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Abstract

We address covariance estimation in the sense of minimum-+segaared error (MMSE) for Gaussian
samples. Specifically, we consider shrinkage methods wdniehsuitable for high dimensional problems
with a small number of samples (largesmalln). First, we improve on the Ledoit-Wolf (LW) method by
conditioning on a sufficient statistic. By the Rao-Blacktbkeorem, this yields a new estimator called
RBLW, whose mean-squared error dominates that of LW for Gansvariables. Second, to further reduce
the estimation error, we propose an iterative approach twhjgproximates the clairvoyant shrinkage
estimator. Convergence of this iterative method is esthbll and a closed form expression for the limit
is determined, which is referred to as the oracle approximgathrinkage (OAS) estimator. Both RBLW
and OAS estimators have simple expressions and are eagilgrmented. Although the two methods are
developed from different persepctives, their structureéntical up to specified constants. The RBLW
estimator provably dominates the LW method. Numerical fthons demonstrate that the OAS approach
can perform even better than RBLW, especially wheis much less thap. We also demonstrate the

performance of these techniques in the context of adapseentorming.
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. INTRODUCTION

Covariance matrix estimation is a fundamental problem gmal processing and related fields. Many
applications varying from array processing [12] to funcibgenomics [17] rely on accurately estimated
covariance matrices. In recent years, estimation of higtedsionap x p covariance matrices under small
sample sizen has attracted considerable interest. Examples includsifilzation on gene expression from
microarray data, financial forecasting, spectroscopiagin@g brain activation mapping from fMRI and
many others. Standard estimation methods perform poorthdése largep small n settings. This is the
main motivation for this work.

The sample covariance is a common estimate for the unknovariemce matrix. When it is invertible,
the sample covariance coincides with the classical maxirtiketihood estimate. However, while it is
an unbiased estimator, it does not minimize the mean-sduarer (MSE). Indeed, Stein demonstrated
that superior performance may be obtained by shrinking Hrapse covariance [2], [3]. Since then,
many shrinkage estimators have been proposed under diffeegformance measures. For example, Haff
[4] introduced an estimator inspired by the empirical Bageproach. Dey and Srinivasan [5] derived
a minimax estimator under Stein’s entropy loss functiomgrand Berger [6] obtained expressions for
Bayesian estimators under a class of priors for the covegiarhese works addressed the case of invertible
sample covariance when> p. Recently, Ledoit and Wolf (LW) proposed a shrinkage estiméor the
casen < p which asymptotically minimizes the MSE [8]. The LW estimai®well conditioned for small
sample sizes and can thus be applied to high dimensionalgongb In contrast to previous approaches,
they show that performance advantages are distributem-dnd not restricted to Gaussian assumptions.

In this paper, we show that the LW estimator can be signifigamiproved when the samples are in fact
Gaussian. Specifically, we develop two new estimation teglas that result from different considerations.
The first follows from the Rao-Blackwell theorem, while trecend is an application of the ideas of [11]
to covariance estimation.

We begin by providing a closed form expression for the optiotairvoyant shrinkage estimator under
an MSE loss criteria. This estimator is an explicit functiointhe unknown covariance matrix that can
be used as an oracle performance bound. Our first estimatténed by applying the well-known
Rao-Blackwell theorem [31] to the LW method, and is therefdenoted by RBLW. Using several
nontrivial Haar integral computations, we obtain a simptesed form solution which provably dominates
the LW method in terms of MSE. We then introduce an iteratikénkage estimator which tries to

approximate the oracle. This approach follows the mettmyloteveloped in [11] for the case of linear
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regression. Beginning with an initial naive choice, eaehaition is defined as the oracle solution when
the unknown covariance is replaced by its estimate obtaindtie previous iteration. Remarkably, a
closed form expression can be determined for the limit o§éhigerations. We refer to the limit as the
oracle approximating shrinkage (OAS) estimator.

The OAS and RBLW solutions have similar structure that iatesl to a sphericity test as discussed in
[18]-[20]. Both OAS and RBLW estimators are intuitive, easycompute and perform well with finite
sample size. The RBLW technique provably dominates LW. Nigakresults demonstrate that for small
sample sizes, the OAS estimator is superior to both the RBho@/the LW methods.

To illustrate the proposed covariance estimators we agpyntto problems of time series analysis
and array signal processing. Specifically, in the contextroé series analysis we establish performance
advantages of OAS and RBLW to LW for covariance estimatioattoregressive models and in fractional
Brownian motion models, respectively. In the context of rhaming, we show that RBLW and OAS
can be used to significantly improve the Capon beamformefl2h a multitude of covariance matrix
estimators were implemented in Capon beamformers, and utters reported that the LW approach
substantially improves performance as compared to othéhads. We show here that even better
performance can be achieved by using the techniques irteatdin this paper.

The paper is organized as follows. Section 2 formulates tbblgm. Section 3 introduces the oracle
estimator together with the RBLW and OAS methods. Sectioaptesents numerical simulation results
and applications in adaptive beamforming. Section 5 sunmesiour principal conclusions. The proofs
of theorems and lemmas are provided in the Appendix.

Notation In the following, we depict vectors in lowercase boldfaetddrs and matrices in uppercase
boldface letters(-)” and (-)” denote the transpose and the conjugate transpose, respecit (-),
|-l »» and det-) are the trace, the Frobenius norm, and the determinant oftéxr@spectively. Finally,

A < B means that the matriB — A is positive definite, and\ > B means that the matriA — B is

positive definite.

[I. PROBLEM FORMULATION

Let {x;};~, be a sample of independent identical distributed (i.izddimensional Gaussian vectors
with zero mean and covariand We do not assume > p. Our goal is to find an estimatd: ({xi}q)

which minimizes the MSE:

e[ e -3} W

July 27, 2009 DRAFT



It is difficult to compute the MSE ofS ({x;},) without additional constraints and therefore we
restrict ourselves to a specific class of estimators that@nghrinkage [1], [7]. The unstructured classical

estimator ofX is the sample covarianc® defined as
~ 1 &
S = - inxiT. 2)
=1

This estimator is unbiaseE{§} =X, and is also the maximum likelihood solutionrif> p. However,
it does not necessarily achieve low MSE due to its high vagaand is usually ill-posed for large
problems. On the other hand, we may consider a naive but melstanditioned estimate foE:
o Ir <§)
F=—~1
p
This “structured” estimate will result in reduced varianeéh the expense of increasing the bias. A

(3)

reasonable tradeoff between low bias and low variance iraeth by shrinkage o8 towardsF, resulting
in the following class of estimators:
S =(1-p)S+jF. (4)

The estimator® is characterized by the shrinkage coefficignwhich is a parameter between 0 and 1
and can be a function of the observatidns};_ ;. The matrixF is referred to as the shrinkage tardet.

Throughout the paper, we restrict our attention to shriekagtimates of the form (4). Our goal is
to find a shrinkage coefficieng that minimizes the MSE (1). As we show in the next section, the
optimal p minimizing the MSE depends in general on the unknd®irand therefore in general cannot
be implemented. Instead, we propose two different appexmdh approximate the optimal shrinkage

coefficient.

[1l. SHRINKAGE ALGORITHMS
A. The Oracle estimator

We begin by deriving a clairvoyant oracle estimator thatsuae optimal nonrandom coefficient to
minimize the mean-squared error. In the following subsestiwe will show how to approximate the

oracle using implementable data-driven methods.

1The convex combination in (4) can be generalized to the figeanbination ofS andF. The reader is referred to [13] for

further discussion.
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The oracle estimatéo is the solution to
~ 2
min E{HZO—ZH }
P F ) (5)
S.t. Zoz(l—p)S—FpF

The optimal parametes, is provided in the following theorem.

Theorem 1. Let S be the sample covariance of a setpstlimensional vectorgx;}; ;. If {x;};_, are

i.i.d. Gaussian vectors with covarian®, then the solution to (5) is
_e{n((z-9) (F-9)} .
2
#{ls-7.

(1—-2/p) Tr (%) + Tr* (X)
(n+1-2/p)Tr(22) + (1 —n/p) Tr*(2)

Proof: Equation (6) was established in [7] for any distribution {of;}" ;. Under the additional

()

Gaussian assumption, (7) can be obtained from straighaiohwvaluation of the expectations:
p{r((=-8) (F-8))} == P {r(s))
. (8)
O () 4 e e ()

and

- F {ﬂ (§2)} _9E {ﬂ (%]?‘)} +E {Tr <f2>} (9)
-s{n(e) - 2O

p
Equation (7) is a result of using the following identities/]2

E {ﬁ (§)} =T (), (10)
p{m(8?)} =" : by (22) 4 %Trz (), (11)
and
E {Tr2 <§)} =T () + %Tr (2%). (12)
|

Note that (6) specifies the optimal shrinkage coefficientdny sample distribution whil€7) only

holds for the Gaussian distribution.
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B. The Rao-Blackwell Ledoit-Wolf (RBLW) estimator

The oracle estimator defined by (5) is optimal but cannot b@iémented, since the solution specified
by both (6) and (7) depends on the unkno®n Without any knowledge of the sample distribution,

Ledoit and Wolf [7], [8] proposed to approximate the oracténg the following consistent estimate of

(6):

n

2.

T ()~ ()]

They then proved that when bothyp — oo andp/n — ¢, 0 < ¢ < oo, (13) converges to (6) in

112
XX} — SH
F

(13)

probability regardless of the sample distribution. The Lefireator £,y is then defined by plugging
prw into (4). In [8] Ledoit and Wolf also showed that the optimg} (6) is always between 0 and 1.

To further improve the performance, they suggested usingdified shrinkage parameter
prw = min (prw, 1) (14)

instead ofp .

The Rao-Blackwell LW (RBLW) estimator described below mably improves on the LW method
under the Gaussian model. The motivation for the RBLW od&tgs from the fact that under the Gaussian
assumption ofx;}._,, a sufficient statistic for estimating is the sample covariancg Intuitively, the
LW estimator is a function of not onlﬁ but other statistics and therefore, by the Rao-Blackwelbtbm,
can be improved. Specifically, the Rao-Blackwell theorer] [&ates that ifg(X) is an estimator of a
parametem, then the conditional expectation gfX) given T(X), whereT is a sufficient statistic, is
never worse than the original estimagdrX ) under any convex loss criterion. Applying the Rao-Blackwel

theorem to the LW estimator yields the following result.

Theorem 2. Let {x;}!"; be independent-dimensional Gaussian vectors with covariarEe and letS

be the sample covariance ¢k;};_,. The conditioned expectation of the LW covariance estimato
Sppw = E [EA]LW ‘g] (15)
= (1— preLw)S + procwF (16)

where (n—2)/n-Tr (§2) + Tr? <§)

(n+2) [ﬂ <§2> T <§> /p] '

PRBLW = (17)
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This estimator satisfies
~ 2 —~ 2
E{HERBLw—zHF} gE{HzLW—EHF}, (18)

for everyX..

The proof of Theorem 2 is given in the Appendix.

Similarly to the LW estimator, we propose the modification

Prprw = min (preLwW, 1) (19)

instead ofprprw .

C. The Oracle-Approximating Shrinkage (OAS) estimator

The basic idea of the LW estimator is to asymptotically agpnate the oracle, which is designed for
large sample size. For a large number of samples the LW asgficgdty achieves the minimum MSE
with respect to shrinkage estimators. Clearly, the RBLW aitdherits this property. However, for very
small n, which is often the case of interest, there is no guarantaeghch optimality still holds. To
illustrate this point, consider the extreme example wheg one sample is available. Far= 1 we have
both o7y, = 1 and ph . = 1, Which indicates thaﬁLW = flRBLW — S. This however contradicts
our expectations since if a single sample is available, ihdgse reasonable to expect more confidence to
be put on the more parsimoniolsrather thars.

In this section, we consider an alternative approach tocqpiate the oracle estimator based on [11].
In (7), we obtained a closed-form formula of the oracle eatonunder Gaussian assumptions. The idea
behind the OAS is to approximate this oracle via an itergtirecedure. We initialize the iterations with
an initial guess of¥ and iteratively refine it. The initial gues§0 might be the sample covariance,
the RBLW estimate or any other symmetric non-negative defiestimator. We replacE in the oracle
solution byf]o yielding 31, which in turn generate§]2 through our proposed iteration. The iteration
process is continued until convergence. The limit, denae® ) 4, is the OAS solution. Specifically,
the proposed iteration is,

(1—2/p)Tr (fzﬁ) + Ty (fzj)
(n+1-2/p)Tr (f)jg) + (1 —n/p) Tr? (f)j>

Y1 =(1~pj+1)S + pjF. (21)

ﬁj-i—l = ) (20)
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Comparing with (7), notice that in (20)r(X) and Tr(X?) are replaced byTr(f)j) and Tr(fljg),
respectively. Hera“r(f}jg) is used instead dfr(f]?) since the latter would always forgg to converge

to 1 while the former leads to a more meaningful limiting \&lu

Theorem 3. For any initial guesspy that is betweerd and 1, the iterations specified by (20), (21)
converge ag — oo to the following estimate:
Yoas = (1= poas)S + poasF, (22)

where
L (1—2/p)Tr <§2) 4Ty <§) 1 .
poas = (n+1-2/p) [Tr (§2) — Tr? (§) /p} )

In addition, 0 < pp) 4g < 1

Proof: Plugging inf]j from (21) into (20) and simplifying yields

1—(1—2/p)dp;

Pir1 = . —, (24)
T T — (01— 2/p)dp
where
o Tr <§2> — Ty? <§> /p
¢ = = I —. (25)
Tr (Sz) + Tr? (S)
SinceTr(S?) > Tr?(S)/p, 0 < ¢ < 1. Using a simple change of variables
b = SR (26)
1—(n+1-2/p)op;
(24) is equivalent to the following geometric series
. ne . 1
bjy1 = ¢ =b; - (27)
1-(1-=2/p)¢ "~ 1-(1-2/p)¢
It is easy to see that
0, L
. 1—(1-2
tim by = ( ) /p)o (28)
Jj—00
1 y ne 1
1—(n+1-2/p)¢ 1—(1-2/p)o
Thereforep; also converges ag— oo andpp, 44 is given by
1 .
——— (n+1-2/p)p>1
ﬁBAS:}H&ﬁJ’ _ ) (n+1-2/p)¢ . (29)
1 (n+1-2/p)p<1
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We can write (29) equivalently as
POAs = min (%, 1) . (30)
(n+1-2/p)o
Equation (23) is obtained by substituting (25) into (29). [ |
Note that (29)57, 4 ¢ is naturally bounded within0, 1]. This is different fromg; ;, and gy 5, Where

the [0, 1] constraint is imposed in an ad hoc fashion.

D. Shrinkage and sphericity statistics

We now turn to theoretical comparisons between RBLW and ORg only difference is in their
shrinkage coefficients. Although derived from distinct eggehes, it is easy to see thi , o shares the

same structure asy 5+ In fact, they can both be expressed as the parameterizetdun
. &
P = min OH_E’I (31)

with U defined as
1 p-Tr <§2>
p—1 Tr2 <§>

For o3, = pH g, @ @and 3 of (31) are given by

U= —-11. (32)

1
R I gy )
B=foas= Lo
Y T 12/ - 1)
while for p%, = phprw: )
n_
& = ORBLW = m (34)
(p+1)n—2

B = BrBLW = Tt Do =1

Thus the only difference betwegi, , s and %, is the choice ofx and 3. The statistid’ arises in
tests of sphericity ok [19], [20], i.e., testing whether or naE is a scaled identity matrix. In particular,
U is the locally most powerful invariant test statistic fohspicity under orthogonal transformations [18].
The smaller the value df’, the more likely thafs is proportional to an identity matrik. Similarly, in

our shrinkage algorithms, the smaller the valudofthe more shrinkage occurs E)OAS and f]RBLW.
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IV. NUMERICAL SIMULATIONS

In this section we implement and test the proposed covagiastimators. We first compare the
estimated MSE of the RBLW and OAS techniques with the LW methge then consider their application
to the problem of adaptive beamforming, and show that they ke improved performance of Capon

beamformers.

A. MSE Comparison

To test the MSE of the covariance estimators we designed et® &f experiments with different
shapes of. Such covariance matrices have been used to study covaresticnators in [10]. We use
(14), (19) and (23) to calculate the shrinkage coefficientgtie LW, the RBLW and the OAS estimators.
For comparison, the oracle estimator (5) uses the ¥wmnd is included as a benchmark lower bound on
MSE for comparison. For all simulations, we get 100 and letn range from6 to 30. Each simulation
is repeated 5000 times and the MSE and shrinkage coeffiGeatplotted as a function of. The 95%
confidence intervals of the MSE and shrinkage coefficientevieund to be smaller than the marker
size and are omitted in the figures.

In the first experiment, an autoregressive covariancetsired: is used. We le® be the covariance

matrix of a Gaussian AR(1) process [32],
%, = rl=il, (35)

whereX;; denotes the entry aE in row ¢ and columnj. We taker = 0.1,0.5 and0.9 for the different
simulations reported below. Figs. 1(a)-3(a) show the MSEhef estimators for different values of
Figs. 1(b)-3(b) show the corresponding shrinkage coeffisie

In Fig. 4 we plot the MSE of the first three iterations obtairtgdthe iterative procedure in (21) and
(20). For comparison we also plot the results of the OAS awdattacle estimator. We set= 0.5 in
this example and start the iterations with the initial guﬁgs: S. From Fig. 4 it can be seen that as the
iterations proceed, the MSE gradually decreases towaedftthe OAS estimator, which is very close
to that of the oracle.

In the second experiment, we SBtas the covariance matrix associated with the incrementegsoof
fractional Brownian motion (FBM) exhibiting long-rangemindence. Such processes are often used to

model internet traffic [29] and other complex phenomena. foine of the covariance matrix is given by

1. o o
i =5 [ =l + D) =20 = " + (i = 5] = )*], (36)
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Fig. 1. AR(1) process: Comparison of covariance estimatdrsnp = 100, » = 0.1.

where H € [0.5,1] is the so-called Hurst parameter. The typical valuefofs below 0.9 in practical
applications. We choosH equal to 0.6, 0.7 and 0.8. The MSE and shrinkage coefficigntplatted in
Figs. 5(a)-7(a) and Figs. 5(b)-7(b), respectively.

From the simulation results in the above two experiments,avident that the OAS estimator performs
very closely to the ideal oracle estimator. Whens small, the OAS significantly outperforms the LW
and the RBLW. The RBLW improves slightly upon the LW, but tigsnot obvious at the scale of the
plots shown in the figures. As expected, all the estimatonserge to a common value whenincreases.

As indicated in (5) and shown from simulation results, thacte shrinkage coefficient, decreases

”

in the sample numbet. This makes sense sin€é— pp) can be regarded as a measure of “confidence
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Fig. 2. AR(1) process: Comparison of covariance estimatdrsnp = 100, » = 0.5.

assigned tS. Intuitively, as more observations are available, one @megtnigher confidence in the sample
covarianceS and thereforen, decreases. This characteristic is exhibitedy, ¢ but not by 5% 51
andp; . This may partially explain why OAS outperforms RBLW and Lw fsmall samples. All the
estimators perform better when the sphericity3ofincreases, which corresponds to small values of
and H.

Our experience through numerous simulations with arlyitparameters suggests that in practice the
OAS is preferable to the RBLW. However, as the RBLW is proyaétter than the LW there exists
counter examples. For the incremental FBM covariakcen (36), we setd = 0.9,n = 20,p = 100.

The simulation is repeated for 5000 times and the result ésvahin Table 1, where MSEA(RBLW) <
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Fig. 3. AR(1) process: Comparison of covariance estimatdrsnp = 100, » = 0.9.

MSE(f)OAS) < MSE(f]LW). The differences are very small but establish that the Og8nator does
not always dominate the RBLW. However, we suspect that tlillsomy occur whenX has a very small
sphericity, a case of less interest in practice as smallrgptyeof 3 would suggest a different shrinkage

target tharF.

B. Application to the Capon beamformer

Next we applied the proposed shrinkage estimators to theakigrocessing problem of adaptive
beamforming. Assume that a narrow-band signal of integé&st impinges on an unperturbed uniform

linear array (ULA) [30] comprised op sensors. The complex valued vectorrobnapshots of the array
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Fig. 4. AR(1) process: Comparison of MSE in different itemas, whenp = 100, » = 0.5

TABLE |

INCREMENTAL FRM PROCESS COMPARISON OFMSE AND SHRINKAGE COEFFICIENTS WHENH = 0.9, n = 20, p = 100.

MSE Shrinkage coefficient
Oracle | 428.9972 0.2675
OAS | 475.2691 0.3043
RBLW | 472.8206 0.2856
Lw 475.5840 0.2867
output is
x(t) = a(fs)s(t) +n(t), for t=1,...,n, (37)

whered; is parameter vector determining the location of the signalee anda(0) is the array response

for a generic source locatioh Specifically,
a(e) = [17 e_jw7 e_j2w7 ) e_j(p_l)w]T7 (38)

wherew is the spatial frequency. The noise/interference veni@) is assumed to be zero mean i.i.d.
Gaussian distributed. We model the unknawh) as a zero mean i.i.d. Gaussian process.

In order to recover the unknows(t) the Capon beamformer [30] linearly combines the array dutpu
x(t) using a vector of weightsv, calculated by

B S~1a(dy)
W= a(fs)"x-1a(fy)’ (39)
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Fig. 5. Incremental FBM process: Comparison of covariarsténators wherp = 100, H = 0.6.

where X is the covariance ok(t). The covarianceé is unknown while the array responséd) and
the source direction-of-arrival (DOA), are known. After obtaining the weight vecter, the signal of
interests(t) is estimated byw ! x(t).

To implement (39) the matriX® needs to be estimated. In [12] it was shown that using the LW
estimator could substantially improve Capon beamformefopmance over conventional methods. As
we will see below, the OAS and the RBLW shrinkage estimatars yeld even better results.

Note that the signal and the noise processes are complegdvahdX is thus a complex (Hermitian

symmetric) covariance matrix. To apply the OAS and RBLWreatbrs we use the same approach as
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Fig. 6. Incremental FBM process: Comparison of covariarsténators wherp = 100, H = 0.7.

used in [12] to extend the real LW covariance estimator todbeplex case. Given a x 1 complex

random vectotx, we represent it as 2p x 1 vector of its real and imaginary parts

X5 = : (40)
Im (x)

Then the estimate of the complex covariance can be repezbast

~ i\]rr i\37*2'
Y= (42)

Y Xy
whereX,,, 3,;, ;. andX;; arep x p sub-matrices. The real representation (41) can be mappte to
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Fig. 7. Incremental FBM process: Comparison of covariarsténators wherp = 100, H = 0.8.

full complex covariance matri¥: as

A~

Using this representation we can easily extend the reaeddlMV, RBLW and OAS estimators to complex
scenarios.

We conduct the beamforming simulation as follows. A ULA @f= 10 sensor elements with half
wavelength spacing is assumed and three signals were sadua impinging on the array. The signal
of interest has a DOAl, = 20° and a power? = 10 dB above the complex Gaussian sensor noise. The

other two signals are mutually independent interferenCee is at DOA angle o;; = —30° and the
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Fig. 8. Comparison between different covariance shrinlesgienators in the Capon beamformer. SINR is plotted versosber

of snapshots:.. OAS achieves as much as 1 dB improvement over the LW.

other one is close to the source of interest with its angualeation corresponding to a spatial frequency

of

wig = msin(fs) + on

p
where~ is set to 0.9. Each signal has power 15 dB above the sensa@. nois

We implemented the complex versions of the LW, the RBLW arel @AS covariance estimators,
described above, and used them in placEafh the Capon beamformer expression (39). The beamforming
performance gain is measured by the SINR defined as [12]

K 21 aH 2
1 o |wila (6s)]
mean SINR= = g — k

— wil[Z — o2a(d)a(0,) ! ]wy’ (43)

where K is the number of Monte-Carlo simulations atqg is the weight vector obtained by (39) in the
kth simulation. HereX' = 5000 andn varies from 10 to 60 in step of 5 snap shots. The gain is shown
in Fig. 8. In [12] it was reported that the LW estimator acleigvthe best SINR performances among
several contemporary Capon-type beamformers. It can beisdég. 8 that the RBLW and the OAS do
even better, improving upon the LW estimator. Note also thatgreatest improvement for OAS in the

smalln regime is observed.

V. CONCLUSION

In this paper, we introduced two new shrinkage algorithmasttimate covariance matrices. The RBLW

estimator was shown to improve upon the state-of-the-artrhéthod by virtue of the Rao-Blackwell
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theorem. The OAS estimator was developed by iterating ooptienal oracle estimate, where the limiting
form was determined analytically. The RBLW provably dom@sathe LW, and the OAS empirically
outperforms both the RBLW and the LW in most experiments weel@onducted. The proposed OAS
and RBLW estimators have simple explicit expressions aedeasy to implement. Furthermore, they
share similar structure differing only in the form of theiskage coefficients. We applied these estimators
to the Capon beamformer and obtained significant gains ifomeance as compared to the LW Capon
beamformer implementation.

Through out the paper we set the shrinkage target as thedsdaletity matrix. The theory developed
here can be extended to other non-identity shrinkage tardet interesting question for future research

is how to choose appropriate targets in specific application

VI. APPENDIX

In this appendix we prove Theorem 2. Theorem 2 is non-trigiad requires careful treatment using
results from the theory of Haar measure and singular Wishsitibutions. The proof will require several

intermediate results stated as lemmas. We begin with a defini

Definition 1. Let {x;} , be a sample op-dimensional i.i.d. Gaussian vectors with mean zero and

covarianceX.. Define ap x n matrix X as
X = (x1,X2,...,Xp) - (44)
Denoter = min(p,n) and define the singular value decompositionXras
X = HAQ, (45)

whereH is ap x r matrix such thafI”H = I, A is ar x r diagonal matrix in probability 1, comprised

of the singular values oK, and Q is ar x n matrix such thaiQQ” = 1.
Next we state and prove three lemmas.
Lemma 1. Let (H, A, Q) be matrices defined in Definition 1. Thénis independent oH and A.

Proof: For the caser < p, H is ap x n matrix, A is an x n square diagonal matrix an@ is a

n x n orthogonal matrix. The pdf oX is

1 1 Ty —1
X) — ~ATR(XXTE ) 46
P(X) (271')?’"/2det(E)”/26 (46)

July 27, 2009 DRAFT



20

SinceXX” = HAATHT, the joint pdf of(H, A, Q) is
p(H,A,Q) =
1 —lTr(HAATHTZlfl)J X H A (47)
(27T)pn/2det(2)”/2 e 2 ( - 3 43y Q) )

whereJ (X — H, A, Q) is the Jacobian converting frolX to (H, A, Q). According to Lemma 2.4 of
[21],

J(X ~HA,Q) =
(. (48)
27"det(A)" " TT (AF =A%) gnp (H) 900 (Q)
j<k
where \; denotes thg-th diagonal element oA and g, ,(H) and g, ,(Q) are functions of and Q
defined in [21].
Substituting (48) into (47)p (H, A, Q) can be factorized into functions ¢H, A) and Q. Therefore,
Q is independent oH and A.

Similarly, one can show tha is independent oH and A whenn > p. |

Lemma 2. Let Q be a matrix defined in Definition 1. Denadgas an arbitrary column vector df and

¢; as thej-th element ofy. Then

O (49)
and
E{dg) = m - (50)

Proof: The proof is different for the cases that< p andn > p, which are treated separately.
(1) Casen < p:
In this caseQ is a real Haar matrix and is isotropically distributed [22}4], [25], i.e., for any unitary

matrices® and ¥ which are independent wit), #Q and Q¥ have the same pdf d):

p(®Q) = p(Q¥) =p(Q). (51)

Following [23] in the complex case, we now use (51) to caleuthe fourth order moments of elements
of Q. SinceQ and

cosf sinf

—sinf@ cos6
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are also identically distributed, we have
E{Ql}
=F {(QH cos 0 + Qa1 sin 9)4}
=cos’0E{Q},} +sin*0E {Q3,) (52)
+ 6cos?fsin® OF {Q%l Q%1}

+2cos® fsinOFE {Q:{’ngl} + 2cosfsin® OF {QHQ%}
By takingd = —6 in (52), it is easy to see that

2cos” 0sin 0F {QF1 Qo1 } + 2cosOsin® 0E {Q11Q3, } = 0.
The elements ofQ;;] are identically distributed. We thus ha¥e{Q1,} = E {Q3,}, and hence
E{Qi}

= (cos4 0 + sin* 9) E {Q‘fl} + 6cos? fsin OF {Q%IQ%I} .

(53)

By taking 6 = /3,
E{Qi} =3E{Q}Q3}. (54)

2 n
Now we consider® { (Z;‘Zl Q%) } SinceQ’Q=QQ7 =1, Q?1 = 1. This implies
j=1

1=>"E{Q}i}+ Y E{Q}Q:}
j=1

j#k (55)
=nE{Qh} +n(n-1DE{Q}Q3} .
Substituting (54) into (55), we obtain that

3
n(n+ 2)

E{Q}} = : (56)

and

B{QhQh} = )

It is easy to see thal {q?} =E{Q}} andE {qf—q,%} = E{Q%Q3,}. Therefore (49) and (50) are
proved for the case ai < p.

(2) Casen > p:
The pdf ofq can be obtained by Lemma 2.2 of [21]

n—p—2)/2
p(q) = Cydet (1— qq?) " "2 1(qq” < 1), (58)
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(59)

and (-) is the indicator function specifying the support@f Eq. (58) indicates that the elementscpf
are identically distributed. Thereforé; {q?‘} = E|qf} andE {quq,%} = E{q}q3}. By the definition

of expectation,

E{d} =0 / gidet (1— qq”)" 772" dq,

and

qq”<I

E{atdh =0 | | ateder (1-aa”)" " g

Noting that

and

we have

E{q%}zcl/

q”q<1
_c /

<1
j=1

By changing variable of integratiofy:, g2, - - ,¢p) to (7,601,602, -

q1
q2
q3

Qp—l

dp
we obtain

qqT<I

qu<I<:}qTq<1

det (I—qq’) =1-q’q,

¢i(1 - q"q)2" P Dag

» 1(n—p-2)
qlll (1 - Z qu) dqi .. .dgp.
j=1

7 Ccos 01
7 sin 67 cos O

7 sin 67 sin 65 cos 053

rsinfy sinfy - - - sin 6, _o cos 0,1

rsinfy sinfy - - -sinf,_osin b, 1

T T T 2T
FE {qil} = Cl/ d@l/ d92 . / dep_g/ dep_l
0 0 0 0
1

0

where
d(q1,--

. / rt cos? 0, (1 — r2)%(n_p_2)

a((hv"' >q;l))
8(T7017"' 79112—1)

dr,

=Pl gin?~2 0, sin? 3 6y - - - sin Op—2

‘5(7’,917”’
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(61)

(62)

(63)

(64)

(65)

(66)
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is the Jacobian associated with the change of variable.

Therefore,

E {q‘f} =C- / cos? 0y sin?~2 6,d6; - / sin? =3 0,df
0 0

™ ™ 2
. / sinP~4 O3dbs - - - / sin Qp_gdep_g / dep_l
0 0 0

. /17’7’+3 (1- 7“2)%(”_17_2) dr

0

_n PP {n/2) 3mED{p—1)/2} iT{(p—2)/2}
{n-p)/2} 4 T{p+9/2} ~ T{p-1/2}

T{p—3)/2)  aT{3/2} . T{1}

-T2 -T2

T{(p—2)/2y " T{5/2) " T{3/2}

1
) pH3 (1 _ 2 %(n—p—2)d
Ar (1-r2) .

2

(67)

_ 3 I'{n/2} 17,p+3 (1- TZ)%(N—P—@ dr
2{(n—p)/2}T{p/2 + 2} Jo

_3 I'{n/2} 1T{(n —p)/2}T{p/2 + 2}
2T{(n—p)/2}T{p/2 +2} 2 r'{n/2+2}

~30{n/2}

C A {n/2 + 2}

3

n(n+2)
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Similarly,

T T ™ 2
e / do, / dby - - - / by | df, s
0 0 0 0

1 1
. =(n—p—2
/ 2cos? 072 sin? 0, cos? 92(1 —r2)2( p=2)
0

' 8(q1>"'7qp)
8(T7917"' 70]7—1)

dr

=C1- / cos? 6, sin® 0;db; - / cos? 05 sin? =3 05dh,
0 0

. / sinp_4 93d93 . / sinp_5 94d94 cee / sin Hp_gdep_g (68)
0 0 0

2m 1 L(n—p—2)
/ de,,_l-/ PP (1 =)
0 0

_ 7P {n/2} wiT{(p+1)/2} 7 T{(p—2)/2}

H{n—p)/2} 2 p/2+2} 2 T{(p+1)/2}
aNe-3)/2) L Dp-4/2) . {1
Mp-2)/2r  H{p-3)/2} I{3/2}
1T{(n —p)/2}T{p/2 + 2}

2 '{n/2+ 2}
1
n(n+2)

Therefore, (49) and (50) are proved for the case whenp. This completes the proof of Lemma 2.

<27

Lemma 3. Let S be the sample covariance of a setjetlimensional vectorgx;}”" ;. If {x;}, are

i.i.d. Gaussian vectors with covariance,
A L a2 2/Q
E { Hx,|y2‘ S} - — [2Tr(S )+ Ti2(S)] . (69)
Proof: For simplicity, we work with the scaled covariance mathk defined as
M = inx? = n/S\, (70)
i=1

and calculate { ||x2-\|‘21‘ M} instead ofE { ||x2-\|‘21‘ §} We are then going to prove that

E { Hml!‘*‘ M} __ (2Tr (M?) + Tr* (M) . (71)
2 n(n+2)

We use Lemma 1 and Lemma 2 to establish (71).
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Let X and (H, A, Q) be matrices defined in Definition 1. Lt be thei-th column ofQ defined in
Definition 1. Then

= HAgq. (72)
Let
D = A2 (73)
Then
M = XX” = HA’H” = HDH”, (74)
and
x!I'x; = ' ATHTHAq = ! Dq. (75)
Therefore we have
2
E{Ixl3| M} = E{ (a"Da)’| M} (76)

According to Lemma 1Q is independent oH and A. Sinceq is a function ofQ, M and D are
functions ofH and A, q is independent oM and D.

From the law of total expectation,

e {opalr) - (& (e D) o) Z
Expandq’Dq as .
a'Da=>_dq, (78)
j=1

whered; is the j-th diagonal element aD. Sinceq is independent oM andD, according to Lemma

2,
E{(qTDq)Z‘M,D}

—E { S diq+) didediar| M, D}

j=1 i#k

ZdzE{Q?HZd deE {q}q}} (79)

J#k

= 3 d2+ d;d
= m (2Tr (D?) + Tr* (D)) .

July 27, 2009 DRAFT



26

SinceTr (D) = Tr (M) and Tr (D?) = Tr (M?), substituting (79) into (77), we have
£ {(a"Da)"| M}

= E{m (2Tr (D?) + Tv? (D))' M}

1 ) ) (80)
1
|

Lemma 3 now allows us to prove Theorem 2.

A. Proof of Theorem 2

Proof:
Sreow =E { Sow|S]
:E{(l —piw)S + f(@} (81)
(15 iS5+ )
Therefore we obtain the shrinkage coefficientﬁ)ngLW:

prBLW =FE { pLw| §}

} (82)

Note that

~112 | ~
S}

. (83)
-YE { Hxng‘ §} —nTe(S?).
=1
From Lemma 3, we have
n 2]~
i=1 (84)
n(n — 2) 9 n? 9 (a
n+ 2 TT(S ) Ty (S>
Equation (17) is then obtained by substituting (84) into)(82 |
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