol. 3, pp. 1583-1588, May 2002.

[15] Y. Ko, S. A. Vorobyov, and M. Ardakani, “How much multiuser diversity gain is required over large-scale fading?,” in

Proc. Inter. Conf. Commun., Dresden, Germany, June 2009.

[16] B. Choi and L. Hanzo, “Optimum mode-switching-assisted constant-power single- and multicarrier adaptive modulation,”

IEEE Trans. Veh. Technol., vol. 52, no. 3, pp. 536–560, May 2003.

[17] M. K. Simon and M. S. Alouini,Digital Communication Over Fading Channels: A Unified Approach to Performance

Analysis, New York: Wiley, 2000.

[18] I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and Products, Academic Press: San Diego, CA, 5th Ed.,

1994.

[19] D. Tse and P. Viswanath,Fundamentals of Wireless Communication, Cambridge University Press, 2005.

[20] Q. Zhou and H. Dai, “Asymptotic analysis on the interaction between spatial diversity and multiuser diversity in wireless

networks,” IEEE Trans. Signal Processing, vol. 55, pp. 4271–4283, Aug. 2007.

[21] WiMAX Forum, White paper, “Mobile WiMAX-Part I: A technical overview and performance evaluation,”

www.wimaxforum.org, Aug. 2006.

March 6, 2022 DRAFT



24

0 2 4 6 8 10 12
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

λ in dB

T
ot

al
 s

ys
te

m
 B

E
R

, P
r b

 

 

K=1, Approximate
K=1, Upper bound
K=1, Exact
K=10, Approximate
K=10, Upper bound
K=10, Exact
K=50, Approximate
K=50, Upper bound
K=50, Exact

Fig. 1. Total system BERsPrb,e(K), Prb,u(K) andPrb,a(K) for K-GA whenK = K̄ = 1, 10, 50.

0 10 20 30 40 50 60 70 80 90 100
−20

−15

−10

−5

0

5

10

K

η(
K

)

 

 

Ω
N

=4 dB

Ω
N

=12dB

Ω
N

=16dB

K*
b
(Ω

N
) with η=0

Ω
N

 increases

Fig. 2. Functionη(·) versusK when K̄ = 100, M = 4, andα = 1.

March 6, 2022 DRAFT



25

28 30 32 34 36 38 40 42
0

5

10

15

20

25

30

35

40

45

50

P
T
 in dB

O
pt

im
al

 n
um

be
r 

of
 u

se
rs

 K
* b

 

 
Ω

N
 = 10 dB, Exact

Ω
N

 = 10 dB, Approx

Ω
N

 = 5 dB, Approx

Generic GA at Ω
N

=10 dB

Fig. 3. Optimal number of usersK∗

b versusPT for differentΩN , M = 4, andα = 2.

29 30 31 32 33 34 35 36 37 38 39 40
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

P
T
 in dB

T
ot

al
 s

ys
te

m
 B

E
R

 P
r b

 

 

K*
b
, M=4

K*
b
, M=64

Generic GA, M=4
Generic GA, M=64

K*
b
=KGA

3 dB  

Using the optimal
K*

b

Generic GA

Fig. 4. Total system BER usingK∗

b versusPT whenΩN = 5 dB, M = 4, 64, andα = 2.

March 6, 2022 DRAFT



26

25 30 35 40 45 50 55 60 65 70 75
5

10

15

20

25

30

35

40

45

50

P
T
 in dB

O
pt

im
al

 n
um

be
r 

of
 u

se
rs

 K
* b

 

 

Generic GA with K=50

K*
b
 with α=7.8125

K*
b
 with α=31.25

Generic GA

At the cost of 
75% less scheduling energy

than GA 

Fig. 5. Optimal number of usersK∗

b versusPT when K̄ = 50, M = 4, α ∈ {7.8125, 31.25}.

22 24 26 28 30 32 34 36 38 40 42
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

P
T
  in dB

T
ot

al
 s

ys
te

m
 B

E
R

, P
r b

 

 

Generic GA with K=50,α=7.8125

K*
b
 with α=7.8125

Generic GA with K=50,α=31.25

K*
b
 with α=31.25

α=31.25

α=7.8125

6 dB

Fig. 6. Total system BER usingK∗

b versusPT when K̄ = 50, M = 4, α ∈ {7.8125, 31.25}.

March 6, 2022 DRAFT



27

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

λ in dB

A
ve

ra
ge

 P
r b o

ve
r 

sh
ad

ow
in

g 
ch

an
ne

ls

 

 
avg Pr

b,a
K−GA with K*

ds
, P

e
=10−3

avg Pr
b,a
K−GA with K*

dt
, P

e
=10−3

avg Pr
b,a
G

avg Pr
b,a
G  with No shadow

DS

Generic GA 

DT

Fig. 7. AveragePrb of K-GA in DS MU and DT MU systems whenµ = 1, ν = 5, BERt = 10−3, α = 1, K̄ = 100.

0 2 4 6 8 10 12 14 16 18 20

10
−2

10
−1

10
0

A
ve

ra
ge

 P
T
 o

ve
r 

sh
ad

ow
in

g 
ch

an
ne

ls

λ in dB

 

 

avg P
T
 with K*

ds
, P

e
=10−3

avg P
T
 with K*

dt
, P

e
=10−3

avg P
T
 for generic GA

Generic GA

Generic RA (single user)

Saving about 90% of P
T
 over GA

with avg Pr
b
=4×10−3 equally

DS

DT

Fig. 8. AveragePT of K-GA in DS MU and DT MU systems whenµ = 1, ν = 5, K̄ = 100, α = 1, BERt = 10−3.

March 6, 2022 DRAFT



28

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Diversity order, D

T
ot

al
 s

ys
te

m
 B

E
R

, P
r b

 

 
K−GA with K*

b
Generic GA

Fig. 9. Impacts ofD, i.e., 2D is the DOF resulting from multiple antennas, onPrK−GA
b usingK∗

b whenK̄ = 5, ΩN = 5 dB,

andM = 4.

March 6, 2022 DRAFT


	I Introduction
	II System model and problem description
	II-A System model
	II-B Problem description
	II-B1 System BER minimization
	II-B2 Minimization of the total energy consumed by all users in the system


	III System performance measures
	III-A Exact BER expression
	III-B Upper bound expression on BER
	III-C Approximate BER expression

	IV Optimal selection of the number of active users
	IV-A Optimal selection of K based on system BER minimization
	IV-B Optimal selection of K based on ETK-GA minimization
	IV-B1 Delay tolerant (DT) systems
	IV-B2 Delay sensitive (DS) systems


	V Asymptotic analysis
	V-A Asymptotic analysis of optimal K based on ETK-GA minimization
	V-B Asymptotic analysis of optimal K based on the system BER minimization

	VI Extension to multiple antenna MU systems
	VII Numerical results
	VII-A Minimizing the system BER
	VII-B Minimizing the total energy of all users in the system

	VIII Conclusions
	References

