
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 11, NOVEMBER 2010 5767

A Nondata-Aided SNR Estimation Technique
for Multilevel Modulations Exploiting

Signal Cyclostationarity
Jaume Riba, Senior Member, IEEE, Javier Villares, Member, IEEE, and Gregori Vázquez, Senior Member, IEEE

Abstract—Signal-to-noise ratio (SNR) estimators of linear
modulation schemes usually operate at one sample per symbol at
the matched filter output. In this paper we propose a new method
for estimating the SNR in the complex additive white Gaussian
noise (AWGN) channel that operates directly on the oversampled
cyclostationary signal at the matched filter input. Exploiting
cyclostationarity proves to be advantageous due to the fact that a
signal-free Euclidean noise subspace can be identified such that
only second order moments of the received waveform need to be
computed. The proposed method is nondata-aided (NDA), as well
as constellation and phase independent, and only requires prior
timing synchronization to fully exploit the cyclostationarity prop-
erty. The estimator can also be applied to nonconstant modulus
constellations without requiring any tuning, which is a feature not
found in existing approaches. Implementation aspects and simpler
suboptimal solutions are also provided.

Index Terms—Cyclostationarity, SNR estimation, second-order
methods, spectral coherence, rate of innovation.

I. INTRODUCTION

E STIMATION of the signal-to-noise ratio (SNR) is an
important task in many digital communication receivers,

since this parameter is a key indicator of link quality and can
be used for optimal signal detection, information decoding,
link adaptation, among others. In particular, a growing number
of advanced transmission schemes such as diversity reception,
adaptive coding and modulation (ACM), turbo decoding and
turbo equalization, match their operation to the observed SNR,
intending to push system performance to the achievable limits.
For these reasons, estimating the SNR of digital communica-
tions signals is a timely research topic.

In those scenarios in which sufficiently long training se-
quences are available for SNR estimation, data-aided (DA)
algorithms are recommended because they attain the ultimate
performance given by the Cramer-Rao lower bound (CRLB) of
the problem [1]. Otherwise, nondata-aided (NDA) in-service
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SNR estimators operating on the unknown information-bearing
signal must be adopted. In the NDA case, the numerical anal-
ysis of the CRLB in [2] concludes that both DA and NDA
methods perform identically at high SNR (independently of
the transmitted constellation) whereas NDA algorithms exhibit
a serious performance loss for low and medium SNR values,
especially in case of nonconstant modulus constellations.

An intensive review and comparison in the AWGN channel
of the most prominent NDA SNR estimators in the literature
is presented in [1] where the selection of the best alternative is
shown to depend largely on the block length, the transmitted
symbols alphabet, and the SNR range of interest. Among the
NDA available techniques, the second- and fourth-order mo-
ments method (M M ) (see [1], [3], and references therein)
seems to be the one that exhibits the most robust performance
for a wide range of SNR values and can be tailored to work with
arbitrary constellations. However, its performance degrades dra-
matically at high SNR in case of nonconstant modulus con-
stellations. Alternatively, near efficient SNR estimates can be
obtained at high SNR using the squared signal-to-noise vari-
ance method (SNV) (see [1] and references therein), although
this method is usually abandoned because it becomes exces-
sively biased for medium-to-low SNR values. Regarding again
the M M estimator, Gao and Tepedelenlioglu [4] have shown
that it belongs to a wider family of schemes that obtain the
SNR as a function of ratios between moments. In this context,
López-Valcarce and Mosquera [5] have considered the use of
the signal sixth-order moment in order to extend the range of
working SNR values in case of nonconstant modulus constella-
tions.

In general, all the referred methods are intended to estimate
the ratio of the discrete signal power to discrete noise power at
the output of the matched filter evaluated at the optimal sam-
pling instants. The signal and noise discrete sequences obtained
in this manner are known to be wide-sense stationary random se-
quences. Thus, in order to estimate separately the power of each
component (whose ratio is the desired SNR value in the case of
complex channels), the moment-based methods presented be-
fore (e.g., M M ) have to compute some higher-order sample
moments of the noisy symbol-rate sequence, because the sta-
tistics become the unique difference between these two compo-
nents. In doing so, the noise is assumed Gaussian and the statis-
tics of the modulation becomes dependent on the constellation
format.

A new approach is proposed in this paper for estimating the
SNR in the complex AWGN channel. Instead of developing the
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SNR estimator at one sample per symbol, we start directly from
the oversampled signal before matched filtering, although still
assuming that the timing is perfectly known. It is noted that sam-
pling the received signal at more than one sample per symbol
(typically 2 to 4 samples per symbol) is not a serious prac-
tical concern, because this strategy is commonly used anyway
in nowadays digital demodulators. Oversampling typically al-
lows, for instance, a digital implementation of the matched filter,
a digital interpolation for the correction of the timing error, a
proper operation of digital timing error recovery schemes, as
well as the implementation of fractionally-spaced equalizers. As
a consequence of processing the oversampled data, the noise and
the signal differ from the fact that the former is stationary while
the latter is cyclostationary (apart from having different statis-
tics). In fact, linear modulation schemes based on pulse ampli-
tude modulation (PAM) belong to the class of signals that have
a finite number of degrees of freedom per time-unit. This con-
cept, also called rate of innovation, was introduced by Vetterli
et al. in [6] and it is the core idea of the proposed estimator. As
the rate of innovation of a PAM coincides with the symbol rate,
and this is lower than its total spectral support, the useful signal
is then confined to a specific subspace of the total space gener-
ated by the received signal. The identification of this subspace is
what allows a more direct and robust noise and signal power es-
timation based only on second-order sample moments. The fact
that the orthogonal signal subspace is affected only by the noise
term leads to a SNR estimator that becomes unbiased at any
SNR, even for nonconstant modulus constellations. Also, the re-
sulting estimator is quadratic in the received data and hence not
subject to the problematic use of higher order moments. Finally,
the estimation algorithm is independent of the transmitted con-
stellation and, therefore, it is a good candidate for implementing
adaptive coding and modulation strategies [7].

In summary, the new SNR estimation technique proposed in
this paper follows an alternative approach to previous methods:
while the classical approach focuses on exploring the perfor-
mance gain in using higher order statistics under the constraint
of processing the signal at the symbol rate, the proposed ap-
proach is aimed at exploring the performance gain in processing
the signal at the Nyquist rate under the constraint of using only
second order statistics.

II. PROBLEM FORMULATION

Let be a complex-valued linear modulation of the form

(1)

with spectral support

(2)

where are the complex zero-mean, uncorrelated symbols,
is the symbol period, is the unitary-energy pulse shape, and

is the roll-off factor that determines the excess of bandwidth
with respect to the Nyquist bandwidth .

Although the formulation of the problem can be applied to
any pulse shape, for the sake of concreteness we will focus on
the classical case of square-root-raised-cosine (SRRC) pulses,
whose frequency response is given by

(3)

and where will denote the roll-off band support given by

(4)

Consider the received signal where
is wide-sense stationary, complex, circular, white noise

whose power spectral density is corresponding to the as-
sumed AWGN channel model. This signal is passed through an
antialiasing filter which is assumed to have flat (unitary) spec-
tral response inside the spectral support of and null spec-
tral response at frequencies (with ). In
this manner, the signal at its output can be written as

where is finite-power complex circular noise.
The processing of signal developed in this paper admits
both analog and digital implementations. In this last case, the in-
teger defined before is associated with the minimum number
of samples per symbol that should be employed at the receiver
to avoid both signal and noise aliasing. Then, will
denote the sampling rate, and the sampling interval.

It should be noticed that no assumption is made on the tran-
sition bands of the antialiasing filter. As in these bands there
is only noise contribution, side information about the transi-
tion bands of the antialiasing filter can trivially be used if avail-
able in order to improve the noise power estimation. However,
these bands can be very narrow in practice and/or subject to un-
known interference from adjacent channels. Therefore, in order
to avoid bias on the noise power estimate, it becomes clear that
the challenging problem should be focused on estimating the
noise power by relying only on the information available in-
side the useful signal band. In addition, the constraint of pro-
cessing only the useful signal band is also imposed in the de-
sign of the new estimator, in order to make a fair comparison
with previous methods in the final simulation results, which rep-
resents a worst-case scenario for the proposed technique. Note
that this distinction is not necessary for the classical SNR es-
timation schemes that work at the matched filter output, be-
cause the matched filter automatically suppresses (almost) all
the out-of-band noise plus interference.

The main contribution of the paper is to show that the dig-
ital modulation signal before matched filtering spans a sub-
space with a rate of innovation [6] lower than that of the additive
noise, such that a subspace technique can be developed for the
estimation of the in-band noise power as well as for the SNR,
by processing directly the oversampled (or analog) signal be-
fore the matched filter assuming that the timing is known. In this
manner, it is possible to obtain an estimate of the noise power

(the one affecting the received symbols) that is not biased
by the signal power, by using only second order statistics, which
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constitutes the main focus of the present contribution. Once this
estimate is available, a SNR estimate is obtained as follows:

where is an estimate of the total signal plus noise power
that can also be easily obtained using only second order statis-
tics from the observed symbols at the matched filter output. The
problem is first addressed in the frequency domain, where its
statistical analysis becomes simpler. Then, asynchronous and
synchronous implementations in the time-domain are proposed,
where they make use of the timing parameter in a different
manner.

III. SIGNAL AND NOISE SUBSPACES INDUCED BY

CYCLOSTATIONARITY

As the key signal property to be exploited is related with the
cyclic spectral density of the signal, it is convenient to first for-
mulate the problem in the frequency domain. To this end, let us
consider the Fourier transform of a finite (arbitrarily large) seg-
ment of size of the complex envelope of the received signal

:

(5)

where and are the finite-size Fourier transforms of
the signal and noise components, respectively.

It is well known [9] that cyclostationary signals exhibit
spectral correlation at frequency values separated by the fun-
damental cycle frequency . Motivated by this fact, let us
define the frequency pair as

(6)

where the frequency variable is introduced to scan the roll-off
band defined in (4) and refers to the center of the
roll-off band at frequencies . Using these two frequency
bins, we can now take the pair of random variables and

and define the normalized two-dimensional frequency-
domain observation vector as

(7)

where and are the signal and noise components
of the frequency-domain observation vector, and they are im-
plicitly defined in a similar manner. The normalization factor

in the previous definition is convenient when the
asymptotic case of is studied, as done in the sequel.

As the signal and noise vector components are uncorrelated,
we can express the second order statistics of the frequency-do-
main observation vector as follows:

(8)

where the 2 2 matrices and are the spectral co-
herence matrices of the signal and noise components, respec-
tively, and the spectral coherence matrix of the received
signal. Note that all these matrices are defined for a specific
value of the auxiliary frequency , from which a specific fre-
quency pair becomes fixed through (6).

In order to understand the particular structure of the coher-
ence matrix of the received signal, let us first focus on its signal
component . The key point is to realize that this matrix
possesses a low-rank structure for PAM signals, and this aspect
constitutes the basis of the proposed noise power estimation ap-
proach. To see this, let us take the expression of the finite-size
Fourier transform of the process as defined in (5), and compute
the (generic) correlation between random variables and

, that is the term , which represents the
frequency-domain coherence that the useful signal exhibits at
frequencies and . After interchanging the expectation op-
erator and the time-domain integrals, the previous term becomes

where the statistical autocorrelation function of the process
is defined in the standard manner as

.
Making the substitutions and ,

and considering the asymptotic case of , the previous
double integral can be expressed as a single integral as follows:

(9)

where we have used that
is the cyclic autocorrelation

function, and its Fourier transform is the cyclic spectrum
of the digital modulation .1

1For a more in-depth study of the concepts of cyclic autocorrelation and cyclic
spectrum, the reader is referred to [8] which gives a concise survey of the litera-
ture on cyclostationarity. On the other hand, for clarity reasons in the mathemat-
ical developments, it is worth noting that we are using the symmetric version of
the cyclic autocorrelation function in our analysis, although the asymmetric one,
given by � ��� � ��� ���� � � �� � �� ��� ��,
has also been widely used in the literature. In any case, they are easily linked by
the following relationship: � ��� � � � ���
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It is well known (see [9] for instance) that, as the digital mod-
ulation is wide-sense cyclostationary with cycle frequen-
cies that are multiples of the symbol rate, may be dif-
ferent from zero for values of equal to the these cycle frequen-
cies. For signals having no more than 100% excess bandwidth
(that is, ), the unique cycle frequencies (values of )
to consider are and . With this consideration, we
can use the previous general expression to write the entries of
the asymptotic spectral coherence matrix defined in (8)
as

(10)

where is the power spectral density of .
Therefore, we have that

(11)

Finally, recalling that the cyclic spectral density of a PAM
signal [9] is given by

(12)

the spectral coherence matrix adopts the following structure:

(13)

The previous matrix is clearly rank-one 2.
The physical interpretation of this fact is that random variables

and are fully correlated, that is, one is just a
scaled version of the other, and in particular

(14)

for those values of such that , the mathematical
consequence is that the spectral coherence matrix can be ex-
pressed as the following outer product:

(15)

where

(16)

2Although we have assumed uncorrelated symbols to provide this result, it is
not difficult to show that the rank-deficient property of the coherence matrix is
preserved even if the symbols are correlated.

In the previous expression we have defined function that,
in general, depends on . However, if the pulse shape fulfills the
Nyquist criterion for ISI-free transmission (at the matched filter
output samples), which is known to be

(17)

then function becomes a constant, that is , for
any value of such that . In that case, the
unitary vector defining the signal space spanned for each value
of can be expressed as follows:

(18)

From the previous general result in (15), it becomes clear
that matrix is a rank-1 two-dimensional matrix such that
the signal subspace is that spanned by the unitary vector ,
which is dependent on the timing parameter . We can then de-
fine the orthogonal signal subspace as that spanned by the fol-
lowing vector :

(19)

which fulfills that and for
.

An important remark is noted at this point. As the noise sub-
space is dependent on the timing parameter , it becomes clear
that the noise power estimator developed under this perspective
will require either the knowledge of this parameter or a joint esti-
mation along with it. In other words, the in-band noise becomes
accessible for linear modulation schemes only if the cyclosta-
tionarity property is fully exploited. Note that this limitation is
not only associated with the proposed scheme, but also shared
with all SNR schemes proposed in the literature which operate
at the matched filter output correctly (synchronously) sampled
at one sample per symbol.

Considering now the noise term, we can write its spectral
coherence matrix as

(20)

where the zero entries are a consequence of the fact that the
noise process is wide-sense stationary3. Now, in order to cancel
out the signal component for obtaining a measure of the noise
level only, we can apply the orthogonal vector to the
frequency-domain observation vector. In this way, we obtain a
filtering process as a linear combination of two frequency bins
of the signal. In particular, the output of this orthogonal filter at
the associated frequency bin can be expressed as

(21)

3Notice that the noise statistical distribution is irrelevant and, therefore, it
could be non-Gaussian.
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The previous equation constitutes the basis of the proposed
approach. In particular, the previous scalar product becomes just
a projection of the received signal at frequency bin onto the
space orthogonal to the one spanned by the useful signal. As
a result, this projection succeeds in canceling out the cyclosta-
tionary component of the received signal, while the stationary
component (the noise) is the only one allowed to pass, thus
giving direct access to the in-band noise whose power is to be
measured in a second stage.

Assuming that the timing parameter is known, the men-
tioned signal cancelation can be simply shown by using (5) and
the linear dependence (14) in (21) to get

(22)

which means that for a given value of frequency , the random
function becomes simply a linear combination of two fre-
quency bins ( and ) of the noise process, as a result of
canceling the signal component.

At this point, it is also important to focus on the adequate
spectral support of in the previous filtering definition in (21).
Taking into account the imposed constraint that the out-of-band
noise should not be used in the estimation process for the rea-
sons explained in the introduction, that is , it be-
comes clear from (6) that the possible values of should verify
that

(23)

which leads to the following allowable range for :

(24)

whose overall spectral support is .
As a result of the previous support definition on the values of

, and observing that the orthogonal vector in (19) explicitly de-
pends on and , it becomes clear that the obtained filtering
process has a passband structure such that only the roll-off bands
of the signal are used for noise power estimation. In particular,
the frequency bins of the noise, , that are observed and
used in (22) are those contained just in the roll-off band fre-
quency support (4).

Finally, if the frequency range is constrained in this way, we
can write the received signal coherence matrix of the observed
frequency vector as

(25)

To conclude this section, and for the sake of clarity, Fig. 1
summarizes the three spectral supports considered so far asso-
ciated to the frequency domain, , and , which will play
an important role in the mathematical development of the esti-
mator.

IV. FREQUENCY-DOMAIN FORMULATION

As is the output of an orthogonal filtering process, it
becomes signal-free and influenced only by the additive noise

Fig. 1. Spectral supports considered in the study. � (2) is the spectral support
of the digital modulation signal. � (24) is the spectral support of frequency
variable � associated to the orthogonal spectral vector � ���. � (4) is the
spectral support of the noise that can be used to estimate its power without being
affected by the signal (roll-off band support).

term . In fact, constitutes an unbiased estimate
of the (one-sided) noise density, because

(26)

where the orthonormality property of and has been
used ( and ) in the previous equa-
tion. Note that the orthogonal signal subspace is the only one
that can be used if an unbiased noise power estimate is desired,
because estimating the noise term in the signal subspace would
require the knowledge of the useful signal power, which is as-
sumed unknown in most practical cases.

On the other hand, as has normal distribution ,
which is a linear transformation of the noise process, possesses
also a normal distribution. As a result, we can write its variance
as

(27)

where we have used again that is unitary. As it happens
with the periodogram in spectral estimation theory, we can see
that the estimator is inconsistent, because its variance
given by (27) does not decrease as increases.

Considering that the useful spectral support is and the
fact that variables and are uncorrelated
for all due to noise stationarity and mutual bin orthogonality
of the Fourier transform, we have that the total number of un-
correlated bins inside the support is , each one having
identical variance. As a result, a (consistent) maximum likeli-
hood estimate can be obtained as the sample mean of all avail-
able uncorrelated estimates

(28)

In this manner, we get an estimator of whose variance ex-
hibits now a consistent behavior

(29)

At this point, it is important to observe that the proposed
noise-power estimator has a variance that depends inversely on
the roll-off factor of the digital modulation, in particular on
the product . In other words, for a given specified variance
of the unbiased noise power estimate, modulations with small
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roll-off will need more data with respect to modulations with
high roll-off.

Finally, before going to the time-domain formulation, it is
worth mentioning the existing link between our subspace formu-
lation of the oversampled signal and the exploitation of the sub-
space structure proposed by Tong et al. in the well-known work
[10], in which blind identification and equalization is made pos-
sible by using only second order statistics. It is seen in [10] that
the structure of the time-domain covariance matrix is such that
the signal space dimension is lower than the dimension of the
observed oversampled signal, which means that it exists a noise
subspace from which an unbiased noise power estimate can be
obtained. Suitable methods exists for that purpose. For instance,
a noise power estimate can be obtained by computing the sin-
gular value decomposition (SVD) of the covariance matrix, or
by projecting the observed signal onto the noise eigenspace in
the case that the eigenvectors for a given timing parameter are
assumed to be known, for example, when there is no channel to
be considered. Although this becomes a possible alternative for
the derivation of our noise power estimator, the frequency-do-
main formulation proposed here has several advantages with re-
spect to a direct time-domain approach:

• The computation of the SVD is not required. The reason
is that, when examining the covariance structure at the fre-
quency domain, it is seen that the frequency bins are cor-
related by pairs, which allows us to only consider multiple
2 2 coherence matrices instead of a single high dimen-
sion covariance matrix. These matrices have a trivial eigen-
decomposition, such that the vector spanning the noise
space can be trivially obtained from every 2 2 coherence
matrix.

• The complexity of the problem does not substantially in-
crease when the observed block size increases. This will
become apparent in the next section where a time-domain
estimator will be obtained by a direct translation from the
frequency-domain formulation proposed here. In partic-
ular, it will be seen that the noise power can be estimated
by simply computing the power at the output of a time-in-
variant filter, instead of directly projecting the observed
data onto the noise eigenvectors of the entire covariance
matrix. In fact, our (28) can be interpreted as an average of
the estimated eigenvalues of the noise subspace, whose di-
mension increases as the block size increases, yielding as
a result a consistent estimate.

• A closed-form expression for the variance of the resulting
noise power estimate can be easily obtained in (29), which
gives us a clear insight on the influence of the excess band-
width of the signal on the estimator performance.

The time-domain formulation explored in the next section is
obtained from a direct translation of the structure of the problem
clearly identified here in the frequency-domain, yielding asyn-
chronous baseband and synchronous passband alternatives for
the implementation.

V. TIME-DOMAIN FORMULATION

The previous formulation in the frequency domain has al-
lowed a simple mathematical path and a clear identification of
the noise subspace. However, its direct implementation is not
too much practical. In particular, points of the Fourier

Fig. 2. (a) Frequency response of the original pulse. (b) Frequency shifts right
and left an amount of ����� � of the original signal. (c) Frequency response of
filters� ��� and� ���. (d) Outputs of the previous filters where one can see
the signal cancelation process.

transform in the roll-off bands of the signal need to be computed,
with the added problem that should be large enough in order
to attain the mentioned asymptotic properties. In this section we
propose a time-domain formulation that allows a simpler and
sequential (instead of block) implementation, while still main-
taining the assumed asymptotic properties.

For the derivation of a time-domain scheme, we will focus
on the asymptotic case just by evaluating (28) when goes to
infinity

(30)

This allows to make use of the Parseval’s theorem (i.e., the uni-
tary property of the Fourier transform) and compute the previous
power in the time domain as follows:

(31)

where is the inverse Fourier transform of . On the basis
of the previous idea, we will next present an asynchronous base-
band and a synchronous passband scheme implementing (31).

A. Asynchronous Baseband Scheme

In this first solution, a known timing error will be allowed
in the processed data. In accordance with expression of in
(21), the derivation of requires to process as follows:

(32)

where and are two lowpass filters with frequency
response given by

(33)
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Fig. 3. Asynchronous baseband scheme for in-band noise power estimation.
The subsampling is optional.

respectively, where is an ideal lowpass filter with fre-
quency support , in accordance with the limits of the inte-
gral in (30). For SRRC pulses, the previous filters adopt the fol-
lowing frequency response:

otherwise
(34)

which is depicted in Fig. 2, along with the overall signal can-
celation process. The direct time-domain implementation of the
noise estimator is depicted in Fig. 3. It should be noted that this
implementation requires the use of two complex-valued filters

and .
The two complex rotations and after filters

and introduce an angular rotation of their com-
plex-valued outputs, which allows the signal component cance-
lation even if there is a timing error of seconds, with

. It is in these complex phase rotations where the timing in-
formation is used.

In addition, as the outputs of these two filters have a reduced
spectral support of , their outputs do not need to be sampled
at the same sampling rate used for the received signal. In partic-
ular, it should be noted that a decimation factor of can be
applied at that point, where , which is an important
consideration for real-time implementations.

B. Synchronous Passband Scheme

Another way of dealing with the timing error is to synchro-
nize the received signal before starting the noise power esti-
mation, typically acting on the sampling unit or performing a
data interpolation according to the available timing error esti-
mate. In this case, we can omit the complex rotations correcting
the timing error in the previous scheme. When proceeding in
this way, a simplification of the implementation can be derived,
which makes use of a single real-valued passband filter and a
synchronous subsampling at its output, as explained further on.

Let us define a band-pass filter with the following fre-
quency response:

otherwise
(35)

where the (unitary) imaginary factor is introduced in order
to obtain a real-valued filter in the time-domain, without af-
fecting at all the performance of the noise power estimator, as it
is insensitive to signal phase. Thus, the main advantage of this

Fig. 4. (a) Frequency response of the matched filter. (b) Orthogonal passband
matched filter. (c) Orthogonal passband matched filter output (down), for � �

���.

scheme with respect to the asynchronous one proposed before,
is that it requires a single real-valued filter instead of two com-
plex-valued ones.

For SRRC pulses, the previous filter adopts the following fre-
quency response:

for
otherwise

(36)

which is depicted in Fig. 4, along with the frequency response
of the overall pulse shape. This filter can be implemented either
analogically or digitally, in this last case with a sampling rate
fulfilling the Nyquist criterion.

Let denote the Fourier Transform of the
signal at the output of this passband filter (see
the third plot in Fig. 4). Notice that contains the outputs of
filters and in (32) but they are centered at frequen-
cies and , respectively, instead of at frequency
0. Therefore, signal cancelation is still undone because it re-
quires to subtract the content of around frequencies
and . To do so, we need to sample by forcing spec-
tral aliasing in such a way that aliasing performs subtraction of
components at frequencies and and, therefore,
it leads to signal cancelation.

According to this, let us introduce the discrete Fourier trans-
form of sequence

(37)

which is defined in the interval .
In order to allow signal cancelation it is simple to realize

that the sampling period should be an integer multiple of the
symbol period, that is , where the decimation factor

can take any integer value . Notice that for
odd values of , cancelation (substraction) occurs at discrete
frequency whereas for even values of , it takes
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Fig. 5. Synchronous passband scheme for in-band noise power estimation.
Subsampling at the symbol rate or below is now required.

place at discrete frequency , because there is then always a
baseband alias. Notice also that while in the asynchronous base-
band implementation (Section V-B) the decimation is optional,
in the synchronous passband case it becomes mandatory. More-
over, it is also mandatory to perform this subsampling synchro-
nously with the timing of the useful signal in order to effectively
cancel-out the signal component.

If we now rewrite (30) in terms of (37), we obtain the fol-
lowing asymptotic result:

(38)

that can be manipulated as follows:

where the discrete frequency has been normalized with re-
spect to the sampling rate. If we invoke now the Parseval’s the-
orem (i.e., the unitary property of the Fourier transform), we can
express the result above in the time domain as follows:

(39)

whose practical implementation is depicted in Fig. 5.

VI. SUBOPTIMAL IMPLEMENTATIONS

The orthogonal filtering proposed in (34) and (36) presents
discontinuities in the frequency domain that pose difficulties
on its implementation. In this section, we propose a subop-
timal filter derived by introducing some degree of frequency
smoothing at the filter edges, while still preserving the or-
thogonality (signal cancelation) property. We focus on the
synchronous solution, but the concept can easily be applied in
the asynchronous case as well. The modified filter is defined as

(40)

where is a real spectral window that fulfills the following
properties:

(41)

While the first and second properties are required to avoid
sharp discontinuities of , the third one is required to pre-
serve the signal cancelation property which, as explained, is a
consequence of the mirror symmetry of function around
frequencies (see bottom plot in Fig. 2). Finally, the
fourth property is required to provide an unbiased noise power
estimator.

In order to analyze the impact of this modification, we should
note that it is equivalent to substitute the measure in (21)
by

(42)

As it can be trivially seen using (14), signal cancelation still
occurs if assuming correct timing synchroniza-
tion. Then, (22) becomes

(43)

As a consequence, the mean and variance of becomes
spectrally shaped by the window in this manner

(44)

for (45)

The new estimator now becomes

(46)

with a new statistical mean value for large given by

(47)

from which the fourth condition in (41) is confirmed. On the
other hand, its variance and normalized variance (with respect



RIBA et al.: NDA SNR ESTIMATION TECHNIQUE 5775

Fig. 6. Frequency response of the matched filter (up), modified orthogonal
matched filter (center), and modified orthogonal matched filter output (down),
for � � ���. The required property to cancel-out the signal component is pre-
served, although the modified filter posses less effective bandwidth than the true
orthogonal one, which means that more data is required to achieve the same
variance of the noise power density estimate. This is the tradeoff obtained in
reducing the implementation complexity of the estimator. The modified orthog-
onal filter coincides with the orthogonal derivative matched filter derived within
the context of conditional timing estimation [11].

to the squared true value of the parameter being estimated) are
given by (for large )

(48)

respectively, where it is assumed that for
sufficiently large, and, is the variance amplification
caused by the modification of the filter, which it is given by

(49)

For the sake of concreteness, the following simple ad hoc
design is proposed:

(50)

By imposing the unbiasedness condition, we obtain that

(51)

which means that the price of smoothing the filter edges using
this window is an increase of 50% of the variance of noise

power spectral density estimation with respect to the optimal
value given by (29). Interestingly, the filter using the pre-
vious specific window coincides with the orthogonal derivative
matched filter introduced in [11], where it was found in the con-
text of conditional maximum likelihood timing estimation. In
particular, and (the matched filter) are the two filters
required to implement a self-noise free timing error detector.
This can be especially convenient in practice because a single
filter can be used for the joint timing and noise power estima-
tion. The overall filtering process is depicted in Fig. 6.

VII. NOISE SUBSPACE ESTIMATOR (NSE) OF THE SNR

Estimating the SNR , which coincides with the for
complex channels, requires an estimation of the symbol energy,

, along with the proposed estimation of . This estimate can
be simply obtained from the sample energy at the matched filter
output as follows4:

(52)

where is the matched filter output. The
SNR estimator proposed in (52) will be called the NSE, which
has the peculiarity of using solely second-order sample mo-
ments of the received signal. Note that is also a second-order
sample moment that, along with , contributes to the estima-
tion errors of .

The normalized variance (NVAR) of the unbiased estimator
is defined as

(53)

which coincides with the normalized mean squared error in the
case of unbiased estimators, such as the proposed NSE.

To evaluate the numerator of (53), we write
and , and make use of a first-order Taylor

expansion of around the point to yield the following
small error approximation:

(54)

Following an approach similar to the one in [5], NVAR is given
by

(55)

4It should be noted that the approach to estimate the SNR given in (52) will not
work when co-channel interference, rather than thermal noise, is present because
the interference may also be cyclostationary and it may introduce a positive or
negative bias on the SNR estimate. In any case, it is also worth noting the SNR
techniques based on higher order statistics will yield biased SNR estimates as
well, because the interference may modify the statistics at the matched filter
output in an unpredictable manner. Therefore, a further study would be required
to make a comparative analysis of the impact of the co-channel interference on
the referred SNR estimators in different, representative co-channel interference
scenarios.
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Fig. 7. NVAR of the SNR for PSK signals with roll-off � � ���.

Then, assuming that and are uncorrelated, we have that

(56)

where (29) has been recovered. Using closed form expressions
of the even moments to expand (see Appendix), we fi-
nally have

(57)

where are the energy-normalized
constellation moments.

It is seen then that the normalized SNR variance increases
at low SNR values, and it is penalized for small roll-off fac-
tors. We can also see a persistent floor (at high SNR) inversely
proportional to the roll-off factor and directly proportional to
the kurtosis of the constellation given by the fourth-moment ,
which is equal to 1 for constant modulus constellations, and ap-
proaches to 2 for multilevel ones. In particular, for large SNR,
we have that

(58)

Finally, a remarkable property is that, for constant modulus con-
stellations and high SNR values, the NVAR floor coincides with
the NVAR of the noise density derived in (48).

VIII. SIMULATION RESULTS

We show the results obtained via Monte Carlo simulation for
a signal block length of symbols, averaging re-
alizations for each SNR point, and using 201 coefficients in all
FIR filter designs5. The synchronous passband scheme with the
spectral window given by (50) has been used .

5The filter length has been selected large enough to avoid practical implemen-
tation losses.

Fig. 8. NVAR of the SNR for PSK signals with roll-off � � ���.

In all simulated techniques, the received signal is sampled at two
samples per symbol . While the other techniques con-
sidered for comparison operate by using only a single sample
per symbol at the matched filter output, the proposed technique
uses all the available samples at the matched filter input for esti-
mating the SNR. In both cases, however, identical signal and
noise bandwidth are used to construct the resulting estimate,
thanks to our constraint of using only the frequencies within
the signal band when processing the input of the matched filter.
This assumption is necessary in order to obtain a fair compar-
ison with previous methods. Otherwise, the presence and utiliza-
tion of the out-of-band noise would improve the performance of
the new technique in estimating the noise power spectral level,
as out-of-band noise would directly provide extra statistically
independent information about the noise power spectral level
that, besides, it is not contaminated by the useful signal.

Figs. 7 and 8 show the NVAR of SNR estimation for PSK
signals (constant modulus, that is, ) with roll-off
and , respectively. The performance of the proposed
NSE is shown along with that of the . It is seen that for
high values of , the NSE outperforms the while for
low roll-off values, behavior is opposite. It can be seen how
the NSE performance degrades as predicted in (57) when the
roll-off decreases, while the behavior of (and the CRB)
is not affected by this parameter.

Fig. 9 shows the NVAR in the estimation of the SNR in the
case of 16-APSK signals (nonconstant modulus), such as those
specified in the DVB-S2 standard, consisting of an inner and
outer ring with 4 and 12 symbols, respectively. The ring ratio is
2.57, the smallest value specified in the standard. It is seen that
the performance of degrades significantly, even tuning
it with the known value of the constellation kurtosis (which is
now ). The performance of the sixth order estimator
proposed in [5], which extends the usable range of the SNR, de-
grades as well6. On the contrary, the performance of the NSE
only degrades slightly, as predicted in (57), without requiring

6In Fig. 9, the theoretical performance of the � � and the sixth-order es-
timator is extracted from [5], where it was shown to be a tight lower bound of
the actual variance of these estimators. Basically, both estimators’ variance de-
grades as the SNR increases as predicted in [[5, eq. (15)]].
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Fig. 9. NVAR of the SNR for 16-APSK signals with roll-off � � ��� and ring
ratio 2.57.

Fig. 10. Mean of the estimated SNR for 16-APSK signals of ring ratio 2.57
and 3.15, the extreme values specified in the DVB-S2 standard. The value 1.41
is also shown to highlight the sensitivity of moment-based methods to the con-
stellation kurtosis, as opposed with the proposed second-order NSE approach.

any tuning. In fact, it is seen in Fig. 10 that the becomes
severely biased for SNR dB, while the NSE is always un-
biased. In this figure, we have also added other values of the ring
ratio of the 16-APSK modulation, in order to show how robust
is the NSE method to the nonconstant modulus property of the
digital modulations, compared with moment-based schemes.

It is worth noting, however, that for high SNR values, a SNR
estimator that makes use of the demodulator decisions before
the decoding stage can be used7. These techniques have the ad-
vantage of being asymptotically efficient for high SNR values,
meaning that they achieve the CRB of the problem. At mod-
erate SNR values, decision errors based on hard decisions would
lead to an underestimation of the noise power (as the erroneous
decision becomes closer to the received noisy symbol than the

7These SNR estimators are denoted by RxDA in [1], and by decision-directed
or decision-based approaches in other publications.

true one), which would produce a positive bias on the SNR es-
timate. This is an undesirable effect for instance in ACM sce-
narios where the SNR is continuously monitored and an action
is expected to be taken when the estimated SNR decreases below
a given threshold value. Additional drawbacks of DD techniques
are that they completely fail at the lower range of SNR values,
and that they require carrier phase synchronization as well as
proper signal amplitude estimation (which is not required by the
proposed technique) and the sensitivity to errors on these esti-
mates becomes critical at high SNR values. Note that, in prac-
tice, it may be of interest to have an accurate estimate of the
SNR even when this SNR is too low to implement DD estima-
tion schemes. For example, LDPC codes in combination with
16-APSK modulation can provide a near error-free operation of
SNR values around 8 dB, where the uncoded SER is about 0.35,
which would provide completely unreliable SNR values when
using a DD technique. As another example, ACM strategies may
require accurate estimates of the SNR even at SNR ranges where
the communication is not reliable because the link quality has
been degraded, and feedback information is to be sent to the
transmitter to properly modify the bit loading and coding rate
policy. For all these reasons, the possibility of using a single
SNR estimator for a wide range of SNR values is a desirable
property that the proposed technique exhibits.

In general, it is seen that the performance of the new estimator
is perfectly predicted by (57). The observed small mismatch at
high SNR values is due to the limited number of coefficients
used in the FIR filter designs, which leads to an imperfect signal
cancelation at their output.

IX. CONCLUSION

A new NDA SNR estimator, called NSE, has been proposed
by exploiting the full spectral coherence exhibited by PAM sig-
nals, which provides a noise subspace identification. Its perfor-
mance is compared with the CRB and with the well-known mo-
ment-based estimator. The main features of the NSE are
the following:

• It operates on the received signal sampled at the Nyquist
rate before matched filtering. Other NDA approaches, in-
stead, are based on processing the signal at the matched
filter output at the symbol rate. This is the peculiarity al-
lowing a direct exploitation of the cyclostationarity prop-
erty exhibited by the digital modulation, which provides a
natural way of separating signal and noise which is not fea-
sible if a symbol rate model is imposed from scratch.

• It does not require previous knowledge of the constellation
format, in contrast with other moment-based approaches
which need to be particularized for the constellation at
hand (e.g., typically the estimator needs to know
the constellation kurtosis). Therefore, it becomes a good
candidate in ACM schemes and/or in systems employing
heterogeneous frames (see the work by Alvarez-Diaz et al.
in [7] and references therein), so that the symbols in dif-
ferent subframes are drawn from different constellations.

• It performs well with nonconstant modulus constellations,
while other approaches are known to completely fail at
medium to high SNR values.

The weak point of the method is that the NVAR degrades for
small values of the roll-off factor, requiring always some excess
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bandwidth of the signal to properly work. This is a consequence
of the fact that the estimator only uses sample second order mo-
ments of the signal, which is possible thanks to the exploita-
tion of the cyclostationarity property. However, it is precisely
this fact that provides its robustness compared with other ap-
proaches.

APPENDIX

The details for the derivation of (57) are provided. From (56),
we only need to compute , that is the variance of in
(52). As is the sum of independent terms (symbol strobes
plus noise), its variance is simply given by

(59)

where is the variance of the term . Let us define
as the th order moment of the strobe . Using known
closed-form expressions for the even-order moments (see [5,
eqs. (3)–(4)], for instance), we can write

(60)

We can now express as to yield

(61)

and, therefore, the term in (56) can be expressed as

(62)

Finally, using the previous expression in (56), we easily ob-
tain (57).
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