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Feasibility Conditions for Interference Alignment
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Abstract— The degrees of freedom of MIMO interference
networks with constant channel coefficients are not known in
general. Determining the feasibility of a linear interference
alignment solution is a key step toward solving this open prolem.
Our approach in this paper is to view the alignment problem as
a system of bilinear equations and determine its solvabilit by
comparing the number of equations and the number of variabls.
To this end, we divide interference alignment problems into
two classes - proper and improper. An interference alignmen
problem is called proper if the number of equations does not
exceed the number of variables. Otherwise, it is called impper.
Examples are presented to support the intuition that for gerric
channel matrices, proper systems are almost surely feasiland
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interference alignment, i.e. by linear beamforming at the
transmitters and linear combining at the receivers.
(5x5,2)* - Consider thet-user interference channel with

5 antennas at each user. Suppose we wish to ackieve
DoF per user, for a total ¢f network DoF. An analytical
solution to this problem is not known but numerical
evidence in [2] clearly indicates that a linear interferenc
alignment solution exists. Numerical algorithms are one
way to determine the feasibility of linear interference
alignment. But, is there a way to analytically predict
the feasibility of alignment? In other words, without

improper systems are almost surely infeasible. running the numerical simulation could we have predicted

whether a linear interference alignment solution will &xis
for the (5 x 5,2)* system?

Now consider three distinct system -x 4,2)%, (7 x
3,2)%, (8x2,2)% Are these systems feasible? Clearly, the
last one,(8 x 2,2)* is feasible, because simple transmit
zero-forcing is enough to eliminate the interference at
every receiver. Is the feasibility ¢8 x 2, 2)* case related

to the feasibility of other cases where each transmitter
successively donates one antenna to the receiver? We will
show that these three systems and the< 5,2)* case
belong to the same group.

I. INTRODUCTION

The degrees of freedom (DoF) of wireless interference
networks represent the number of interference-free diggal
dimensions in the network. In a network wifk transmitters
and K receivers and non-degenerate channel conditions, it is
well known that X' non-interfering spatial signaling dimen-
sions can be created if the transmitters or the receiveratdee
to jointly process their signals. Cadambe and Jafar [1]ridge
introduced the idea of interference alignment for #ieuser
wireless interference network with time-varying/freqagn
selective channel coefficients, and showed that spatial
signaling dimensions are available inspite of the distédu In this paper, we address all these questions, as well as
nature of the network which precludes joint processing @fiore complex asymmetric cases where each node may have
signals at transmitters or receivers. While a number offete different number of antennas and each user may demand
ence alignment solutions have appeared since [1] for éiffier different number of degrees of freedom. The basic approach
channel settings, many fundamental questions remain un@hto consider the linear interference alignment problem fo
swered. One such problem is to determine the feasibility afulation as a system of bilinear equations. We determine the
linear interference alignment for MIMO interference net® correct way to count the number of variables and equations
with constant channel coefficients. It is this open probleatt for a general MIMO interference alignment problem. Then,
we address in this paper. based on the number of variables and equations we classify

Suppose we denote b\ x N,d)*, the K-user interfer- the system as either proper (number of equations does not
ence network where every transmitter hesantennas, every exceed number of variables), or improper (number of equa-
receiver hasN antennas and each user wishes to achitvetions exceeds the number of variables), with the intuitive
DoF. We call such a system a symmetric system. Consider thederstanding thgtroper systems are almost surely feasible,
following examples. and improper systems are almost surely infeasible

« (2 x2,1)> - It is shown by [1] that the in the3-  Aside from the detailed conditions that classify a general
user interference channel withantennas at each node (asymmetric) system as proper or improper, our analysldyie
each user can achieve degree of freedom by linear g yseful rule of thumb for symmetric systerfis/ x N, d)~.

We find thatdonating an antenna from each transmitter to

the corresponding receiver, or vice versa, does not chahge t

nature of the system (proper or impropgpyovided every node
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still has at least! antennas. For example, consider the system
(2 x 3,1)%. Is this system proper? While this question may 1y A

o ~ L)
be difficult to answer at first, now suppose we transfer one <E,; 0 —1-%>
antenna from each transmitter to its corresponding recdive Lol oFT
obtain the systentl x 4,1)%. This system is clearly proper, viZ ul?
because simple zero-forcing achievedegree of freedom for o] [0
each user in this system. This tells us that the syst2m =Ly o 8 :1{:7"
3,1)* is also proper. Thus, the following ageoupsof proper [; — — 7 "
systems, related by the rule of thumb defined above. Vi, ___uy

e (Ix4,1)%2x3,1)%(3x2,1)% (@x1,1)1 318 OrLy,
o (1x3,1)%(2x2,1)3,(3x1,1)3 \ 14 o] o T
. (8 X 2,2)4,(7 X 3,2)4,(6 X 4,2)4,(5 X 572)4,(4 X [4] [4]
6,2)%, (3 x 7,2)4, (2 x 8,2)%. Vh ey 5 \[‘fl
In more general terms, the groyg x 1,1)%, ((K — 1) x <g! |o —+ 3>
2, 1)K ... (2x (K—1),1)X,(1x K,1)K is a proper group. i Kol oft/t
The first and last members of each group are easily seen to be (@) (2 x 3,1)2 (3 x 2,1)? system in ExamplE]3.
proper (because a simple zero-forcing solution existgyethy " N
also determining the status of the rest of the members of the Vi, S
group. Improper systems can be similarly grouped as well. <£*,’ © 8 :j;:‘b
Completely asymmetric cases require a more sophisticated N Kell ¢} fT:I
set of feasibility conditions. The analysis is supported by 2] 2]
numerical results for a wide variety of cases, including the Vi Io o »‘11
specific examples listed above. We begin with the system <£L| o _1J23>
model. W Kol O T
Il. SYSTEM MODEL vl e
We consider the sam& -user MIMO interference channel < f L. 1° 8 - f: % >
as considered in [2]. The received signal at #& channel \ 40| o1 )/
use can be written as follows: 4 e
K ;AA_ ,T O~ .I:\\1
Y (n) = Z HF ()XY (n) + Z¥ (n), <[ OF+3>
=1 \ 40| ot/
Vk € K 2 {1,2,..,K}. Here, YI¥I(n) and ZI*I(n) are (b) (2 x 3,1)" system in ExamplElS.
the N* x 1 received signal vector and the zero mean unit Fig. 1. Sample asymmetric and symmetric systems.

variance circularly symmetric symmetric additive whiteuSa

sian noise vector (AWGN) at thg'" receiver, respectively.

XU(n) is the M1 x 1 signal vector transmitted from thevector that denotes thé*! independently encoded streams

1*" transmitter andH!*(n) is the NI¥ x MU matrix of transmitted from thé*" user. TheM/ ¥ x ! precoding filters

channel coefficients between tii& transmitter and thé’” VI* are designed to maximize the overlap of interference

receiver. B||X(n)||?] = P is the transmit power of th” signal subspaces at each receiver while ensuring that the

transmitter. Hereafter, we omit the channel use indefor desired signal vectors at each receiver are linearly iruigret

the sake of simplicity. The DoF for the?” user's message is of the interference subspace. Therefore, each receiverezan

denoted byd!*! < min(M [ NIF), force all the interference signals without zero-forcingy af
(MU x NI glhy .. (M) x NI glKT) denotes thék-  the desired signals. The zero-forcing filters at the receive

user MIMO interference network, where thé" transmitter are denoted byU*. In [2], it is shown that an interference

and receiver hava/* and N* antennas, respectively and thalignment solution requires the simultaneous satisfigthdf

k" user demandal*! DoF. As defined earlief,M x N,d) the following conditions:

denotes theK-user symmetric MIMO interference network, Tl .

where each transmitter and receiver lidsand N antennas, UHTHEIVY 0,vj # k @

respectively, and each user demaddBoF, so that the total rank(U[’“”H[kk]V[k]) = d¥, Vke{1,2,...,K},(2)

DoF demand id{d. Some sample asymmetric and symmetric .
systems are shown in Figl 1. where ' denotes the conjugate transpose operator.

Very importantly, [2] explains how the condition
IIl. L INEAR INTERFERENCEALIGNMENT SCHEME @) is automatically satisfied almost surely if the
In interference alignment precoding, the transmitted alignchannel matrices do not have any special structure,
from thek'” user isX*) = VIIIXI¥ whereX" is adl®l x 1 ranKU*) = rank VI*) = dl¥l > min(M*, N1*) and



U VI¥ are designed to satisf{l(1), which is independent N, is directly obtained from[{3) as follows:
of all direct channeld 4], ,

The scenarios where it is difficult to theoretically detarmi Ne = Z i, 4
the feasibility of interference alignment can be evaluatad ’“;Cje?c

. ; . . . . . #J

merically using an iterative algorithm proposed in [2]. hist
work, we develop analytical criteria to predict the fedgipof However, calculating the number of variabl@g, is less
interference alignment. Our approach is to count the numkstraightforward. In particular, we have to be careful to not
of equations and variables ial(1). We assume generic MIM@unt any superfluous variables that do not help with interfe
channels with no structure and force the required ranksef tance alignment.
transmit and receive filters by design. Thus, (2) is satisfiedAt the k" transmitter, the number of theM/l¥l x
automatically and we only need to count the number df transmit beamforming vectors to be designed di$!

variables and equations fdr] (1). (vif], Vn € {1,2, ...,d[k]}). Therefore, at first sight it may

seem that the precoding filter of ti&" transmitter,V*!, has
d*I MF variables. However, as we argue next, without loss

The notion of a proper network is based on counting tH¥ generality one can eliminatgl!*) of these variables.
number of equations and the number of variables involved inThe di*! linearly independent columns of the transmit pre-
the bilinear equation§X1). While the formal definition appse coding matrixVI*! span the transmitted signal space
later, put simply, the systefd’ |, (M*) x NI¥_ dlF) network
is proper if and only if the éa;d(inality of every s)ubset of the T = span{V[’“]) ®)
equations is less than or equal to the number of variables = {v:dac (Cdm“, v = V[k]a}. (6)
involved in that subset of equations. Otherwise, the ndtisr
considered improper. The reason for this classificatiorés tThus, the columns oW "l are the basis for the transmitted
following intuition that forms the basis of our approachhist Signal space. However, the basis representation is noteniq
paper. fora give_n subspace. In particular, consider any full raik<

Key Insight : The interference alignment problem is almog{" matrix B. Then
surely feasible for proper systems and almost surely iidéas

IV. PROPERSYSTEM

for improper systems. TH = spanﬁV[k]) . (7)

Instead of a formal proof, we refer to Bezout's theorem, = {vidaeC!*! v=vlia} (8)
which states that a system of generic polynomial equations = {v:Jae cd™ X1y = V[k]B_lBa} (9)
in m variables will almost surely have as many common — spafvMB-1). (10)

solutions as the product of the degrees of the polynomials.

For our case, it suffices if there is one solution. The fGHWbl ThUS, post-mu|tip|ication of the transmit precoding matri
conditions in our case correspond to a system of polynomigith any invertible matrix on the right does not change the
equations, whose generic nature is due to the generic chanfghsmitted signal subspace. Suppose we ch@dse be the
matrices. Due to the special bilinear form of the equationgtl » (¥ matrix that is obtained by deleting the bottom
it needs to be shown that the polynomials are sufficiently/[k] _ gkl rows of VI*I. Then, we havev*B—1 = V¥,
generic. We are able to construct the rigorous proof for thehich is aas[¥ x dl¥l matrix with the following structure:
(2x3,1)* case which is omitted here due to lack of space. We
expect generalizations to all cases should be possiblejtalb vik — | P8
cumbersome. Vi V2 V3 s Vi

Next we explicitly account for all equations and variables.

Let us start with the total number of equations and the where Iy is the di*! x ! identity matrix _and‘_’"’ vn €
total number of variablea’ {1,2,...,d*} are(M™ — al*!) x 1 vectors. Itis easy to argue

that there is no other basis representation for the tratesnit
signal space with fewer variables.
Therefore, by eliminating all superfluous variables for the
To obtain N, and N,, we rewrite the condition in[{1) as interference alignment problem, the number of variableseto
follows: designed for the precoding filter of thé" transmitter, V],
is dl* (M — gl Likewise, the actual number of variables
to be designed for the interference suppression filter of the
0l o k' receiver,UM, is dl¥l (NTF — dlk]). As a result, the total
Vn e {1,2,...,d"} andvm € {1,2,...,d"} number of variables in the network to be designed is:

A. Counting the Number of Equatio®. and VariablesN,,

WHTHEIVE =0, £k, ke (L2, K} (3)

where vl and ul¥! are the transmit and the receive beam- K
forming vectors (columns of precoding and interference- sup N, = Z d (MW + N _ 2d[k]) . (11)
pression filters, respectively). k=1



B. Proper System Characterization number of equation®/, and variablesV, as the(2 x 1,1)?

To formalize the definition of a proper system, we introducdyStém. Thus, only comparing’,, N. would lead one to
some notation. We use the notatidf" to represent the believe that this system is proper. However, suppose wekchec
equation ’ E{i which connects transmitter 2 and receiver 1, both of

o which have only one antenna each, i.e., $et= {E}1} so
uTHMIVET = 0. (12) that|S| = 1. However vafFE{3) = 0. Thus, this system has
an equation with zero variables, which makes it improped, an
therefore infeasible.

Example 3:Several interesting cases emerge from applying
var(Epe™)| = (MY — ally 4 (N — gl#) (13) the condition[(IB). For example, consider theiser interfer-
ence channe{2 x 3,1)(3 x 2,1) where a total o2 degrees
of freedom are desired. It is easily checked that this syséem
proper and the achievable scheme is described in [3]. Haweve
now consider thet-user interference channel consisting of
£ = {BI"j.kek k], two sets of these channels, all interfering with each other

(8] ] (2 x 3,1)%(3 x 2,1)? which is a4-user interference channel
me{l,-,d¥}ned{l, -, d"}} and a total of4 degrees of freedom are desired. It is easily
This leads us to the formal definition of a proper syster¥erified that this is a proper system, i.e. it satisfies (13urhs
Definition: A TIX_, (M ¥ x NI¥_ql¥) system is proper if and Out that a closed form solution for alignment can be found in
only if this case. It is somewhat surprising that going from two siser
to four users simply doubled the degrees of freedom in this
_ (14) case, without any penalty for interference between thesuser
terms of degrees of freedom. Since in this paper our focus is

) only on feasibility and not on closed form solutions, we omit
In other words, for all subsets of equations, the number gfa" details of this example.

variab_les irlvolved must be at least as large as the number ofy, general, testing if a large asymmetric system is proper ca
equations in that subset. be cumbersome. However, for the case of symmetric systems

Condition [14) provides us a way to predict the feasibility oy the type(M x N, d)¥, the process is much simpler.
interference alignment in a genefdf , (M* x NIKI glkl)

system. However, note that it can be computationally curfy: Symmetric Systena/ x N, d
bersome because we have to test all subsets of the set of alheorem 2:A symmetric system(M x N,d)%X, is proper
equations. In most cases however, especially if the syssemifiand only if N, > N.. Equivalently, the system is proper iff
improper, simply compa}ring the total ngmber of equatiord an M+N—(K+1)d>0 (16)
the total number of variables may suffice.

Theorem L:A TIE | (Ml x NI*I glFl) system is improper

The set of variables involved in an equatiéhare indicated
by the function vafE). Clearly

where| - | is the cardinality of a set.
Using this notation, we denote the set Bf equations as
follows:

VS c &S| < || varE)

EcS

)K

Remark:Note that the conditiod < min(M, N) is always
assumed even if it is not explicitly stated every time.

if N, < Ne, i.e., Remark:Theorem 2 implies that for every user to achieve
K K _ degrees of freedom in & user interference channel, it suffices
> (M[k] + N - 2d[k]) < Y d¥dbl.  (15) to have a total ofM + N > (K + 1)d antennas between
k=1 kjex the transmitter and receiver of a user. The antennas can be

e distributed among the transmitter and receiver arbitragb

Example 1:Consider thg5 x 5,3)(5 x 5,2)® system, i.e. a long as each of them has at ledsantennas. In particular, to
4-user interference networks where all nodes haemtennas, achieveKk degrees of freedom in A user symmetric network
userl demands3 DoF and user®, 3,4 demand2 DoF each. we only need a total ok +1 antennas between the transmitter
There are a total ofi0 equations, so that there aB° — and receiver of each user. The systéinx 3,1)* is such an
1 subsets of the set of all equations. Testing each of themample.
could be very challenging. However, since the total numberProof: Because of the symmetry each equation is involved
of variablesN, = 48 is less than the number of equationsyith the same number of variables and any deficiency in the
the system is easily seen to be improper. number of variables shows up in the comparison of the total

Similarly, one can sometimes identify the bottleneck equaumber of variables versus the total number of equations.
tions in the system by checking the equations with the fewelugging in the values oiN,, N. computed earlier, we have
number of variables, i.e., the equations involving thesrait- the result of Theorer] 2. ]
ters and receivers with the fewest antennas. Example 4:Consider (1 x 2,1)3, i.e. a 3-user MIMO

Example 2:As a simple example, consider the systérx  symmetric interference network, where each transmitter ha
1,1)% which is clearly feasible (proper) because simple zerone antenna, each receiver has two antennas, and each user
forcing is enough for achievability. However, now considedemandsl DoF. For this systemM + N — (K + 1)d =
the (2 x 1,1)(1 x 2,1) system, which also has the same totdl + 2 — (4) < 0, so that this system is not proper.



Example 5:Consider the(2 x 3, 1)4 system. For this sys- algorithms of [2]. In every case so far, we have found the
tem, M + N — (K +1)d = 2+ 3 — (5) = 0 which means this results to be consistent with the guiding intuition of thisrk;
system is proper. proper systems are feasible and improper systems are not.

Example 6:Consider the(5 x 5,2)4 system. For this sys- In this section we provide numerical results for a few
temM + N — (K +1)d =545 —10 = 0, which means this interesting and representative cases. The results arenrs te
system is proper. of the leakage interference, as defined in [2] - i.e. the ivact

The following corollary shows the limitations of linearof the interference power that is present in the dimensions
interference alignment over constant MIMO channels (witfeserved for the desired signal. The interference pergerdaa

no symbol extensions). the k*" receiver is evaluated as follows:

Corollary 1: The ratio of the sum degrees of a proper Ikl
(M x N,d)¥ system, normalized by a single user's degree pPY [Q[kl]
of freedom in the absence of interference is bounded by: _ =t (18)

QAT
dK max(M, N) d
min(M, N) = min(M, N)  min(M, N) A7) where A; denotes the smallest eigenvalue of a matrix, Tr

Proof: The proof is straightforward from the condition ofdenotes the trace of a matrix a@i*! denotes the interference
Theoren{P. B covariance matrix at thé'” receiver:

Remark: For the case thaflf = N note that the total K pli
number of degrees of freedom for a proper system is no more QM = Z g = VIR VAR VAFINE = (LYIN S
than twice the number of degrees of freedom achieved by each =154k dl]

user in the absence of interference. Note that for diagor]‘zH t dthe d inator[ofi(18 the interéer
(time-varying) channels it was shown in [1] that the tota e numerator and the denominatoriofl(18) are the interéeren

number of degrees of freedom I§/2 times the number of a_md desired signal space powers at il receiver, respec-
. . ively.
degrees of freedom achieved by each user in the absencé (ﬁi Fig. [, the interference percentages versus the total

interference. This result shows that the diagonal strectir ber of b ted. The total ber of b
the channel matrix is very helpful. Going from the case of g MPerotbeams are presented. The total NUmber of beams are

structure (arbitrary MIMO channels) to diagonal structtire stqrted from the DOl.: of each network. Therefore, after ”?‘* fir

ratio of total degrees of freedom to the single user degn’aesp((j-)mt on the x-axis, mterference percentage of ea(_:h pktvsor

freedom increases from a maximum value2ab K /2. pot zero. The non-zero mterferen(;e percentage indicatas t
The following corollary identifies the groups of symmetriénterference alignment is not possible.

systems, which are either all proper or all improper.
Corollary 2: If the (M x N,d)¥ system is proper (im-

proper) then so is thg M +1) x (N —1),d)¥X system, as long Aoy systen n Banpe 3

asd < min(M, N —1). Similarly, if the (M x N, d)¥ system e et
is proper (improper) then so is tHeM — 1) x (N +1),d)% - W5, =, Do, vyl
System, as Iong a$ S min(M _ 17 N). —%— M=4, N=6, DoF=8, Equivalent system of Example 6

Proof: Since the condition in Theoref 2 depends only o
M + N, it is clear that one can switch transmit and receiv
antennas without affecting the proper (or improper) status
the system.

Example 7:The systems(1 x 4,1)% (2 x 3,1)%, (3 x
2,1)% (4 x 1,1)* are in the same group, formed by switching
between transmit and receive antennas. It is easy to see "
the (4 x 1,1)* system is proper, because simple zero-forcir
suffices to achieve the DoF demand. By virtue of being in tt
same group, the rest are proper as well.

Example 8:Consider a(2 x 8,2)* symmetric system.
Again, the DoF for this interference channel can be triyiall % o ooFz ooF'3 ooFes
obtained by zero-forcing at each receiver. By switchingant s SO e s
nas from each transmitter to receiver, an equivalgnt5s, 2)*
symmetric system of Examp 6 is obtained, which is alsgg. 2. Interference percentages as a function of the tatalber of beams
proper. in the networks.

ce percent

Interferen:

V. NUMERICAL RESULTS

We tested numerous interference alignment problems, both VI. CONCLUSION
symmetric and asymmetric, and especially including each ofWe propose an analytical method to predict the feasibility o
the examples presented in this paper, using the numericderference alignment via linear schemes over constaM®l|



channels that have no structure (i.e. no symbol extensions)
Our approach to determine feasibility is to count the number
of equations and variables. We define a system as proper if
the number of variables is not smaller than the number of
equations, and as improper otherwise, with the understgndi
that proper systems are feasible almost surely, while igpgro
systems are almost surely infeasible. This observatidavisl
from Bezout’s theorem and the generic nature of the channel
coefficients, and can be rigorously shown in some cases, to
be included in the full paper. The full paper will also incéud
closed form solutions for interference alignment for saver
cases, such a2 x 3,1)2(3x2,1)%,(3x 3,1)(2x 3,1)3, (2 x
4,1)(2 x 3)3,(2 x 4,1)%(4 x 2,1)%(3 x 3,1) etc.
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