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Abstract

Limited feedback improves link reliability with a small amount of feedback from the receiver back to the

transmitter. In cellular systems, the performance of limited feedback will be degraded in the presence of other

cell interference, when the base stations have limited or no coordination. This paper establishes the degradation

in sum rate of users in a cellular system, due to uncoordinated other cell interference and delay on the feedback

channel. A goodput metric is defined as the rate when the bits are successfully received at the mobile station, and

used to derive an upper bound on the performance of limited feedback systems with delay. This paper shows that

the goodput gained from having delayed limited feedback decreases doubly exponentially as the delay increases.

The analysis is extended to precoded spatial multiplexing systems where it is shown that the same upper bound

can be used to evaluate the decay in the achievable sum rate. To reduce the effects of interference, zero forcing

interference cancellation is applied at the receiver, where it is shown that the effect of the interference on the

achievable sum rate can be suppressed by nulling out the interferer. Numerical results show that the decay rate of

the goodput decreases when the codebook quantization size increases and when the doppler shift in the channel

decreases.

I. INTRODUCTION

Multiple input multiple output (MIMO) communication systems can use limited feedback of channel

state information from the receiver to the transmitter to improve the data rates and link reliability

on the downlink [1]–[3]. With limited feedback, channel state information is quantized by choosing

a representative element from a codebook known to both the receiver and the transmitter. Quantized

This work was supported by the Semiconductor Research Company (SRC) Global Research Consortium (GRC) task ID 1648.001.

ar
X

iv
:0

91
2.

23
78

v1
  [

cs
.I

T
] 

 1
1 

D
ec

 2
00

9



2

channel state information is used at the transmitter to design intelligent transmission strategies such as

precoded spatial multiplexing and transmit beamforming [3], [4]. Limited feedback concepts have been

applied to more advanced system configurations such as MIMO-OFDM and multiuser MIMO and are

proposed for current and next generation wireless systems [3].

Most prior work on single user limited feedback MIMO focused on the block fading channel model,

where the channel is assumed constant over one block and consecutive channel realizations are assumed

independent. Following this assumption, limited feedback was cast as vector quantization problems

[5]. Different methods for codebook design have been developed such as line packing [4], [6], [7],

and Lloyd’s algorithm [8]–[11]. While these approaches are optimal for block-to-block independently

fading channels, they do not capture the temporal correlation inherent in realistic wireless channels [3].

Feedback methods that can track the temporal evolution of the channel and adaptive codebook strategies

are proposed to improve the quantization [12], [13]. In [12], an adaptive quantization strategy in which

multiple codebooks are used at the transmitter and the receiver to adapt to a time varying distribution of

the channel is proposed. In [13], a new partial channel state information (CSI) acquisition algorithm that

models and tracks the variations between the dominant subspaces of channels at adjacent time instants

is employed. Markov models to analyze the effect of the channel time evolution and consequently, the

feedback delay are proposed in [14], [15], [16]. Other temporal correlation models and measurement

results of the wireless channel are used in [17], [18], [19] to evaluate the effect of the feedback delay. In

[17], the authors quantize the parameters of the channel to be fed back using adaptive delta modulation,

taking into consideration the composite delay due to processing and propagation. The authors in [18]

present measurement results of the performance of limited feedback beamforming when differential

quantization methods are employed. Measurement results presented in [19] show that the upper bound

on the throughput gain obtained using a Markov model, for an indoor wireless LAN setup, is accurate.

Feedback delay exists due to sources such as signal processing algorithms, propagation and channel

access protocols. The effect of feedback delay on the achievable rate and bit error rate performance

of MIMO systems has been investigated in several scenarios [16], [20]–[23]. The feedback delay has

been found to reduce the achievable throughput [20], [21], and to cause interference between spatial

data streams [16]. Channel prediction was proposed in [22], [24] to remedy the effect of the feedback

delay. Albeit not in the context of limited feedback, the authors use pilot symbol assisted modulation

to predict the channel based on the Jakes model for temporal correlation of the channel. The authors

in [15], [20] derived expressions for the feedback bit rate, throughput gain and feedback compression

rate as a function of the delay on the feedback channel.
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Most of the works on limited feedback MIMO considered an ergodic metric for the achievable rate.

Such a metric might not be appropriate to account for the slow-fading, temporally correlated channel.

For limited feedback systems, the CSI at the transmitter gets corrupted due to errors on the feedback

channel such as feedback delay, quantization, as well as noise. The uncertainty about the actual channel

state causes the transmitted packets to become corrupted whenever the transmitted rate exceeds the

instantaneous mutual information of the channel, hence causing an outage [25], [26], [27]. The effect

of packet outage is accentuated in multi-cell environments, when the base stations have limited or no

coordination. In the presence of uncoordinated other cell interference, the transmitter modulates its

information at a rate that does not take into account the added interference at the mobile station, hence

increasing the probability of outage. Thus, an analytical method that takes into account both delay and

other cell interference is important to quantify the performance of limited feedback MIMO over slow

fading channels, in multi-cell environments.

MIMO cellular systems are interference limited. While multi-cell MIMO and base station cooperation

techniques [28], [29], [30] can mitigate the effect of interference, when the base stations share full or

partial channel state and/or data information, they incur overhead that scales exponentially with the

number of base stations. Issues such as complexity of joint processing across all the base stations, diffi-

culty in acquiring full CSI from all the mobiles at each base station, and time and phase synchronization

requirements make full coordination extremely difficult, especially for large networks. Thus while base

station coordination is an attractive long term solution, in the near term, an understanding of the impact

of the interference on limited feedback is required. Single cell limited feedback MIMO techniques are

expected to loose much of their effectiveness in the presence of multi-cell interference [31]. When each

cell designs its channel state index independently of the other cell interference, a scenario where every

transmitter-receiver pair is trying to optimize its own rate occurs, hence decreasing the overall sum rate

of the limited feedback, when compared to noise limited environments.

In this paper, we derive the impact of delay on the achievable sum rate of limited feedback MIMO

systems in the presence of other cell interference. To account for the packet outage, we use the notion

of goodput. We define the goodput as the number of bits successfully transmitted to the receiver per unit

of time, or in other words, the rate at the transmitter when it does not exceed the instantaneous mutual

information of the channel. We model the fading of the MIMO channels in the system as independent

first order finite state Markov chains. Assuming limited or no feedback coordination between adjacent

base stations, and using Markov chain convergence theory, we show that the feedback delay, coupled

with the other cell interference at the mobile station, causes the spectral efficiency of the system to
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decay exponentially. The decay rate almost doubles when the mobile station is at the edge of its cell,

and hence interference limited.

We evaluate the joint effect of delay and uncoordinated other cell interference on the achievable

sum goodput of both limited feedback beamforming and limited feedback precoded spatial multiplexing

MIMO systems. We derive an upper bound on the goodput gain for both single stream and multi-stream

limited feedback systems. We show that the goodput gain decays doubly exponentially with the feedback

delay. To mitigate the effect of other cell interference, while still assuming limited coordination between

the base stations, we also consider the net performance improvement through the application of zero

forcing interference cancellation at the receiver. Assuming one strong interferer and multiple antennas

at the receiver, we use the available degrees of freedom to apply zero forcing (ZF) nulling [32], [33].

We derive closed form expressions of the achievable ergodic goodput with zero forcing cancellation,

and compare its performance to that of the noise limited single cell environment.

The effect of delay on the throughput gain of a limited feedback beamforming system was considered

in [15]. The authors, however, did not consider other cell interference nor did they account for the

inherent packet outage. In contrast, our paper targets the performance of limited feedback systems in

interference limited scenarios and derives upper bounds of the performance limits of these systems as

the delay on the feedback link increases.

The goodput notion we consider borrows from that considered in [25], [26], [27]. The authors in

[25] jointly design the precoders, the rate and the quantization codebook to maximize the achievable

goodput of the limited feedback system. They consider the noise on the feedback channel as the only

driver for the packet outage, and do not account for other cell interference. The authors in [27] use

the goodput metric to design scheduling algorithms to combat the degradation in performance due to

feedback delay in a single cell MIMO system setup. Similarly, the authors in [26] propose a greedy rate

adaptation algorithm to maximize the goodput as a function of the feedback delay, using an automatic

repeat request (ARQ) system to feedback channel state information. Practically, when the channel state

information obtained through limited feedback is corrupted, one approach is to use fast hybrid automatic

repeat request (HARQ) [34], to provide closed loop channel adaptation. ARQ, however, is also subject

to delay and errors on the feedback channel. In this paper, we assume in our definition of goodput that

the HARQ is not present, and hence packets transmitted at a rate higher than the instantaneous rate of

the channel will be lost.

Organization: This paper is organized as follows. In Section II, we describe the limited feedback

multicell system considered. In Section III, we present the limited feedback mechanism employed.
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Section IV-A introduces the system goodput, and Section IV-B describes the channel state Markov

chain used for the analysis. In Section V, we present the effect of the feedback delay on the goodput

gain. Section VI presents ZF interference cancellation at the receiver to mitigate the effect of other cell

interference. Section VII extends the results in Section V to precoded spatial multiplexing. Section VIII

presents numerical results that show the different aspects of the relation between the feedback rate gain

and the feedback delay. This is followed by concluding remarks in Section IX.

Notation: Bold lowercase letters a are used to denote column vectors, bold uppercase letters A are

used to denote matrices, non bold letters a are used to denote scalar values, and caligraphic letters A

are used to denote sets or functions of sets. Using this notion, |a| is the magnitude of a scalar, ‖a‖ is

the vector 2-norm, A∗ is the conjugate transpose, AT is the matrix transpose, [A]lm is the scalar entry

of A in the `th row and the kth column. We use E to denote expectation and at to denote the metric a

evaluated at the transmitter.

II. SYSTEM MODEL

We consider the modified Wyner type [35] NB-cell K-user per cell circular array cellular model. The

base stations Bi, i = 1, · · · , NB, with Nt transmit antennas each, serve mobile stations Mi with Nr

receive antennas. We index the mobile users by the same index of the base station they receive their

desired signal from, for tractability. The users are located at the edge of their cells, such that each user

is reachable from the two closest base stations only. The base stations have limited or no coordination.

Figure 1 illustrates the cellular model for two adjacent interfering base stations.

Each cell employs a limited feedback beamforming system. The system, illustrated in Figure 2, is

discrete time, where continuous time signals are sampled at the symbol rate 1/Ts, with Ts being the

symbol duration. Consequently, each signal is represented by a sequence of samples with n denoting

the sample index. Assuming perfect synchronization between the base stations, matched filtering, and a

narrowband channel, the n-th received data sample y1[n] for a single user of interest M1 in base station

B1 can be written as

y1[n] =

√
α1

Nt

H1[n]x1[n] +

√
α2

Nt

G2[n]x2[n] + v1[n],

where y1[n] ∈ CNr×1 is the received signal vector at M1; H1[n] ∈ CNr×Nt is the small-scale fading

channel between B1 and M1. α1 and α2 are the received powers of the desired and interfering signal,

respectively, at M1. G2[n] ∈ CNr×Nt represents the n-th realization of the MIMO channel between B2

and M1. x1[n] is the desired transmit signal vector for M1, subject to the power constraint E[‖x1‖2] = Nt.

If transmit beamforming is employed, and hence only one stream s1[n] is transmitted at time n, the



6

signal x1[n] = f1[n]s1[n], where f1[n] is the unit norm beamforming vector. If, however, precoded

spatial multiplexing is used, x1[n] = F1[n]s1[n], where F1[n] in CNt×Ns is unitary (F∗1F1 = 1
Ns

INs),

Ns is the number of spatial multiplexing streams transmitted. x2[n] is the interfering transmit signal

vector designated for M2 served by base station B2, subject to the power constraint E[‖x2‖2] = Nt;

v1[n] ∈ CNr×1 is CN (0, I), modeling the additive noise observed at M1.

The random processes {Hi[n]} and {Gi[n]} are assumed stationary, ergodic and temporally correlated.

The assumption that these channels are Gaussian distributed is not necessary for our analysis.

Moreover, the desired and interfering channels at M1, H1[n] and G2[n], are independent, since the

base stations are geographically separated. They are assumed to be perfectly known at M1, thereby

ignoring channel estimation error at the receiver.

III. CSI LIMITED FEEDBACK

In this paper, we consider a finite rate feedback link, as depicted in Figure 2. The mobile user Mi first

estimates the channel state information sequence {Hi[n]} using pilot symbols sent by the base station

Bi. Next, the CSI quantizer efficiently quantizes the channel sequence by means of a Grassmannian

codebook, as outlined in [4], [7]. The quantization process depends on whether transmit beamforming or

precoded spatial multiplexing is used, as outlined in the following subsections. The quantization index

is sent to the transmitter via a limited feedback channel.

A. Transmit beamforming

For the case of transmit beamforming, the beamforming vector f has rank one, f ∈ CNt×1, and the

base stations send a one dimensional stream of data s to the mobile users. To maximize the signal to

noise ratio (SNR) for a given channel realization H[n], the quantizer function Q at the receiver maps

the channel matrix H[n] to beamforming vector f [n] in the codebook F and a corresponding index In

such that

f [n] = Q{H[n]} = arg max
vl∈F

‖H[n]vl‖2, 1 ≤ l ≤ N. (1)

The channel H[n] is mapped to the index In = ` if the code vl maximizes the SNR metric ‖H[n]vl‖2.

H[n] is then said to be in the Voronoi cell Vl. The feedback of the index In, called the feedback state,

is sufficient for the transmitter to choose the necessary beamforming vector from the same codebook

F . The feedback state requires log2(N) bits, where N is the number of possible codes in the codebook.
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B. Precoded spatial multiplexing

For the case of precoded spatial multiplexing, the precoder F is a unitary matrix with rank Ns, where

Ns is the number of spatial multiplexing streams. Several different criteria are available to choose the

optimal precoding matrix from a given codebook [4]. We choose the mutual information maximizing

criterion, where the quantizer function Q maps the channel matrix to the precoding matrix F[n] that

maximizes the mutual information expression

F[n] = Q{H[n]} = arg max
Fl∈F

I(Fl) = arg max
Fl∈F

log2

(
det

(
INs +

1

Ns

(H[n]Fl)
∗H[n]Fl

))
, 1 ≤ l ≤ N.

(2)

The receiver then sends the precoding matrix index In = `, corresponding to the precoder Fl, to the

base station.

We assume that the feedback channel is free of error but has a delay of D samples. The error free

assumption is justifiable as the control channels are usually protected using aggressive error correction

coding. Given this feedback channel, the channel state information available at the transmitter In−D

lags behind the actual channel state In at the receiver by D samples. The delay is primarily caused

by signal processing algorithms complexity, channel access protocols and propagation delay. A fixed

delay D is assumed on the feedback channel in all base stations. Since the propagation delay has little

contribution to the total amount of delay and the other sources of delay, caused by processing at the

receiver, are similar across users, different users in different cells experience the same amount of delay. In

what follows, we study the performance of limited feedback MIMO systems over temporally correlated

channels for the case of transmit beamforming in Section V. We extend the analysis to precoded spatial

multiplexing in Section VII.

IV. THE GOODPUT EXPRESSION OVER THE MARKOV CHANNEL MODEL

The channel state information that reaches the transmitter suffers from feedback delay and quantization

error. Moreover, the CSI quantizer at the receiver chooses the quantization codeword to maximize the

desired signal to noise ratio, without taking into account the interference from the neighboring base

station. Consequently, the CSI at the transmitter does not contain any information about the other cell

interference affecting the mobile user. The base station, assuming that its received CSI is accurate,

modulates its transmit signal at a rate corresponding to its erroneous CSI, sometimes resulting in a rate

outage or packet outage, when the transmit rate exceeds the instantaneous mutual information of the

channel. In this paper, we assume that HARQ is not present, and we evaluate the amount of information

received without error as a function of the delay on the feedback channel.
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A. Conditional System Goodput

To account for the rate outage, we assume that any transmission at a rate higher than the capacity of

the channel fails. In other words, if the rate at the transmitter Rt[n− D], where D is the delay on the

feedback channel, exceeds the instantaneous mutual information at the receiver R[n] , the transmission

is declared unsuccessful. The instantaneous system goodput ρ[n,D] is defined as

ρ[n,D] = Rt[n−D]I
(
Rt[n−D] ≤ R[n]

)
, (3)

where I(A) is the indicator function, which evaluates to 1 if the event A is true, and 0 otherwise [25].

The ergodic goodput, averaged over the set H of the MIMO fading channels,

H = {H1[n],H1[n−D],H2[n],H2[n−D],G2[n]},

can be expressed as

ρ̄(D) = EH
[
Rt[n−D]P

(
Rt[n−D] ≤ R[n]

)]
. (4)

In the sequel, we approximate the fading as a discrete time Markov process and use the Markov structural

properties to derive closed form expressions of the ergodic goodput, as a function of the feedback delay,

with and without interference cancellation methods at the receiver.

B. Channel State Markov Chain

We approximate the fading of the MIMO channels Hk as a discrete time first order Markov process

[14]. Since the feedback state index In is mapped from the channel Hk[n] by the quantization function

in (1) and (2), we follow the approach in [36], and we model the time variation of the feedback state In

by a first order finite state Markov chain. This Markov chain {In}, mapped by the quantizer function

from a stationary channel H[n], is stationary and has the finite state space I = {1, 2, 3, · · · , N}, where

N is the size of the codebook. The states of this Markov chain are one-to-one mapped with the Voronoi

cells Vi of the channel matrices H[n]. The probability of transition from state In = m to state Ir = `

is given by Pml. The stochastic matrix is thus P, with [P]ml = Pml.

The Markov chain is assumed ergodic with a stationary distribution vector π, where P (In = i) = πi.

The stationary probabilities πi are assumed equal, πi = π = 1
N

. This follows from the fact that the

stationary probability of each Markov state is proportional to the area of its corresponding Voronoi cell,

and the Voronoi regions for the codes in the codebook are assumed to have equal volume [36].

For the two cell system under investigation, the random processes Hk[n], Gk[n] in different cells

are assumed independent. The base stations have limited or no coordination hence the joint probability
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mass function of the random processes in the set H is given by the product of the probability mass

functions of the processes in each cell individually. For the desired base station, the joint probability

mass function between H1[n] and H1[n−D] is given by

P [H1[n] ∈ Vk10 ,H[n−D] ∈ Vk1D
] =

[
PD
]
k1Dk10

πk1D
=
[
PD
]
k1Dk10

π. (5)

PD represents P to the power of D. The indices k1i are used to denote the base station 1 and the

amount of delay in time samples i. In general,
[
PD
]
ij

does not yield closed form expression for the

Markov chain probabilities except for the case of single antennas. The channels corresponding to the two

different base stations are independent, and hence the individual Markov chain transition probabilities

are independent but identically distributed. These probabilities are computed by Monte Carlo simulations

as shown in Section VIII.

V. THE EFFECT OF DELAY ON THE FEEDBACK GOODPUT GAIN

We consider the effect of fixed feedback delay on the average system goodput of the MIMO inter-

ference system. The delay D on the feedback channel for the interfering as well as the desired cell is

considered fixed, caused by signal processing, propagation delay and channel access control.

The instantaneous mutual information computed at the receiver, in the presence of other cell inter-

ference, is expressed as

R[n] = log2(1 + SINR[n]), (6)

where the signal to interference noise ratio SINR[n], assuming MRC combining at the mobile stations,

is given by

SINR[n] =
α1‖H1[n]f1[n−D]‖2

α2‖w∗[n]G2[n]f2[n−D]‖2 +Nt‖w∗[n]v1[n]‖2
, (7)

where w[n] = H1[n]f1[n−D]
‖H1[n]f1[n−D]‖ is the MRC combining vector. In general, the SINR distribution does not

have a closed form expression and has to be estimated using Monte Carlo simulations.

At the base station, the transmitter modulates its signal based on the delayed CSI In−D. Assuming

continuous rate adaptation and Gaussian transmit signals, the instantaneous transmission rate depends

on the delayed precoder f1[n−D] and its corresponding channel H1[n−D], i.e.,

Rt[n−D] = log2(1 + SINRt[n]) = log2(1 + ‖H1[n−D]f1[n−D]‖2). (8)

We write the average system goodput ρ̄(D), based on (7) and (8),

ρ̄(D) = EH
[
Rt[n−D]I

(
R[n] ≥ Rt[n−D]

)]
= EH1[n−D]

[
Rt[n−D]P

(
R[n] ≥ Rt[n−D] | H1[n−D]

)]
(9)

= EH1[n−D]

[
Rt[n−D]P

(
SINR[n] ≥ SINRt[n] | H1[n−D]

)]
.
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Following (5), ρ̄(D) can be obtained using the transition probabilities of the Markov chains of the

desired and interfering channels.

We distinguish between two types of interference, severe interference and mild interference. Severe

interference occurs when the interference channel G2 falls in the same Voronoi cell as that of the

transmit beamforming vector f2, i.e., f2 is chosen to maximize ‖G2f2‖2. In this case, the interference

channel is mapped to a state that corresponds to the beamforming vector that maximizes ‖H2f2‖2 in

the feedback index Markov chain. Otherwise, the interference is considered to be mild. The probability

r of the interference being severe depends on the probability that the interference channel falls in the

same subspace as that of the channel H2 and hence, on the size N of the codebook used to quantize

the channels. For the case of severe interference, the probability

P [G2[n] ∈ Vk20 ,H2[n−D] ∈ Vk2D
] =

[
PD
]
k2Dk20

πk2D
=
[
PD
]
k2Dk20

π. (10)

Consequently, the ergodic goodput gain is

ρ̄1(D) = EH1[n−D]

[
Rt[n−D]P

(
Rt[n−D] ≤ R[n,D] | H1[n−D]

)]
=

N∑
k1D=1

Rt
k1D

P
(
Rt
k1D
≤ R[n,D] | H1[n−D] ∈ Vk1D

)
P(H1[n−D] ∈ Vk1D

)

=
∑

k10,k1D

∑
k20,k2D

C(D)
[
PD
]
k1Dk10

[
PD
]
k2Dk20

π2, (11)

where Rt
k1D

is the rate at the transmitter, Rt, with H1[n − D] ∈ Vk1D
. Similarly, RkkDkk0

is the

instantaneous rate at the receiver, R[n,D], with Hk[n − D] ∈ VkkD
,Hk[n] ∈ Vkk0

, k ∈ {1, 2}. We

obtain C(D) as C(D) =
(
Rt
k1D

P
(
RkkDkk0

≥ Rt
k1D

))
.

For the case of mild interference, when the codebook index does not maximize ‖G2f2‖2, the joint

probability mass function of the random processes G2 and f2 is given by the product of the stationary

probability of each random process individually. Hence, ρ̄2 is simply computed by

ρ̄2(D) =
∑

k10,k1D

∑
k20,k2D

C(D)
[
PD
]
k1Dk10

π3. (12)

Finally, the ergodic goodput ρ̄(D) is written in terms of the probability of the interference being severe.

ρ̄(D) = P(severe interference)ρ̄1(D) + (1− P(severe interference)) ρ̄2(D)

= rρ̄1(D) + (1− r) ρ̄2(D). (13)

Given a quantization size N of the channel space, the probability of a random channel matrix falling in

a Voronoi region Vk is 1
N

. Hence, the probability of the interference channel G2 falling in the Voronoi
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cell Vl pertaining to the quantization vector f2 is 1
N

. In other words, the probability of the interference

being severe is r = 1
N

.

To capture the effect of increasing feedback delay on the ergodic system goodput, we use the notion

of throughput gain, defined in [15] as the throughput with delay D minus the throughput when the delay

goes to infinity. When the delay goes to infinity, the feedback information becomes obsolete and thus

irrelevant. The goodput gain is formally written as

∆ρ̄(D) = ρ̄(D)− ρ̄(∞), (14)

where ρ̄(∞) is given by

ρ̄(∞) =
N∑

k10,k1D

N∑
k20,k2D

C(D)π4. (15)

This follows from the fact that, as D→∞, the channel state Markov chain converges to the stationary

distribution

PD → [π, · · · ,π] . (16)

The goodput gain allows us to analyze the effect of increasing feedback delay on the multicell system,

and draw conclusions as to when closed loop limited feedback MIMO systems are feasible. We derive

an upper bound on the ergodic goodput gain ∆ρ̄(D), based on the Markov chain convergence rate [37],

[38].

For this reason, we invoke theorem 2.1 in [38], to upperbound the goodput gain ∆ρ̄(D) in terms of

the properties of the stochastic matrix of the channel Markov chain. Theorem 2.1 in [38] states that for

the ergodic channel state Markov chain, the following inequality holds(
N∑
m=1

|
[
PD
]
lm
− πm|

)2

≤ λD

πl
, 1 ≤ l ≤ N, (17)

where λ ∈ [0, 1] is the second largest eigenvalue of the matrix PP̃. The matrix P̃ is defined as the time

reversal of the stochastic matrix P.

Proposition 1: For fixed feedback delay of D samples, the feedback goodput gain can be bounded

as

∆ρ̄(D) ≤ a
(√

λ
)2D

+ b
(√

λ
)D

, (18)

where a = r
∑

k1D,k2D
maxk10,k20 C(D)π, and

b = r
∑

k1D,k10,k2D

max
k20

C(D)π2
√
π +

∑
k1D,k2D,k20

max
k10

C(D)π2
√
π.
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Proof: See Appendix.

The coefficients a and b depend on the instantaneous rate C(D) and the stationary probability distribution

π of the Markov chain. The coefficient a decreases with r such that, as the codebook size increases, a→

0. This causes the rate of decay of the goodput gain to approach that of the noise limited environment

[15]. In that case, the coefficient b→
∑

k1D,k2D,k20
maxk10 C(D)π2

√
π.

We make the following observations about the conclusions in Proposition 1.

1) The feedback gain decreases at least exponentially with the feedback delay. The decreasing rate

is λ or
√
λ, depending on the values of the coefficients a and b. The rate is thus determined by

the channel coherence time and the size of the codebooks used.

2) The eigenvalue λ is a key parameter in characterizing the behavior of the system. A larger value

of λ indicates longer channel coherence time and larger codebook size and vice versa.

3) The coefficients a and b depend on the number of precoders used to quantize the channels spaces.

The coefficient a is largely governed by r which increases with decreasing N . As the delay grows

larger, for values higher than D = 10 time samples for example, the term (
√
λ)2D decreases faster

than (
√
λ)D. This means that the second term, and thus the exponential rate (

√
λ)D becomes

dominant and the exponential decay in the throughput gain is brought closer to that of the single

cell environment.

4) Simulation results in Section VIII show that the upper bound, derived in proposition 1 is tight for

several cases of interest.

VI. INTERFERENCE CANCELLATION AT THE RECEIVER

The results in Section V suggest that the other cell interference almost doubles the exponential rate of

decrease of the goodput gain, when compared with the rate of decrease computed in [15]. We propose

using interference cancellation techniques at the receiver, to compensate for the rate decay. Interference

cancellation techniques are suitable when the base stations have limited coordination. We require the

receiver to learn both its desired effective channel and the effective interference channel from the other

cell base station. We implement zero forcing (ZF) interference cancellation.

Assuming the number of receive antennas Nr ≥ 2, we rewrite the received signal at M1 as

y1[n] =

√
α1

Nt

H1[n]f1[n−D]s1[n] +

√
α2

Nt

G2[n]f2[n−D]s2[n] + v1[n]

=

√
α1

Nt

h1[n]s1[n] +

√
α2

Nt

g2[n]s2[n] + v1[n]. (19)
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where h1[n] ∈ CNr×1 is the effective desired channel at M1 from B1. g2[n] ∈ CNr×1 is the effective

interference from B2. The zero forcing linear receiver effectively projects the desired signal h1[n] onto

the subspace orthogonal to the subspace of the interference g2[n]. Hence, the resulting signal power at

the receiver is

γ[n] = ‖h1[n]‖2| sin(θn)|2, (20)

where θn = ∠(h1[n],g2[n]) is the angle between the h1[n] and g2[n]. | sin(θn)|2 can be viewed as a

projection power loss factor for the zero forcing receiver. And the corresponding instantaneous rate at

the receiver is expressed as

R[n] = log2(1 + pγ[n]), (21)

where p = α1

NtN0
is the signal to noise ratio at the receiver. Thus the instantaneous system goodput is

ρ[n] = Rt[n−D]P(Rt[n−D] ≤ log2(1 + pγ[n])). (22)

The ergodic goodput follows, similar to (9),

ρ̄(D) = EH1[n−D]

[
Rt[n−D]P

(
Rt[n−D] ≤ R[n] | H1[n−D]

)]
= EH1[n−D]

[
Rt[n−D]P

(
γ[n] ≥ ‖H1[n−D]f1[n−D]‖2

p
| H1[n−D]

)]
. (23)

The key to computing ρ̄(D) is to evaluate the cumulative density function (cdf) of | sin(θn)|2. This will

allow us to express the probability of outage as a function of the channel gains only. We propose the

following lemma on the distribution of | sin(θn)|2.

Lemma 2: The squared norm of the sine of the angle between the effective desired and interference

channel, in a limited feedback beamforming system, when the channels H1[n] and G2[n] have i.i.d.

complex Gaussian entries with zero mean and unit variance, can be approximated by a beta distribution

with parameters Nr − 1 and 1, on the interval [0, 1],

f| sin(θ)|2(y) =
1

β(Nr − 1, 1)
yNr−2(1− y)1−1, 0 ≤ y ≤ 1

= (M − 1)yM−2, 0 ≤ y ≤ 1. (24)

where β(Nr− 1, 1) = Γ(Nr)
Γ(Nr−1)Γ(1)

is the beta function, defined in termed of the Gamma function Γ, and

the effective channels are assumed Gaussian distributed.

Proof: The effective channel vectors h1[n] and g2[n] are two independent random vectors whose

entries, h1i[n] and g2i[n], i = 1, · · · , Nr can be approximated as independently and identically distributed

complex Gaussian random variables with mean 0 and variance 1. Consequently, θ(n) is the angle between

two independent random vectors, and | sin(θ(n))|2 is beta distributed with parameters Nr − 1 and 1.
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When the number of receive antennas Nr = 2, | sin(θ(n))|2 is uniformly distributed on [0, 1].

Thus, a closed form expression of the complementary probability of outage P (R[n] ≥ Rt[n−D]) can

be written as

P
(
R[n] ≥ Rt[n−D] |H1[n−D]

)
= P

(
γ[n] ≥ ‖H1[n−D]f1[n−D]‖2

p
| H1[n−D]

)
= P

(
| sin(θn)|2 ≥ ‖H1[n−D]f1[n−D]‖2

p‖H1[n]f1[n−D]‖2
| H1[n−D]

)
= 1−

(
‖H1[n−D]f1[n−D]‖2

p‖H1[n]f1[n−D]‖2

)Nr−1

. (25)

Consequently, the ergodic system goodput for a delay D is given by

ρ̄(D) =
∑

k10,k1D

Rt
k1D

(
1−

(
‖H1[n−D]f1[n−D]‖2

p‖H1[n]f1[n−D]‖2
| H1[n] ∈ Vk10 ,H1[n−D] ∈ Vk1D

)Nr−1
)[

PD
]
k1Dk10

π.

(26)

Finally, the ZF feedback goodput gain is readily written, following equations (26) and (17).

Proposition 3: For fixed feedback delay of D samples, the feedback throughput gain with ZF inter-

ference nulling of the strongest interferer can be bounded as

∆ρ̄(D) =
∑

k10,k1D

Rt
k1D

(
1− ‖H1[n−D]f1[n−D]‖2

p‖H1[n]f1[n−D]‖2

)([
PD
]
k1Dk10

− π
)
π

≤ c (λ)D , (27)

where c =
∑

k1D

√
πk1D

maxk10

(
Rt
k1D

(
1−

(
‖H1[n−D]f1[n−D]‖2
p‖H1[n]f1[n−D]‖2

)Nr−1
))

, and λ is the second largest

eigen value of the matrix PP̃.

The following remarks are in order.

1) Employing ZF interference cancellation at the receiver brings back the exponential rate of decrease

of the ergodic goodput to
√
λ, similar to the case reported in [15], where the system is noise limited.

The authors in [15], however, derive expressions for the ergodic throughput of the system, without

taking into account the rate outage. We reformulate the result in [15] in terms of the goodput

metric as follows

∆ρ̄(D) =
∑

k10,k1D

CN(D)
([

PD
]
k0Dk00

− π
)
π ≤ κ (λ)D , (28)

where CN(D) = Rt
k1D

P(Rk1Dk10 ≥ Rt
k1D

), and

Rk1Dk10 = log2

(
1 +

α1‖H1[n]f1[n−D]‖2

Nt‖w∗[n]v1[n]‖2
| H1[n] ∈ Vk10 ,H1[n−D] ∈ Vk1D

)
,

and κ =
∑

k1D

√
πmaxk10 CN(D).
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2) The coefficient c depends on the effective channels at the transmitter and the receiver, and it is

smaller than the coefficient κ in the upperbound of (28). This makes sense because the projection

of the effective channel at the receiver over the subspace perpendicular to that spanned by the

interference vectors, causing an effective power loss in the SNR at the receiver.

3) In Section VIII, we run simulations to show the tightness of the derived upper bounds. We compare

the performance of the system with and without interference cancellation, with that of the noise

limited environment.

VII. PRECODED SPATIAL MULTIPLEXING

Spatial multiplexing can offer higher data rates by sending multiple data streams to the receiver.

Limited feedback precoded spatial multiplexing is included in the emerging 3GPP-LTE standard. The

performance of this MIMO system, however, in the presence of feedback delay is yet to be analyzed.

In this section, we extend the goodput analysis in Section V to precoded spatial multiplexing systems,

and we evaluate its performance limits in the presence of feedback delay and other cell interference.

For a precoding matrix F with Ns transmit streams, the achievable rate at M1 is computed as

R[n] = log2

(
det
(
INr + K1[n](KI [n])−1

))
, (29)

where K1[n] = α1

NtN0
H1[n]F1[n − D] (H1[n]F1[n−D])∗ denotes the covariance matrix of the desired

signal from B1

KI [n] = INr +
α2

NtN0

G2[n]F2[n−D](G2[n]F2[n−D])∗

is the covariance matrix of the interference from B2 plus the noise.

The rate at the base station is computed without taking into account the presence of the noise and

the interference at the mobile, as in Section V,

Rt[n−D] = log2 (det (INr + H1[n−D]F1[n−D](H1[n−D]F1[n−D])∗)) . (30)

The goodput then follows as

ρP(D) = Rt[n−D]I
(
Rt[n−D] ≤ R[n]

)
. (31)

The ergodic goodput is computed in terms of the joint probability mass functions of the quantized

channels H. The quantization of the channel state information according to the capacity maximization

selection criterion, as explained in Section III, maps the channels into a first order Markov chain model,

where the different states correspond to different Voronoi regions. Thus, the same analysis can be applied

to computing the ergodic goodput gain for the precoded spatial multiplexing system.
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Define CP(D) as the instantaneous goodput at time n with H1[n − D] ∈ Vk1D
, H1[n] ∈ Vk10 ,

H2[n] ∈ Vk20 and H2[n − D] ∈ Vk2D
. The ergodic goodput gain ∆ρ̄P(D) can thus be obtained using

equation (17) and Proposition 1.

Proposition 4: For fixed feedback delay of D samples, the ergodic goodput gain ρ̄P is upper bounded

as

∆ρ̄P(D) ≤ a
(√

λ
)2D

+ b
(√

λ
)D

. (32)

where a = r
∑

k1D,k2D
maxk10,k20 CP(D)π, and

b = (1− r)
∑

k1D,k10,k2D

max
k20

CP(D)π2
√
π +

∑
k1D,k2D,k20

max
k10

CP(D)π2
√
π.

The coefficients a and b depend on the instantaneous rate CP(D), the stationary probability distribution

π of the Markov chain, as well as the codebook size N . The achievable rate of the precoded spatial

multiplexing is dependent on the feedback delay and the interference from the neighboring channels.

The decay rate depends on the amount of delay, the strength of the interference and the number of

quantization levels. In Section VIII, we present numerical results to show the performance of the

precoded spatial multiplexing system with respect to delay.

VIII. SIMULATION RESULTS

In this section, we present simulation results to evaluate the performance of limited feedback beam-

forming MIMO systems with delay in the presence of other cell interference, for several scenarios.

For our simulations, we assume that the scattering environment is uniform such that the channel

coefficients are CN (0, 1) and the temporal correlation follows Clarke’s model and is characterized by the

continuous first order Bessel function r(τ) = J0(2πfdτ), where fd is the maximum Doppler frequency

and τ is the time separation between the samples. The discrete time counterpart of the continuous time

autocorrelation function is implemented using the inverse Discrete Fourier Transform method proposed

in [39], such that the discrete time samples have autocorrelation r(n) = J0(2π fd

fs
n), where n is the

sample separation, and fs is the sampling rate, and both the continuous and the discrete correlation

functions have the same power spectrum.

A. Limited feedback beamforming with other cell interference and feedback delay

We compare the feedback rate gain of the interference limited system with that of the noise limited

system, for the limited feedback beamforming presented in Section V. Figure 3 plots both the throughput
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and goodput gains of the systems versus the feedback delay D. For the throughput gain, we use the

achievable rate at the receiver given by

R[n] = log2

(
1 +

α1‖H1[n]f1[n−D]‖2

α2‖w∗[n]G2[n]f2[n−D]‖2 +Nt‖w∗[n]v[n]‖2

)
, (33)

i.e., without including the rate outage. For the noise limited environment, the result for the system

throughput goes back to that in [15] where the exponential rate of decrease is
√
λ.

Figure 3 shows the effect of the feedback delay on both the throughput gain ∆R̄(D), as well as the

goodput ∆ρ̄(D), for a four transmit, four receive antenna system with a normalized Doppler shift of

0.025. We observe that including the rate outage at the transmitter causes a decrease in the throughput

gain of the system. The decrease is constant with respect to the delay. This can be explained by the

fact that the outage does not affect the Markov chain statistical properties, which mainly depend on the

value of the delay. The gap between the goodput and the throughput gain can be observed for both the

noise limited and interference limited scenarios.

Moreover, the results in Figure 3 show that the exponential rate of decrease of the interference

limited system (one cell interference) is more pronounced than that of the noise limited system (single-

cell) for the cases of small to moderate delay (up to D = 15). The simulation results agree with the

analytical result in Proposition 1. We also observe from Figure 3 that the rate of decrease in the two-cell

environment increases with the delay. This is explained by the fact that for λ ≤ 1, the
√
λ term in the

right hand side of equation (34) becomes more dominant as D increases.

To evaluate the accuracy of the upper bound derived in Proposition 1 in predicting the performance

of the system, Figure 4 plots the normalized feedback rate gain and the expression in (34), as a function

of feedback delay D, for a normalized Doppler shift, fdTs = 0.025 . As can be observed from the

Figure, the throughput gain is tightly upper bounded by (34), for delay intervals of interest. This upper

bound is different from that in the noise limited scenario, plotted in the Figure for comparison. This

allows the use of the results of Proposition 1 for computing gains in achievable rate for delay values

of interest.

B. ZF cancellation at the receiver

The ZF linear receiver was proposed in Section VI to reduce the effect of other cell interference.

Figure 5 presents the effect of employing the ZF receiver architecture on the feedback throughput gain.

We plot the ergodic goodput achieved by the noise limited (single-cell) MIMO transceiver, with that

of the interference limited system, with and without interference cancellation. We observe that adding

interference cancellation brings the decay rate of the feedback throughput gain back to
√
λ, similarly
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to the noise limited environment. The effective power loss due to the projection of the desired MIMO

channel onto the interference subspace, causes the achievable rate to be less than that of the noise-limited

environment.

Figure 6 compares the normalized feedback goodput gain ∆ρ̄(D), and its approximation with the

closed form upperbound in Proposition 3, for different values of the feedback delay D. The exact and

closed form expression for the ∆ρ̄(D) are shown in solid and dashed lines respectively. The approximate

∆ρ̄(D) solution simulated based on the probability of outage is also shown in the Figure. One can observe

that the closed form expression closely matches the exact ∆ρ̄(D).

C. Precoded spatial multiplexing with feedback delay and other cell interference

We investigate the performance of the precoded spatial multiplexing system in the presence of other

cell interference in Figure 7. We consider a four transmit, four receive antenna MIMO system, with two

spatial multiplexing streams Ns = 2 and a codebook size of 16. Figure 7 plots the throughput gain for

the precoded multistream system for both the interference limited and the noise limited environments,

for a Grassmannian codebook of size 161 . We observe from the figure that the goodput gain of the

precoded multistream decreases exponentially with the feedback delay. This exponential decrease is

more pronounced in the presence of other cell interference, as predicted in Proposition 4.

Figure 8 plots the throughput gain of the precoded spatial multiplexing system and that of transmit

beamforming, for the same codebook. The behavior of both systems vis-a-vis other cell interference

and delay is the same. However, the throughput gain achieved by the precoded system is higher than

that of transmit beamforming, due to the multiple transmit streams.

D. Effect of doppler frequency and codebook size

The performance of the two-cell system in the presence of delay with varying codebook sizes is

shown in Figure 9 for a two transmit, two receive MIMO system and codebook sizes 4, 8 and 16. One

can clearly see that the rate of decay of the goodput gain increases as the codebook size increases, it

approaches that of the single cell system for larger codebook sizes. This suggests a tradeoff between

the feedback rate and the goodput gain in interference limited scenarios.

In Figure 10, we plot the feedback goodput gain versus the feedback delay for different Doppler

frequencies normalized by the sampling period Ts, fdTs = {20×10−3, 25×10−3, 50×10−3, 100×10−3}.

We consider a four transmit, four receive MIMO system with a Grassmannian codebook size of 16.

1The codebooks used in these simulations are available at http://cobweb.ecn.purdue.edu/∼djlove/grass.html

http://cobweb.ecn.purdue.edu/~djlove/grass.html
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Clearly, the exponential rate of decrease of the feedback gain is sensitive to the Doppler shift. As the

Doppler shift, or the velocity of the mobile is increased, the feedback gain is decreased, resulting in a

steeper decrease rate with respect to the feedback delay. This can be explained as follows. Over a fixed

delay, higher Doppler causes larger channel variation, which accelerates the decrease of the feedback

capacity gain with the feedback delay and hence results in a steeper curve slope.

E. 3GPP-LTE design example

In this subsection, we present a design example that demonstrates the application of the results in this

paper to designing limited feedback system for 3GPP LTE-Advanced standard [40]. The standard pro-

poses using limited feedback beamforming and precoded spatial multiplexing over orthogonal frequency

division multiple access (OFDMA). For the downlink OFDMA, the available frequency bandwidth is

partitioned into frequency slots, called frequency subbands, and assigned to different users based on a

given scheduling algorithm. Each subband consists of several orthogonal frequency division multiplexing

(OFDM) symbols. Limited feedback is performed on every OFDM symbol to increase its data rate.

Channel estimation is performed using pilot symbols located at the center of the subbands. One CSI

feedback link is required for every subband, and feedback is performed every two subframes.

TABLE I

LTE DESIGN SPECIFICATIONS

Carrier Frequency 2 GHz

Bandwidth 10 MHz

Antenna Array Nt = Nr = 4

Subband Bandwidth 1.08 MHz

Subframe (TTI) length 1 msec

CSI Feedback (2 TTI) 2 msec

Control Delay 4 msec

Mobility 30 km/h

CSI codebook size N = 16

The design specifications are summarized in Table I. The transmission bandwidth is 10 MHz at

a carrier frequency of 2 GHz. Downlink transmission is organized into radio frames with a frame

duration of 10 ms. We consider the frame structure applicable to frequency division duplex (FDD),

in which 10 subframes, of duration 1 ms each, are available for downlink transmission [40]. At each

scheduled user equipment (UE), the channel state information is fed back every 2 subframes, or 2 ms.

The design of the precoder for 4 transmit antennas is based on the Householder transformation [41]. The
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choice of the codebook is based on its reduced computational complexity. The Householder precoding

codebook satisfies a constant modulus where all the transmit antennas keep the same power level,

regardless of which precoding matrix is used to maximize the power amplifier efficiency. Moreover, the

nested property of the codewords permits the precoding matrix in a lower rank (such as with transmit

beamforming) to be a submatrix of a higher rank precoding matrix (when sending multiple streams).

The codebook also features a constrained alphabet that avoids the need for matrix multiplication [42].

The size of the codebook used for quantizing feedback CSI is 16. The mobility of the UE is up to

30 km/h. The doppler shift for the maximum speed of 30 km/h is of fm = 55.5 Hz. Normalizing this

shift by the subframe time of 1 ms, we get a normalized Doppler shift of fmTs = 0.055. The control

delay is of 4 ms. The roundtrip ARQ delay is of 4 ms. Based on these requirements, we compute the

goodput gain of the limited feedback precoding systems, using the LTE Householder codebooks2, for

realistic delay values of 4 and 6 ms.

The second largest eigenvalue used in Proposition 1 is first computed by using the stochastic matrix

of the feedback state markov chain, based on the codebook size and the normalized Doppler shift to be

λ = 0.7721. The maximum feedback goodput gain for delay free CSI feedback is computed as 2.453

bps/Hz. By using Proposition 1 for the LTE codebook, with Ns = 1 stream, the normalized goodput

gain is computed at (4, 6) ms respectively as (0.4708, 0.2904), this implies that the goodput gain at

these values is (1.1549, 0.7124) bps per subcarrier, and (83.1528, 51.2928) bps per subband.

IX. CONCLUSION

In this paper, we analyzed the effect of the feedback delay on limited feedback systems in the

presence of uncoordinated other cell interference. We showed that the delay on the feedback channel

causes the base station to transmit at a rate higher than the instantaneous mutual information of the

channel, resulting in a rate outage. By only considering the successful transmissions over the channel,

or the goodput, we showed that the other cell interference causes the exponential rate of decay of the

ergodic feedback gain to double, when compared to the noise-limited single cell scenario, especially at

low to moderate feedback delay values. The analysis was carried out for both transmit beamforming

and precoded spatial multiplexing systems. Numerical results confirmed that a smaller time correlation

and a lower codebook size leads to a faster reduction of the capacity gain with the feedback delay.

We then implemented interference cancellation, assuming that the receiver has perfect knowledge of

the interference channel, while the base station is oblivious to the presence of any interference. We used

2The codebooks used in these simulations are available at http://users.ece.utexas.edu/∼inoue/codebook/index.html

http://users.ece.utexas.edu/~inoue/codebook/index.html
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the zero forcing receiver architecture, and we showed that the effect of the other cell interference can

be simply mitigated, by bringing the decay rate of the throughput gain back to that of the noise limited

case, at the expense of a rate loss due to the projection power loss of the ZF receiver.

This paper opens up several issues for future investigation. First, the results in this work focus on the

feedback delay as the major bottleneck in the performance, these results can be extended to include other

nuisance sources on the channel, such as errors in estimating the CSI at the receiver, and noise on the

feedback channel. Future work should also include extending the results to multi-user MIMO scenarios

and multiple access (MAC) channels. More importantly, this paper sets the grounds for implementing a

joint rate adaptation and codebook design technique that takes the rate outage caused by the other cell

interference as the major constraint, and optimizes the system goodput accordingly.

APPENDIX A

PROOF OF PROPOSITION (1)

Proposition 1: For fixed feedback delay of D samples, the feedback goodput gain can be bounded as

∆ρ̄(D) ≤ a
(√

λ
)2D

+ b
(√

λ
)D

, (34)

where a = r
∑

k1D,k2D
maxk10,k20 C(D)π, and

b = r
∑

k1D,k10,k2D

max
k20

C(D)π2
√
π +

∑
k1D,k2D,k20

max
k10

C(D)π2
√
π.

Proof: We define

V(D) =
∑

k10,k1D

∑
k20,k2D

C(D)
([

PD
]
k1Dk10

− π
)
π
([

PD
]
k2Dk20

− π
)
π, (35)

and we expand it in terms of ∆ρ̄1(D) as follows

V(D) = ∆ρ̄1(D)− (
∑

k10,k1D

∑
k20,k2D

C(D)
[
PD
]
k1Dk10

π3 −
∑

k10,k1D

∑
k20,k2D

C(D)π4)

− (
∑

k10,k1D

∑
k20,k2D

C(D)
[
PD
]
k2Dk20

π3 −
∑

k10,k1D

∑
k20,k2D

C(D)π4).

Consequently, ∆ρ̄(D) is written as

∆ρ̄(D) = rV(D)

+ (
∑

k10,k1D

∑
k20,k2D

C(D)
[
PD
]
k1Dk10

π3 −
∑
k0,k0D

∑
k2D,k20

C(D)π4)

+ r(
∑

k10,k1D

∑
k20,k2D

C(D)
[
PD
]
k2Dk20

π3 −
∑

k10,k1D

∑
k20,k2D

C(D)π4). (36)
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Using (17), V(D) can be upperbounded as follows

V(D) =
∑

k10,k0D

∑
k20,k2D

C(D)(
[
PD
]
k1Dk10

− π)(
[
PD
]
k2Dk20

− π)π2

≤
∑
k1D

∑
k2D

max
k10,k20

C(D)
∑
k10,k20

(
[
PD
]
k1Dk10

− π)(
[
PD
]
k2Dk20

− π)π2

≤
∑
k1D

∑
k2D

max
k10,k20

C(D)π(
√
λ)D(
√
λ)D

= c1(
√
λ)2D, (37)

where c1 =
∑

k1D

∑
k2D

maxk10,k20 C(D)π.

Similarly upper bounding the other terms yields expressions in (
√
λ)D∑

k10,k1D

∑
k20,k2D

C(D)(
[
PD
]
k1Dk10

− π)π3 ≤
∑

k1D,k20,k2D

max
k10

C(D)
∑
k10

(
[
PD
]
k1Dk10

− π)π3

≤
∑

k1D,k20,k2D

max
k10

C(D)π2
√
π(
√
λ)D (38)

= c2(
√
λ)D, (39)

where c2 =
∑

k1D,k20,k2D
maxk10 C(D)π2

√
π, and∑

k10,k1D

∑
k20,k2D

C(D)(
[
PD
]
k2Dk20

− π)π3 ≤ c3(
√
λ)D

with c3 =
∑

k2D,k10,k1D
maxk20 C(D)π2

√
π.

Finally, the expression ρ̄(D) can be upperbounded by

ρ̄(D) ≤ a(
√
λ)2D + b(

√
λ)D, (40)

where a = rc1 = r
∑

k1D,k2D
maxk10,k20 C(D)π, and

b = rc3 + c2 = r
∑

k1D,k10,k2D

max
k20

C(D)π2
√
π +

∑
k1D,k2D,k20

max
k10

C(D)π2
√
π.
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Fig. 1. In the downlink scenario, the mobile user MS1 experiences out of cell interference from BS2. G2 is the channel between BS2

and MS1, H1 is the channel between BS1 and MS1. The beamforming vector associated with G2 is F2 corresponding to H2 at MS2.
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Fig. 2. Limited feedback beamforming system with out of cell interference
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Fig. 3. Effect of feedback delay on the ergodic sum rate gain. Comparison of an interference limited system versus a noise limited

system for a 4× 4 MIMO system and a codebook size of 16. The normalized Doppler shift is fdTs = 0.025. The subscript SC denotes

single cell, while MC denotes multicell.
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Fig. 4. The normalized feedback throughput gain and its upperbound versus feedback delay for a Doppler shift fdTs = 0.025. The

system considered is a four transmit, four receive MIMO system with a code size of 16. The normalized feedback throughput gain for

the single cell scenario is given by ∆Rsc(D).
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Fig. 5. The feedback goodput gain versus feedback delay for the noise limited, interference limited and interference cancellation systems.

The MIMO system considered is a 4× 4 MIMO system with a code size of 16. The normalized Doppler frequency fdTs = 0.025.
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considered is a 4× 4 MIMO system with a code size of 16.
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codebook with Ns = 2 spatial multiplexing streams.



29

5 10 15 20 25 30
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Delay (in time samples)

T
hr

ou
gh

pu
t

G
ai

n

 

 

Spatial Multiplexing ∆ρ
P

(D) 

Transmit beamforming ∆ρ(D)
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beamforming system. The system is interference limited with 4× 4 MIMO system and a codebook size of 16. The codebook used is a

Grassmannian codebook with Ns = 2 spatial multiplexing streams.
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sizes. The system considered is a 2× 2 MIMO system with varying codebook sizes, and a normalized Doppler shift of fdTs = 0.02.
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