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Abstract— The degrees of freedom of MIMO interference
networks with constant channel coefficients are not known in
general. Determining the feasibility of a linear interference
alignment solution is a key step toward solving this open problem.
Our approach in this paper is to view the alignment problem as
a system of bilinear equations and determine its solvability by
comparing the number of equations and the number of variables.
To this end, we divide interference alignment problems into
two classes - proper and improper. An interference alignment
problem is called proper if the number of equations does not
exceed the number of variables. Otherwise, it is called improper.
Examples are presented to support the intuition that for generic
channel matrices, proper systems are almost surely feasible and
improper systems are almost surely infeasible.

I. I NTRODUCTION

The degrees of freedom (DoF) of wireless interference
networks represent the number of interference-free signaling-
dimensions in the network. In a network withK transmitters
andK receivers and non-degenerate channel conditions, it is
well known thatK non-interfering spatial signaling dimen-
sions can be created if the transmitters or the receivers areable
to jointly process their signals. Cadambe and Jafar [1] recently
introduced the idea of interference alignment for theK-user
wireless interference network with time-varying/frequency-
selective channel coefficients, and showed thatK/2 spatial
signaling dimensions are available inspite of the distributed
nature of the network which precludes joint processing of
signals at transmitters or receivers. While a number of interfer-
ence alignment solutions have appeared since [1] for different
channel settings, many fundamental questions remain unan-
swered. One such problem is to determine the feasibility of
linear interference alignment for MIMO interference networks
with constant channel coefficients. It is this open problem that
we address in this paper.

Suppose we denote by(M ×N, d)K , theK-user interfer-
ence network where every transmitter hasM antennas, every
receiver hasN antennas and each user wishes to achieved
DoF. We call such a system a symmetric system. Consider the
following examples.

• (2 × 2, 1)3 - It is shown by [1] that the in the3-
user interference channel with2 antennas at each node,
each user can achieve1 degree of freedom by linear
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interference alignment, i.e. by linear beamforming at the
transmitters and linear combining at the receivers.

• (5×5, 2)4 - Consider the4-user interference channel with
5 antennas at each user. Suppose we wish to achieve2
DoF per user, for a total of8 network DoF. An analytical
solution to this problem is not known but numerical
evidence in [2] clearly indicates that a linear interference
alignment solution exists. Numerical algorithms are one
way to determine the feasibility of linear interference
alignment. But, is there a way to analytically predict
the feasibility of alignment? In other words, without
running the numerical simulation could we have predicted
whether a linear interference alignment solution will exist
for the (5× 5, 2)4 system?

• Now consider three distinct systems -(6 × 4, 2)4, (7 ×
3, 2)4, (8×2, 2)4. Are these systems feasible? Clearly, the
last one,(8 × 2, 2)4 is feasible, because simple transmit
zero-forcing is enough to eliminate the interference at
every receiver. Is the feasibility of(8×2, 2)4 case related
to the feasibility of other cases where each transmitter
successively donates one antenna to the receiver? We will
show that these three systems and the(5 × 5, 2)4 case
belong to the same group.

In this paper, we address all these questions, as well as
more complex asymmetric cases where each node may have
different number of antennas and each user may demand
different number of degrees of freedom. The basic approach
is to consider the linear interference alignment problem for-
mulation as a system of bilinear equations. We determine the
correct way to count the number of variables and equations
for a general MIMO interference alignment problem. Then,
based on the number of variables and equations we classify
the system as either proper (number of equations does not
exceed number of variables), or improper (number of equa-
tions exceeds the number of variables), with the intuitive
understanding thatproper systems are almost surely feasible,
and improper systems are almost surely infeasible.

Aside from the detailed conditions that classify a general
(asymmetric) system as proper or improper, our analysis yields
a useful rule of thumb for symmetric systems(M ×N, d)K .
We find thatdonating an antenna from each transmitter to
the corresponding receiver, or vice versa, does not change the
nature of the system (proper or improper), provided every node
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still has at leastd antennas. For example, consider the system
(2 × 3, 1)4. Is this system proper? While this question may
be difficult to answer at first, now suppose we transfer one
antenna from each transmitter to its corresponding receiver, to
obtain the system(1 × 4, 1)4. This system is clearly proper,
because simple zero-forcing achieves1 degree of freedom for
each user in this system. This tells us that the system(2 ×
3, 1)4 is also proper. Thus, the following aregroupsof proper
systems, related by the rule of thumb defined above.

• (1× 4, 1)4, (2× 3, 1)4, (3× 2, 1)4, (4× 1, 1)4

• (1× 3, 1)3, (2× 2, 1)3, (3× 1, 1)3

• (8 × 2, 2)4, (7 × 3, 2)4, (6 × 4, 2)4, (5 × 5, 2)4, (4 ×
6, 2)4, (3× 7, 2)4, (2× 8, 2)4.

In more general terms, the group(K × 1, 1)K , ((K − 1) ×
2, 1)K , · · · , (2× (K− 1), 1)K , (1×K, 1)K is a proper group.
The first and last members of each group are easily seen to be
proper (because a simple zero-forcing solution exists), thereby
also determining the status of the rest of the members of the
group. Improper systems can be similarly grouped as well.
Completely asymmetric cases require a more sophisticated
set of feasibility conditions. The analysis is supported by
numerical results for a wide variety of cases, including the
specific examples listed above. We begin with the system
model.

II. SYSTEM MODEL

We consider the sameK-user MIMO interference channel
as considered in [2]. The received signal at thenth channel
use can be written as follows:

Y[k](n) =
K
∑

l=1

H[kl](n)X[l](n) + Z[k](n),

∀k ∈ K , {1, 2, ...,K}. Here, Y[k](n) andZ[k](n) are
the N [k] × 1 received signal vector and the zero mean unit
variance circularly symmetric symmetric additive white Gaus-
sian noise vector (AWGN) at thekth receiver, respectively.
X[l](n) is the M [l] × 1 signal vector transmitted from the
lth transmitter andH[kl](n) is the N [k] × M [l] matrix of
channel coefficients between thelth transmitter and thekth

receiver. E[||X[l](n)||2] = P [l] is the transmit power of thelth

transmitter. Hereafter, we omit the channel use indexn for
the sake of simplicity. The DoF for thekth user’s message is
denoted byd[k] ≤ min(M [k], N [k]).
(

M [1] ×N [1], d[1]
)

· · · (M [K]×N [K], d[K]) denotes theK-
user MIMO interference network, where thekth transmitter
and receiver haveMk andNk antennas, respectively and the
kth user demandsd[k] DoF. As defined earlier,(M ×N, d)

K

denotes theK-user symmetric MIMO interference network,
where each transmitter and receiver hasM andN antennas,
respectively, and each user demandsd DoF, so that the total
DoF demand isKd. Some sample asymmetric and symmetric
systems are shown in Fig. 1.

III. L INEAR INTERFERENCEALIGNMENT SCHEME

In interference alignment precoding, the transmitted signal
from thekth user isX[k] = V[k]X̃[k], whereX̃[k] is ad[k]×1
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(a) (2× 3, 1)2 (3× 2, 1)2 system in Example 3.

v
[1]
1 u

[1]
1

v
[2]
1 u

[2]
1

v
[3]
1 u

[3]
1

v
[4]
1 u

[4]
1

(b) (2× 3, 1)4 system in Example 5.

Fig. 1. Sample asymmetric and symmetric systems.

vector that denotes thed[k] independently encoded streams
transmitted from thekth user. TheM [k]×d[k] precoding filters
V[k] are designed to maximize the overlap of interference
signal subspaces at each receiver while ensuring that the
desired signal vectors at each receiver are linearly independent
of the interference subspace. Therefore, each receiver canzero-
force all the interference signals without zero-forcing any of
the desired signals. The zero-forcing filters at the receiver
are denoted byU[k]. In [2], it is shown that an interference
alignment solution requires the simultaneous satisfiability of
the following conditions:

U[k]†H[kj]V[j] = 0, ∀j 6= k (1)

rank
(

U[k]†H[kk]V[k]
)

= d[k], ∀k ∈ {1, 2, ...,K}, (2)

where † denotes the conjugate transpose operator.
Very importantly, [2] explains how the condition
(2) is automatically satisfied almost surely if the
channel matrices do not have any special structure,
rank(U[k]) = rank(V[k]) = d[k] ≥ min(M [k], N [k]) and



U[k],V[k] are designed to satisfy (1), which is independent
of all direct channelsH[kk].

The scenarios where it is difficult to theoretically determine
the feasibility of interference alignment can be evaluatednu-
merically using an iterative algorithm proposed in [2]. In this
work, we develop analytical criteria to predict the feasibility of
interference alignment. Our approach is to count the number
of equations and variables in (1). We assume generic MIMO
channels with no structure and force the required ranks of the
transmit and receive filters by design. Thus, (2) is satisfied
automatically and we only need to count the number of
variables and equations for (1).

IV. PROPERSYSTEM

The notion of a proper network is based on counting the
number of equations and the number of variables involved in
the bilinear equations (1). While the formal definition appears
later, put simply, the systemΠK

k=1

(

M [k] ×N [k], d[k]
)

network
is proper if and only if the cardinality of every subset of the
equations is less than or equal to the number of variables
involved in that subset of equations. Otherwise, the network is
considered improper. The reason for this classification is the
following intuition that forms the basis of our approach in this
paper.

Key Insight : The interference alignment problem is almost
surely feasible for proper systems and almost surely infeasible
for improper systems.

Instead of a formal proof, we refer to Bezout’s theorem,
which states that a system ofm generic polynomial equations
in m variables will almost surely have as many common
solutions as the product of the degrees of the polynomials.
For our case, it suffices if there is one solution. The feasibility
conditions in our case correspond to a system of polynomial
equations, whose generic nature is due to the generic channel
matrices. Due to the special bilinear form of the equations
it needs to be shown that the polynomials are sufficiently
generic. We are able to construct the rigorous proof for the
(2×3, 1)4 case which is omitted here due to lack of space. We
expect generalizations to all cases should be possible, albeit
cumbersome.

Next we explicitly account for all equations and variables.
Let us start with the total number of equationsNe and the
total number of variablesNv.

A. Counting the Number of EquationsNe and VariablesNv

To obtainNe and Nv, we rewrite the condition in (1) as
follows:

u[k]†
m H[kj]v[j]

n = 0, j 6= k, j, k ∈ {1, 2, ...,K} (3)

∀n ∈ {1, 2, ..., d[j]} and∀m ∈ {1, 2, ..., d[k]}

wherev
[j]
n and u

[k]
m are the transmit and the receive beam-

forming vectors (columns of precoding and interference sup-
pression filters, respectively).

Ne is directly obtained from (3) as follows:

Ne =
∑

k,j∈K
k 6=j

d[k]d[j]. (4)

However, calculating the number of variablesNv is less
straightforward. In particular, we have to be careful to not
count any superfluous variables that do not help with interfer-
ence alignment.

At the kth transmitter, the number of theM [k] ×
1 transmit beamforming vectors to be designed isd[k]
(

v
[k]
n , ∀n ∈ {1, 2, ..., d[k]}

)

. Therefore, at first sight it may

seem that the precoding filter of thekth transmitter,V[k], has
d[k]M [k] variables. However, as we argue next, without loss
of generality one can eliminate(d[k])2 of these variables.

The d[k] linearly independent columns of the transmit pre-
coding matrixV[k] span the transmitted signal space

T [k] = span(V[k]) (5)

= {v : ∃a ∈ C
d[k]×1, v = V[k]a}. (6)

Thus, the columns ofV[k] are the basis for the transmitted
signal space. However, the basis representation is not unique
for a given subspace. In particular, consider any full rankd[k]×
d[k] matrix B. Then

T [k] = span(V[k]) (7)

= {v : ∃a ∈ C
d[k]×1, v = V[k]a} (8)

= {v : ∃a ∈ C
d[k]×1, v = V[k]B−1Ba} (9)

= span(V[k]B−1). (10)

Thus, post-multiplication of the transmit precoding matrix
with any invertible matrix on the right does not change the
transmitted signal subspace. Suppose we chooseB to be the
d[k] × d[k] matrix that is obtained by deleting the bottom
M [k] − d[k] rows of V[k]. Then, we haveV[k]B−1 = Ṽ[k],
which is aM [k] × d[k] matrix with the following structure:

Ṽ[k] =

[

Id[k]

v̄1 v̄2 v̄3 · · · v̄d[k]

]

where Id[k] is the d[k] × d[k] identity matrix andv̄n, ∀n ∈
{1, 2, ..., d[k]} are

(

M [k] − d[k]
)

×1 vectors. It is easy to argue
that there is no other basis representation for the transmitted
signal space with fewer variables.

Therefore, by eliminating all superfluous variables for the
interference alignment problem, the number of variables tobe
designed for the precoding filter of thekth transmitter,Ṽ[k],
is d[k]

(

M [k] − d[k]
)

. Likewise, the actual number of variables
to be designed for the interference suppression filter of the
kth receiver,Ũ[k], is d[k]

(

N [k] − d[k]
)

. As a result, the total
number of variables in the network to be designed is:

Nv =

K
∑

k=1

d[k]
(

M [k] +N [k] − 2d[k]
)

. (11)



B. Proper System Characterization

To formalize the definition of a proper system, we introduce
some notation. We use the notationEmn

kj to represent the
equation

u[k]†
m H[kj]v[j]

n = 0. (12)

The set of variables involved in an equationE are indicated
by the function var(E). Clearly

|var(Emn
kj )| = (M [j] − d[j]) + (N [k] − d[k]) (13)

where| · | is the cardinality of a set.
Using this notation, we denote the set ofNe equations as

follows:

E = {Emn
kj | j, k ∈ K, k 6= j,

m ∈ {1, · · · , d[k]}, n ∈ {1, · · · , d[j]}}.

This leads us to the formal definition of a proper system.
Definition: A ΠK

k=1(M
[k]×N [k], d[k]) system is proper if and

only if

∀S ⊂ E , |S| ≤

∣

∣

∣

∣

∣

⋃

E∈S

var(E)

∣

∣

∣

∣

∣

. (14)

In other words, for all subsets of equations, the number of
variables involved must be at least as large as the number of
equations in that subset.

Condition (14) provides us a way to predict the feasibility of
interference alignment in a generalΠK

k=1(M
[k] × N [k], d[k])

system. However, note that it can be computationally cum-
bersome because we have to test all subsets of the set of all
equations. In most cases however, especially if the system is
improper, simply comparing the total number of equations and
the total number of variables may suffice.

Theorem 1:A ΠK
k=1(M

[k]×N [k], d[k]) system is improper
if Nv < Ne, i.e.,

K
∑

k=1

d[k]
(

M [k] +N [k] − 2d[k]
)

<

K
∑

k,j∈K
k 6=j

d[k]d[j]. (15)

Example 1:Consider the(5×5, 3)(5×5, 2)3 system, i.e. a
4-user interference networks where all nodes have5 antennas,
user1 demands3 DoF and users2, 3, 4 demand2 DoF each.
There are a total of60 equations, so that there are260 −
1 subsets of the set of all equations. Testing each of them
could be very challenging. However, since the total number
of variablesNv = 48 is less than the number of equations,
the system is easily seen to be improper.

Similarly, one can sometimes identify the bottleneck equa-
tions in the system by checking the equations with the fewest
number of variables, i.e., the equations involving the transmit-
ters and receivers with the fewest antennas.

Example 2:As a simple example, consider the system(2×
1, 1)2 which is clearly feasible (proper) because simple zero-
forcing is enough for achievability. However, now consider
the (2× 1, 1)(1× 2, 1) system, which also has the same total

number of equationsNe and variablesNv as the(2 × 1, 1)2

system. Thus, only comparingNv, Ne would lead one to
believe that this system is proper. However, suppose we check
E11

12 which connects transmitter 2 and receiver 1, both of
which have only one antenna each, i.e., letS = {E11

12} so
that |S| = 1. However var(E11

12 ) = 0. Thus, this system has
an equation with zero variables, which makes it improper, and
therefore infeasible.

Example 3:Several interesting cases emerge from applying
the condition (15). For example, consider the2 user interfer-
ence channel(2 × 3, 1)(3 × 2, 1) where a total of2 degrees
of freedom are desired. It is easily checked that this systemis
proper and the achievable scheme is described in [3]. However,
now consider the4-user interference channel consisting of
two sets of these channels, all interfering with each other
(2 × 3, 1)2(3 × 2, 1)2 which is a4-user interference channel
and a total of4 degrees of freedom are desired. It is easily
verified that this is a proper system, i.e. it satisfies (15). It turns
out that a closed form solution for alignment can be found in
this case. It is somewhat surprising that going from two users
to four users simply doubled the degrees of freedom in this
case, without any penalty for interference between the users in
terms of degrees of freedom. Since in this paper our focus is
only on feasibility and not on closed form solutions, we omit
the details of this example.

In general, testing if a large asymmetric system is proper can
be cumbersome. However, for the case of symmetric systems
of the type(M ×N, d)K , the process is much simpler.

C. Symmetric Systems(M ×N, d)K

Theorem 2:A symmetric system(M × N, d)K , is proper
if and only if Nv ≥ Ne. Equivalently, the system is proper iff

M +N − (K + 1)d ≥ 0 (16)
Remark:Note that the conditiond ≤ min(M,N) is always

assumed even if it is not explicitly stated every time.
Remark:Theorem 2 implies that for every user to achieved

degrees of freedom in aK user interference channel, it suffices
to have a total ofM + N ≥ (K + 1)d antennas between
the transmitter and receiver of a user. The antennas can be
distributed among the transmitter and receiver arbitrarily, as
long as each of them has at leastd antennas. In particular, to
achieveK degrees of freedom in aK user symmetric network
we only need a total ofK+1 antennas between the transmitter
and receiver of each user. The system(2 × 3, 1)4 is such an
example.

Proof: Because of the symmetry each equation is involved
with the same number of variables and any deficiency in the
number of variables shows up in the comparison of the total
number of variables versus the total number of equations.
Plugging in the values ofNv, Ne computed earlier, we have
the result of Theorem 2.

Example 4:Consider (1 × 2, 1)3, i.e. a 3-user MIMO
symmetric interference network, where each transmitter has
one antenna, each receiver has two antennas, and each user
demands1 DoF. For this systemM + N − (K + 1)d =
1 + 2− (4) < 0, so that this system is not proper.



Example 5:Consider the(2× 3, 1)
4 system. For this sys-

tem,M +N − (K +1)d = 2+3− (5) = 0 which means this
system is proper.

Example 6:Consider the(5× 5, 2)
4 system. For this sys-

temM +N − (K +1)d = 5+ 5− 10 = 0, which means this
system is proper.

The following corollary shows the limitations of linear
interference alignment over constant MIMO channels (with
no symbol extensions).

Corollary 1: The ratio of the sum degrees of a proper
(M × N, d)K system, normalized by a single user’s degree
of freedom in the absence of interference is bounded by:

dK

min(M,N)
≤ 1 +

max(M,N)

min(M,N)
−

d

min(M,N)
(17)

Proof: The proof is straightforward from the condition of
Theorem 2.

Remark: For the case thatM = N note that the total
number of degrees of freedom for a proper system is no more
than twice the number of degrees of freedom achieved by each
user in the absence of interference. Note that for diagonal
(time-varying) channels it was shown in [1] that the total
number of degrees of freedom isK/2 times the number of
degrees of freedom achieved by each user in the absence of
interference. This result shows that the diagonal structure of
the channel matrix is very helpful. Going from the case of no
structure (arbitrary MIMO channels) to diagonal structurethe
ratio of total degrees of freedom to the single user degrees of
freedom increases from a maximum value of2 to K/2.

The following corollary identifies the groups of symmetric
systems, which are either all proper or all improper.

Corollary 2: If the (M × N, d)K system is proper (im-
proper) then so is the((M+1)×(N−1), d)K system, as long
asd ≤ min(M,N − 1). Similarly, if the (M ×N, d)K system
is proper (improper) then so is the((M − 1)× (N + 1), d)K

system, as long asd ≤ min(M − 1, N).
Proof: Since the condition in Theorem 2 depends only on
M + N , it is clear that one can switch transmit and receive
antennas without affecting the proper (or improper) statusof
the system.

Example 7:The systems(1 × 4, 1)4, (2 × 3, 1)4, (3 ×
2, 1)4, (4× 1, 1)4 are in the same group, formed by switching
between transmit and receive antennas. It is easy to see that
the (4 × 1, 1)4 system is proper, because simple zero-forcing
suffices to achieve the DoF demand. By virtue of being in the
same group, the rest are proper as well.

Example 8:Consider a (2 × 8, 2)4 symmetric system.
Again, the DoF for this interference channel can be trivially
obtained by zero-forcing at each receiver. By switching anten-
nas from each transmitter to receiver, an equivalent(5×5, 2)4

symmetric system of Example 6 is obtained, which is also
proper.

V. NUMERICAL RESULTS

We tested numerous interference alignment problems, both
symmetric and asymmetric, and especially including each of
the examples presented in this paper, using the numerical

algorithms of [2]. In every case so far, we have found the
results to be consistent with the guiding intuition of this work,
proper systems are feasible and improper systems are not.

In this section we provide numerical results for a few
interesting and representative cases. The results are in terms
of the leakage interference, as defined in [2] - i.e. the fraction
of the interference power that is present in the dimensions
reserved for the desired signal. The interference percentage at
the kth receiver is evaluated as follows:

pk =

d[k]
∑

j=1

λj

[

Q[k]
]

Tr[Q[k]]
, (18)

where λj denotes the smallest eigenvalue of a matrix, Tr
denotes the trace of a matrix andQ[k] denotes the interference
covariance matrix at thekth receiver:

Q[k] =

K
∑

j=1,j 6=k

P [j]

d[j]
H[kj]V[j]V[j]†H[kj]†.

The numerator and the denominator of (18) are the interference
and desired signal space powers at thekth receiver, respec-
tively.

In Fig. 2, the interference percentages versus the total
number of beams are presented. The total number of beams are
started from the DoF of each network. Therefore, after the first
point on the x-axis, interference percentage of each network is
not zero. The non-zero interference percentage indicates that
interference alignment is not possible.
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Fig. 2. Interference percentages as a function of the total number of beams
in the networks.

VI. CONCLUSION

We propose an analytical method to predict the feasibility of
interference alignment via linear schemes over constant MIMO



channels that have no structure (i.e. no symbol extensions).
Our approach to determine feasibility is to count the number
of equations and variables. We define a system as proper if
the number of variables is not smaller than the number of
equations, and as improper otherwise, with the understanding
that proper systems are feasible almost surely, while improper
systems are almost surely infeasible. This observation follows
from Bezout’s theorem and the generic nature of the channel
coefficients, and can be rigorously shown in some cases, to
be included in the full paper. The full paper will also include
closed form solutions for interference alignment for several
cases, such as(2× 3, 1)2(3× 2, 1)2, (3× 3, 1)(2× 3, 1)3, (2×
4, 1)(2× 3)3, (2× 4, 1)2(4× 2, 1)2(3× 3, 1) etc.

ACKNOWLEDGMENT

The first author would like to thank V. R. Cadambe at
University of California, Irvine for valuable discussionson
interference alignment.

REFERENCES

[1] V. R. Cadambe and S. A. Jafar, “Interference alignment and degrees of
freedom of the K-user interference channel,”IEEE Trans. Inf. Theory,
vol. 54, no. 8, pp. 3425–3441, Aug. 2008.

[2] K. S. Gomadam, V. R. Cadambe, and S. A. Jafar, “Approaching the
capacity of wireless networks through distributed interference alignment
MIMO fading channels,” ArXiv pre-print cs.IT/0803.3816.

[3] M. Fakhereddin and S. A. Jafar, “Degrees of freedom for the MIMO
interference channel,”IEEE Trans. Inf. Theory, vol. 53, no. 7, pp. 2637–
2642, Jul. 2007.


	Introduction
	System Model
	Linear Interference Alignment Scheme
	Proper System
	Counting the Number of Equations Ne and Variables Nv
	Proper System Characterization
	Symmetric Systems (MN,d)K

	Numerical Results
	Conclusion
	References

