Loading [MathJax]/extensions/MathMenu.js
Detection Algorithms to Discriminate Between Radar Targets and ECM Signals | IEEE Journals & Magazine | IEEE Xplore

Detection Algorithms to Discriminate Between Radar Targets and ECM Signals


Abstract:

We address adaptive detection of coherent signals backscattered by possible point-like targets or originated from electronic countermeasure (ECM) systems in presence of t...Show More

Abstract:

We address adaptive detection of coherent signals backscattered by possible point-like targets or originated from electronic countermeasure (ECM) systems in presence of thermal noise, clutter, and possible noise-like interferers. In order to come up with a class of decision schemes capable of discriminating between targets and ECM signals, we resort to generalized likelihood ratio test (GLRT) implementations of a generalized Neyman-Pearson rule (i.e., for multiple hypotheses). The adaptive detectors rely on secondary data, free of signal components, but sharing the statistical characterization of the noise in the cell under test. The performance assessment focuses on an adaptive beamformer orthogonal rejection test (ABORT)-like detector; analytical expressions for the probability of false alarm, the probability of detection of the target, and the probability of blanking the ECM (coherent) signal are given. More remarkably, it guarantees the constant false alarm rate (CFAR) property. The performance assessment shows that it can outperform the adaptive sidelobe blanker (ASB) in presence of ECM systems.
Published in: IEEE Transactions on Signal Processing ( Volume: 58, Issue: 12, December 2010)
Page(s): 5984 - 5993
Date of Publication: 16 September 2010

ISSN Information:


Contact IEEE to Subscribe

References

References is not available for this document.