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Abstract—In this paper, we study the convergence be-
havior of distributed iterative algorithms with quantized
message passing. We first introduce general iterative func-
tion evaluation algorithms for solving fixed point problems
distributively. We then analyze the convergence of the
distributed algorithms, e.g. Jacobi scheme and Gauss-
Seidel scheme, under the quantized message passing. Based
on the closed-form convergence performance derived, we
propose two quantizer designs, namely thetime invariant
convergence-optimal quantizer (TICOQ) and the time vary-
ing convergence-optimal quantizer (TVCOQ), to minimize
the effect of the quantization error on the convergence. We
also study the tradeoff between the convergence error and
message passing overhead for both TICOQ and TVCOQ.
As an example, we apply the TICOQ and TVCOQ designs
to the iterative waterfilling algorithm of MIMO interferenc e
game.

I. I NTRODUCTION

Distributed algorithm design and analysis is a very
important topic with important applications in many
areas such as deterministic network utility maximization
(NUM) for wireless networks and non-cooperative game.
For example, in [1], [2], the authors derived various
distributed algorithms for a generic deterministic NUM
problem using the decomposition techniques, which can
be classified into primal decomposition and dual de-
composition methods. In [3], the authors investigated a
distributed power control algorithm for an interference
channel using non-cooperative game and derived an
iterative water-filling algorithm to approach the Nash
equilibrium (NE). The interference game problem was
extended to iterative waterfilling algorithm for a wide-
band interference game with time/frequency offset in
[4] and an iterative precoder optimization algorithm for
a MIMO interference game in [5], [6]. The authors
established a unified convergence proof of the itera-
tive water-filling algorithms for the SISO frequency-
selective interference game and the MIMO interference
game using a contraction mapping approach. Using this
framework, the iterative best response update (such as
the iterative power water-filling as well as the iterative

precoder design) can be regarded as aniterative function
evaluationsw.r.t. a certain contraction mapping and the
convergence property can be easily established using
fixed point theory[7], [8]. In all these examples, the
iterative function evaluation algorithmsinvolved explicit
message passing between nodes in the wireless networks
during the iteration process. Furthermore, these existing
results have assumed perfect message passing during the
iterations.

In practice, explicit message passing during the it-
erations in the distributed algorithms requires explicit
signaling in wireless networks. As such, the message
passing cannot be perfect and in many cases, the mes-
sages to pass have to be quantized. As a result, it
is very important and interesting to study about the
impact of quantized message passing on the convergence
of the distributed algorithms. Existing studies on the
distributed algorithms under quantized message passing
can be classified into two categories, namely thedis-
tributed quantized average consensus algorithms[9]–
[14] as well as thedistributed quantized incremental
subgradient algorithms[15]–[18]. For the distributed
quantized average consensus algorithms, existing works
considered the algorithm convergence performance under
quantized message passing for uniform quantizer [9],
[10], [12]–[14] and logarithmic quantizer [11] with fixed
quantization rate. In [12], [14], the authors also con-
sidered quantization interval optimization (for average
consensus algorithms) based on the uniform fixed-rate
quantization structure. Similarly, for the second cate-
gory of quantized incremental subgradient algorithms,
the authors in [15]–[18] considered the convergence
performance of fixed-rate uniform quantization. In this
paper, we are interested in the convergence behavior of
distributed iterative algorithms for solving general fixed
point problems under quantized message passing. The
above works on quantized message passing cannot be
applied to our case due to the following reasons. First of
all, the algorithm dynamics of the existing works (linear
dynamics for average consensus algorthms andstep-size
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basedalgorithms for incremental subgradient algorithms)
are very different from thecontraction-based iterative
algorithms we are interested in (for solving fixed point
problems). Secondly, the above works have imposed sim-
plifying constraints ofuniform and fixed ratequantizer
design and it is not known if a more general quantizer de-
sign or adaptive quantization rate could further improve
the convergence performance of the iterative algorithms.
There are a few technical challenges regarding the study
of convergence behavior in distributed contraction-based
iterative function evaluations.

• Convergence Analysis and Performance Trade-
off under Quantized Message Passing: In the
literature, convergence of distributed iterative func-
tion evaluation algorithms under quantized message
passing has not been considered. The general model
under quantized message passing and how does the
quantization error affect the convergence are not
fully studied. Furthermore, it will also be interesting
to study the tradeoff between convergence error and
message passing overhead.

• Quantizer Design based on the Convergence Per-
formance: Given the convergence analysis results,
how to optimize the quantizer to minimize the
effect of the quantization error on the convergence
is a difficult problem. In general, quantizers are
designed w.r.t. a certaindistortion measuresuch
as the mean square error [19], [20]. However, it
is not clear which distortion measure we should
use to design the quantizer in order to optimize the
convergence performance of the iterative algorithms
we considered. Furthermore, the convergence per-
formance highly depends on the quantizer structure
as well as the quantization rate, and hence, a low-
complexity solution to the nonlinear integer quan-
tizer optimization problem is of great importance.

In this paper, we shall attempt to shed some lights
on these questions. We shall first introduce a general
iterative function evaluation algorithm with distributed
message passing for solving fixed point problems. We
shall then analyze the convergence of the distributed
algorithms, e.g. Jacobi scheme and Gauss-Seidel scheme,
under the quantized message passing. Based on the
analysis, we shall propose two rate-adaptive quantizer
designs, namely thetime invariant convergence-optimal
quantizer(TICOQ) and thetime varying convergence-
optimal quantizer(TVCOQ), to minimize the effect of
the quantization error on the convergence. We shall also
develop efficient algorithms to solve the nonlinear integer
programming problem associated with the quantizer op-
timization problem. As an illustrative example, we shall
apply the TICOQ and TVCOQ designs to the iterative
waterfilling algorithm of the MIMO interference game
[5], [6].

We first list the important notations in this paper in
table I.

n dimension of vector of state variables
m (1 ≤ m ≤ n) element index of vector

K number of nodes/blocks
k (1 ≤ k ≤ K) node index/block index

T̄ total number of iterations
t (1 ≤ t ≤ T̄ ) iteration index

Qk component quantizer of nodek (general)
Q = (Q1, · · · ,QK) system quantizer (general)

superscripts scalar quantizer (SQ)
superscriptv vector quantizer (VQ)

Qs
k
= (Qs

m)m∈Mk
component quantizer of nodek (SQ)

Qs = (Qs
1, · · · ,Q

s
n) system quantizer (SQ)

I
s = (Is1 , · · · , I

s
n) quantization index vector (SQ)

Ls = (Ls
1, · · · , L

s
n) quantization rate vector (SQ)

Qv
k

component quantizer of nodek (VQ)
Qv = (Qv

1 , · · · ,Q
v
K
) system quantizer (VQ)

Iv = (Iv1 , · · · , I
v
K
) quantization index vector (VQ)

Lv = (Lv
1 , · · · , L

v
K
) quantization rate vector (VQ)

R+ the set of nonnegative real numbers
Z+ the set of nonnegative integers

TABLE I
L IST OF IMPORTANT NOTATIONS.

II. I TERATIVE FUNCTION EVALUATIONS

In this section, we shall introduce the basic iterative
function evaluation algorithm to solve fixed point prob-
lems as well as its parallel and distributed implemen-
tations. We shall then review the convergence property
under perfect message passing in the iteration process.
We shall also illustrate the application of the framework
using the MIMO interference game in [5], [6] as an
example.

A. A General Framework of Iterative Function Evalua-
tion Algorithms

In algorithm designs of wireless systems, many it-
erative algorithms can be described as the following
dynamic update equation [7]:

x(t+ 1) = T
(

x(t)
)

(1)

wherex(t) ∈ Rn is the vector of state variables of the
system at (discrete) timet andT is a mapping from a
subsetX ⊆ Rn into itself. Such iterative algorithm with
dynamics described by (1) is called theiterative function
evaluation algorithm, which is widely used to solvefixed
point problems[7], [8]. Specifically, any vectorx∗ ∈ X

satisfyingT(x∗) = x∗ is called afixed pointof T. If
the sequence{x(t)} converges to somex∗ ∈ X and
T is continuous atx∗, then x∗ is a fixed point ofT
[7]. Therefore, the iteration in (1) can be viewed as
an algorithm for finding such a fixed point ofT. We
shall first review a few properties below related to the
convergence of (1). Specifically,T is called a contraction
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mapping if it satisfies some property, which is defined as
follows:

Definition 1 (Contraction Mapping):Let T : X →
X be a mapping from a subsetX ⊆ Rn into itself
satisfying the following property‖T(x) − T(y)‖ ≤
α‖x − y‖ (∀x,y ∈ X ), where‖ · ‖ is some norm and
α ∈ [0, 1) is a constant scalar. Then the mappingT is
called acontraction mappingand the scalarα is called
the modulusof T.

Remark 1:(Comparison with Step-size Based Incre-
mental Subgradient Algorithms) The incremental subgra-
dient algorithms [21] can be described asx(t + 1) =
x(t) − ǫtg

(

x(t)
)

, where{ǫt} is the step-size sequence
and g

(

x(t)
)

is a subgradient of the objective function
at x(t) in a minimization problem. Such step-size based
update algorithms and their associated convergence dy-
namics are quite different from the iterative function
evaluation algorithm we considered in (1).

If T is a contraction mapping, then the iterative update
in (1) is calledcontracting iteration. The convergence of
(1) is summarized as follows (Proof can be found in [7]):

Theorem 1 (Convergence of Contracting Iterations):
Suppose thatT : X → X is a contraction mapping
with modulusα ∈ [0, 1) and thatX ⊆ Rn is closed.
We have:

(1) (Existence and Uniqueness of Fixed Points) The
mappingT has a unique fixed pointx∗ ∈ X .

(2) (Geometric Convergence) For any initial vector
x(0) ∈ X , the sequence{x(t)} generated by (1) con-
verges tox∗ geometrically. In particular,‖x(t)− x∗‖ ≤
αt‖x(0)− x∗‖ ∀t ≥ 0.

In the above discussion,‖ · ‖ can be any well-defined
norm. There are many useful norms in the literature.
However, the commonly used norms can be classified
into two groups, namely weighted maximum norm and
Lp norm (1 ≤ p < ∞). They are elaborated below:

• Weighted maximum norm:

‖x‖a∞ = max
m

|xm|

am
(am > 0) (2)

Note that for am = 1 ∀m, this reduces to the
maximum norm, which can also be obtained from
theLp norm by taking the limitp → ∞.

• Lp norm (1 ≤ p < ∞):

‖x‖p =
(

n
∑

m=1

|xm|p
)

1
p

(3)

Note that forp = 1 we get the taxicab norm and
for p = 2 we get the Euclidean norm.

B. Parallel and Distributed Implementation of Contract-
ing Iterations

In practice, large scale computation always involves
a number of processors or communication nodes jointly

executing a computational task. As a result, parallel and
distributed implementation is of prime importance. Infor-
mation acquisition and control are within geographically
distributed nodes, in which distributed computation is
more preferable. In this part, we shall discuss the efficient
parallel and distributed computation of the contracting
iteration in (1).

To perform efficient parallel and distributed implemen-
tations withK processors, the setX is partitioned into
a Cartesian product of lower dimensional sets, based
on the computational complexity consideration or the
local information extraction and control requirement.
Mathematically, it can be expressed asX =

∏K
k=1 X k,

whereX k ⊆ Rnk and
∑K

k=1 nk = n. Let n0 = 0 and
Mk = {m ∈ N :

∑k
l=1 nl−1 + 1 ≤ m ≤

∑k
l=1 nl} be

the index set of thek-th component setX k (1 ≤ k ≤ K),
whereN is the set of integers. Thus,X k =

∏

m∈Mk
Xm,

whereXm ⊆ R1. Any vector x ∈ X is decomposed
as x = (x1, · · · ,xK) with the k-th block component
xk = (xm)m∈Mk

∈ X k =
∏

m∈Mk
Xm and the

mappingT : X → X is decomposed asT(x) =
(

T1(x), · · · ,TK(x)
)

with the k-th block component
Tk : X → X k.

When the setX is a Cartesian product of lower dimen-
sional setsX k, block-parallelization withK processors
can be implemented by assigning one processor to update
a different block component. The most common updating
strategies forx1, · · · ,xK based on the block mappingT
are:

• Jacobi Scheme: All block componentsx1, · · · ,xK

are updated simultaneously, i.e.

xk(t+ 1) = Tk

(

x(t)
)

, 1 ≤ k ≤ K (4)

• Gauss-Seidel Scheme: All block components
x1, · · · ,xK are updated sequentially, one after the
other, i.e.

xk(t+ 1) = Sk

(

x(t)
)

, 1 ≤ k ≤ K (5)

whereSk : X → X k given by

Sk(x) (6)

=

{

Tk(x), k = 1
Tk

(

S1(x), · · · ,Sk−1(x),xk, · · · ,xK

)

, 2 ≤ k ≤ K

is the k-th block component of the Guass-
Seidel mappingS : X → X , i.e. S(x) =
(

S1(x), · · · ,SK(x)
)

.

Both Jacobi Scheme and Gauss-Seidel Scheme belong
to synchronous update schemes1. Specifically, Jacobi
Scheme assumes the network is synchronized, while the

1Due to page limit, we shall illustrate the design for synchronous
updates in (4) and (5). However, the scheme can be extended todeal
with totally asynchronous updateseasily [7], which will be further
illustrated later in footnote 5.
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Gauss-Seidel Scheme assumes the network provides a
(Hamiltonian) cyclic route [7].

The general weighted block-maximum norm onRn,
which is usually associated with the block partition of
the vectorx, is defined as [7]:

‖x‖wblock = max
k

‖xk‖k
wk

(7)

wherew = (w1, · · · , wK) > 0 is the vector weight and
‖·‖k is the norm for thek-th block component2 xk, which
can be any given norm onRnk , such as the weighted
maximum norm and theLp norm (1 ≤ p < ∞) defined in
(2) and (3). The mappingT : X → X is called ablock-
contractionwith modulusα ∈ [0, 1) if it is a contraction
under the above induced weighted block-maximum norm
‖ · ‖wblock with modulusα. The convergence of the Jacobi
scheme and Gauss-Seidel scheme based on the block-
contraction is summarized in the following theorem [7]:

Theorem 2:(Convergence of Jacobi Scheme and
Gauss-Seidel Scheme) If T : X → X is a block-
contraction, then the Gauss-Seidel mappingS is also a
block-contraction with the same modulus asT. Further-
more, ifX is closed, then the sequence{x(t)} generated
by both the Jocobi scheme in (4) and the Gauss-Seidel
scheme in (5) based on the mappingT converges to the
unique fixed pointx∗ ∈ X of T geometrically.

C. Application Example — MIMO Interference Game

The contracting iteration in (1) is very useful in solving
fixed point problems. Fixed point problem is highly
related to distributed resource optimization problems in
wireless systems [3], [5], [6], [22]. For example, finding
theNash Equilibrim (NE)of a game is a fixed point prob-
lem. In this subsection, we shall illustrate the application
of contracting iterations using MIMO interference game
[5], [6] as an example.

Consider a system withK noncooperative transmitter-
receiver pairs communicating simultaneously over a
MIMO channel withN transmit antenna andN receive
antenna [5], [6]. The received signal of thek-th receiver
is given by:

yk = Hkksk +
∑

j 6=k

Hjksj + nk (8)

wheresk ∈ CN andyk ∈ CN are the vector transmitted
by thek-th transmitter and the vector received by thek-th
receiver respectively,Hkk ∈ CN×N is the direct-channel
of thek-th link, Hjk ∈ C

N×N is the cross-channel from
thej-th transmitter to thek-th receiver, andnk ∈ CN is a
zero-mean circularly symmetric complex Gaussian noise

2Since in general, the norm of each block component may not be
the same, subscriptk is used in‖ · ‖k.

vector with covariance matrixRnk
. For each transmitter

k, the total average transmit power is given by

E
[

‖sk‖
2
2

]

= Tr(Pk) ≤ Pk (9)

where Tr(·) denotes the trace operator,Pk , E[sks
H
k ]

is the covariance matrix of the transmitted vectorsk
andPk is the maximum average transmitted power. The
maximum throughput of linkk for a given set of users’
covariance matricesP1, · · · ,PK is as follows

rk(Pk,P−k) = log det
(

I+HH
kkR

−1
−k(P−k)HkkPk

)

(10)

whereR−k(P−k) , Rnk
+

∑

j 6=k HjkPjH
H
jk is the

noise covariance matrix plus the MUI observed by user
k, andP−k , (Pj)j 6=k is the covariance matrix of all
other users except userk.

In the MIMO interference game [5], [6], each playerk

competes against the others by choosing his transmit co-
variance matrixPk (i.e., his strategy) that maximizes his
own maximum throughputrk(Pk,P−k) in (10), subject
to the transmit power constraint in (9), the mathematical
structure of which is as follows

(G)max
Pk

rk(Pk,P−k) ∀k (11)

s.t. Pk ∈ Pk

wherePk ,
{

Pk ∈ CN×N : Pk < 0,Tr(Pk) = Pk

}

is the admissible strategy set of userk, and Pk <
0 denotes thatPk is a positive semidefinite matrix.
Given k and P−k ∈ P−k, the solution to the non-
cooperative game (11) is the well-know waterfilling solu-
tion P∗

k = WFk(P−k), where the waterfilling operator
WFk(P−k) can be equivalently written as [5]

WFk(P−k) =
[

−
(

HH
kkR

−1
−k(P−k)Hkk

)−1]

Pk
(12)

where
[

X0

]

X
= argminZ∈X ‖Z − X0‖F denotes the

matrix projection ofX0 w.r.t Frobenius norm3 ‖·‖F onto
the setX . The NE of the MIMO Gaussian interference
game is the fixed point solution of the waterfilling map-
ping WF : P → P, i.e. P∗

k = WFk(P
∗
−k) ∀k, where

P , P1 × · · · ×PK andWF = (WF1, · · · ,WFK).
In [5], it is shown that under some mild condition, the

mappingWF is a block-contraction4 w.r.t. ‖ · ‖wF,block.
Therefore, the NE can be achieved by the following
contracting iteration

P(t+ 1) = WF
(

P(t)
)

(13)

3If we arrange MN elements of aM × N matrix X as a
MN -dimensional vectorx, then the Frobenius norm of matrixX is
equivalent to theL2 norm of vectorx.

4After rearranging the elements of theN×N covariance matrixPk

as aN2-dimensional vector, the block-contractionWF w.r.t.‖·‖wF,block
is equivalent to a block-contraction w.r.t.‖ · ‖wblock defined in (7) with
each‖ · ‖k beingL2 norm.
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whereP = (P1, · · · ,PK). It can be easily seen that the
waterfilling algorithm for the MIMO interference game
in (13) is a special case of the contracting iterations in
(1). In our general model,x in (1) corresponds toP in
(13); the block-contraction mappingT in (1) corresponds
toWF in (13); thek-th block componentxk corresponds
to the covariance matrixPk; the k-th block component
mappingTk corresponds toWFk.

For the parallel and distributed implementation, we
can partition the variable spaceP =

∏

k Pk, where
each variable spacePk corresponds to the covariance
matrix of the k-th link. In each iteration, the receiver
of each linkk needs to locally measure the PSD of the
interference received from the transmitter of the other
links, i.e.

∑

j 6=k HjkPj(t)H
H
jk, computes the covariance

matrix of thek-th link and transmits the computational
results to the associated transmitter. There are two dis-
tributed iterative waterfilling algorithms (IWFA) based
on this waterfilling block-contraction, namely simultane-
ous IWFA and sequential IWFA, which are described as
follows:

• Simultaneous IWFA: It is an example of the Jacobi
scheme, which is given by

Pk(t+ 1) = WF
(

P−k(t)
)

, 1 ≤ k ≤ K

• Sequential IWFA: It is an example of the Gauss-
Seidel scheme, which is given by

Pk(t+1) =

{

WF
(

P−k(t)
)

, if(t+ 1)modK = k

Pk(t), otherwise

III. C ONTRACTING ITERATIONS UNDERQUANTIZED

MESSAGEPASSING

In this section, we shall study the impact of the quan-
tized message passing on the contracting iterations. We
shall first introduce a general quantized message passing
model, followed by some general results regarding the
convergence behavior under quantized message passing.

A. General Model of Quantized Message Passing

in
te

rfe
re

nce

signal

(1-th Tx-Rx pair)

1-th 1-th

(k-th Tx-Rx pair)

k-th k-th

(K-th Tx-Rx pair)

K-thK-th

PSD Measure

Encoding

Received

Signal

Encoder

 of

Signal
transmission

Decoding
Decoder

 of

Fig. 1. Illustration ofK-pair MIMO interference game.

We assume there areK processing nodes geographi-
cally distributed in the wireless systems. Fig. 1 illustrates
an example ofK-pair MIMO interference game with
quantized message passing. The system quantizer can
be characterized by the tupleQ = (Q1, ...,QK), where
Qk is the component quantizer (can be scalar or vector
quantizer) for thek-th node.Qk can be further denoted
by the tupleQk = (Ek,Dk). Ek : X k → Ik is anencoder
andDk : Ik → X̂ k is a decoder. Ik = {1, · · · , 2Lk}
andLk are theindex setand thequantization rateof the
component quantizerQk. X̂ k is the reproduction code-
book, which is the set of all possible quantized outputs
of Qk [19]. The quantization rule is completely specified
by Qk : X k → X̂ k. Specifically, the quantized value is
given byx̂k = Qk(xk) = Dk

(

Ek(xk)
)

. Each nodek up-
dates thek-th block componentxk of then-dimensional
vector x, i.e. computesxk(t + 1) = Tk

(

x(t)
)

. The
encoderEk of Qk accepts the inputTk

(

x(t)
)

and
produces a quantization indexIk(t) = Ek

(

Tk

(

x(t)
))

.
Each nodek broadcasts the quantization indexIk(t). In
other words, the message passing involves only the quan-
tization indicesI(t) =

(

Ik(t), · · · , IK(t)
)

instead of the
actual controlsT

(

x(t)
)

=
(

T1

(

x(t)
)

, · · · ,TK

(

x(t)
))

.
Upon receiving the quantization indexIk(t), the decoder
Dk of Qk produces a quantized valuexk(t + 1) =
T̂k

(

x(t)
)

= Dk

(

Ik(t)
)

= Tk

(

x(t)
)

+ ek(t). Therefore,
the contracting iteration update dynamics of (1) with
quantized message passing can be modified as:

x(t+ 1) = T
(

x(t)
)

+ e(t) (14)

wheree(t) ∈ Rn is thequantization error vectorat time
t. The quantizer design affects the convergence property
of the iterative update algorithm fundamentally via the
quantization error random processe(t). Generally, the
update of each block component is based on the latest
overall vector, becauseTk : X → X k. Thus, the
decoders of the system quantizerD = (D1, · · · ,DK)
is needed at each node. On the other hand, thek-th
node only requires the encoderEk of the corresponding
quantizer componentQk.

Consider the application example in Section II-C under
quantized message passing. The system quantizerQ =
(Q1, ...,QK) can be applied in the MIMO interference
game withK noncooperative transmitter-receiver pairs
as illustrated in Fig. 1. Specifically, for thek-th link, the
encoderEk is placed at receiver and the decoderDk is
placed at the transmitter. The MIMO interference game
under quantized message passing will be illustrated in
the following example:

Example 1: (MIMO Interference under Quantized
Message Passing) In the t-th iteration, the receiver of
the k-th link locally measures PSD of the interfer-
ence received from the transmitter of the other links,
i.e.

∑

j 6=k HjkPj(t)H
H
jk, and computesWFk

(

P−k(t)
)

.
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The encoderEk of Qk at the k-th receiver en-
codesWFk

(

P−k(t)
)

and passes the quantization index
Ik(t) = Ek

(

WFk

(

P−k(t)
))

to thek-th transmitter. The
decoderDk of Qk at k-th transmitter produces a quan-
tized valuePk(t+1) = Dk

(

Ik(t)
)

= WFk

(

P−k(t)
)

+
ek(t). The contracting iterative update dynamics of (13)
for the MIMO interference game under quantized mes-
sage passing is given by:

P(t+ 1) =WF
(

P(t)
)

+ e(t) (15)

B. Convergence Property under Quantized Message
Passing

Under the quantized message passing, the convergence
of the contracting iterations is summarized in the follow-
ing lemma:

Lemma 1: (Convergence of Contracting Iterations un-
der Quantized Message Passing) Suppose thatT : X →
X is a contraction mapping with modulusα ∈ [0, 1) and
fixed pointx∗ ∈ X , and thatX ⊆ Rn is closed. For any
initial vector x(0) ∈ X , the sequence{x(t)} generated
by (14) satisfies:

(a) ‖x(t) − x∗‖ ≤ αt‖x(0) − x∗‖ + E(t) ∀t ≥ 1,
whereE(t) = αt−1

∑t−1
l=0 α

−l‖e(l)‖ is the accumulated
error up to the timet induced by the quantized message
passing.

(b) For eacht, if there exists a vector̃et ∈ Rn such
that ‖e(t)‖ ≤ ‖ẽt‖, thenE(t) ≤ Ẽ(t), whereẼ(t) ,
αt−1

∑t−1
l=0 α

−l‖ẽl‖.
(c) If ‖ẽ1‖ = · · · = ‖ẽt‖ , ‖ē‖, thenE(t) ≤ Ē(t),

where Ē(t) , 1−αt

1−α
‖ē‖ with limiting error bound

Ē(∞) , limt→∞ Ē(t) = ‖ē‖
1−α

. Furthermore, define the
stationary set asS , {Q(x) : ‖x− x∗‖ ≤ Ē(∞)}. The
sufficient condition for convergence isx = Q

(

T(x)
)

∀x ∈ S and the necessary condition for convergence is
∃x ∈ S, such thatx = Q

(

T(x)
)

.
Proof: Please refer to Appendix A for the proof.

Note that, in the above lemma, the norm‖·‖ can be any
general norm. In the following, we shall focus on char-
acterizing the convergence behavior of the distributed
Jacobi and Gauss-Seidel schemes under quantized mes-
sage passing with the underlying contraction mapping
T defined w.r.t. the weighted block-maximum norm
‖ · ‖wblock [5]–[7]. Under quantized message passing, the
algorithm dynamicsof the two commonly used parallel
and distributed schemes can be described as follows:

• Jacobi Scheme under Quantized Message Pass-
ing:

xk(t+ 1) = Tk

(

x(t)
)

+ ek(t), 1 ≤ k ≤ K (16)

• Gauss-Seidel Scheme under Quantized Message
Passing:

xk(t+ 1) = Ŝk

(

x(t)
)

+ ek(t), 1 ≤ k ≤ K (17)

where

Ŝk(x) (18)

=







Tk(x), k = 1

Tk

(

Ŝ1(x) + e1, · · · ,

Ŝk−1(x) + ek−1,xk, · · · ,xK

)

, 2 ≤ k ≤ K

Applying the results of Lemma 1, the convergence
property of the distributed Jacobi and Gauss-Seidel
schemes in (16) and (17) can be summarized in the
following lemma.

Lemma 2: (Convergence of Jacobi Scheme and
Gauss-Seidel Scheme under Quantized Message Passing)
Suppose thatT : X → X is a block-contraction map-
ping w.r.t. the weighted block-maximum norm‖ · ‖wblock
with modulusα ∈ [0, 1) and fixed pointx∗ ∈ X , and that
X ⊆ Rn is closed. For every initial vectorx(0) ∈ X ,
the sequence{x(t)} generated by both the Jacobi scheme
and the Gauss-Seidel scheme under quantized message
passing in (16) and (17) satisfies5

(a) ‖x(t)− x∗‖wblock ≤ αt‖x(0)− x∗‖wblock + Ew
block(t)

∀t ≥ 1, whereEw
block(t) = αt−1

∑t−1
l=0 α

−l‖e(l)‖wblock
for Jacobi scheme and Ew

block(t) =
1−αK

1−α
αt−1

∑t−1
l=0 α

−l‖e(l)‖wblock for Gauss-Seidel
scheme.

(b) If condition in (b) of Lemma 1 holds
w.r.t. ‖ · ‖wblock, then Ew

block(t) ≤ Ẽw
block(t), where

Ẽw
block(t) , αt−1

∑t−1
l=0 α

−l‖ẽl‖wblock for Jacobi scheme
and Ẽw

block(t) , 1−αK

1−α
αt−1

∑t−1
l=0 α

−l‖ẽl‖wblock for
Gauss-Seidel scheme.

(c) If condition in (c) of Lemma 1 holds w.r.t.
‖ · ‖wblock, thenEw

block(t) ≤ Ēw
block(t), whereĒw

block(t) ,
1−αt

1−α
‖ē‖wblock for Jacobi scheme withĒw

block(∞) =
1

1−α
‖ē‖wblock and Ēw

block(t) , 1−αK

1−α
1−αt

1−α
‖ē‖wblock for

Gauss-Seidel6 scheme withĒw
block(∞) = 1−αK

(1−α)2 ‖ē‖
w
block.

Furthermore, define the stationary set asSwblock ,
{Q(x) : ‖x − x∗‖wblock ≤ Ēw

block(∞)}. The sufficient
condition and necessary condition are the same as those
in Lemma 1.

Proof: Please refer to Appendix B for the proof.

5Our analysis can be extended to totally asynchronous
scheme in which the results of Lemma 2 becomes:
(a) Ew

block(t) = 1
1−α

αt−1
∑t−1

l=0 α−l‖e(l)‖wblock. (b)

Ẽw

block(t) , 1
1−α

αt−1
∑t−1

l=0 α−l‖ẽl‖
w

block. (c) If ‖ē‖wblock <

(1 − α)‖x(0) − x∗‖wblock, we haveĒw

block(t) = 1−αt

(1−α)2
‖ē‖wblock and

Ēw

block(∞) = 1
(1−α)2

‖ē‖wblock. By the Asynchronous Convergence
Theorem (Proposition 2.1 in Chapter 6 of [7]), we can prove (c)
(similar to the proof of Theorem 12 in [6]). The proof is omitted here
due to page limit. Since the error bound result of totally asynchronous
scheme is similar to Jacobi Scheme and Gauss-Seidel Scheme,our
quantizer design later can be applied to the asynchronous case.

6Compared with Jacobi scheme, Gauss-Seidel scheme and totally
asynchronous scheme have extra error terms1−αK

1−α
and 1

1−α
, respec-

tively, and 1
1−α

> 1−αK

1−α
> 1.
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Remark 2:As a result of Lemma 1 and Lemma 2, the
effect of quantized message passing affects the conver-
gence property of the contracting iterative algorithm in a
fundamental way. From Lemma 2, the Jacobi and Gauss-
Seidel distributed iterative algorithms may not be able
to converge precisely to the fixed point under quantized
message passing due to the termEw

block(t).

IV. T IME INVARIANT CONVERGENCE-OPTIMAL

QUANTIZER DESIGN

In this section, we shall define aTime Invariant
Quantizer(TIQ) and then formulate theTime Invariant
Convergence-Optimal Quantizer(TICOQ) design prob-
lem. We shall consider the TICOQ design for the scalar
quantizer (SQ) and the vector quantizer (VQ) cases
separately. Specifically, the component quantizerQk

of the k-th node can be a group of scalar quantizers
Qs

k = (Qs
m)m∈Mk

or a vector quantizerQv
k. In the

SQ case, each elementTm(·) (m ∈ Mk) of the vector
Tk(·) is quantized by a coordinate scalar quantizerQs

m

separately. However, in the VQ case, the input to a vector
quantizerQv

k is the vectorTk(·).
Definition 2 (Time Invariant Quantizer (TIQ)):

A Time Invariant Quantizer(TIQ) is a quantizer
Q = (E ,D) such thatE and D are time invariant
mappings.

The system scalar TIQ can be denoted asQ
s =

(Qs
1, · · · ,Q

s
m, · · · ,Qs

n). Let Ls = (Ls
1, · · · , L

s
n) be the

quantization rate vectorfor the system scalar TIQQs,
whereLs

m ∈ Z+ is the quantization rate (number of bits)
of the coordinate scalar quantizerQs

m (1 ≤ m ≤ n).
The sum quantization rate of the system scalar TIQQ

s

is given by
∑n

m=1 L
s
m. Similarly, the system vector TIQ

can be denoted asQv = (Qv
1, · · · ,Q

v
k, · · · ,Q

v
K). Let

Lv = (Lv
1 , · · · , L

v
K) be thequantization rate vectorfor

the system vector TIQQv, whereLv
k ∈ Z

+ is defined as
the quantization rate (number of bits) of the coordinate
vector quantizerQv

k (1 ≤ k ≤ K). The sum quantization
rate of the system vector TIQQv is given by

∑K
k=1 L

v
k.

Using Lemma 2 (c), the limiting error bound of the al-
gorithm trajectory is given bȳEw

block(∞) = 1
1−α

‖ē‖wblock

(Jacobi scheme) or̄Ew
block(∞) = 1−αK

(1−α)2 ‖ē‖
w
block (Gauss-

Seidel scheme). Therefore, the TICOQ design, which
minimizes Ēw

block(∞) under the sum quantization rate
constraint, is equivalent to the following:

Problem 1 (TICOQ Design Problem):

min
QsorQv

‖ē‖wblock (19)

s.t.

n
∑

m=1

Ls
m = L, Ls

m ∈ Z
+(1 ≤ m ≤ n) SQ (20)

or
K
∑

k=1

Lv
k = L, Lv

k ∈ Z
+(1 ≤ k ≤ K) VQ (21)

where‖ē‖wblock = maxx∈X ‖x − Q
s(x)‖wblock (SQ case)

or ‖ē‖wblock = maxx∈X ‖x−Q
v(x)‖wblock (VQ case).

Remark 3 (Interpretation of Problem 1):Note
that the optimization variable in Problem 1
is the system TIQ Q

s or Q
v. The objective

function ‖ē‖wblock = maxx∈X ‖x − Q
s(x)‖wblock or

‖ē‖wblock = maxx∈X ‖x − Q
v(x)‖wblock obviously

depends on the choice of the system TIQQs or
Q

v. Furthermore, the constraint (20) or (21) is the
constraint on the quantization rateLs = (Ls

1, · · · , L
s
n) or

Lv = (Lv
1 , · · · , L

v
K), which is also an effective constraint

on the optimization domains ofQs or Qv, respectively.
It is becauseLs

m or Lv
k is a parameter (corresponding

to the cardinality of the index set, i.e.|Is
m| = 2L

s
m or

|Iv
k | = 2L

v
k ) of the encoder and decoder ofQs

m or Qv
k.

The Lagrangian function of Problem 1 is given by:
Ls(Qs, µs) = ‖ē‖wblock + µs(

∑n
m=1 L

s
m − L) (SQ case)

or Lv(Qv, µv) = ‖ē‖wblock + µv(
∑K

k=1 L
v
k − L) (VQ

case), whereµs or µv is the Lagrange multiplier (LM)
corresponding to the constraint (20) or (21). Hence,
the optimization problem 1 can also be interpreted
as optimizing the tradeoff between the convergence
performance‖ē‖wblock and the communication overhead
∑n

m=1 L
s
m or

∑K
k=1 L

v
k. The LM µs or µv can be

regarded as theper-iteration cost sensitivity.
Remark 4 (Robust Consideration in Problem 1):

The optimization objective‖ē‖wblock in (19) actually
corresponds to aworst case error in the algorthm
trajectory. In other words, the TICOQ design is trying
to find the optimal TIQ which minimizes the worst
case error. In fact, the algorithm trajectoryx(t) is a
random process induced by the uncertainty in the initial
point x(0). In general, we do not have knowledge on
the distribution ofx(t) due to the uncertainty onx(0).
Hence, the solution to Problem 1 (optimizing the worst
case error) offers some robustness w.r.t. the choice of
x(0).

In the following, we shall discuss the scalar and vector
TICOQ design based on Problem 1 separately.

A. Time Invariant Convergence-Optimal Scalar Quan-
tizer

We first have a lemma on the structure of the optimiz-
ing quantizer in the scalar TICOQ design in Problem 1.

Lemma 3 (Structure of the Scalar TICOQ):If each
component norm‖ · ‖k on R

nk (1 ≤ k ≤ K) of the
weighted block-maximum norm‖ · ‖wblock defined by
(7) is monotone (or absolute) norm7, then the optimal
coordinate scalar quantizerQs∗

m (1 ≤ m ≤ n) w.r.t. the
worst case error‖ē‖wblock = maxx∈X ‖x − Q

s(x)‖wblock
is a uniform quantizer.

7A vector norm is monotone if and only if it is absolute [23].
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Proof: Please refer to Appendix C for the proof.
While the optimization variable in Problem 1 (SQ

case) isQs = (Qs
1, · · · , Q

s
n), using Lemma 3, we

can restrict the optimization domain of each coordi-
nate scalar quantizerQs

m (1 ≤ m ≤ n) to uniform
quantizer without loss of optimality. Thus, the worst
case error of them-th coordinate is given by|ēm| ,
maxxm∈Xm

|xm − Qs
m(xm)| = |Xm|

2×2L
s
m

(1 ≤ m ≤ n),
where|Xm| is the length of the intervalXm (xm ∈ Xm),
and the remaining optimization variable is reduced from
Q

s = (Qs
1, · · · , Q

s
n) to Ls = (Ls

1, · · · , L
s
n). Scalar

TICOQ design in Problem 1 w.r.t.Ls = (Ls
1, · · · , L

s
n)

is a Nonlinear Integer Programming(NLIP) problem,
which is in general difficult to solve. Verifying the
optimality of a solution requires enumerating all the
feasible solutions in most cases. In the following, we
shall derive the optimal solution to the scalar TICOQ
design in Problem 1 w.r.t. the weighted block-maximum
norm ‖ · ‖wblock defined by (7), in which each component
norm ‖ · ‖k is the weighted maximum norm and theLp

norm separately.
Theorem 3 (Solution for Weighted Maximum Norm):

Given a weighted block-maximum norm‖·‖wblock defined
by (7) (parameterized byw = (w1, · · · , wK)) with
‖ · ‖k being the weighted maximum norm‖ · ‖ak

∞

defined by (2) (parameterized byak = (am)m∈Mk
), let

L̄s∗
m = (log2

Cm

τ
)+, whereCm , |Xm|

2am(
∑

K
k=1 wkI[m∈Mk])

,

I[·] is indicator function andτ > 0 is a constant related
to the LM of the constraint (20) chosen to satisfy the
constraint

∑n
m=1(log2

Cm

τ
)+ = L. The optimal integer

solution of Problem 1 for the SQ case is given by8:

Ls∗
[m] =

{

⌈L̄s∗
[m]⌉, if m ≤

∑n
m=1(L̄

s∗
m − ⌊L̄s∗

m⌋)

⌊L̄s∗
[m]⌋, otherwise

(22)

The optimal value of Problem 1 under continuous relax-
ation isτ .

Proof: Please refer to Appendix D for the Proof.
Theorem 4 (Solution forLp Norm): Given a

weighted block-maximum norm‖ · ‖wblock defined
by (7) (parameterized byw = (w1, · · · , wK))
with ‖ · ‖k being the Lp norm ‖ · ‖p defined by
(3) (parameterized byp), the optimal solution of
Problem 1 for the SQ case with continuous relaxation
(Ls

m ∈ R+) is L̄s∗
m = 1

p
log2(

Cm
∑

K
k=1 τkI[m∈Mk]

∨ 1),

where Cm , |Xm|p

2p(
∑

K
k=1 w

p

k
I[m∈Mk])

, {τ1, · · · , τK}

and τ are constants related to the LM of the
constraint (21) chosen to satisfy the constraint
∑K

k=1

∑

m∈Mk

1
p
log2(

Cm

τk
∨1) = L and complementary

slackness conditions1
τk

(
∑

m∈Mk
(Cm ∧ τk) − τ

)

= 0

8We arrange the real sequencez1, · · · , zn in decreasing order and
denote them asz[1] ≥ · · · ≥ z[m] ≥ · · · ≥ z[n], where z[m]
represents them-th largest term of{zm}.

(∀k ∈ {1, · · · ,K})9. The optimal value of Problem 1
with continuous relaxation isτ

1
p .

Proof: Please refer to Appendix D for the Proof.
Remark 5 (Determination of{τ1, · · · , τK} and τ ):

Solving for {τ1, · · · , τK} and τ involves solving
a system of K + 1 equations with K + 1
unknowns. We have 2K − 1 valid cases for
the above system of equations according to
τk > maxm∈Mk

Cm or τk ≤ maxm∈Mk
Cm (∀k).

Firstly, if τk > maxm∈Mk
Cm (∀k), then L̄s

m = 0
(∀m), which is not a valid case. Therefore, without
loss of generality, assumeτk ≤ maxm∈Mk

Cm

∀k ∈ {1, · · · , N} and τk > maxm∈Mk
Cm

∀k ∈ {N + 1, · · · ,K}. The system ofK + 1
equations and unknowns reduce toN + 1 equations,
which are given by:

∑N
k=1

∑

m∈Mk

1
p
log2(

Cm

τk
∨1) = L

and
∑

m∈Mk
(Cm ∧ τk) = τ (∀k ∈ {1, · · · , N}), and

N + 1 unknowns10: {τ1, · · · , τN} andτ .

B. Time Invariant Convergence-Optimal Vector Quan-
tizer

We first have a lemma on the structure of the optimiz-
ing quantizer in the vector TICOQ design in Problem
1.

Lemma 4 (Structure of the Vector TICOQ):If the
component norm‖ · ‖k (1 ≤ k ≤ K) on R

nk of the
weighted block-maximum norm‖ · ‖wblock defined by (7)
is monotone (or absolute) norm, each vector TICOQ
Qv∗

k is a nk-dimensional lattice quantizer, the structure
of which is uniquely determined by the norm‖ · ‖k
on Rnk . In particular, if ‖ · ‖k (1 ≤ k ≤ K) is L2

norm, each vector TICOQQv∗
k is the thinnest lattice

for the covering problem in Euclidean space; If‖ · ‖k
(1 ≤ k ≤ K) is weighted maximum norm, each vector
TICOQ Qv∗

k reduces tonk coordinate scalar TICOQ
Qs∗

m (m ∈ Mk) with scalar quantization11 of each
coordinatexm (m ∈ Mk) of xk.

Proof: Please refer to Appendix E for the proof.
A lattice is a regular arrangement of points inn-

dimensional space that includes the origin. “Regular”
means that each point “sees” the same geometrical en-
vironment as any other point [20]. The lattice covering

9x ∨ a , max{x, a} andx ∧ a , min{x, a}.
10For example, considerK = 2, n = 4, M1 = {1, 2} and

M2 = {3, 4} . We have 22 − 1 = 3 valid cases. Case 1 (
τ1 ≤ maxm∈M1

Cm and τ2 ≤ maxm∈M2
Cm ) We have 3

equations:
∑2

k=1

∑
m∈Mk

1
p
log2(

Cm

τk
∨1) = L,

∑
m∈Mk

(Cm ∧

τk) = τ (∀k ∈ {1, 2}), and 3 unknowns:{τ1, τ2},τ . Case 2 (
τ1 ≤ maxm∈M1

Cm and τ2 > maxm∈M2
Cm ) We have 2

equations:
∑

m∈M1

1
p
log2(

Cm

τ1
∨ 1)+0+0 = L,

∑
m∈M1

(Cm ∧

τ1) = τ , and 2 unknowns:τ1, τ . Case 3 (τ1 > maxm∈M1
Cm

and τ2 ≤ maxm∈M2
Cm ) We have 2 equations:0 + 0 +

∑
m∈M2

1
p
log2(

Cm

τ2
∨ 1) = L,

∑
m∈M2

(Cm ∧ τ2) = τ , and 2
unknowns:τ2, τ .

11In other words, the vector TICOQ design reduces to scalar TICOQ
design discussed in Theorem 3.
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problem asks for the most economical way to arrange
the lattice points so that then-dimensional space can
be covered with overlapping spheres whose centers are
the lattice points, i.e. tries to find the thinnest (i.e.
minimum density12) lattice covering [24]. The thinnest
lattice coverings known in all dimensionn (n ≤ 23) are
the dual latticeA∗

n (when 1 ≤ n ≤ 5, A∗
n is known

to be optimal) [24]. The worst case error of the dual
lattice A∗

nk
for the k-th node when‖ · ‖k is Lp norm

(p > 2) is less than that measured inL2 norm (Appendix
E). Therefore, if‖ · ‖k is Lp norm (p ≥ 2), we can
solve the TICOQ design (VQ case) in Problem 1 using
dual lattice structureA∗

nk
. Thus, the worst case error is

given by ‖ēk‖k =
(

∏

m∈Mk
|Xm|

√

1
nk+1

)
1

nk

√

nk(nk+2)
12(nk+1) 2

−
Lv
k

nk

(Appendix E), where|Xm| is the length of the interval
Xm (xm ∈ Xm) (1 ≤ m ≤ n), and the remaining opti-
mization variable is reduced fromQv = (Qv

1, · · · , Q
v
K)

to Lv = (Lv
1, · · · , L

v
K). Similarly, vector TICOQ design

in Problem 1 w.r.t.Lv = (Lv
1, · · · , L

v
K) is also a

Nonlinear Integer Programming(NLIP) problem, which
is in general difficult to solve. In the following, we shall
derive the optimal solution to the vector TICOQ design
in Problem 1 based on dual latticeA∗

nk
.

Theorem 5 (Solution for Dual Lattice quantizer):
Given a weighted block-maximum norm‖ · ‖wblock
defined by (7) (parameterized byw = (w1, · · · , wK))
and the dual lattice{A∗

nk
: 1 ≤ k ≤ K}

quantizer, let L̄v∗
k = nk(log2

Dk

τ
)+, where

Dk , 1
wk

(

∏

m∈Mk
|Xm|

√

1
nk+1

)
1

nk

√

nk(nk+2)
12(nk+1) , andτ > 0 is a

constant related to the LM of the constraint (21) chosen
to satisfy the constraint

∑K
k=1 nk(log2

Dk

τ
)+ = L. The

optimal integer solution of Problem 1 for the VQ case
w.r.t. dual lattice{A∗

nk
: 1 ≤ k ≤ K} quantizer when

n1 = · · · = nK is given by:

Lv∗
[k] =

{

⌈L̄v∗
[k]⌉, if k ≤

∑K
k=1(L̄

v∗
k − ⌊L̄v∗

k ⌋)

⌊L̄v∗
[k]⌋, otherwise

(23)

The optimal value of Problem 1 under continuous relax-
ation isτ .

Proof: Please refer to Appendix E for the Proof.

C. Tradeoff between Convergence Error and Message
Passing Overhead

In this subsection, we shall quantify the tradeoff be-
tween the convergence error of the algorithm trajectory
and the message passing overhead using TICOQ. Specif-
ically, the steady-state convergence error in the algo-
rithm trajectory is related tōEw

block(∞) and the message
passing overhead is related to the sum quantization rate

12The density of a covering is the defined as the number of spheres
that contain a point of the space [24].

(number of bits)L of the system quantizer. The following
lemma summarizes the tradeoff result.

Lemma 5: (Performance Tradeoff of the Scalar and
Vector TICOQ) For L ≥ L′ (L ∈ Z+), where

L′ =







∑n
m=1 log2 Cm − n log2(minm Cm),WM norm

∑n
m=1 log2 C̃m − n log2

(

minm C̃m

)

, Lp norm
∑K

k=1 log2 Dk −K log2(mink Dk), dual lattice
(24)

C̃m = (
∑K

k=1 nk1[m ∈ Mk])Cm, the limiting error
bound of the scalar and vector TICOQ considered in this
section is given byĒw

block(∞) = 1
1−α

O(2−
L
n ).

Proof: Please refer to Appendix F for the proof.
Remark 6:As L → ∞, Ēw

block(∞) → 0, which
reduces to the conventional convergence results with per-
fect message passing. On the other hand,Ēw

block(∞) > 0
for finite L and hence, we cannot guarantee the conver-
gence behavior of the contracting iterations with TICOQ
to the fixed pointx∗ of the contraction mappingT
anymore. Nevertheless, the convergence error decreases
exponentially w.r.t. the message passing overheadL.

V. T IME VARYING CONVERGENCE-OPTIMAL

QUANTIZER DESIGN

Similar to Section V, we shall define aTime Varying
Quantizer(TVQ) and then formulate theTime Varying
Convergence-Optimal Quantizer(TVCOQ) design prob-
lem. We shall consider the TVCOQ design for both the
SQ and VQ cases separately.

Definition 3 (Time Varying Quantizer (TVQ)):
A Time Varying Quantizer(TVQ) is a quantizer
Q(t) =

(

E(t),D(t)
)

such that E(t) and D(t)
changes with time. In other words, the quantizer
Q(t) =

(

E(t),D(t)
)

at the t-th iteration is function of
time t.

The system scalar TVQ at thet-th iteration can be
denoted asQs(t) =

(

Qs
1(t), · · · ,Q

s
m(t), · · · ,Qs

n(t)
)

with quantization rate vector (at thet-th iteration)
Ls(t) =

(

Ls
1(t), · · · , L

s
n(t)

)

. Similarly, the system
vector TVQ at thet-th iteration can be denoted as
Q

v(t) =
(

Qv
1(t), · · · ,Q

v
k(t), · · · ,Q

v
K(t)

)

with quan-
tization rate vector (at thet-th iteration) Lv(t) =
(

Lv
1(t), · · · , L

v
K(t)

)

. Using the result (c) of Lemma 2,
the TVCOQ design, which minimizẽEw

block(T̄ ) under
total quantization rate constraint over a horizon ofT̄

iterations, is equivalent to the following:
Problem 2 (TVCOQ Design Problem):

min
{Qs(t):0≤t≤T̄}

or{Qv(t):0≤t≤T̄}

αT̄−1
T̄−1
∑

t=0

α−t‖ẽt‖
w
block (25)

s.t.

T̄−1
∑

t=0

n
∑

m=1

Ls
m(t) = T̄L, Ls

m(t) ∈ Z
+(∀m, t)SQ

(26)
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or
T̄−1
∑

t=0

K
∑

k=1

Lv
k(t) = T̄L, Lv

k(t) ∈ Z
+(∀k, t)VQ (27)

By introducing additional auxiliary variables{L(t) :
0 ≤ t ≤ T̄ − 1}, where L(t) can be interpreted as
the per-stage sum quantization rate, and applying primal
decomposition techniques, we can decompose Problem
2 into subproblems (per-stage TICOQ designQ

s(t) or
Q

v(t) (0 ≤ t ≤ T̄ − 1)), which are given by
Problem 3: (TVCOQ Subproblems: Per-stage TICOQ

Design Problem)

min
Qs(t)orQv(t)

‖ẽt
(

L(t)
)

‖wblock (28)

s.t.

n
∑

m=1

Ls
m(t) = L(t), Ls

m(t) ∈ Z
+(∀m)SQ (29)

or
K
∑

k=1

Lv
k(t) = L(t), Lv

k(t) ∈ Z
+(∀k)VQ (30)

and the master problem (per-stage sum quantization rate
{L(t) : 0 ≤ t ≤ T̄ − 1} allocation among stages), which
is given by

Problem 4: (TVCOQ Master Problem: Sum Quanti-
zation Rate Allocation Problem)

min
{L(t):0≤t≤T̄−1}

αT̄−1
T̄−1
∑

t=0

α−t‖ẽ∗t
(

L(t)
)

‖wblock (31)

s.t.

T̄−1
∑

t=0

L(t) = T̄L, L(t) ∈ Z
+(0 ≤ t ≤ T̄ − 1) (32)

where ‖ẽ∗t
(

L(t)
)

‖wblock is the optimal value of thet-th
subproblem in Problem 3 for givenL(t) (0 ≤ t ≤ T̄−1).
Given the per-stage sum quantization rateL(t), eachPer-
stage TICOQ Design Problemin Problem 3 is the same
as the TICOQ design problem in Section IV, and hence,
the approaches in Section IV can be applied to solve
Problem 3 for givenL(t) (0 ≤ t ≤ T̄ − 1), including
both SQ case and VQ case. In the following, we shall
mainly discuss theSum Quantization Rate{L(t) : 0 ≤
t ≤ T̄ − 1} Allocation in Problem 4 and analyze the
tradeoff between convergence error and message passing
overhead for the TVCOQ design.

A. Time Varying Convergence-Optimal Scalar and Vec-
tor Quantizers

Similar to the TICOQ in Problem 1, each TVCOQ
subproblem in Problem 3 is aNonlinear Integer Pro-
gramming(NLIP) problem. Brute-force solution to the
TVCOQ master problem in Problem 4 requires exhaus-
tive search, which is not acceptable. Therefore, we first
apply continuous relaxation to the subproblems in Prob-
lem 3 to obtain the closed-form expression‖ẽ∗t‖

w
block of

the t-th subproblem. Based on the closed-form‖ẽ∗t ‖
w
block,

the master problem in Problem 4 becomes tractable, the
solution of which is summarized in the following lemma.

Theorem 6:(Solution to TVCOQ Master Problem for
SQ and VQ) For any given̄T , assumeL ≥ L′ −
n T̄−1

2 log2 α (L ∈ Z
+). Let L̄∗(t) = n log2(

α−t ln 2
nµ

),
whereµ > 0 is the LM of the constraint (32) chosen to
satisfy the constraint

∑T̄−1
t=0 n log2(

α−t ln 2
nµ

) = T̄L. The
optimal integer solution to the TVCOQ Master Problem
in Problem 4 is given by

L∗([t]) =

{

⌈L̄∗([t])⌉, if t ≤
∑T̄−1

t=0 (L̄∗(t)− ⌊L̄∗(t)⌋)
⌊L̄∗([t])⌋, otherwise

(33)

Proof: Please refer to Appendix G for the Proof.
Given the per-stage sum quantization rate{L∗(t) :

0 ≤ t ≤ T̄ − 1} allocation obtained by Theorem 6,
the TVCOQ Subproblems in Problem 3 (similar to the
TICOQ design problem in Section IV) can be easily
solved by Theorem 3, 4 and 5.

B. Tradeoff between Convergence Error and Message
Passing Overhead

In this subsection, we shall quantify the tradeoff
between the error of the algorithm trajectory and the
message passing overhead using TVCOQ. The following
lemma summarizes the tradeoff results.

Lemma 6: (Performance Tradeoff of the Scalar and
Vector TVCOQ) For any given̄T , the convergence error
bound (at theT̄ -th iteration) of the scalar and vector
TVCOQ is given byẼw

block(T̄ ) = T̄α
T̄−1

2 O(2−
L
n ) for

L ≥ L′ − n T̄−1
2 log2 α (L ∈ Z

+), whereL′ is given by
(24).

Proof: Please refer to Appendix G for the proof.
Remark 7:AsL → ∞, Ẽw

block(T̄ ) → 0, which reduces
to the conventional convergence results with perfect
message passing. On the other hand, for any fixedL, as
T̄ → ∞, we haveẼw

block(T̄ ) → 0. Hence, using TVCOQ,
one could achieve asymptotically zero convergence error
even with finiteL.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we shall evaluate the performance of
the proposedtime invariant convergence-optimal quan-
tizer (TICOQ) and time varying convergence-optimal
quantizer (TVCOQ) for the contracting iterations by
simulations. We consider distributed precoding updates
in MIMO interference game withK transmitter and
receiver pairs where the transmit convariance matrixPk

of the k-th transmitter is iteratively updated (and quan-
tized) according to (15). In the simulation, we consider
K = 2, 4, 8 noncooperative transmitter-receiver pairs
with N = 2, 4 transmit/receive antenna. The distance
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Fig. 2. Sum throughput/convergence error versus per-stagesum
quantization rateL (bits) of 2 pairs MIMO interference game with
2 transmit and receive antennas,d11 = d22 = 100 m, d12 = 200
m, d21 = 500 m, path loss exponentγ = 3.5, and transmit power of
P1 = P2 = 10 dBm. The total number of iterations is̄T = 4 and
the per-stage quantization rate per antenna isL

K×N2 = L
8

. In (b), the
“*”, “o”, etc represent the simulation results of the proposed TICOQ
and TVCOQ, while the dashed line represents the analytical expression

O(2−
L
n ) (TICOQ) andT̄ α

T̄−1
2 O(2−

L
n ) at fixed T̄ = 4 (TVCOQ).

from thek-th transmitter to thej-th receiver is denoted
asdkj . The bandwidth is 10 MHZ. The pathloss exponent
is γ = 3.5. Each element of the small scale fading
channel matrix isCN (0, 1) distributed. We compare the
performance with two reference baselines. Baseline 1
(BL1) refers to the case with perfect message passing
[5]. Baseline 2 (BL2) refers to the case with uniform
scalar quantizer.

A. Performance of the TICOQ

Fig. 2 (a) and Fig. 2 (b) illustrate the sum through-
put and convergence error (w.r.t. the weighted block-
maximum norm ‖ · ‖wblock) versus the per-stage sum
quantization rate of 2 pairs MIMO interference game
under fixed number of iterations. The sum throughput
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Fig. 3. Sum throughput/convergence error versus instantaneous
iteration indext of 4 pairs MIMO interference game with 4 transmit
and receive antennas,dii = 100 m, dij = 200 m (i < j), dij = 500
m (i > j), path loss exponentγ = 3.5, and transmit power of
P1 = P2 = 5 dBm. The per-stage sum quantization rateL = 64 bits
(i.e. the per-stage quantization rate per antenna isL

K×N2 = L
64

= 1

bit), and the total number of iterations̄T = 7.

of all the schemes increases asL decreases due to the
decreasing convergence error. It can be observed that
the proposed scalar and vector TICOQ have significant
performance gain in sum throughput and convergence
error compared with the commonly used uniform scalar
quantizer. In addition, the vector TICOQ outperforms the
scalar TICOQ in convergence performance at the cost of
the higher encoding and decoding complexity.

Fig. 3 and Fig. 4 show the sum throughput and
convergence error versus the instantaneous iteration time
index of MIMO interference game under a fixed per-
stage sum quantization rate and total number of iterations
with differentK andN . It can be seen that in all cases,
the proposed scalar and vector TICOQ have significant
performance gain in sum throughput and convergence
error compared with the commonly used uniform scalar
qunatizer.
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Fig. 4. Sum throughput/convergence error versus instantaneous
iteration indext of 8 pairs MIMO interference game with 2 transmit
and receive antennas,dii = 100 m, dij = 200 m (i < j), dij = 500
m (i > j), path loss exponentγ = 3.5, and transmit power of
P1 = P2 = 5 dBm. The per-stage sum quantization rateL = 32 bits
(i.e. the per-stage quantization rate per antenna isL

K×N2 = L
32

= 1

bit), and the total number of iterations̄T = 6.

B. Performance of the TVCOQ

From Fig. 2 (a) and Fig. 2 (b), we can observe that
the proposed TVCOQ has significant performance gain
in sum throughput and convergence error compared with
commonly used uniform scalar qunatizer and TICOQ.
For example, the sum throughput of the TVCOQ is very
close to that with perfect message passing. Fig. 3 and 4
illustrate the transient performance of the TVCOQ versus
iteration indext. We observe that the performance of
the TVCOQ improves ast increases. This is because
the TVCOQ optimizes the quantization rate allocation
over both the node domain and the time domain (over a
horizon of T̄ iterations).

C. Tradeoff between Convergence Error and Message
Passing Overhead

Fig. 2 (b) illustrates the tradeoff between convergence
error and message passing overhead (in terms ofL at
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Fig. 5. Sum throughput/convergence error versus the total number of
iterationsT̄ of 2 pairs MIMO interference game with 2 transmit and
receive antennas,d11 = d22 = 100 m, d12 = 200 m, d21 = 500 m,
path loss exponentγ = 3.5, and transmit power ofP1 = P2 = 10
dBm. The per-stage sum quantization rateL = 8 bits (i.e. the per-stage
quantization rate per antenna isL

K×N2 = L
8
= 1 bit). In (b), the “*”,

“o”, etc represent the simulation results of the proposed TICOQ and
TVCOQ, while the dashed line represents the analytical expression

O(2−
L
n ) (TICOQ) andT̄α

T̄−1
2 O(2−

L
n ), with T̄ ≥ 1 (TVCOQ) at

fixed L = 8 bits.

fixed total number of iterations̄T ). As the message
passing overheadL increases, the convergence error of
all the proposed quantization schemes approaches to 0
with order O(2−

L
n ) under fixedT̄ , which verified the

results in Lemma 5 and 6. Similarly, the sum throughput
of all the schemes increases asL decreases due to the
decreasing convergence error as shown in Fig. 2 (a).

Fig. 5 (b) shows the tradeoff between convergence
error and message passing overhead (in terms ofT̄ at
fixed L). As the total number of iterations increases,
the convergence error of TVCOQ decreases, while the
convergence error of the TICOQ and the uniform quan-
tizer fail to decrease. It is because that TICOQ has
steady state convergence error floor for any finiteL (i.e.
Ēw

block(∞) = 1
1−α

O(2−
L
n ) > 0 shown in Lemma 5),



13

while the convergence error of TVCOQ goes to 0 asT̄

goes to infinity (i.e.Ẽw
block(T̄ ) = T̄α

T̄−1
2 O(2−

L
n ) → 0

as T̄ → ∞ shown in Lemma 6). Similarly, as the
total number of iterations increases, the sum throughput
performance of the TVCOQ improves but this is not the
case for TICOQ and the Baseline 2 as shown in Fig. 5
(a).

VII. SUMMARY

In this paper, we study the convergence behavior
of general iterative function evaluation algorithms with
quantized message passing. We first obtain closed-form
expressions of the convergence performance under quan-
tized message passing among distributed nodes. To min-
imize the effect of the quantization error on the con-
vergence, we propose thetime invariant convergence-
optimal quantizer (TICOQ) and the time varying
convergence-optimal quantizer(TVCOQ). We found that
the convergence error scales with the number of bits for
quantized message passing in the order of1

1−α
O(2−

L
n )

and T̄α
T̄−1

2 O(2−
L
n ) for TICOQ and TVCOQ respec-

tively. Finally, we illustrate using MIMO interference
game as example that the proposed designs achieve
significant gain in the convergence performance.

APPENDIX

APPENDIX A: PROOF OFLEMMA 1

First, we prove conclusion (a). By the update equation
in (14), the triangle inequality of norm and the property
of the contraction mapping, we have‖x(t) − x∗‖ =
‖T

(

x(t − 1)
)

+ e(t − 1) − x∗‖ ≤ ‖T
(

x(t − 1)
)

−
x∗‖ + ‖e(t − 1)‖ ≤ α‖x(t − 1) − x∗‖ + ‖e(t − 1)‖ =
α‖T

(

x(t − 2)
)

+ e(t− 2)− x∗‖ + ‖e(t− 1)‖ ≤ · · · ≤

αt‖x(0)−x∗‖+E(t), whereE(t) ,
∑t

l=1 α
l−1‖e(t−

l)‖
(1)
=

∑l−1
l′=0 α

t−l′−1‖e(l′)‖
(2)
= αt−1

∑t−1
l=0 α

−l‖e(l)‖,
(1) is obtained by denotingl′ = t− l, and (2) is obtained
by denoting l = l′. (b) is trivial. Finally, we prove
conclusion (c). Since‖e(t)‖ ≤ ‖ē‖ ∀t, we haveE(t) =
∑t

l=1 α
l−1‖e(t − l)‖ ≤ Ē(t) ,

∑t
l=1 α

l−1‖ē‖ =
1−αt

1−α
‖ē‖ and Ē(∞) , limt→∞ Ē(t) = ‖ē‖

1−α
. Given the

limiting error boundĒ(∞), we know that∃T s.t. ∀t >
T, x(t) ∈ S. If x = Q

(

T(x)
)

∀x ∈ S, thenx(t) →
x(∞) ∈ S. Thus, we obtain the sufficient condition
for convergence. On the other hand, ifx 6= Q

(

T(x)
)

∀x ∈ S, x(t) will not converge, but jumps among (at
least two) points inS. Thus, we obtain the necessary
condition for convergence.

APPENDIX B: PROOF OFLEMMA 2

Jacobi scheme in (16) shares the similar form as (14).
Therefore, the proof of Jacobi scheme is the same as

that in Appendix A, except based on weighted block-
maximum norm.

Next, we prove the convergence for the Gauss-Seidel
scheme under quantized message passing. Letx̂k = x

for k = 1 and x̂k =
(

Ŝ1(x) + e1, · · · , Ŝk−1(x) +
ek−1,xk, · · · ,xK

)

for 2 ≤ k ≤ K. By the definition
of weighted block-maximum norm and the property of
block-contractionT, we have

‖Ŝk(x)− x∗
k‖k

wk

=
‖Tk(x̂

k)−Tk(x
∗)‖k

wk

≤ ‖T(x̂k)−T(x∗)‖wblock ≤ α‖x̂k − x∗‖wblock














≤ α‖x− x∗‖wblock, k = 1

= αmax
{

maxj<k
‖Ŝj(x)+ej−x∗

j‖j

wj
,

maxj≥k
‖xj−x∗

j ‖j

wj

}

, 2 ≤ k ≤ K

(34)

Whenk = 2, by (34), we have

‖Ŝ2(x) − x∗
2‖2

w2

≤αmax
{‖Ŝ1(x) + e1 − x∗

1‖1
w1

,max
j≥2

‖xj − x∗
j‖j

wj

}

≤αmax
{‖Ŝ1(x) − x∗

1‖1
w1

+
‖e1‖1
w1

, max
j≥2

‖xj − x∗
j‖j

wj

}

≤α‖x− x∗‖wblock + α‖e‖wblock
by iteration

⇒

‖Ŝk(x) − x∗
k‖k

wk

≤ α‖x− x∗‖wblock +
k−1
∑

l=1

αl‖e‖wblock, ∀k

⇒‖Ŝ(x) − x∗‖wblock ≤ α‖x− x∗‖wblock

+
α(1 − αK−1)

1− α
‖e‖wblock

⇒‖x(t)− x∗‖wblock

=‖Ŝ
(

x(t − 1)
)

+ e(t− 1)− x∗‖wblock

≤αt‖x(0)− x∗‖wblock + Ew
block(t)

where Ew
block(t) , 1−αK

1−α
αt−1

∑t−1
l=0 α

−l‖e(l)‖wblock.
Since we have shown‖x(t) − x∗‖wblock ≤ αt‖x(0) −
x∗‖wblock+Ew

block(t), which is the same as the conclusion
in Lemma 1 (a) except for the different norm‖ · ‖wblock

and the extra scalar1−αK

1−α
> 1 (indicating the additional

error due to the incremental nature of the Gauss-Seidel
update) inEw

block(t), we can follow the similar steps in
Appendix A to obtain the conclusion for Gauss-Seidel
scheme.

APPENDIX C: PROOF OFLEMMA 3

First, we shall show that‖ · ‖wblock is monotone (ab-
solute). Denote|x| , (|x1|, · · · , |xn|). We say that
|x| ≤ |y| if |xm| ≤ |ym| ∀m. Due to the monotonicity
of ‖ · ‖k (∀k), we have|x| ≤ |y| ⇔ |xk| ≤ |yk| (∀k) ⇒
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‖xk‖k ≤ ‖yk‖k (∀k) ⇒ maxk
‖xk‖k

wk
≤ maxk

‖yk‖k

wk
⇔

‖x‖wblock ≤ ‖y‖wblock. Thus,‖ · ‖wblock is monotone (abso-
lute). Next, we shall show that each coordinate scalar
TICOQ is uniform quantizer. Given anyLs s.t. (20) is
satisfied, by the monotonicity of‖ · ‖wblock, we can easily
prove minQs(Ls) ‖ē‖

w
block ⇔ minQs

m(Ls
m) ēm(∀m). In

other words, given anyLs
m, the coordinate scalar TICOQ

Qs∗
m (Ls

m) should minimize the worst-case error|ēm| for
them-th coordinate of the input vector. Since the uniform
quantizer minimizes the worst-case error regardless of
the shape of the input pdf [20], each coordinate scalar
TICOQ Qs∗

m is a uniform quantizer.

APPENDIX D: PROOF OFTHEOREM 3 AND THEOREM

4

When ‖ · ‖k is weighted maximum norm, the ob-
jective function becomes‖ē‖wblock = maxk

‖ēk‖k

wk
=

maxk
maxm∈Mk

|ēm|
am

wk
= maxm

|ēm|

am(
∑

K
k=1 wkI[m∈Mk])

=

maxm Cm2−Ls
m . Therefore, we haveminQs ‖ē‖wblock =

minLs

(

maxm Cm2−Ls
m

)

. By continuous relaxation and
equivalent transformation of minimax problems [25], the
minimax problem in Problem 1 is equivalent to the
following problem (under continuous relaxation), which
is in epigraph form with optimization variables{L̄s

m}, τ :

(P̄ s) : min
{L̄s

m},τ
τ

s.t. Cm2−L̄s
m ≤ τ(1 ≤ m ≤ n) (35)

n
∑

m=1

L̄s
m = L, L̄s

m ≥ 0(1 ≤ m ≤ n)

(36)

(P̄ s) is a convex optimization problem. It can be
easily shown that the Slater’s condition holds. There-
fore, we shall get the optimal solution to the re-
laxed problem through KKT conditions.The La-
grangian of (̄P s) is given by Ls(L̄s, τ,λs,νs, µs) =
τ +

∑n
m=1 λ

s
m(Cm2−L̄s

m − τ) −
∑n

m=1 ν
s
mL̄s

m +
µs(

∑n
m=1 L̄

s
m−L), whereλs,νs, µs are the Lagrangian

multipliers (LM). L̄s, τ , λ
s,νs, µs are optimal iff

they satisfy the following KKT conditions: (a) pri-
mal constraints: (36),(35); (b) dual constraints:λ

s �
0,νs � 0; (c) complementary slackness:λs

m(Cm2−L̄s
m−

τ) = 0 (∀m), νsmL̄s
m = 0 (∀m); (d) ∂Ls

∂L̄s
m

=

− ln(2)λs
mCm2−L̄s

m − νsm + µs = 0 (∀m), ∂Ls

∂τ
=

1−
∑n

m=1 λ
s
m = 0. Thus,∀m, we have

if
ln(2)λs

mCm

µs
> 1 : λs

m =
µs

ln(2)τ
, νsm = 0,

L̄s∗
m = log2(

ln(2)λs
mCm

µs
), τ =

µs

ln(2)λs
m

, µs > 0

if
ln(2)λs

mCm

µs
≤ 1 : λs

m = 0, νsm = µs, L̄s∗
m = 0, µs > 0

where LMs {λs
m}, µs are chosen to satisfy

∑n
m=1(log2

ln(2)λs
mCm

µs )+ = L and1 −
∑n

m=1 λ
s
m = 0.

Substitute τ = µs

ln(2)λs
m

into L̄s∗
m , we have

L̄s∗
m = (log2

Cm

τ
)+, where τ is chosen to satisfy

∑n
m=1(log2

Cm

τ
)+ = L. Furthermore, substituting the

relaxed solution L̄s∗
m into the transformed problem

(P̄ s), the optimal value of (P̄ s) is given by τ

and this is also the optimal value‖ē∗‖wblock of the
original optimization Problem 1 (under continuous
relaxation) due to the equivalence of the epigraph
transformation. Next, we are trying to prove that the
rounding strategy in (22) in Theorem 3 is the optimal
integer solution of Problem 1. Suppose we round
L̄s∗
m to ⌊L̄s∗

m⌋ and let δsm = L̄s∗
m − ⌊L̄s∗

m⌋. Denote
bm = Cm2−⌊L̄s∗

m ⌋ = Cm2−(L̄s∗
m−δsm), i.e. bm = Cm

if Cm ≤ τ and bm = 2δ
s
mτ otherwise. The value

of the objective function in Problem 1 ismaxm bm.
Reducing L̄s∗

m by N + δsm (N ≥ 1, N ∈ Z+)
∀m for integer solution will lead to the value of
objective function greater thanmaxm bm. On the other
hand, since the optimal value of the original integer
programming problem is greater than the optimal
value under continuous relaxation, increasinḡLs∗

m

by N − δsm (N > 1, N ∈ Z+) ∀m will not help
further reducing the value of the objective function.
Therefore, the optimal integer solution{Ls∗

m} satisfies
δsm − 1 ≤ L̄s∗

m − Ls∗
m ≤ δsm and the rounding strategy in

(22) is the optimal integer solution of Problem 1.
When‖·‖k isLp norm, the objective function becomes

‖ē‖wblock = maxk
‖ēk‖k

wk
= maxk

(
∑

m∈Mk
|ēm|p)

1
p

wk
=

maxk(
∑

m∈Mk

|ēm|p
∑

K
k=1 w

p

k
I[m∈Mk]

)
1
p =

maxk(
∑

m∈Mk
Cm2−pLs

m)
1
p . There-

fore, we have minQs ‖ē‖wblock =

minLs

(

maxk(
∑

m∈Mk
Cm2−pLs

m)
1
p

)

. Using similar
continuous relaxation and equivalent transformation
of minimax problems [25], the minimax problem in
Problem 1 is equivalent (under continuous relaxation) to
the following problem, which is in epigraph form with
optimization variables{L̄s

m}, τ :

(Q̄s) : min
L̄s

m,τ
τ

s.t.
∑

m∈Mk

Cm2−pL̄s
m ≤ τ (1 ≤ k ≤ K) (37)

constraint in(36)

(Q̄s) is a convex optimization problem.Using similar
argument as in the weighted maximum norm case, the
Lagrangian of (̄Qs) is given byLs(L̄s, τ,λs,νs, µs) =
τ+

∑K
k=1 λ

s
k (

∑

m∈Mk
Cm2−pL̄s

m−τ)−
∑n

m=1 ν
s
mL̄s

m+
µs(

∑n
m=1 L̄

s
m − L), where λ

s,νs, µs are the LMs.
Using standard KKT conditions, the optimal solution

of (Q̄s) is L̄s∗
m = 1

p
log2

(

p ln(2)(
∑K

k=1 λs
k1[m∈Mk])Cm

µs ∨
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1
)

and
∑

m∈Mk
Cm2−pL̄s

m =
∑

m∈Mk

(

µs

p ln(2)λs
k

∧

Cm

)

= τ if λs
k > 0, x ∨ a , max{x, a}, x ∧ a ,

min{x, a}, where the LMs{λs
k}, µs are chosen to satisfy

∑n
m=1

1
p
log2

(

p ln(2)(
∑

K
k=1 λs

k1[m∈Mk])Cm

µs ∨ 1
)

= L

and
∑K

k=1 λ
s
k = 1. Let τk = µs

p ln(2)λs
k

, then we have

L̄s∗
m = 1

p
log2(

Cm
∑

K
k=1 τkI[m∈Mk]

∨ 1), where {τk} and

τ are constants related to the LMs{λs
k}, µs of the

constraints (36),(37) in problem(Q̄s). They are chosen
to satisfy

∑K
k=1

∑

m∈Mk

1
p
log2(

Cm

τk
∨ 1) = L and

1
τk

(
∑

m∈Mk
(Cm∧τk)−τ

)

= 0 (∀k). Finally, substitut-
ing L̄s∗

m into the transformed problem(Q̄s), the optimal
value of(Q̄s) is given byτ

1
p and this is also the optimal

value ‖ē∗‖wblock of the original optimization Problem 1
(under continuous relaxation) due to the equivalence of
the epigraph transformation.

APPENDIX E: PROOF OFLEMMA 4 AND 5

Since ‖xk‖k ≤ ‖yk‖k (∀k) ⇒ ‖x‖wblock ≤
‖y‖wblock, given anyLv s.t. (21) is satisfied, we have
minQv(Lv) ‖ē‖

w
block ⇔ minQv

k
(Lv

k
) ‖ēk‖k (∀k). The type

of each component vector TICOQQv∗
k is uniquely

determined by the norm‖ · ‖k on R
nk . Furthermore, it

is easy to prove thatQv
k should be a lattice quantizer to

minimize the worst-case error‖ēk‖k. We shall discuss
the two cases forL2 norm and weighted maximum norm
separately.

• ‖ · ‖k (1 ≤ k ≤ K) is L2 norm: The cov-
ering problem asks for the thinnest covering of
Rnk dimensional space with overlapping spheres,
i.e. minimizes covering radius (circumradius of the

Voronoi cell) ρk = ‖ēk‖k =
(
∑

m∈Mk
|ēm|2

)
1
2

[24]. Therefore, each component vector TICOQ
Qv∗

k minimizing the worst-case error is the thinnest
lattice for the covering problem.

• ‖ · ‖k (1 ≤ k ≤ K) is weighted maximum
norm: Given anyLv

k, we haveminQv
k
(Lv

k
) ‖ēk‖

ak
∞ =

minQv
k
(Lv

k
) maxm∈Mk

|ēm|
am

. It can be easily shown
that each face of the Voronoi cell for the weighted
maximum norm is(nk−1)- dimensional hyperplane
parallel to a coordinate axis in thenk dimensional
space. Therefore, it is equivalent to the scalar quan-
tization of each coordinatexm of the input block
componentxk with different scalar quantizers, i.e.
Qv∗

k = (Qs∗
m )m∈Mk

.

Next, we shall show the optimal solution for the
dual lattice quantizer. ForA∗

nk
, the covering radius

is Rnk
=

√

nk(nk+2)
12(nk+1) , the volume of the fundamen-

tal region is
√

1
nk+1 . The volume of bounded region

X k is V B
k =

∏

m∈Mk
|Xm|. Therefore, the worst

case error of the vector TICOQ with quantization rate

Lv
k is given by ‖ēk‖k =

(

V B
k

2L
v
k

√

1
nk+1

)
1

nk
Rnk

=

(

∏

m∈Mk
|Xm|

√

1
nk+1

)
1

nk

√

nk(nk+2)
12(nk+1) 2

−
Lv
k

nk
13. The covering ra-

dius measured byLp norm (p > 2) can be proved to

be less thanRnk
=

√

nk(nk+2)
12(nk+1) , which is the covering

radius measured byL2 norm. Thus, the worst case
error is also less than‖ēk‖k given above. Therefore, in
general, we can applyA∗

n quantizer for VQ case when
‖ · ‖k is Lp norm (p ≥ 2) and consider TICOQ design
for VQ cased based onA∗

n quantizer.
Problem 1 for A∗

n quantizer is equivalent to

minLv

(

maxk Dk2
−

Lv
k

nk

)

s.t.(21). Similar to Appendix
D, the optimal solution under continuous relaxation is
L̄v∗
k = nk(log2

Dk

τ
)+, whereτ is a constant related to the

LM and is chosen to satisfy
∑n

m=1 nk(log2
Dk

τ
)+ = L.

For n1 = · · · = nK , we can use similar argument as in
Appendix D to show that the rounding method in (24) is
optimal integer solution to Problem 1 (VQ case).

APPENDIX F: PROOF OFLEMMA 5

We try to findL′ in the following three cases s.t. when
L ≥ L′, we haveCm ≥ τ (∀m), Cm ≥

∑K
k=1 τkI[m ∈

Mk] (∀m) andDk ≥ τ (∀k), separately (to obtain the
closed-form optimal value‖ē∗‖wblock). Specifically, we
have

• SQ (‖ ·‖k is weighted maximum norm) in Theorem
3 (same as VQ (‖ · ‖k is weighted maximum
norm)): Cm ≥ τ (∀m) ⇔ L̄s

m = (log2
Cm

τ
)+ =

log2
Cm

τ
(∀m). Since

∑n
m=1 log2

Cm

τ
= L ⇒

‖ē∗‖wblock = τ = 2
1
n

∑

n
m=1 log2 Cm−L

n = O(2−
L
n ),

we have Cm ≥ τ (∀m) ⇔ minm Cm ≥
2

1
n

∑

n
m=1 log2 Cm−L

n ⇔ L ≥
∑n

m=1 log2 Cm −
n log2(minm Cm) , L′.

• SQ (‖ · ‖k is Lp norm) in Theorem 4:
Cm ≥

∑K
k=1 τkI[m ∈ Mk] (∀m) ⇔

L̄s
m = 1

p
log2(

Cm
∑

K
k=1 τkI[m∈Mk]

∨ 1) =
1
p
log2(

Cm
∑

K
k=1 τkI[m∈Mk]

) (∀m). Since
∑

m∈Mk
Cm2−pL̄s

m = nkτk = τ ⇒
∑n

m=1 L̄
s
m =

1
p

∑n
m=1 log2

C̃m

τ
= L ⇒ ‖ē∗‖wblock =

τ
1
p = 2

1
p

(

1
n

∑

n
m=1 log2(C̃m)− pL

n

)

= O(2−
L
n ).

Similarly, we haveL′ =
∑n

m=1 log2
(

C̃m

)

−
n log2

(

minm C̃m

)

.
• VQ (A∗

n quantizer) in Theorem 5:Dk ≥ τ (∀k) ⇔
L̄v
k = nk(log2

Dk

τ
)+ = nk log2

Dk

τ
(∀k). Since

∑K
k=1 nk log2

Dk

τ
= L ⇒ ‖ē∗‖wblock = τ =

2
1
n

∑K
k=1 nk log2 Dk−

L
n = O(2−

L
n ). Similarly, we

haveL′ =
∑K

k=1 log2 Dk −K log2(mink Dk).

13Note that boundary effect is ignored here. The performance loss
is negligible whenL is large, which is easily satisfied in most of the
cases we are interested in.
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APPENDIX G: PROOF OFTHEOREM 6 AND LEMMA 6

First, we shall find the requirement forL s.t. each
subproblem (under continuous relaxation) has closed-
form ‖ẽ∗t

(

L(t)
)

‖wblock (to obtain the closed-form objective
function of the TVCOQ master problem). By Appendix
F, to obtain closed-form‖ẽ∗t

(

L(t)
)

‖wblock, we require
L(t) ≥ L′ (0 ≤ t ≤ T̄ − 1). Under this assumption,
we have‖ẽ∗t

(

L(t)
)

‖wblock = η2−
L(t)
n , where

η =











2
1
n

∑n
m=1 log2 Cm , WM norm (SQ)

2
1
pn

∑n
m=1 log2(C̃m), Lp norm (SQ)

2
1
n

∑K
k=1 nk log2 Dk , dual lattice (VQ)

. (38)

Therefore, the objective function in Problem 4 becomes
ηαT̄−1

∑T̄−1
t=0 α−t2−

L(t)
n and Problem 4 is equivalent to

min{L(t)}

∑T̄−1
t=0 α−t2−

L(t)
n s.t.(32). By continuous re-

laxation and standard convex optimization techniques
(similar to Appendix D), we have the optimal solution
(under continuous relaxation)̄L∗(t) = n log2(

α−t ln 2
nµ

)+.

Since L(t) ≥ L′ (∀t), L̄∗(t) = n log2(
α−t ln 2

nµ
).

∑T̄−1
t=0 L̄(t) = n

∑T̄−1
t=0

(

log2(ln 2) − t log2(α) −

log2(nµ)
)

= nt log2(ln 2) − n
(T̄−1)T̄

2 log2(α) −

nt log2(nµ) = T̄L ⇒ L̄(t) = n T̄−1
2 log2(α) −

nl log2(α) + L. SinceL(t) increases witht, to satisfy
L(t) ≥ L′ (∀t), we requireL(0) = n T̄−1

2 log2(α) +

L ≥ L′ ⇒ L ≥ L′ − n T̄−1
2 log2 α. Therefore, when

L ≥ L′−n T̄−1
2 log2 α, we haveL̄∗(t) = n log2(

α−t ln 2
nµ

)

and α−t‖ẽ∗t (L̄
∗(t))‖wblock = η · α−t nµ

α−t ln 2 = η · nµ
ln 2 .

Similar to Appendix D, the rounding policy in (33) can
be shown to be optimal.

Next, we shall analyze the tradeoff between conver-
gence error and message passing overhead forL ≥
L′ − n T̄−1

2 log2 α (L ∈ Z+). Since it has been shown
that L̄(t) = n T̄−1

2 log2(α) − nl log2(α) + L, we have

ηαT̄−1
∑T̄−1

t=0 α−t2−
L(t)
n = ηαT̄−1

∑T̄−1
t=0 α−t

(

α− T̄−1
2 ·

αt · 2−
L
n

)

= T̄α
T̄−1

2 O(2−
L
n ) ⇒ Ẽw

block(T̄ ) =

T̄α
T̄−1

2 O(2−
L
n ).
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