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Optimality of Beamforming for MIMO Multiple
Access Channels via Virtual Representation

Hong Wan, Rong-Rong Chénand Yingbin Liang

Abstract—In this paper, we consider the optimality can be written in terms of the product of the transmit
of beamforming for achieving the ergodic capacity of correlation and the receive correlation. These two models
multiple-input multiple-output (MIMO) multiple access  apply only to wireless environments with rich or locally
channel (MAC) via virtual representation (VR) model. We  yich scattering at either the transmitter or the receiver.
assume that the receiver knows the channel state informa- The VR and UIU models are more general, and both

tion (CSI) perfectly but that the transmitter knows only .
partial CSl, i.e., the channel statistics. For the single-ser transform the MIMO channel to a domain such that

case, we prove that the capacity-achieving beamforming the channel gains can be justified to be approximately

angle (c.b.a.) is unique, and there exists a signal-to-nais independent.

ratio (SNR) threshold below which beamforming is optimal In this paper, we adopt the VR model [11], which
and above which beamforming is strictly suboptimal. represents the MIMO channel in a virtuahgular do-

For the multi-user case, we show that the c.b.a is not main with each channel gain corresponding to one virtual
unique and we obtain explicit cond@tions that determine transmit and receive angle pair. The channel gains in
the beamforming angles fqr a spe_c_|al class of correlated the angular domain can be justified to be approximately
MAC-VR models. Under mild conditions, we show that a independent of each other, although not necessarily iden-

large class of power allocation schemes can achieve thet. v distributed. b thev include diff t i
sum-capacity within a constant as the number of users Ically distributed, because they include ditierent signa

in the system becomes large. The beamforming scheme paths (corresponding to different transmit and receive

in particular, is shown to be asymptotically capacity- angle pairs) with independent random phases.
achieving only for certain MAC-VR models. The single-user MIMO channel based on VR was
studied in [4]. In this paper, we generalize this study
to the MIMO multiple access channel (MAC) based
. INTRODUCTION on VR, denoted by MAC-VR. We first characterize the
The multiple-input multiple-output (MIMO) tech- optimal input distribution that achieves the sum-capacity
niques provide powerful means to improve reliabilitfrhen we study the optimality of beamforming, which
and capacity of wireless channels. Significant amountigfa simple scalar coding strategy desirable in practice.
work has been done to study optimal input distributiong/e first strengthen the conditions for the optimality of
and the channel capacity of single-user and multi-usggsamforming for the single-user VR model in [4] by
MIMO channels (see, e.g., [1]-[7]). Several models haygoving that there exists a signal-to-noise ratio (SNR)
been adopted to capture the spatial correlation betwagreshold below which beamforming is optimal and
the channel gains corresponding to different transmigbove which beamforming is strictly suboptimal. This
receive antenna pairs. These models include the i.ir@sult was illustrated in [4] only numerically. For the
model [1], the Kronecker model [2], [8]-{10], the virtualmulti-user case, we present an example to show that the
representation (VR) model [4], [11], and the unitaryeapacity-achieving beamforming angle (c.b.a) of a given
independent-unitary (UIU) model [5]. The i.i.d. modeliser may vary with SNR and beamforming angles of
assumes that the channel gains are independent atikr users. This is in contrast to the single-user case
identically distributed (i.i.d.), and the Kronecker modgh which the c.b.a. is independent of SNR. We also
assumes that the correlation between the channel gajesive explicit conditions to determine possible c.b.a.
o , for certain MAC-VR channels. For systems with
The material in this paper has been presented in part at tBE IE s
International Symposium on Information Theory (ISIT'08jong users, we show that & goes to infinity, the sum-rates
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achieving. of the channel gains in the antenna domain is implicitly
Our study for the single-user case generalizes thatdetermined by the i.n.d. channel gains in virtual domain

[2], [6] for the Kronecker model, and is different fromand the Fourier transform between the two domains.

[12] for the double-scattering model [13]. Our study for A virtual representation of the MIMO MAC channel

the MAC-VR also differs from [7] which assumes perfedfl) is given by

channel state information at the transmitter, and from K .

[14], which assumes finite feedback. We also nqte that Vv — Z P~k xk W, )

the results we derive for the MAC-VR are applicable il LT

to the MIMO-MAC Kronecker (MAC-Kr) model in [9]. - - .

However, certain results valid for the MAC-Kr may nowhere X* = Alx* v = Aly, andW = AlW. Due

hold for the MAC-VR as demonstrated in later section the unitarity of4,, the input power constraint in the
virtual domain does not change, i.é2( X*' X*) < n,.

Il. CHANNEL MODEL AND VIRTUAL Given H*, we define the(m, j)-th element of the vari-
REPRESENTATION ance matrixV* asV» . = Var(H}, ;), for 1 <m <n,
. . . and1l < j < ny, which characterizes the second order
We consider thek-user MIMO MAC, in which K =J ="

) - b ation (BS) with h statistics of H¥.
users transmit to one base station (BS) with eac usehemark 1. It can be shown that the MAC-Kr also

equipped withn, antennas and the BS equipped with takes the form of (2) under unitary transformations.
gntennas. The channel between each qu the BS owever, it imposes more constraints i than MAC-

is assumed to be a frequency-flat, MIMO fading channgjp j,0q Fo; MAC-Kr, each element éf* is assumed
The received signal at the BS is ap-dimensional vector to be Gaussian distributed. This is not required for the

Y € ¢ and is given by MAC-VR. Furthermore, for MAC-VR, the elements of

L HF are i.n.d., and thus elements¥6f can take any non-
y=>" X W, (1) negative value. For MAC-KrV,» . takes on a product
k=1 V " form:
k + . -
where X* € C™ is the input vector of usek that Tsz’j _ am-b;?, for everyl < m < n, and1 < j < n;,

satisfies the power constraift{ X*' X*] < n,, ()7 de- 3)
notes the Hermitian operatgs® represents the effectiveyyhere{q,, } and{b%} are square-roots of the eigenvalues

SNR of userk at each receive antenn@/ < C™ IS of the receive correlation and transmit correlation matrix
a proper complex Gaussian noise vector that consigi§pectively.

of i.i.d. entries with zero-mean and unit-variance, and

HF e ¢ js the channel matrix of usér. The entries lIl. PRELIMINARIES
of H* are identically distributed with unit variance, i.e., In thi i i limi it
E[!Hm,jlz] _lforallm=1,....n andj=1,....ny. n this section, we present some preliminary results

In general, these entries are correlated because e%‘&]it.w'” blf/ uszdvlnst_he p:gofs of tlhe_maln reSLIJtItS In
channel gain in the antenna domain (corresponding 5C |on_|s q an d f' I Ince tesr(]a bre |m|.nar21/ re;u iocan
one transmit and receive antenna pair) captures all jf €astly derived following techniques in [4], [3], [10],

. - the proofs are omitted for brevity.
the signal paths. For eadit”, we follow [4] to consider . .
its virtual representatiod/* = A, H* A}, where 4, and First, we show that the sum-capacity of MAC-VR

A; are two-dimensional spatial Fourier matrices. Thg();c;:]e\;?s z\/\elzrrfr:nteh:n Igfou;Zrcgo?r?plueiegars;?;n\ngjre
matrix H* is referred to as a virtual representation q k ~ S
P independent of each other. L&¢ = E(X*X*") be the

H*. Each element offf*, referred to as the virtual ‘ . trix of usdr. Th ity
coefficient, represents the channel gain correspondggu covariance matrix of uses. 1he sum-capacity 1S

to one transmit and receive virtual angle pair. Th en by

virtual coefficients are independent and not identically K P oy
distributed (i.n.d.) random variables and each is assuméd = L hax E[log det <Inr + Z n—tH Q™H )}
to be a zero-mean proper complex random variable k=1, K k=1

with a symmetric distribution around the origin. The (4)
independency among virtual coefficients can be justified

. - . 1 1 1 i 1 H
because they correspond to different pairs of transmit atndWe note that a channel matrix with arbitrary correlation in
. _the antenna domain may not necessarily have a meaningtulalir

receive _angles and thus capture different sets of S'Q’_F@gresentation with an i.n.d. channel matrix in the angdtamain
paths with independent random phases. The correlatjofi.
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where the expectation is ovéﬁ’“,k =1,---,K}, and IV. OPTIMALITY OF BEAMFORMING

the constraint orQ* is due to the power constraint for

userk. Here we assume th&t7*} changes in time and 5 Sngle-User Case

the receiver knows the perfect channel state information

(CSIy {H*}. The transmitter knows only partial CSI, i.e., It is observed in [4] numerically that there exists an

the channel statistic§l/*}, which does not change overSNR threshold below which beamforming is optimal

the time duration of interest. Following techniques aind above which beamforming is suboptimal. Here we

[4], we can prove that the capacity-achieving covariangeovide a mathematical proof of this threshold behav-

matrices are diagonal [15]. Furthermore, a necessasy. The key step of the proof follows from Lemma

and sufficient condition for the optimality of the inputl below, which characterizes an important property of

covariance matrices can be derived following similahe beamforming conditiory;(p) in (6). For K = 1,

approaches of [9], [10]. This leads to Theorem 1 belowe assume that the user beamforms to virtual angle
Theorem 1: The diagonal covariance matrices, and thus we havel = I, + ph;hl, and f;(p) =

{Q"k = 1,--- K} achieve the sum-capacity if andg |hlA~1h; — hfA- 1h]

only if for every1 <k <K andl < j < ny, we have Lemma 1: If f;(p) satisfiesf;(p) < 0, then we must

have f}(p) > 0.
S 1 -~ =0, if \*>0 Proof: Let f/(p) denote the derivative of;(p) with
- k7 k' kAk 7kt ) ) J J
E Tr {A (hjhj - n_tH Q"H )] {< o if /\?? _ (. respect top. We will prove that for everyj # i,
— Y Vi Y

(5)

vg(here QF = diaghf,--- AE), A = I, + Fl(p) > l(E[%] _1>fj( ). (@)
> L H'Q'HY, andht denotes thg-th column of F*. L+ pllhl
1=1

Remark 2: Since the diagonal elemenx j = Once (7) is proved, Lemma 1 immediately follows
1,...,ns of QF can be interpreted as the amount dyecause(E[m] — 1) < 0. To prove (7), we
transmlssmn power allocated for theh virtual transmit apply the matrix inversion lemma to writg;(p) =
angle, computation of the optimal covariance matrices {0 (p) + v;(p), where u;(p) = E[W] and
maximize the ergodic capacity is equivalent to finding s 12117 2= 1 o 2 ol
the optimal power allocation paramete{vsk} Although vi(p) = E[ PN } Due to the Cauchy-
the iterative algorithm in [10] can be applled to computgchwartz mequallty we ha\WLJH Hh % — Hh*h 12 >0
the optimal power allocation, it has high complexitynd thUSU](p) is a positive, strictly increasing function
due to statistical averaging over fading distributions. &f p with o/ ( ) > 0. It follows that
low-complexity algorithm that utilizes only the second
order statistics of the fading distribution, i.e., the @age A 5
matrix V*, can be developed for the MAC-VR foIIowmgf (p) > u(p) = Iall* - Hh 1174 }
similar approaches of [16]. ’ (14 pllhi[?)?

When all users perform beamforming, i.e., each user E[Hh ill> = IRy HQ] n EE[ 17251 }
Lrpllhal2 1 2 L+ pllha)2)®

|
=

1

allocates full transmission power to a virtual angléthe p
beamforming angle), then from (5) we obtain Corollary 1 1
p

112
below that characterizes the optimality of beamforming. - -FE [%} . (8)
It is equivalent to [9, Theorem 2] for the MAC-KT. (1+plhil?)
Corollary 1. Consider aK-user MAC-VR in which
each user performs beamforming along virtual angleFor the second term of (8), smdg is independent of
17 hi, we apply the inequality=(1/2?) > [E(1/x)]* with
ip. Let A = I, + Zp ht  hi, . Then beamforming is © =1+ plliu|? to obtain
optimal, in terms of achlevmg the sum-capacity (4), if
and only if for everyj =1,--- .n,andk =1, --- | K, 72 )
the following condition is satisfied E[%} > (E[;ND E[HBJ»H?}
(1+ pllhil?) + pllhsl?
e 1 17251
QR = E [RF A7IRE — R ATIRE | < 0. (6) - FE ——|E — . 9
’ ’ ’ ] [1 +p\|hi\l2} [1 +p\|hi\l2}
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For the third term of (8), we apply the same inequality Lemma 2: Assume that there exists virtual angeélg

to obtain for a userk in the MAC-VR such that
o~
_E{‘ LMU 2} = EE[_ 1~ } Vn]fb,i < Vn’ij for everym =1,--- ,n,. (11)
(14 pllhdl?) P L1+ pllhil?)
B EE[ 1 : ] Then we have E [ﬁ;,f;} > 0, where ¢; =
L1+ pllhil?) P DR¥.c; = hE'DRF, and D = (Im +

P o T
L pllhal2V L1 pl|hg 2] 2tk P ) |
Proof: It suffices to show that for any fixe®), we
have £ [ﬂ} > 0, here E(-) denotes the conditional

We then substitute (9) and (10) into (8) to obtain (M. Itptei | 7 N
Next, we characterize the threshold behavior of bea@¥pectation oven* and 4}, given D. Sincec; and ¢;
forming in Theorem 2. are independent giveP, we obtain
Theorem 2: For a single-user VR channel, theth e e 1 /14 pres
virtual angle is the c.b.a. if and only if E[l J k’l = 7<E[1 - J] — 1)
(a) Thei-th virtual angle has a sum-variance, defined tp pl tpc 1
by > %2, Vj, that is strictly larger than the sum- = F(E[l +pfej] - E[m} — 1)
variance of any other virtual angles. (This condition _ ) !
implies that the c.b.a. is unique.) > i(?u A1 1)
(b) The SNR is below a threshold, i.g.,< p,, where pF\E[1 + pke;]
ps is a fixed constant. B i(l +p"Eley] 1) 12)
Proof: It follows from Lemma 1 thaff;(p) is strictly — pF\1 4 pkE[e ’

increasing at any such thatf;(p) < 0. This implies that
(i) If £;(0) >0, then f;(p) is nonzero ovep € (0, o),
and thus we hav¢;(p) > 0 for all p > 0. (i) If f;(0) <

where the inequality follows from the Jensen’s inequality
E(1/z) > 1/(Ez). Next, we show tha¥[c;] > Elc;],

0, _then fi(p) hgs a unique zero p_oip_; such thatfj _(p) < i;g f/r\:rl:tse t]g[ecjr]lg_htEh[Z?d:sg%gj D(%%% f %c[)gkp g%%?v;a. We
0 if and only if p < p;. Hence, if virtual angle is the s J J v ¢

c.b.a, i.e.,fj(p) < 0 for somep > 0 andj # 4, then Tr[D - E(hERE" — hEhY )] It follows from (11) that

it follows from (i) that we must havef;(0) < 0. Since E(h5hY —hFnl') = diagVF, =V, - VE  —VE )
f;(0) = E(||h;]|* = ||hi]|*), anglei must have the largestis a diagonal matrix with non-negative entries. This,
sum-variance. This proves Theorem 2 (a). Theorem 2 @@mbined with D being a positive definite Hermitian

follows from (ii) by letting p; = min p;. B matrix with positive diagonal entries, imply thac;] >
77 Eles). -
B. Multi-User Case Theorem 3: Consider usek in a K-user MAC-VR.

The i-th virtual angle cannot be the c.b.a. of ugeif

For the multi-user case, we first present an examplegy e exists another virtual angjesuch that (11) holds.
show that for the c.b.a. of a particular user is not unique, Proof: It is sufficient to prove that the beamforming

and it may vary with the SNRs and beamforming angles, - jision (6), withi, — i, is violated for any; that

of other users in the system. o C ks k -
. _ __satisfies (11), i.e.f;(p") > 0. To prove this, we apply
Example 1: Consider a two-user MAC-VR with the matrix inversion lemma to write

ng = n, = 2. The variance matrices ar&! = } o ~
>0 ), V2 _ ( 25 0 ) From condition (6) we ) = [ ¢j —ci } cje; — (WX DRY)(RE DRY)

find that, if (p',p®) = (—15 dB,—10 dB), the first™’ b 1+ phe; (PF) =1 + ¢

virtual angle is the c.b.a. for both users. (', p?) = ci— ¢

(—3 dB, —10 dB), however, the second virtual angle >E [m} -

becomes the c.b.a. for user 2, while the first angle is ’ (13)

still the c.b.a. for user 1.

Next, we show in Theorem 3 that when the variancehe inequality above is due to the Cauchy-Schwartz

matrix satisfies certain properties, some of thevirtual inequality thatc;c; — (hfthf)(hfthg?) > 0. It then

angles cannot be the c.b.a. of a given user. We fifstlows from Lemma 2 and (13) thaﬂj’?(p’f) > 0. Thus,

present a useful Lemma. angle: cannot be the c.b.a. of usér [ |
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Example 2: Assume thatV’* = g (1)'2 (1)'2 (1)2 . Proof. First, we write
Since (11) is satisfied foi = 1 andj = 2, it follows I\ K) — I(A\, K) = Elog det Ag
from Theorem 3 that the first virtual angle cannot be ’ det E(Ak)
the c.b.a for usek. This result holds independent of the — Elo det A
SNR and other users’ beamforming angles. N &0, K ne
; ; ; . 1 [T+ X > BEAvE.
An immediate corollary of Theorem 3 is as follows: e e R LY
Corollary 2: If there exists a virtual anglésuch that _ Elogdet Ax

Vi, > Vi foreveryl < m < n,andj # i, then
anglei is the only possible c.b.a. where the(m, i)-th element ofd x;, denoted by(Ax ).,
Corollary 2 is applicable to both MAC-VR and MAC-is given by

Kr. For MAC-Kr, we see that the c.b.a. of uskris the K n,

i-th angle that maximize$b”,j = 1,--- ,n;} (defined (1 +3 % %’ik?ﬁ%ﬁﬁ})

in (3)), and thus the c.b.a is unique. In comparison, tt@gK)mi k=1j=1

c.b.a. is not unique for MAC-VR. Such differences arise ’

because the variance matrix for MAC-VR takes a general

K n &
<1+ 353 g-g;v&)
k=1j=1 ’

form, while that of MAC-Kr is restricted to the product K ome o
form (3). (1 + 1;—:1 21 %A?h%ﬁ%) /(1 + Kny)
= — Kj‘m . (16)
V. POWER ALLOCATION FOR LARGE SYSTEMS <1 + k;]; Z—i/\fvyﬁo /(1 + Kny)

In this section, we show that under mild cond|t|on§Ne let Si denote the numerator in the second fraction

the sum-capacity of &-user system, denoted IB/(K), (16), which equals the average of the summation of

grow_s_in the order O.h” log K. Furthermore, we presentindependent random variables. It follows from the Strong
conditions under which the sum-rate achieved by a POWEL of Large Number (SLLN) and (15) that
allocation schema\ is within a constant o€'(K) as K

goes to infinity. 0= lim [Sx — E(Sk)|=limsu <E§ ‘755 —1‘)
Given a power allocation = {/\g?,k: =1,--- ,K,j = K—>oo’ K (%) K—)oop (Sk) E(Sk)
K . . . — 5’[{
L, e}, let Ag = I, + > ZHFQRHY = I, + 2<liminfE S ><limsu 7__1‘>
K ne . . Q
S5 Z—Afhﬁhf*. The sum-rate achieved byis given > ¢ . lim sup Si,K — ‘
k=1j=1 " T koo |E(Sk)
by I(\,K) = Ellogdet Ax]. We apply Jensen’s in- _ o -
equality to obtain an upper bourfdA, ) such that ~ 11US, for m = 4 we obtain imyeo(Ax)ii =
limg o0 Sk/E(Sx) = 1. For m # i, since
I\, K) = FE[logdet Ag] < logdet E(Af) E(Sk) = 0, it follows from (15) and the SLLN
n, K ne g that th—mo(AK)m,i < %Khm Sk = %Khm (SK —
p _ —00 — 00
= ) log <1+Zzn_t)‘§vrlri,j) E(Sk)) = 0. This proves thatdx converges to the
m=1 k=1j=1 identity matrix and thusE lim [logdet Agx| = 0.

_ K—oo
= I\ K). (14) Assume that the distribution_>s of the random vectors

"'k: . . .y
Proposition 1 below shows that under mild conditionéhﬂ'} are _suff|C|entIy smooth' to facilitate exchang_e
(A, K) is asymptotically tight ag — oo of the limit and the expectation operator, we obtain
’ ' Klim [INK) - IN\K)| = Klim [Elogdet Ag] =
—00 —00

Proposition 1: Assume that My = ~
sup,, ; x(P")2E(hE, ') < oo. If there exists a E[Kh_I}loo logdet Ag| = 0. -
constantc > 0 such that\ satisfies Note that although both proofs apply the SLLN, the

K ne proof of Proposition 1 differs from that of [9, Lemma 2]
min  liminf RN Z Z 17_/\§Vni§j >c¢>0, (15) for the MAC—Kr in that we provide a sufficient condlthr_w
1<m<n, K—oo Kng Pl ’ (15), which guarantees that (17) holds. From Proposition
1 we obtain Corollary 3 below.
then we havel(\, K) = I(\, K) + o(1), where o(1) Corollary 3: For any A that satisfies (15), we have
converges to zero ak — oo. IAK) =C(K)+0(1) = n, log K+0(1), whereO(1)
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denotes a bounded quantity A&s— oo. Hence,[(A, K) The constant term in (21) is slightly greater than that of
grows in the order ofn, log K, and asymptotically it Agg in (19) and that of\gq in (20). This example demon-
differs from the sum-capacit¢'(K) by only a constant. strates that beamforming may not be asymptotically op-
Sketch of proof. It is sufficient to show that there existdimal for the MAC-VR, even though it is asymptotically
constantsy; andu, such that optimal for MAC-Kr [9, Theorem 7]. Corollary 4 below
provides a sufficient condition under which beamforming

nrlog K+ ue +o0(1) < I(A, K) < O(K) < is asymptotically optimal for MAC-VR.

max I(A K) <nplog K +uy +o(1). (17)  cCorollary 4: Beamforming is asymptotically optimal

- for the MAC-VR: I(Agr, K) = C(K) 4+ o(1), as K —

From (15) we can findu, such thatI(X\,K) > o, if each userk beamforms to a virtual anglg, that
ny log K + uc. This, combined with Proposition 1, leadssatisfiesV* , Vkr for everyl < m < n, and1 <

to the first inequality of (17). The last inequality of (17); < n,, and there eX|sts a constant- 0 such that
utilizes My = sup,,, ;  p*V,k ; < u

Next, we consider a S|mple example for which we can R | k1 rk
P . . min liminf — ve. >e>0. 22
characterize the terr@(1) in Corollary 3 for varioush. 1<m<n, K—o0 Zp Myt = (22)
The accuracy of these computations will be verified in
Section VI. Sketch of proof. Given V. > Vﬁ ., one can show

Example 3: Assume that all users have the sapie= that C(K) < I(Agr, K). "Condition (22) ensures that

2 and the same variance matfix = [ o P } The I(Asr, K) = I(Agr, K) + o(1). Thus Corollary 4 fol-

lows.
virtual elements iff* are complex Gaussian distributed.

Considering a special case of Corollary 4 in which
Assume that each user adopts the same power allocag\%l let i\, be the virtual angle that maX|m|ze[$>"f j=
A = (A, \2) such that\; + X2 = 2. For eachX that '

tisfies th i (p ition 1 h 1,---,n.}, then we obtain the same result as [9 Theo-
satisties the assumptions ot Froposition 1, wWe have o, 7] that beamforming is always asymptotically opti-
INK) = IM\K)+o(1) mal for MAC-Kr. In comparison, as shown in Example

— 2log(K) +log(2\1 4+ 0.5 - Ao) + 3, there exists MAC-VR such that beamforming is not
asymptotically optimal. This difference, again, is due to
10g(0.5 - A1 4 A2) +o(1). (18)  the general structure of the variance matrix for MAC-

Consider the following three power allocations for whiclY R
Proposition 1 and Corollary 3 are applicable.
(1) The beamforming schemkgr where each user VI. NUMERICAL RESULTS
beamforms to the first virtual angle which has the Iargestm this Section’ we present numerical examp|es to
sum-variance. Sincg = 2, A, = 0, it follows from (18) jjjystrate the theoretical results given in previous sec-
that tions. Four power allocation schemes are considered: the
(A ) = I(A )+ o(1) equal power allocationXgg), the beamforming scheme
BF; = BF; ) .
(Asr), the optimal power allocatiof\opt) found by the
= 2log K +log(4) +o(1).  (19)  zigorithm of [10], and a low-complexity power allocation

(2) The equal power allocatiokgq such thaty; = \, = algorithm derived based on [16)\{ow). Let I(A) denote

1. From (18) we have the sum-rate achieved by. We first consider a single-
_ user system witn,. = n; = 5. The virtual coefficients
I(Agq, K) = I(Aeq K) +0(1) in F are assumed to be complex Gaussian distributed
= 2log K +log(15/4) + o(1) with the same variance matrix as the one in [4], given
= 2log K +1.9069 +o(1).  (20) by
(3) We can choosé\, A\2) to maximize the summation 010 10 0
of the two constant terms in (18). This vyields the 25 0 011 0 0
optimized solution\* = (A}, \5) = (5/3,1/3). Hence, V= 57 0 10 0 (23)
from (18) we have 0 0 102 0
- 0 0 1 0 025
I K) = I\ K) +o(1) Please refer to [4] for the physical meaning of such a
= 2log K +1og(49/12) + o(1) variance matrix. The third virtual angle is the beamform-

= 2log K +2.0297 4 o(1). (21) ing angle because it has the largest sum-variance. Fig.1
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(c) Numerical verification of Example 3. (d) Optimality of beamforming for large systems

Fig. 1. Optimality of beamforming for MAC-VR.

(a) shows thatl (A ow) is very close tol (Aop) for the to (23). The beamforming angle of uséris chosen
entire range of SNRs considerdd\g,) is near optimal to be the virtual angle with the largest sum-variance.
only at high SNR and (\gr) is optimal only when SNR Because{V*} satisfy conditions of Corollary 4\gr is

is below the threshold of 0.29 dB. This is consistermsymptotically optimal. This is confirmed in Fig. 1 (d).
with the threshold behavior proved in Theorem 2. Ifthe curve forl (Aop, K) is not shown due to high com-
Fig. 1 (b), we plot the beamforming conditions defineglexity for computinghop. Instead, we provide a simple
in Section IV-A for the third virtual anglé = 3. Since sum-capacity upper bourd(K) < n, log(1+ K M,) as
fa(p) = fi(p) and f5(p) = f4(p), Fig. 1 (b) plotsf,(p) a performance benchmark for lardgé. Hence, the gap
and f4(p) and shows that when SNR is bel®29 dB, between/(Agr, K) andC(K) is less than the small gap
both functions are negative and thus beamforming to tekown in Fig. 1 (d) betweeri(Agr, K) and the upper
third virtual angle is optimal. bound. The gap becomes negligible &S increases,

In Fig. 1 (c), we examine the accuracy of Proposﬁonﬁrming the optimality of b_eamforming. For small
tion 1 and Corollary 3 by comparing the asymptotitt® {(Atow, &) closely approximates (Aop, &) (not
expressions (19)-(21) in Example 3 with numerical vaF-hF’W”)- For largef, ,I()‘,LO"_V’K)_ and I(Agr, K') merge
ues of (A, K) obtained through Monte Carlo integradtickly and become indistinguishable after=> 30. We
tion. Three functiond (s, &) — 2log K, I(Agq, K) — note that/ (Agq, K) is inferior to I(Agg, K) by roughly
2log K, andI(A*, K) — 2log K are plotted to confirm a constant, even though it achieves the same asymptote
that as K increases, they indeed converge to the pr8f 7108 K = 5log K. This is consistent with Corollary
dicted constantg, 1.9069, and2.0297, respectively.

Fig. 1 (d) considers a multi-user system in which each
Vk is generated independently, taking a form similar
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VIlI. CONCLUSION

In this paper, we study the optimality of beamforming

for the MAC-VR. For the single-user case, we provide
a mathematical proof of the threshold behavior for tHé°l

optimality of beamforming which is applicable to both

Kronecker model and VR model. We present useful
criteria in determining the capacity-achieving beamfornfi6]

ing angles for a class of MAC-VR models. Due to the

generality of the VR model, we demonstrate by examples

that existing results for the MAC-Kr may not be valid

for the MAC-VR. These include the unigueness of the
capacity-achieving beamforming angle, and the optimal-

ity of beamforming for systems with large number of
users.

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

REFERENCES

I. E. Telatar, “Capacity of multi-antenna Gaussian afels,”
Eur. Trans. Telecom, vol. 10, pp. 585-595, Nov. 1999.

S. Jafar and A. Goldsmith, “Transmitter optimizationdaop-
timality of beamforming for multiple antenna systemkZEE
Trans. Wireless Commun., vol. 3, pp. 1165-1175, July 2004.
Z. Wang and G. B. Giannakis, “Outage mutual informatiater
of space-time MIMO channels|EEE Trans. on Information
Theory, vol. 50, no. 4, pp. 657-662, Sep. 2001.

V. V. Veeravalli, Y. Liang, and A. M. Sayeed, “Correlated
MIMO wireless channels: Capacity, optimal signaling, and
asymptotics,1EEE Transactions on information theory, vol. 51,
pp. 2058-2072, 2005.

A. M.Tulino, A. Lozano, and S. Verdu, “Impact of antenna
correlation on the capacity of multiantenna channel§EE
Trans. on Information Theory, vol. 51, pp. 2491-2509, July
2005.

E. Jorswieck and H. Boche, “Channel capacity and capacit
range of beamforming in MIMO wireless systems under corre-
lated fading with covariance feedbackZEE Trans. on Wireless
Commu., vol. 3, pp. 1543-1553, Sep. 2004.

W. Rhee, W. Yu, and J. M. Cioffi, “The optimality of beam-
forming in uplink multiuser wireless system$EEE Trans. on
Wireless Commu., vol. 3, no. 1, pp. 86-96, Jan. 2004.

H. Shin and J. H. Lee, “Capacity of multiple-antenna fagi
channels: Spatial fading correlation, double scatteriagd
keyhole,” |[EEE Trans. on Info. Theory, vol. 49, pp. 2636—2647,
Oct. 2003.

A. Soysal and S. Ulukus, “Optimality of beamforming irdfag
multiple access channeldEEE Trans. on Communications, pp.
1171-1183, April, 2009.

——, “Optimum power allocation for single-user MIMO and
multi-user MIMO-MAC with partial CSI,” IEEE Trans. on
Sdlected Areas in Communication, no. 7, pp. 1402-1412, Sep.
2007.

A. M. Sayeed, “Deconstructing multi-antenna fadinguchels,”
IEEE Trans. Signal Processing, pp. 2563-2579, Oct, 2002.

X. Li, S. Jin, X. Gao, M. Mckay, and K. Wong, “Transmittep-
timization and beamforming optimality conditions for ddeto
scattering MIMO channels,1EEE Trans. Wireless Commun.,
vol. 7, no. 9, pp. 3647-3654, Sep. 2008.

D. Gesbert, H. Bolcskei, D. A. Gore, and A. J. Paulrajut@oor
MIMO wireless channels: Models and performance predigtion
IEEE Trans. Commun., vol. 50, no. 12, pp. 1886-1888, Dec.
2002.

[14] W. Dai, B. Rider, and Y. Liu, “Joint beamforming for miat-

cess MIMO systems with finite rate feedbackZEE Transac-
tions on Wireless Communications, vol. 8, no. 5, pp. 2618-2628,
May. 2009.

H. Wan, R.-R. Chen, and Y. Liang, “Optimality of beamfting

in MIMO multi-access channels via virtual representatidn,
Proc. |IEEE International Symposium on Information Theory
(19T 08), pp. 2573-2577, July, 2008.

S. Lasaulce, A. Suarez, M. Debbah, and L. Cottatellucci
“Power allocation game for fading MIMO multiple access
channels with antenna correlatioGbnference on GameComm,
Oct. 2007.



