
TO APPEAR IEEE TRANSACTIONS ON SIGNAL PROCESSING 1

Optimality of Beamforming for MIMO Multiple
Access Channels via Virtual Representation

Hong Wan, Rong-Rong Chen∗, and Yingbin Liang

Abstract—In this paper, we consider the optimality
of beamforming for achieving the ergodic capacity of
multiple-input multiple-output (MIMO) multiple access
channel (MAC) via virtual representation (VR) model. We
assume that the receiver knows the channel state informa-
tion (CSI) perfectly but that the transmitter knows only
partial CSI, i.e., the channel statistics. For the single-user
case, we prove that the capacity-achieving beamforming
angle (c.b.a.) is unique, and there exists a signal-to-noise
ratio (SNR) threshold below which beamforming is optimal
and above which beamforming is strictly suboptimal.
For the multi-user case, we show that the c.b.a is not
unique and we obtain explicit conditions that determine
the beamforming angles for a special class of correlated
MAC-VR models. Under mild conditions, we show that a
large class of power allocation schemes can achieve the
sum-capacity within a constant as the number of users
in the system becomes large. The beamforming scheme,
in particular, is shown to be asymptotically capacity-
achieving only for certain MAC-VR models.

I. INTRODUCTION

The multiple-input multiple-output (MIMO) tech-
niques provide powerful means to improve reliability
and capacity of wireless channels. Significant amount of
work has been done to study optimal input distributions
and the channel capacity of single-user and multi-user
MIMO channels (see, e.g., [1]–[7]). Several models have
been adopted to capture the spatial correlation between
the channel gains corresponding to different transmit-
receive antenna pairs. These models include the i.i.d.
model [1], the Kronecker model [2], [8]–[10], the virtual
representation (VR) model [4], [11], and the unitary-
independent-unitary (UIU) model [5]. The i.i.d. model
assumes that the channel gains are independent and
identically distributed (i.i.d.), and the Kronecker model
assumes that the correlation between the channel gains

The material in this paper has been presented in part at the IEEE
International Symposium on Information Theory (ISIT’08).Hong
Wan and Rong-Rong Chen are with Department of ECE, University
of Utah, 50 S. Central Campus Dr. Rm. 3280, Salt Lake City, Utah,
84112. Tele: 801-585-7367, Fax: (801) 581-5281, Email:{rchen,
wan}@ece.utah.edu. Yingbin Liang is with Dept. of EECS, Syracuse
University, Syracuse, NY 13244. Email: yliang06@syr.edu,Tele:
609-658-1330.

can be written in terms of the product of the transmit
correlation and the receive correlation. These two models
apply only to wireless environments with rich or locally
rich scattering at either the transmitter or the receiver.
The VR and UIU models are more general, and both
transform the MIMO channel to a domain such that
the channel gains can be justified to be approximately
independent.

In this paper, we adopt the VR model [11], which
represents the MIMO channel in a virtualangular do-
main with each channel gain corresponding to one virtual
transmit and receive angle pair. The channel gains in
the angular domain can be justified to be approximately
independent of each other, although not necessarily iden-
tically distributed, because they include different signal
paths (corresponding to different transmit and receive
angle pairs) with independent random phases.

The single-user MIMO channel based on VR was
studied in [4]. In this paper, we generalize this study
to the MIMO multiple access channel (MAC) based
on VR, denoted by MAC-VR. We first characterize the
optimal input distribution that achieves the sum-capacity.
Then we study the optimality of beamforming, which
is a simple scalar coding strategy desirable in practice.
We first strengthen the conditions for the optimality of
beamforming for the single-user VR model in [4] by
proving that there exists a signal-to-noise ratio (SNR)
threshold below which beamforming is optimal and
above which beamforming is strictly suboptimal. This
result was illustrated in [4] only numerically. For the
multi-user case, we present an example to show that the
capacity-achieving beamforming angle (c.b.a) of a given
user may vary with SNR and beamforming angles of
other users. This is in contrast to the single-user case
in which the c.b.a. is independent of SNR. We also
derive explicit conditions to determine possible c.b.a.
for certain MAC-VR channels. For systems withK
users, we show that asK goes to infinity, the sum-rates
achieved by a large class of power allocation schemes
are within a constant of the sum-capacity, and they
grow in the order ofnr logK, wherenr is the number
of receive antennas. Furthermore, we obtain conditions
under which beamforming is asymptotically capacity-
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achieving.
Our study for the single-user case generalizes that in

[2], [6] for the Kronecker model, and is different from
[12] for the double-scattering model [13]. Our study for
the MAC-VR also differs from [7] which assumes perfect
channel state information at the transmitter, and from
[14], which assumes finite feedback. We also note that
the results we derive for the MAC-VR are applicable
to the MIMO-MAC Kronecker (MAC-Kr) model in [9].
However, certain results valid for the MAC-Kr may not
hold for the MAC-VR as demonstrated in later sections.

II. CHANNEL MODEL AND V IRTUAL

REPRESENTATION

We consider theK-user MIMO MAC, in whichK
users transmit to one base station (BS) with each user
equipped withnt antennas and the BS equipped withnr

antennas. The channel between each userk and the BS
is assumed to be a frequency-flat, MIMO fading channel.
The received signal at the BS is annr-dimensional vector
Y ∈ Cnr and is given by

Y =

K
∑

k=1

√

pk

nt

HkXk +W, (1)

where Xk ∈ Cnt is the input vector of userk that
satisfies the power constraintE[Xk†Xk] ≤ nt, (·)† de-
notes the Hermitian operator,pk represents the effective
SNR of userk at each receive antenna,W ∈ Cnr is
a proper complex Gaussian noise vector that consists
of i.i.d. entries with zero-mean and unit-variance, and
Hk ∈ Cnr×nt is the channel matrix of userk. The entries
of Hk are identically distributed with unit variance, i.e.,
E[|Hm,j |

2] = 1 for all m = 1, . . . , nr andj = 1, . . . , nt.
In general, these entries are correlated because each
channel gain in the antenna domain (corresponding to
one transmit and receive antenna pair) captures all of
the signal paths. For eachHk, we follow [4] to consider
its virtual representationHk = ArH̃

kA†
t , whereAr and

At are two-dimensional spatial Fourier matrices. The
matrix H̃k is referred to as a virtual representation of
Hk. Each element ofH̃k, referred to as the virtual
coefficient, represents the channel gain corresponding
to one transmit and receive virtual angle pair. The
virtual coefficients are independent and not identically
distributed (i.n.d.) random variables and each is assumed
to be a zero-mean proper complex random variable
with a symmetric distribution around the origin. The
independency among virtual coefficients can be justified
because they correspond to different pairs of transmit and
receive angles and thus capture different sets of signal
paths with independent random phases. The correlation

of the channel gains in the antenna domain is implicitly
determined by the i.n.d. channel gains in virtual domain
and the Fourier transform between the two domains.1

A virtual representation of the MIMO MAC channel
(1) is given by

Ỹ =

K
∑

k=1

√

pk

nt

H̃kX̃k + W̃ , (2)

whereX̃k = A†
tX

k, Ỹ = A†
rY, and W̃ = A†

rW . Due
to the unitarity ofAt, the input power constraint in the
virtual domain does not change, i.e.,E(X̃k†

X̃k) ≤ nt.
Given H̃k, we define the(m, j)-th element of the vari-
ance matrixV k asV k

m,j = Var(H̃k
m,j), for 1 ≤ m ≤ nr

and 1 ≤ j ≤ nt, which characterizes the second order
statistics ofH̃k.

Remark 1: It can be shown that the MAC-Kr also
takes the form of (2) under unitary transformations.
However, it imposes more constraints onH̃k than MAC-
VR does. For MAC-Kr, each element of̃Hk is assumed
to be Gaussian distributed. This is not required for the
MAC-VR. Furthermore, for MAC-VR, the elements of
H̃k are i.n.d., and thus elements ofV k can take any non-
negative value. For MAC-Kr,V k

m,j takes on a product
form:

V k
m,j = am·bkj , for every1 ≤ m ≤ nr and1 ≤ j ≤ nt,

(3)
where{am} and{bkj } are square-roots of the eigenvalues
of the receive correlation and transmit correlation matrix,
respectively.

III. PRELIMINARIES

In this section, we present some preliminary results
that will be used in the proofs of the main results in
Sections IV and V. Since these preliminary results can
be easily derived following techniques in [4], [9], [10],
the proofs are omitted for brevity.

First, we show that the sum-capacity of MAC-VR
is achieved when the inputs of all users in the virtual
domain are zero-mean proper complex Gaussian and are
independent of each other. Let̃Qk = E(X̃kX̃k†

) be the
input covariance matrix of userk. The sum-capacity is
given by

C = max
Tr(Q̃k)≤nt

k=1,··· ,K

E

[

log det

(

Inr
+

K
∑

k=1

pk

nt

H̃kQ̃kH̃k†

)]

,

(4)

1We note that a channel matrix with arbitrary correlation in
the antenna domain may not necessarily have a meaningful virtual
representation with an i.n.d. channel matrix in the angulardomain
[11].
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where the expectation is over{H̃k, k = 1, · · · ,K}, and
the constraint onQ̃k is due to the power constraint for
userk. Here we assume that{H̃k} changes in time and
the receiver knows the perfect channel state information
(CSI){H̃k}. The transmitter knows only partial CSI, i.e.,
the channel statistics{V k}, which does not change over
the time duration of interest. Following techniques of
[4], we can prove that the capacity-achieving covariance
matrices are diagonal [15]. Furthermore, a necessary
and sufficient condition for the optimality of the input
covariance matrices can be derived following similar
approaches of [9], [10]. This leads to Theorem 1 below.

Theorem 1: The diagonal covariance matrices
{Q̃k, k = 1, · · · ,K} achieve the sum-capacity if and
only if for every 1 ≤ k ≤ K and1 ≤ j ≤ nt, we have

E Tr
[

A−1
(

h̃kj h̃
k†

j −
1

nt

H̃kQ̃kH̃k†
)]

{

= 0, if λk
j > 0,

≤ 0, if λk
j = 0,

(5)
where Q̃k = diag(λk

1 , · · · , λ
k
nt
), A = Inr

+
K
∑

l=1

pl

nt
H̃ lQ̃lH̃ l† , andh̃kj denotes thej-th column ofH̃k.

Remark 2: Since the diagonal elementλk
j , j =

1, . . . , nt, of Q̃k can be interpreted as the amount of
transmission power allocated for thej-th virtual transmit
angle, computation of the optimal covariance matrices to
maximize the ergodic capacity is equivalent to finding
the optimal power allocation parameters{λk

j }. Although
the iterative algorithm in [10] can be applied to compute
the optimal power allocation, it has high complexity
due to statistical averaging over fading distributions. A
low-complexity algorithm that utilizes only the second
order statistics of the fading distribution, i.e., the variance
matrixV k, can be developed for the MAC-VR following
similar approaches of [16].

When all users perform beamforming, i.e., each userk
allocates full transmission power to a virtual angleik (the
beamforming angle), then from (5) we obtain Corollary 1
below that characterizes the optimality of beamforming.
It is equivalent to [9, Theorem 2] for the MAC-Kr.

Corollary 1: Consider aK-user MAC-VR in which
each userk performs beamforming along virtual angle

ik. Let A = Inr
+

K
∑

l=1

plh̃lil h̃
l†

il
. Then beamforming is

optimal, in terms of achieving the sum-capacity (4), if
and only if for everyj = 1, · · · , nt andk = 1, · · · ,K,
the following condition is satisfied

fk
j (p

k) = E
[

h̃k
†

j A−1h̃kj − h̃k
†

ik
A−1h̃kik

]

≤ 0. (6)

IV. OPTIMALITY OF BEAMFORMING

A. Single-User Case

It is observed in [4] numerically that there exists an
SNR threshold below which beamforming is optimal
and above which beamforming is suboptimal. Here we
provide a mathematical proof of this threshold behav-
ior. The key step of the proof follows from Lemma
1 below, which characterizes an important property of
the beamforming conditionfj(p) in (6). For K = 1,
we assume that the user beamforms to virtual angle
i, and thus we haveA = Inr

+ ph̃ih̃
†
i , and fj(p) =

E
[

h̃†jA
−1h̃j − h̃†iA

−1h̃i

]

.

Lemma 1: If fj(p) satisfiesfj(p) ≤ 0, then we must
havef ′

j(p) > 0.

Proof: Let f ′
j(p) denote the derivative offj(p) with

respect top. We will prove that for everyj 6= i,

f ′
j(p) >

1

p

(

E
[ 1

1 + p‖h̃i‖2

]

− 1
)

fj(p). (7)

Once (7) is proved, Lemma 1 immediately follows
because

(

E
[

1

1+p‖h̃i‖2

]

− 1
)

≤ 0. To prove (7), we

apply the matrix inversion lemma to writefj(p) =

uj(p) + vj(p), where uj(p) = E
[

‖h̃j‖2−‖h̃i‖2‖

1+p‖h̃i‖2

]

and

vj(p) = E
[

‖h̃j‖2‖h̃i‖2−‖h̃†
j h̃i‖2

p−1+‖h̃i‖2

]

. Due to the Cauchy-

Schwartz inequality, we have‖h̃j‖2‖h̃i‖2−‖h̃†j h̃i‖
2 > 0

and thusvj(p) is a positive, strictly increasing function
of p with v′j(p) > 0. It follows that

f ′
j(p) > u′j(p) = E

[

‖h̃i‖
4 − ‖h̃j‖

2‖h̃i‖
2

(1 + p‖h̃i‖2)2

]

=
1

p
E

[

‖h̃i‖
2 − ‖h̃j‖

2

1 + p‖h̃i‖2

]

+
1

p
E

[

‖h̃j‖
2

(

1 + p‖h̃i‖2
)2

]

−
1

p
E

[

‖h̃i‖
2

(

1 + p‖h̃i‖2
)2

]

. (8)

For the second term of (8), sincẽhj is independent of
h̃i, we apply the inequalityE(1/x2) > [E(1/x)]2 with
x = 1 + p‖h̃i‖

2 to obtain

E
[ ‖h̃j‖

2

(

1 + p‖h̃i‖2
)2

]

>
(

E
[ 1

1 + p‖h̃i‖2

])2

E
[

‖h̃j‖
2
]

= E
[ 1

1 + p‖h̃i‖2

]

E
[ ‖h̃j‖

2

1 + p‖h̃i‖2

]

. (9)
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For the third term of (8), we apply the same inequality
to obtain

−E
[ ‖h̃i‖

2

(

1 + p‖h̃i‖2
)2

]

=
1

p
E
[ 1
(

1 + p‖h̃i‖2
)2

]

−
1

p
E
[ 1
(

1 + p‖h̃i‖2
)

]

> E
[ 1

1 + p‖h̃i‖2

]

E
[ −‖h̃i‖

2

1 + p‖h̃i‖2

]

.

(10)

We then substitute (9) and (10) into (8) to obtain (7).
Next, we characterize the threshold behavior of beam-

forming in Theorem 2.
Theorem 2: For a single-user VR channel, thei-th

virtual angle is the c.b.a. if and only if
(a) The i-th virtual angle has a sum-variance, defined

by
∑nr

j=1
Vj,i, that is strictly larger than the sum-

variance of any other virtual angles. (This condition
implies that the c.b.a. is unique.)

(b) The SNR is below a threshold, i.e.,p < ps, where
ps is a fixed constant.
Proof: It follows from Lemma 1 thatfj(p) is strictly

increasing at anyp such thatfj(p) ≤ 0. This implies that
(i) If fj(0) ≥ 0, thenfj(p) is nonzero overp ∈ (0,∞),
and thus we havefj(p) > 0 for all p > 0. (ii) If fj(0) <
0, thenfj(p) has a unique zero pointpj such thatfj(p) <
0 if and only if p < pj. Hence, if virtual anglei is the
c.b.a, i.e.,fj(p) ≤ 0 for somep > 0 and j 6= i, then
it follows from (i) that we must havefj(0) < 0. Since
fj(0) = E(‖h̃j‖

2−‖h̃i‖
2), anglei must have the largest

sum-variance. This proves Theorem 2 (a). Theorem 2 (b)
follows from (ii) by letting ps = min

j 6=i
pj.

B. Multi-User Case

For the multi-user case, we first present an example to
show that for the c.b.a. of a particular user is not unique,
and it may vary with the SNRs and beamforming angles
of other users in the system.

Example 1: Consider a two-user MAC-VR with
nt = nr = 2. The variance matrices areV 1 =
(

3 0

0 1

)

, V 2 =
(

2.5 0

0 1.5

)

. From condition (6) we

find that, if (p1, p2) = (−15 dB,−10 dB), the first
virtual angle is the c.b.a. for both users. If(p1, p2) =
(−3 dB,−10 dB), however, the second virtual angle
becomes the c.b.a. for user 2, while the first angle is
still the c.b.a. for user 1.
Next, we show in Theorem 3 that when the variance
matrix satisfies certain properties, some of thent virtual
angles cannot be the c.b.a. of a given user. We first
present a useful Lemma.

Lemma 2: Assume that there exists virtual angelsi, j
for a userk in the MAC-VR such that

V k
m,i ≤ V k

m,j for everym = 1, · · · , nr. (11)

Then we have E
[

cj−ci
1+pkci

]

> 0, where cj =

h̃k
†

j Dh̃kj , ci = h̃k
†

i Dh̃ki , and D =
(

Inr
+

∑K
l 6=k p

lh̃lil h̃
l†

il

)−1

.
Proof: It suffices to show that for any fixedD, we

haveĒ
[

cj−ci
1+pkci

]

> 0, hereĒ(·) denotes the conditional

expectation over̃hkj and h̃ki , given D. Sincecj and ci
are independent givenD, we obtain

Ē
[ cj − ci
1 + pkci

]

=
1

pk

(

Ē
[1 + pkcj
1 + pkci

]

− 1
)

=
1

pk

(

Ē[1 + pkcj ] · Ē
[ 1

1 + pkci

]

− 1
)

>
1

pk

(Ē[1 + pkcj ]

Ē[1 + pkci]
− 1

)

=
1

pk

(1 + pkĒ[cj ]

1 + pkĒ[ci]
− 1

)

, (12)

where the inequality follows from the Jensen’s inequality
E(1/x) > 1/(Ex). Next, we show that̄E[cj ] ≥ Ē[ci],
and thus the right-hand side of (12) is non-negative. We
can write Ē[cj ] − Ē[ci] = Ē[h̃k

†

j Dh̃kj ] − Ē[h̃k
†

i Dh̃ki ] =

Tr
[

D · Ē
(

h̃kj h̃
k†

j − h̃ki h̃
k†

i

)

]

. It follows from (11) that

Ē
(

h̃kj h̃
k†

j − h̃ki h̃
k†

i

)

= diag(V k
1,j −V k

1,i, · · · , V
k
nr ,j

−V k
nr,i

)
is a diagonal matrix with non-negative entries. This,
combined withD being a positive definite Hermitian
matrix with positive diagonal entries, imply that̄E[cj ] ≥
Ē[ci].

Theorem 3: Consider userk in a K-user MAC-VR.
The i-th virtual angle cannot be the c.b.a. of userk if
there exists another virtual anglej such that (11) holds.

Proof: It is sufficient to prove that the beamforming
condition (6), with ik = i, is violated for anyj that
satisfies (11), i.e.,fk

j (p
k) > 0. To prove this, we apply

the matrix inversion lemma to write

fk
j (p

k)=E

[

cj − ci
1 + pkci

]

+E

[

cjci − (h̃k
†

j Dh̃ki )(h̃
k†

i Dh̃kj )

(pk)−1 + ci

]

> E

[

cj − ci
1 + pkci

]

.

(13)

The inequality above is due to the Cauchy-Schwartz
inequality thatcjci − (h̃k

†

j Dh̃ki )(h̃
k†

i Dh̃kj ) > 0. It then
follows from Lemma 2 and (13) thatfk

j (p
k) > 0. Thus,

anglei cannot be the c.b.a. of userk.
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Example 2: Assume thatV k =

(

1.5 1.6 0.3
0.6 0.8 1.2

)

.

Since (11) is satisfied fori = 1 and j = 2, it follows
from Theorem 3 that the first virtual angle cannot be
the c.b.a for userk. This result holds independent of the
SNR and other users’ beamforming angles.
An immediate corollary of Theorem 3 is as follows:

Corollary 2: If there exists a virtual anglei such that
V k
m,i > V k

m,j , for every1 ≤ m ≤ nr andj 6= i, then
anglei is the only possible c.b.a.
Corollary 2 is applicable to both MAC-VR and MAC-
Kr. For MAC-Kr, we see that the c.b.a. of userk is the
i-th angle that maximizes{bkj , j = 1, · · · , nt} (defined
in (3)), and thus the c.b.a is unique. In comparison, the
c.b.a. is not unique for MAC-VR. Such differences arise
because the variance matrix for MAC-VR takes a general
form, while that of MAC-Kr is restricted to the product
form (3).

V. POWER ALLOCATION FOR LARGE SYSTEMS

In this section, we show that under mild conditions,
the sum-capacity of aK-user system, denoted byC(K),
grows in the order ofnr logK. Furthermore, we present
conditions under which the sum-rate achieved by a power
allocation schemeλ is within a constant ofC(K) asK
goes to infinity.

Given a power allocationλ = {λk
j , k = 1, · · · ,K, j =

1, · · · , nt}, let AK = Inr
+

K
∑

k=1

pk

nt
H̃kQ̃kH̃k†

= Inr
+

K
∑

k=1

nt
∑

j=1

pk

nt
λk
j h̃

k
j h̃

k†

j . The sum-rate achieved byλ is given

by I(λ,K) = E[log detAK ]. We apply Jensen’s in-
equality to obtain an upper bound̄I(λ,K) such that

I(λ,K) = E[log detAK ] ≤ log detE(AK)

=

nr
∑

m=1

log
(

1 +

K
∑

k=1

nt
∑

j=1

pk

nt

λk
jV

k
m,j

)

= Ī(λ,K). (14)

Proposition 1 below shows that under mild conditions,
Ī(λ,K) is asymptotically tight asK → ∞.

Proposition 1: Assume that M4 =
supm,j,k(p

k)2E(|h̃km,j |
4) < ∞. If there exists a

constantc > 0 such thatλ satisfies

min
1≤m≤nr

lim inf
K→∞

1

Knt

K
∑

k=1

nt
∑

j=1

pk

nt

λk
jV

k
m,j ≥ c > 0, (15)

then we haveI(λ,K) = Ī(λ,K) + o(1), where o(1)
converges to zero asK → ∞.

Proof. First, we write

I(λ,K)− Ī(λ,K) = E log
detAK

detE(AK)

= E log
detAK

nr
∏

m=1

[

1 +
K
∑

k=1

nt
∑

j=1

pk

nt
λk
jV

k
m,j

]

= E log det ÃK ,

where the(m, i)-th element ofÃK , denoted by(ÃK)m,i,
is given by

(ÃK)m,i =

(

1 +
K
∑

k=1

nt
∑

j=1

pk

nt
λk
j h̃

k
m,j h̃

k†

i,j

)

(

1 +
K
∑

k=1

nt
∑

j=1

pk

nt
λk
jV

k
m,j

)

=

(

1 +
K
∑

k=1

nt
∑

j=1

pk

nt
λk
j h̃

k
m,j h̃

k†

i,j

)

/(1 +Knt)

(

1 +
K
∑

k=1

nt
∑

j=1

pk

nt
λk
jV

k
m,j

)

/(1 +Knt)

. (16)

We let S̄K denote the numerator in the second fraction
of (16), which equals the average of the summation of
independent random variables. It follows from the Strong
Law of Large Number (SLLN) and (15) that

0= lim
K→∞

|S̄K − E(S̄K)|=lim sup
K→∞

(

E(S̄K)

∣

∣

∣

∣

S̄K

E(S̄K)
− 1

∣

∣

∣

∣

)

≥

(

lim inf
K→∞

E(S̄K)

)(

lim sup
K→∞

∣

∣

∣

∣

S̄K

E(S̄K)
− 1

∣

∣

∣

∣

)

≥ c · lim sup
K→∞

∣

∣

∣

∣

S̄K

E(S̄K)
− 1

∣

∣

∣

∣

.

Thus, for m = i we obtain limK→∞(ÃK)i,i =
limK→∞ S̄K/E(S̄K) = 1. For m 6= i, since
E(S̄K) = 0, it follows from (15) and the SLLN
that limK→∞(ÃK)m,i ≤ 1

c
lim

K→∞
S̄K = 1

c
lim

K→∞

(

S̄K −

E(S̄K)
)

= 0. This proves thatÃK converges to the
identity matrix and thusE lim

K→∞

[

log det ÃK

]

= 0.

Assume that the distributions of the random vectors
{h̃kj } are sufficiently smooth to facilitate exchange
of the limit and the expectation operator, we obtain
lim

K→∞

[

I(λ,K) − Ī(λ,K)
]

= lim
K→∞

[

E log det ÃK

]

=

E
[

lim
K→∞

log det ÃK

]

= 0. �

Note that although both proofs apply the SLLN, the
proof of Proposition 1 differs from that of [9, Lemma 2]
for the MAC-Kr in that we provide a sufficient condition
(15), which guarantees that (17) holds. From Proposition
1 we obtain Corollary 3 below.

Corollary 3: For anyλ that satisfies (15), we have
I(λ,K) = C(K)+O(1) = nr logK+O(1), whereO(1)
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denotes a bounded quantity asK → ∞. Hence,I(λ,K)
grows in the order ofnr logK, and asymptotically it
differs from the sum-capacityC(K) by only a constant.
Sketch of proof. It is sufficient to show that there exists
constantsu1 anduc such that

nr logK + uc + o(1) ≤ I(λ,K) ≤ C(K) ≤

max
λ

Ī(λ,K) ≤ nr logK + u1 + o(1). (17)

From (15) we can finduc such that Ī(λ,K) ≥
nr logK +uc. This, combined with Proposition 1, leads
to the first inequality of (17). The last inequality of (17)
utilizesM2 = supm,j,k p

kV k
m,j < ∞. �

Next, we consider a simple example for which we can
characterize the termO(1) in Corollary 3 for variousλ.
The accuracy of these computations will be verified in
Section VI.

Example 3: Assume that all users have the samepk =

2 and the same variance matrixV =
[

2 0.5
0.5 1

]

. The

virtual elements inH̃k are complex Gaussian distributed.
Assume that each user adopts the same power allocation
λ = (λ1, λ2) such thatλ1 + λ2 = 2. For eachλ that
satisfies the assumptions of Proposition 1, we have

I(λ,K) = Ī(λ,K) + o(1)

= 2 log(K) + log(2λ1 + 0.5 · λ2) +

log(0.5 · λ1 + λ2) + o(1). (18)

Consider the following three power allocations for which
Proposition 1 and Corollary 3 are applicable.

(1) The beamforming schemeλBF where each user
beamforms to the first virtual angle which has the largest
sum-variance. Sinceλ1 = 2, λ2 = 0, it follows from (18)
that

I(λBF,K) = Ī(λBF,K) + o(1)

= 2 logK + log(4) + o(1). (19)

(2) The equal power allocationλEq such thatλ1 = λ2 =
1. From (18) we have

I(λEq,K) = Ī(λEq,K) + o(1)

= 2 logK + log(15/4) + o(1)

= 2 logK + 1.9069 + o(1). (20)

(3) We can choose(λ1, λ2) to maximize the summation
of the two constant terms in (18). This yields the
optimized solutionλ∗ = (λ∗

1, λ
∗
2) = (5/3, 1/3). Hence,

from (18) we have

I(λ∗,K) = Ī(λ∗,K) + o(1)

= 2 logK + log(49/12) + o(1)

= 2 logK + 2.0297 + o(1). (21)

The constant term in (21) is slightly greater than that of
λBF in (19) and that ofλEq in (20). This example demon-
strates that beamforming may not be asymptotically op-
timal for the MAC-VR, even though it is asymptotically
optimal for MAC-Kr [9, Theorem 7]. Corollary 4 below
provides a sufficient condition under which beamforming
is asymptotically optimal for MAC-VR.

Corollary 4: Beamforming is asymptotically optimal
for the MAC-VR: I(λBF,K) = C(K) + o(1), asK →
∞, if each userk beamforms to a virtual angleik that
satisfiesV k

m,ik
≥ V k

m,j for every1 ≤ m ≤ nr and1 ≤
j ≤ nt, and there exists a constantc > 0 such that

min
1≤m≤nr

lim inf
K→∞

1

K

K
∑

k=1

pkV k
m,ik

≥ c > 0. (22)

Sketch of proof. Given V k
m,ik

≥ V k
m,j , one can show

that C(K) ≤ Ī(λBF,K). Condition (22) ensures that
I(λBF,K) = Ī(λBF,K) + o(1). Thus Corollary 4 fol-
lows.

Considering a special case of Corollary 4 in which
we let ik be the virtual angle that maximizes{bkj , j =
1, · · · , nt}, then we obtain the same result as [9, Theo-
rem 7] that beamforming is always asymptotically opti-
mal for MAC-Kr. In comparison, as shown in Example
3, there exists MAC-VR such that beamforming is not
asymptotically optimal. This difference, again, is due to
the general structure of the variance matrix for MAC-
VR.

VI. N UMERICAL RESULTS

In this section, we present numerical examples to
illustrate the theoretical results given in previous sec-
tions. Four power allocation schemes are considered: the
equal power allocation (λEq), the beamforming scheme
(λBF), the optimal power allocation(λOpt) found by the
algorithm of [10], and a low-complexity power allocation
algorithm derived based on [16] (λLow). Let I(λ) denote
the sum-rate achieved byλ. We first consider a single-
user system withnr = nt = 5. The virtual coefficients
in H̃ are assumed to be complex Gaussian distributed
with the same variance matrix as the one in [4], given
by

V =
25

5.7













0.1 0 1 0 0
0 0.1 1 0 0
0 0 1 0 0
0 0 1 0.25 0
0 0 1 0 0.25













. (23)

Please refer to [4] for the physical meaning of such a
variance matrix. The third virtual angle is the beamform-
ing angle because it has the largest sum-variance. Fig.1
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(d) Optimality of beamforming for large systems

Fig. 1. Optimality of beamforming for MAC-VR.

(a) shows thatI(λLow) is very close toI(λOpt) for the
entire range of SNRs considered.I(λEq) is near optimal
only at high SNR andI(λBF) is optimal only when SNR
is below the threshold of 0.29 dB. This is consistent
with the threshold behavior proved in Theorem 2. In
Fig. 1 (b), we plot the beamforming conditions defined
in Section IV-A for the third virtual anglei = 3. Since
f2(p) = f1(p) andf5(p) = f4(p), Fig. 1 (b) plotsf1(p)
andf4(p) and shows that when SNR is below0.29 dB,
both functions are negative and thus beamforming to the
third virtual angle is optimal.

In Fig. 1 (c), we examine the accuracy of Proposi-
tion 1 and Corollary 3 by comparing the asymptotic
expressions (19)-(21) in Example 3 with numerical val-
ues of I(λ,K) obtained through Monte Carlo integra-
tion. Three functionsI(λBF,K)− 2 logK, I(λEq,K)−
2 logK, andI(λ∗,K) − 2 logK are plotted to confirm
that asK increases, they indeed converge to the pre-
dicted constants2, 1.9069, and2.0297, respectively.

Fig. 1 (d) considers a multi-user system in which each
V k is generated independently, taking a form similar

to (23). The beamforming angle of userk is chosen
to be the virtual angle with the largest sum-variance.
Because{V k} satisfy conditions of Corollary 4,λBF is
asymptotically optimal. This is confirmed in Fig. 1 (d).
The curve forI(λOpt,K) is not shown due to high com-
plexity for computingλOpt. Instead, we provide a simple
sum-capacity upper boundC(K) ≤ nr log(1+KM2) as
a performance benchmark for largeK. Hence, the gap
betweenI(λBF,K) andC(K) is less than the small gap
shown in Fig. 1 (d) betweenI(λBF,K) and the upper
bound. The gap becomes negligible asK increases,
confirming the optimality of beamforming. For small
K, I(λLow,K) closely approximatesI(λOpt,K) (not
shown). For largeK, I(λLow,K) andI(λBF,K) merge
quickly and become indistinguishable afterK ≥ 30. We
note thatI(λEq,K) is inferior to I(λBF,K) by roughly
a constant, even though it achieves the same asymptote
of nr logK = 5 logK. This is consistent with Corollary
3.



TO APPEAR IEEE TRANSACTIONS ON SIGNAL PROCESSING 8

VII. C ONCLUSION

In this paper, we study the optimality of beamforming
for the MAC-VR. For the single-user case, we provide
a mathematical proof of the threshold behavior for the
optimality of beamforming which is applicable to both
Kronecker model and VR model. We present useful
criteria in determining the capacity-achieving beamform-
ing angles for a class of MAC-VR models. Due to the
generality of the VR model, we demonstrate by examples
that existing results for the MAC-Kr may not be valid
for the MAC-VR. These include the uniqueness of the
capacity-achieving beamforming angle, and the optimal-
ity of beamforming for systems with large number of
users.
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