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Abstract

An important issue in wireless communication is the interaction between selfish and independent wireless
communication systems in the same frequency band. Due to theselfish nature of each system, this interaction is
well modeled as a strategic game where each player (system) behaves to maximize its own utility. This paper studies
an interference interaction (game) where each system (player) hasincomplete informationabout the other player’s
channel conditions. Using partial information, players choose between frequency division multiplexing (FDM) and
full spread (FS) of their transmitted power. An important notion in game theory is the Nash equilibrium (NE) which
represents a steady point in the game; that is, each player can only lose by unilaterally deviating from it. A trivial
Nash equilibrium point in this game is where players mutually choose FS and interfere with each other. This point
may lead to poor spectrum utilization from a global network point of view and even for each user individually.

In this paper, we provide a closed form expression for a non pure-FS ǫ-Nash equilibrium point; i.e., an
equilibrium point where players choose FDM for some channelrealizations and FS for the others. To reach this
point, the only instantaneous channel state information (CSI) required by each user is its own interference-to-signal
ratio. We show that operating in this non pure-FSǫ-Nash equilibrium point increases each user’s throughput and
therefore improves the spectrum utilization, and demonstrate that this performance gain can be substantial. Finally,
important insights are provided into the behaviour of selfish and rational wireless users as a function of the channel
parameters such as fading probabilities, the interference-to-signal ratio.

Index Terms

Dynamic Spectrum Access, Bayesian Games, Interference Channel, FDM, Nash Equilibrium, incomplete
Channel State information.

I. INTRODUCTION

Wireless communication has become increasingly popular inrecent years since more and more com-
munication systems share the same band. Consider for example an urban area with wireless local access
networks (LAN), bluetooth systems, cordless phone, etc. These systems create interference which results
in major performance loss. This is why, interference mitigation is such an important issue [e.g. 1–9].

In wireless networks, interference can be high and the channel is time varying [see e.g. 10]. Furthermore,
users may be independent of each other and selfish in the sensethat each one is only interested in
maximizing its own utility. Thus, non cooperative game theory is an appropriate tool to analyze such
interactions. An important notion in game theory is the Nashequilibrium (NE) which represents a steady
point the game; that is, the NE point is a strategy profile which is the best response of each player given
that the others do not deviate from it. As such, it can be self imposed on network users who are selfish
in nature.

For the case of a flat fading interference channel with full information1 , it was shown [1] that Full
Spread (FS) is a NE point, and a sufficient condition for its uniqueness was derived. It was further observed
that in many cases the FS NE point leads to inefficient solutions. This happens when mutual FDM is
better for both users than mutual FS but the system operates in a mutual FS since the users are subject
to the prisoner’s dilemma [11].

The full information assumption is not always practical because communicating channel gains between
different users in a time varying channel within the channelcoherence time may lead to large overhead.

Part of this paper will appear in ICASSP 2010.
1By complete information, we mean that every user knows all the direct and cross channel gains of all users in the network.

http://arxiv.org/abs/1002.3931v1
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Fig. 1. (a) A wireless interference scenario with incomplete information. Each player knows the square magnitudes of its direct and
impinging channel gains and the statistics of its opponent’s channel gains. For example player 1 knows|H11|

2 and |H12|
2 but knows only

the statistics of|H22|
2 and |H21|

2. (b) the possible PSD configurations.

In this case, it is more appropriate to consider each channelcoherence time as a one-stage game where
players are only aware of their own channel gains and their opponent’s channel statistics (which vary slowly
compared to the channel gains and therefore can be communicated [3]). The interaction between the players
may be repeated but with a different and independent channelrealization each time and therefore is not
a repeated game. This motivates the use of games with incomplete information, also known as Bayesian
games [12, 13] which have been incorporated into wireless communications for problems such as power
control [14–16] and spectrum management in the interference channel [2, 17]. In [15], a distributed uplink
power control in a multiple access (MAC) fading channel was studied and shown to have a unique NE
point. This result however does not apply to the interference channel which is radically different. In a
MAC channel, useri’s direct channel gain is equal to the gain of the interference he creates for the other
users (j 6= i) while in the interference channel these parameters are independent. Thus, the interference
channel is composed of a double number of parameters and therefore is more complicated.

In this paper we analyze a two-user interference channel with incomplete information in which each
user knows the magnitudes of its direct channel and of the impinging channel gains and its noise power
spectrum density (PSD) but is unaware of his opponent’s direct and impinging channel gains but only
knows it statistics (see Fig. 1(a)). Based on their measurements, users choose between pre-assigned FDM
or FS (see Fig.??). This interaction may be repeated but a with different channel realization each time.

With the same incomplete information, it was shown [2] that in a symmetric2 interference channel
with a one-time interaction, FS is the only symmetric strategy profile3 which is a NE point. This result
however is limited to scenarios where all users statistically experience identical channel conditions (due
to the symmetry assumption) and does not apply to interactions between weak and strong users.

A situation where both players use FS may lead to undesirableoutcomes from a global network point
of view and even for each user individually. Thus, it is desirable to derive non FS Nash equilibrium
points which Pareto (which is component-wise larger) dominate the FS equilibrium point and lead to
improved spectrum utilization. A first step toward this goalwas made in [17] where it was shown that
if users can coordinate in advance to use orthogonal FDM, there exists a non pure-FS NE point which
Pareto dominates the pure-FS NE point. This result however is also limited to symmetric interference
channels. This paper is aimed to fill this gap and derive NE points in the general case of arbitrary channel
distributions. For example, scenarios of weak and strong users (where one experiences a high level of

2Symmetric in the sense that the all channel gains (i.e.Hi,q for every i, q) are identically distributed.
3In symmetric strategy profile users are restricted to identical strategies.
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interferences and the other experiences low interference), different fading effects and cases where one
has a strong line of sight path and the other has no line of sight. The assumptions of arbitrary channel
distribution together with the incomplete information that each user possesses about the other users in his
vicinity are most suitable to the reality of selfish users operating independently in unlicensed frequency
bands. This paper provides a closed form expression for non pure-FSǫ-NE point that increases each user’s
throughput and therefore improves the spectrum utilization, and demonstrates that this performance gain
can be substantial. The derived equilibrium point providesinsights into the the behaviour of selfish and
rational wireless users. Furthermore, it does not require acentral authority that imposes compliance of
the protocol. Thus, it provides guidelines for designing a protocol that users will choose voluntarily to
follow.

The paper is orginazed as follows. In Section II we define the Bayesian Interference Game (BIG). This
is a two user interference interaction with incomplete information where the channel’s direct and crosstalks
gains are arbitrarily distributed (but independent). In Section III we present the best response function
which is a user’s best action for his opponent’s given strategy. We then provide a simple expression for the
best response that depends only on the interference-to-signal ratio. In Section IV we show (Proposition
3) that non pure-FS NE points provide improved performance (with respect to pure-FS NE) to each user
individually and therefore a better spectrum utilization.We then derive a closed form expression for non
pure-FSǫ NE points. Theorem 5 provides a sufficient condition for the existence of such points.

In section V we analyse the BIG in common wireless fading models (i.e. Rieghley and Rician and
Nakagami) and learn the behaviour of selfish and rational wireless users in various wireless environments.

II. PROBLEM FORMULATION

A. Notation and Definitions

Consider a flat-fading interference channel with two players, where during a channel coherent time,
player i’s signal is given by (see Fig. 1(a))

Wi(n) = HiiVi(n) +HijVj(n) +Ni(n) (1)

where i, j ∈ {1, 2}, i 6= j, Vi(n), Vj(n) are useri’s and j’s transmit signals respectively,Ni(n) is a
white Gaussian noise with varianceσ2

N andHiq, i, q ∈ {1, 2} are the channel fading coefficients which
are random variables. Throughout this paper, the indexj is never equal toi. Both players have a total
power constraint̄p. We denote useri’s signal to noise ratio (SNR) and interference to noise ratio (INR)
by Xi = |Hii|

2p̄/σ2
N and Yi = |Hij|

2p̄/σ2
N respectively and denoteSNRi = E {Xi}, INRi = E {Yi}.

We further denote the interference to signal ratio (ISR) byZi = Yi/Xi. The realizations (sample points)
of Xi, Yi, Zi are denoted byxi, yi, zi respectively. When we want to stress thatxi, yi, zi are the observed
values of the SNR, INR and ISR they will be denoted bySNRi, INRi andISRi respectively.

Assumption 1:The channel gains|Hiq|
2, i, q ∈ {1, 2} are continuous random variables with finite non

zero moments and the probability density functions (PDF)f|Hiq|2(h), i, q ∈ {1, 2} are finite for every
h > 0.

B. The Bayesian Interference Game (BIG)

In the BIG, useri’s channel state information (CSI) at the transmitter side are the realized values of
Xi andYi. It does not observeYj andXj but only knows their distributions. The channel is divided into
two equal sub-bands and player 1’s and 2’s actions are given by

p1(θ1) = p̄[θ1, 1− θ1]
T

p2(θ2) = p̄[1− θ2, θ2]
T (2)

respectively (see Fig.??), whereθi ∈ Θi = {1, 1/2} andp̄ is the total power constraint. The actionsθ = 1
and θ = 1/2 correspond to FDM and FS, respectively. This formalism implies that players coordinate
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TABLE I
USERi’ S PAYOFFui(θi, θj , SNRi, INRi)

player j chooses FDM player j chooses FS
(θj = 1) θj = 1/2

player i chooses FDM
(θi = 1)

1
2
log2 (1 + SNRi)

1
2
log2

(

1 + SNRi

1+INRi/2

)

player i chooses FS
(θi = 1/2)

1
2
log2

(

1 + SNRi

2

)

+ 1
2
log2

(

1 + SNRi/2
1+INRi

)

log2

(

1 + SNRi/2
1+INRi/2

)

in advance to use disjoint subbands in the case of FDM. This coordination can be carried out by using
Carrier Sense Multiple Access (CSMA) techniques (see e.g. [10]) where each player randomly chooses
a subband and performs a random power backoff in case of collision. This is done at the first interaction
when users exchange information (channel statistics).

We assume that during a single coherence period, players manage their spectrum only once, based on
their knowledge. Therefore, if the interaction is repeatedit will be with different and independent channel
realizations. This represents a case where the channel varyfast or a case where simplicity requirements
enable a single spectrum shaping every coherence period. Playeri’s utility function ui(θi, θj , SNRi, INRi)
is given in Table I. We are now ready to define the Bayesian interference game.

Definition 1: The Bayesian interference game (BIG) is defined by the following:
1) Set of players{1, 2}.
2) Action setsΘi = {1, 1/2}, i = 1, 2. Let θi ∈ Θi be the action chosen by playeri, then according

to (2), θi = 1 corresponds to FDM andθi = 1/2 corresponds to FS.
3) A set of positive and independent random variablesX1, Y1, X2, Y2 whose distributions are common

knowledge. Each playeri observes the realized values ofXi, Yi but does not observeXj, Yj.
4) A utility function ui (θi, θj , xi, yi) given in Table I.
5) A set of pure strategiesS = S1 × S2 where everySi ∈ Si is a function that maps values ofxi, yi

to an action inΘi, i.e. Si : Xi ×Yi −→ Θi, whereXi = Range(Xi) andYi = Range(Yi).
Playeri’s objective is to maximize his conditional expected payoffgiven his private informationxi, yi,

i.e.:
πi(Si, Sj , xi, yi) , E {ui(Si, Sj, Xi, Yi)|Xi = xi, Yi = yi} , ∀xi, yi ∈ Xi ×Yi (3)

Definition 2: a NE point of the BIG is a strategy profileS = (Si, Sj) such that for every strategy profile
S̃ = (S̃i, S̃j) and everyi ∈ {1, 2}

πi(Si, Sj , xi, yi) ≥ π(S̃i, Sj, xi, yi) ∀ xi, yi ∈ Xi ×Yi (4)

Since the action space is binary, a strategySi(xi, yi) in the BIG is equivalent to a decision region
Di ⊆ Xi × Yi such thatSi(xi, yi) = 1 (i.e. FDM) if xi, yi ∈ Di andSi(xi, yi) = 0.5 if xi, yi ∈ Dc

i .
Two comments are in order:
• Only pure strategies are considered in the BIG; that is, player i’s action is completely determined

by his observed signalxi, yi. We do not consider mixed strategies which map values of the observed
signalxi, yi to a probability distribution onΘi i.e., playeri chooses randomly between FDM and FS
with probability ai(xi, yi) and 1 − ai(xi, yi) respectively. A well known theorem in game theory is
the Purification Theorem [13, Theorem 6.2]. It asserts that under some regularity conditions (among
others that each player’s utility functionui(θi, θj , xi, yi) should not be a function ofxj and yj),
every mixed strategy has a pure strategy equivalent. Thus, all NE points can be reached using pure
strategies. The conditions of the Purification Theorem are satisfied in the BIG.

• In the case where playerj chooses FDM, FS is not the best action for playeri. His payoff can be
increased by performing waterfilling which will result in a higher rate. Therefore, it makes sense to
modify the FS action with the waterfilling action as considered in [1, 6, 11] for interactions with
complete information. There are, however, two important caveats. The first is that the waterfilling
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solution in the interference channel must be carried out iteratively, where at every iteration players
measure their interference and shape their spectrum accordingly. The process needs to be repeated
within the channel coherence time until convergence4. This may lead to large overhead in time
varying channels and therefore is impractical. Moreover, the iterative waterfilling procedure does not
necessarily converge [8]. The second caveat is the analysisof the resulting game in the framework of
incomplete information. The result is a game with incomplete information where in addition to not
knowing their opponent’s utility, players do not know theirown utility function since it depends on
their opponent’s CSI. The analysis of such games is more complex and presents a greater challenge.
For example, the Purification Theorem is not satisfied if players use iterative water filling.

III. B EST RESPONSE AND APPROXIMATE BEST RESPONSE

An important notion in game theory is the best response function. The best response function of player
i maps each of playerj’s strategies to an action for which playeri’s payoff is maximized. This function is
used to derive NE points and is also important for understanding the players’ preferences and the nature
of the game.

In this section we present an expression for the best response function of the BIG. This expression,
however, is too complex for deriving a closed form expression for NE points of the BIG. Worse, it does
not provide insights into the game. For these reasons we obtain a simple approximation for the best
response function which provides greater insights into thegame and will enable us to obtain a closed
form expression for near NE points of the BIG.

A. Best Response Function

We now derive playeri’s best response toSj - playerj’s strategy. Note thatui(1, 1, xi, yi) > ui(1, 1/2, xi, yi)
since thelog is a monotonic function, and furthermore, due to Jenssen’s inequality,ui(1/2, 1/2, xi, yi) >
ui(1, 1/2, xi, yi). Thus, the following situations are possible:

• Ai is the case in whichui(1, 1, xi, yi) ≥ ui(1/2, 1, xi, yi) which is equivalent toINRi > SNRi/2
• Bi is the case in whichui(1/2, 1, xi, yi) ≥ ui(1, 1, xi, yi) which is equivalent toINRi ≤ SNRi/2

Recall that playeri is not aware of the state of his opponent (Aj or Bj) but only of his probabilities.
If player i experiences situationBi (which isISRi ≤ 1/2), then FS is his best response. This is because

FS is a strongly dominating action; that is, it produces a higher payoff to playeri given any action of his
opponent. It remains to find playeri’s best response for situationAi; i.e. the case whereISRi > 1/2,
that is, strong interference. LetP (Sj = 1) (the probability that playerj chooses FDM), then playeri’s
payoff is given by

πi(FDMi, Sj, xi, yi) = P (Sj = 1)ui(1, 1, xi, yi) + (1− P (Sj = 1))ui(1, 1/2, xi, yi) (5)

πi(FSi, Sj , xi, yi) = P (Sj = 1)ui(1/2, 1, xi, yi) + (1− P (Sj = 1))ui(1/2, 1/2, xi, yi) (6)

Observe that playeri’s payoff depends on his opponent’s strategy and channel distribution only via
P (Sj = 1); hence the payoff will be denoted byπi(Si, aj, xi, yi) where

aj = P (Sj = 1) (7)

It follows that, playeri’s best response is invariant to strategies with equal probability for choosing FDM5

and is dependent onSj only via aj .
Definition 3: Let Sj be playerj’s strategy withaj = P (Sj = 1). Player i’s best response toSj is

defined by:

Ši(xi, yi, aj) ,

{
θi = 1, if e(xi, yi, aj) > 0 and yi/xi > 1/2
θi = 1/2, otherwise

(8)

4 See [6–8, 18–21] for further reference to the convergence ofthe iterative waterfilling procedure.
5 From playeri’s point of view,Sj can be divided to into equivalent classesSaj

= {Sj : P (Sj = 1) = aj} such thatSj =
⋃

0≤aj≤1 Saj
.
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where

e(x, y, a) = πi(FDMi, aj, xi, yi)− πi(FSi, aj, xi, yi) =
1
2
a log(1 + xi)−

a
2
log
(
1 + xi

2

)

−1
2
log
(
1 + xi/2

1+yi

)
− (1− a) log

(
1 + xi

1+yi

)
+ 1

2
(1− a) log

(
1 + 2xi

1+yi

) (9)

Note that finding a NE point is equivalent to calculatingâ1 and â2 which solves the equations

a1 = P
(
Š1(X1, Y1, a2) = 1

)

a2 = P
(
Š2(X2, Y2, a1) = 1

) (10)

and thata1 = 0, a2 = 0 (pure-FS by both users) is a NE point regardless of the channel distribution
since FS is the best response of each player if his opponent uses FS. In this case each player’s payoff is
ui(1/2, 1/2, xi, yi). The pure-FS NE point may be very poor for both users as will demonstrated below.

B. Approximate Best Response

In order to analyze the best response function it will be simplified by an approximate best response.
This approximate best response plays in important role in deriving equilibrium points and understanding
each player’s preferences. The following proposition is needed before presenting the approximate best
response.

Proposition 1: Let

r(a, q) = log2(q)
2

− log2(1 + q) + 1
2
log2(2 + q)

− a
(
1 + log2(1 + q)− 1

2
log2(2 + q)− 1

2
log2(1 + 2q)

) (11)

then, for every0 < a ≤ 1 the following equation

r(a, q(a)) = 0 (12)

has a unique solutionq(a) > 1/2 and therefore it defines an implicit functionq : (0, 1] −→ (0.5,∞].
Furthermore,q(a) is continuous and monotonically decreasing.

Proof: see Appendix A.
Definition 4 (approximate best response):Let Sj be playerj’s strategy withaj = P (Sj = 1). Player

i’s approximate best response toSj is defined by:

S̃i(xi, yi, aj) =

{
θi = 1, if ISRi = yi/xi > q(aj)
θi = 1/2, otherwise

(13)

i.e. the approximate best response compares the ISR to a thresholdq(aj)6.
The intuition behind the approximation is now described. First consider the case ofSNRi >> 1 (recall

that xi, yi are used interchangeably withSNRi, INRi respectively). In this case

e(SNRi, INRi, a) ≈ ê(SNRi, INRi, a) (14)

where

ê(SNRi, INRi, a) ,
1
2
aj log(SNRi) +

1
2
(1− aj) log

(
1 + 2SNRi

INRi

)

− (1− aj) log
(
1 + SNRi

INRi

)
−

aj
2
log
(
SNRi

2

)
− 1

2
log
(
1 + SNRi

2INRi

) (15)

Thus, Ši(xi, yi, aj) can be approximated by replacinge(SNRi, INRi, a) with ê(SNRi, INRi, a). Fur-
thermore, note that

ê(SNRi, qSNRi, a) = r(aj, q) (16)

6For a = 0, we defineq(0) = lima→0 q(a) = ∞. Under this definition, playeri’s best response to the case where his opponent always
chooses FS is to choose FS.
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Fig. 2. Numerical evaluation of the best response function regions given in (8) for different values ofaj (a in the plot). For a givena,
points above the corresponding line belong to the FDM region.

and recall that the equationr(a, q) = 0 (see (12)) defines the functionq(a). Therefore,q(a) represents an
ISR level for which FDM and FS yield approximately equal payoffs. Thus, ifSNRi >> 1, Ši(xi, yi, aj)
can be approximated by a simple strategy which only comparesthe ISR to a threshold and choose action
accordingly, i.e. it chooses FDM if

INRi/SNRi = ISRi > q(aj) (17)

and chooses FS otherwise.
It remains to approximate (8) for the case whereSNRi >> 1 is not satisfied. IfINRi >> 1 and

ISRi > 1/2 it can be shown that (8) chooses FDM for every0 < aj ≤ 1 and if aj = 0, it chooses
FS. Thus, (17) is the best response in this case as well sinceISRi is greater thanq(aj) (which is finite
for every 0 < aj ≤ 1 and is infinite foraj = 07). In the case ofISRi ≤ 1/2, the best response in (8)
(which always chooses FS because it is a strictly dominant strategy for playeri) and the approximate
best response (17) coincide. This is becauseq(aj) ≥ 1/2 for every 0 ≤ aj ≤ 1. For the case where
INRi > 1/2SNRi but INRi andSNRi are in the same magnitude as 1, the best response in (8) cannot
be simplified. However, numerical evaluation indicates that (8) is well approximated by (17) as is depicted
in Figure 2.

We now present this idea formally. To establish the relationbetween the approximate and the ordinary
best responses, define:

Ď
aj
i ={(x, y) : e(x, y, a) > 0, and y > 0.5x} (18)

D̃
aj
i ={(x, y) : y > q(a)x} = {(x, y) : ê(x, y, a) > 0, and y > 0.5x} (19)

where (19) is obtained by substitutingy = qx in (15) and then invoking Proposition 1. The following
lemma describes precisely the sense in whichS̃i(xi, yi, aj) is approximately the best response. It shows
that in the high transmit power regime, the best response converges in probability to the approximate best
response. Thus, each player is “approximately” indifferent to whether his opponent uses the approximate
best response or the true best response.

Lemma 2:Assume the channel gains|Hiq|
2, i, q ∈ {1, 2} are continuous random variables, then for

every ǫ > 0, there exist someSNR0 such that for everySNRi > SNR0, i = 1, 2 (or equivalently, for
every p̄ > p̄0)

P
(
Ši (Xi, Yi, aj) 6= S̃i (Xi, Yi, aj)

)
< ǫ (20)

7under the convention that∞ > ∞ is fuels.
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furthermore, if|Hiq|
2, i, q ∈ {1, 2} satisfy the regularity conditions in Assumption 1,ǫ decreases like

ǫ ≤ O

(
σ2
N

p̄2
+

2∑

q=1

F|Hii|2

(
σ2
N

p̄1−ν

)
F|Hiq|2

(
σ2
N

p̄1−ν

))
(21)

for every0 < ν < 1.
Proof: see Appendix B.

IV. NE AND ǫ-NE POINTS OF THEBIG

A trivial NE point in the BIG is the pure-FS strategy profile . We would like to derive additional NE
points which are non-FS. These points are of interest because (if they exist) they Pareto dominate pure-FS
NE points as shown in the following proposition.

Proposition 3: Let S1, S2 be a non pure-FS NE point (i.e.P (S1 = 1), P (S2 = 1) 6= 0), then it Pareto
dominates the pure-FS NE point, i.e.πi(Si, Sj , xi, yi) ≥ ui(1/2, 1/2, xi, yi) for all xi, yi and i.

Proof: See Appendix C.
In the sequel, it is shown that if users are allowed to coordinate in advance to use disjoint subbands

in the case of FDM (as implied in (2)), FDM is possible from a game theoretic point of view and also
increases the total system throughput as well as the individual throughput.

A. Derivation of non pure-FS NE points

Proposition 3 shows that non pure-FS NE points are attractive. However, deriving such points an-
alytically is not always possible. For a symmetric game where all channel magnitudes are identically
distributed, NE points were derived in [17] where it was shown that in addition to the pure-FS NE point,
there exists a non pure-FS NE given by the following strategyprofile:

Si(xi, yi) =

{
θi = 1, if yi > xi

θi = 1/2, otherwise
(22)

However, in the general case of arbitrary distributions, NEpoints cannot be computed analytically. This
makes them impossible to implement and analyze. We therefore address to near NE points.

Definition 5: For ǫ ≥ 0, an ǫ-near NE point is a strategy profile(Ŝ1, Ŝ2) such that

πi

(
Ŝi, Ŝj, xi, yi

)
≥ sup

Si∈Si

πi

(
Si, Ŝj, xi, yi

)
− ǫ, ∀xi, yi (23)

It is straightforward to show that for sufficiently smallǫ, ǫ-near NE points also Pareto dominate the pure
FS NE point (this follows from the continuity of the expectedpayoff with respect toa).

The main idea behindǫ-near NE points is that if one of the players deviates from it,he can gain no
more thanǫ additional payoff. From a practical point of view, for sufficiently small ǫ, ǫ-near NE points
are as stable as ordinary NE points.

We are now ready to introduce the main theorem which providesan analytic expression for such points:
Theorem 4:Assume the channel gains|Hiq|

2, i, q ∈ {1, 2} are continuous random variables, then for
every ǫ > 0, there exists someSNR0 such that for everySNRi > SNR0, i = 1, 2 (or equivalently, for
every p̄ > p̄0) the following strategy profile is anǫ-near NE point:

Ŝ1 = Š1(x1, y1, â2) (24)

Ŝ2 = Š2(x2, y2, â1) (25)

whereŠi is the best response given in (8), and(â1, â2) is a solution to the following equation system

a1 = 1− FZ1 (q(a2)) (26)

a2 = 1− FZ2 (q(a1)) (27)
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whereFZi
(z) is the distribution function of the ISR. Furthermore, if thechannel gains|Hiq|

2, i, q ∈ {1, 2}
satisfy the regularity conditions in Assumption 1ǫ decreases like

ǫ ≤ O

(
σ2
N

p̄2
+

2∑

q=1

F|Hii|2

(
σ2
N

p̄1−ν

)
F|Hiq|2

(
σ2
N

p̄1−ν

))
(28)

for every0 < ν < 1.
Proof: see Appendix D.

Theorem 4 provides a procedure to calculateǫ-near NE points in the high averaged received SNR
regime. First,̂a1 and â2 are obtained by solving equations (26) and (27), thenǫ-near NE points are given
by (24) and (25). Eacĥai is associated with a unique threshold̂ISRi = q(âi) where above it FDM is
approximately the best strategy and below it, FS is the approximately the best strategy.

Although Theorem 4 is proven rigourously in Section D, we nowexplain it intuitively. The idea behind
the proof is to approximate playeri’s best responsěSi(xi, yi, âj) by the simple approximate best response
S̃i(xi, yi, âj) that satisfies

P
(
S̃i(Xi, Yi, âj) = 1

)
≈ P

(
Ši(Xi, Yi, âj) = 1

)
(29)

Note that the LHS of (29) can be expressed in closed form. Thisway, the equations in (10) are approxi-
mated by (26)-(27). This enables us to obtainâ1, â2 analytically with the correspondingǫ-near NE point
given in (24-25).

B. Existence ofǫ-near NE Points

Now that a procedure to deriveǫ-near NE points has been established, we investigate the existence
properties of such points. The following theorem presents asufficient condition for the existence of a
ǫ-near NE point.

Theorem 5:Assume thatZi, i = 1, 2 are continuous random variables such thatP (Zi < 0.5) < 1 and
denote the corresponding densities byfZi

(z). A sufficient condition for the existence of a solution to
equations (26), (27) is that

lim
b→∞

fZi
(b)b2 log(b) = ∞ (30)

for every i ∈ {1, 2}.
Proof: see Section E.

Theorem 5 asserts that if the ISR’s PDF is tail heavy (as givenexactly in (30)), non pure-FS strategies
are possible and beneficial to both users. This condition is satisfied in important channel models including
Rayleigh, Rician and Nakagami fading (as demonstrated in Section V).

V. THE BIG IN COMMON CHANNEL MODELS

In this section we study the BIG in practical channel models such as Rayleigh, Nakagami and Rician.
We will study the effect of different fading intensities on the players’ preferences, the existence and
uniqueness properties of NE points and the performance gain.



10

ó
ó

ó
ó

ó

ó

ó

ó

ó

ó

ó

ó

ó

ó

ç ç ç ç ç ç ç ç ç ç
ç

ç
ç

ç

-10 -8 -6 -4 -2 0 2
0

1

2

3

4

5

ISR@dBD

G
ai

n
@d

B
D

ç ISR1 = ISR2 = -6 dB
ó ISR1 = ISR2 = 0 dB

(a) symmetric scenarios

ó ó ó ó
ó

ó
ó

ó

ó

ó

ó

ó

ó

ó

ç
ç

ç
ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

-10 -8 -6 -4 -2 0 2
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

ISR@dBD

G
ai

n
@d

B
D

ç weak
ó strong

(b) weak strong scenario

Fig. 3. The difference (dB) between the conditional expected payoffs of non pure-FS and pure-FS NE points as a function ofISR. The
channel distributions are Rayleigh. (a) Two symmetric gamescenarios: weak-weak (0 dB) and strong-strong (-6 dB). Eachcurve represents
the gain in the corresponding scenario. (b) Weak-strong scenario, the weakISR = −6 dB whereas the strongISR = 0 dB.

A. Nakagami channel

The Nakagami distribution [see e.g. 10, Sec. 3.2.2] is parameterized by averaged received magnitude
and fading parameterm, i.e. X ’s PDF is given by

fX (x) =

(
m

SNR

)m
xm−1

Γ(m)
exp

(
−mx

SNR

)
(31)

whereSNR is the averaged level of the SNR.
We now study the existence of non pure-FS NE points using Theorem 5. Denote the averages and

the fading parameters ofX and Y by SNR, m1 and INR, m2 respectively. Using the formula for
transformation of random variables [see e.g. 22], the PDF ofZ = X/Y is given by

fZ(z) =
ISR

m1
mm1

1 mm2
2 Γ(m1 +m2)

Γ(m1)Γ(m2)

zm2−1

(
m2z + ISRm1

)m1+m2
(32)

whereISR = INR/SNR. Thus, by applying Theorem 5, a sufficient condition for the existence of a
non pure-FS NE point is that the fading coefficient of the direct channel of both users must satisfy

m1 ≤ 1 (33)

In particular, this condition is satisfied in Rayleigh fading channels.
Figure 3 shows the benefit of non pure-FS over pure-FS NE points for different values ofISR in

Rayleigh fading channel (i.e.m = 1 for all paths). Figure 3(a) depicts a symmetric weak-weak scenario
and a symmetric strong-strong scenario. In both cases the conditional expected payoff is higher for both
players and increases with theISR. However, in the weak-weak scenario, the gain is significant. Figure
3(b) depicts a weak-strong scenario (ISR = −7 corresponds to the strong). In this case, it is clear that
the weak player gains more than the strong one, but non pure-FS is better for both of the players.

In order to obtain insights into the BIG in Nakigimi channels, we address to numerical evaluation of the
approximate best response function (13) for different values of distribution parameters. To study the effect
of m1, the fading parameter in the direct channel, Figure 4 depicts the thresholdISR of the approximate
best response of playeri as a function ofm1. This is evaluated for different values ofISR. It is shown
that the thresholdISR is a decreasing function ofm1. This is violated only if interference is very strong
(ISRi = 10 dB) whereas the thresholdISR is hardly affected by the values ofm1. From this we deduce
that a low fading effect (smaller probabilities of deep fade) in the direct channel (i.e. high values ofm1)
encourages the use of FS (since the thresholdISR increases).

In Figure 5, we study the effect ofm2, the fading parameter of the interfering channel. In this case we
see that the effect ofm2 on the threshold ISR of the approximate best response depends on other factors
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Fig. 5. The threshold ISR (above which playeri chooses FDM) as determined by the approximate best responsein a Nakagami fading
channel. The horizontal axes represent the fading coefficient of the interference channelm2. Figure 5(a) depicts the threshold ISR for both
low and high level ofaj (the opponent’s probability of choosing FDM) with fixed value of the fading parameter in the direct channel
(m1 = 1). Figure 5(b) depicts the threshold ISR for two levels ofm1 with aj = 0.1.

such am1 andaj . For low levels ofaj, it can be seen in Figure 5(a) that the threshold ISR is a increasing
function ofm2 while it is a decreasing function for higher values onaj. In other words, if your (assuming
that you are playeri) opponent favours (does not favour) FDM, you should consider FDM (FS) more
strongly as the interference to your receiver becomes more dominant by the line of sight path than by
the reflected paths. Figure 5(b) shows the same for the parameter m1; i.e. if a player experiences high
probability of fading in the direct channel, he should consider FDM (FS) more strongly if the interference
to his receiver becomes more dominant by the line of sight than by the multipath.

In Figures 6,7 we study the existence properties ofǫ-near NE points in different channel configurations.
Figure 6(a) shows a Rayleigh fading channel with two users and illustrates theǫ-near NE point. Figure
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Fig. 6. Numerical evaluation of theǫ-near NE points for Nakagami fading in different scenarios.The dashed (solid) lines represent player
1’s (2’s) best response for given values ofm1 andm2. Each intersection between dashed and solid lines is aǫ-near NE point. A user is
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Fig. 7. A scenario where the conditions of Theorem 5 are not satisfied

6(b) shows thatǫ-near NE points are not necessarily unique. In Figure 7 we show a scenario the conditions
of Theorem 5 are not satisfied.

VI. CONCLUSIONS

In this paper we applied Bayesian games to analyze a two user wireless interference channel with
incomplete information. Each player knows its own direct and interfering channel magnitudes but only
knows the statistics of its opponent’s channel.

The main result of this paper is the derivation of a non pure-FS ǫ-NE point in the BIG with minimal
coordination between users. This is a much better alternative than the pure-FS NE point which may be
very inefficient. The non pure-FS point offers better spectrum utilization efficiency than the pure-FS Nash
equilibrium. This is true for each user individually and in terms of a global network. Through numerical
examples, we demonstrated that this performance gain can besubstantial. We further provided a sufficient
condition for the existence of non pure-FSǫ-NE and which is satisfied in particular in a Rayleigh fading
channel. We also demonstrated numerically that such pointsexist in many other scenarios.
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In addition to the derivation of the non pure-FS NE points, inSection III we presented the best response
and the approximate best response function that converges in probability to the best response as the
transmitted-power to noise ratio increases. The approximated best response funcntion simply compares
the measured interference-to-noise ratio to a threshold that depends on the opponents’s probability of
choosing FDM and on channel distribution. These results were later used in Section V to analyse selfish
and rational behaviour of wireless users as a function of thechannel parameters. It was shown that:

• Strong fading (high probabilities for deep fade) in the direct channel encourages wireless selfish users
to use FDM.

• Strong fading in the interfering channel encourages selfishwireless users with strong fading in the
direct channel to use FDM, while it has the opposite effect onusers with weak fading in the direct
channel.

• Strong fading in the interfering channel encourages selfishwireless users to use FDM if the opponent
chooses FDM with high probabilities, while it has the opposite effect if the opponent chooses FDM
frequently.

APPENDIX

A. Proof of Proposition 1

Observe thatr(a, b) is a continuous, differentiable and strictly increasing function of b for everya. It
can be shown thatr(a, 1/2) < 0 and thatlimb−→∞ r(a, b) > 0 for all a > 0. Thus,r(a, q(a)) = 0 defines
an implicit differentiable functionq(a) that satisfiesq(a) > 1/2 for every0 < a ≤ 1.

We show thatq(a) is a strictly monotonic decreasing function ofa. This can be established by observing
the derivative ofq(a)

q′(a) =
(
− q(a)(1+q(a))(2+q(a))(1+2 q(a))

2+4q(a)−a q(a)+aq2(a)

)
(2 + 2 log(1 + q(a))− log(2 + q(a))− log(1 + 2 q(a))) (34)

Sinceq(a) > 1/2 the derivative is negative. �

B. Proof of Lemma 2

SinceŠi and S̃i are binaries in their range, it is sufficient to show that

|P ((Xi, Yi) ∈ Ď
aj
i )− P ((Xi, Yi) ∈ D̃

aj
i )| ≤ ǫ, ∀ p̄ > p̄0 (35)

Henceforth, the indicesi, j are omitted,a will denoteaj and Ďa, D̃a will denoteĎaj
i , D̃

aj
i .

Let p̄n, αn be sequences satisfyinglimn→∞ p̄n, αn = ∞ such thatαn = o (p̄n),8 denoteXn =
p̄n|Hii|

2/σ2
N , Y n = p̄n|Hij|

2/σ2
N , Pn(A) =P ((Xn, Y n) ∈ A). Further denoteAn = {Xn > αn} and

Bn = {Y n > αn/2}.
Define

Ψi
n =

(
Ďa∆D̃a

)⋂
Gi (36)

(see Figure 8 for illustration) whereG1 = An

⋂
Bn, G2 = Ac

n

⋂
Bn, G3 = An

⋂
Bc
n andG4 = Ac

n

⋂
Bc
n.

This partition satisfies

Pn(Ď
a∆D̃a) =

4∑

q=1

Pn (Ψ
q
n) (37)

8For deterministic sequencesαn, βn with limn→∞ αn/βn = M we say thatαn = O(βn) if M is finite and non zero andαn = o(βn)
if M = 0.
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Fig. 8. Graphic illustration of the partition in the proof ofLemma 2.

and

Pn

(
Ψ3

n

)
= 0 (38)

Pn

(
Ψ2

n

)
≤ F|Hii|2

(
σ2
N

αn

p̄n

)
(39)

Pn

(
Ψ4

n

)
≤ F|Hii|2

(
σ2
N

αn

p̄n

)
F|Hij |2

(
σ2
N

αn

2p̄n

)
(40)

where (38) is true because both strategies are identical ify ≤ 0.5x. Therefore, to show the first part of
the Lemma (Equation (20)) , it is sufficient to show thatPn (Ψ

1
n) = o(1). This follows from the fact that

for everya > 0,

lim
n→∞

e(αn, q(a)αn, a)− ê(αn, qαn, a) = 0 (41)

Thus

lim sup
n

Ψ1
n = φ (42)

and from the continuity from above of measures [see e.g. 23, Theorem 1.8] it follows that

lim
n→∞

Pn (Ψn) = 0 (43)

which establishes the first part of the Lemma.
For the second part of the Lemma, we will show that

Pn(Ď
a∆D̃a) ≤ O

(
σ2
N

p̄n
+

(
F|Hii|2

(
σ2
N

α2
n

p̄n

))2

+
2∏

q=1

(
F|Hiq|2

(
σ2
N

p̄1−ν
n

)))
(44)

This requires an additional analysis ofPn(Ψ
1
n) andPn(Ψ

2
n). For the termPn (Ψ

1
n), we first assume that

that Y n > q(a)Xn. In this case

Pn

(
Ψ1

n

∣∣Z > q(a),An

)
= P ( e(Xn, Y n, a) < 0 |An, Y

n > q(a)Xn) = P 1
n + P 2

n (45)

where

P 1
n = P

(
e(Xn, Y n, a) < 0, q(a) < Z < q(a) + 1

γn

∣∣∣An, Y
n > q(a)Xn

)
(46)
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P 2
n = P

(
e(Xn, Y n, a) < 0, q(a) + 1

γn
≤ Z |An, Y

n > q(a)Xn
)

(47)

and γn = o(αn). Before evaluatingP 1
n andP 2

n the functione(x, y, a) will be simplified by substituting
y = zx (which is possible becausex, y > 0)

e(x, z x, a) =1
2
a log(x+ 1)− a

(
1
2
log
(

x
2(xz+1)

+ 1
)
+ 1

2
log
(
x
2
+ 1
))

−(1− a) log
(

x
xz+2

+ 1
)
+ 1

2
(1− a) log

(
2x

xz+2
+ 1
) (48)

which is a bounded function ofz for everyx. Furthermore, it is easy to verify that the functione( 1
w
, z
w
, a)

is infinitely differentiable with bounded derivatives atw = 0. Thus, since

t(z, a) , limw→0 e(
1
w
, z
w
, a) = 1

2

(
a
(
1− log

(
1
2z

+ 1
))

+(1− a) log
(
1 + 2

z

)
+ 2(a− 1) log

(
1
z
+ 1
)) (49)

is bounded, continuous and differentiable onz > 0.5 for everya it is possible to expande(x, z x, a) with
respect to1/x and obtain

e(x, z x, a) = r(a, z) +Q(a, z)
1

x
+O

(
1

x2

)
(50)

wherer(a, z) is defined in (11), the residual absolute value can be boundedby M/x2 whereM is finite
and

Q(a, z) =
−2az4 − 7az3 − 6az2 − 7az − 2a+ 8z + 4

2z(z + 1)(z + 2)(2z + 1)
(51)

is bounded for everyz, a; furthermore, sincer(a, z) is a continuous and increasing function ofz for every
a > 0 (as shown in Proposition 1) that satisfiesr(a, q(a)) = 0, it follows that

r(a, z) = R(a)(z − q(a)) +O
(
(z − q(a))2

)
(52)

where the residual absolute value can be bounded byM/(z − q(a))2 whereM is finite for everya > 0
and

R(a) =
(aq(a)2 − aq(a) + 4q(a) + 2)

2q(a)(q(a) + 1)(q(a) + 2)(2q(a) + 1)
(53)

is bounded and positive for every0 ≤ a ≤ 1 becauseq(a) > 1/2.
In what follows it is shown that for sufficiently largen, P 2

n = 0. To see this, observe that for every
z ≥ (a) + 1

γn

e(x, z x, a)≥ r(a, z)− M1

x
− M2

x2 ≥ r(a, z)− M1

αn
− M2

α2
n

≥ R(a)
γn

+O
(

1
γ2
n

)
− M1

αn
− M2

α2
n

(54)

whereM1, M2 are positive and finite for everyz anda. Therefore,

γne(x, zx, a) ≥ R(a) +O

(
1

γn

)
−

M1γn
αn

−
M3γn
α2
n

(55)

and becomes theR(a) > 0, ∀a > 0 and becauseM1 andM2 are bounded, it follows thatP 2
n = 0 for

sufficiently largen.
It remains to show thatP 1

n decreases like1/p̄. By substituting the series expansions ofr(a, z) into (50)
it follows that for everyz ∈ (q(a), q(a) + 1/γn), x > αn

e(x, y, a) = R(a)(z − q) + Q(a,z)
x

+O
(

1
x2

)
+O(z − q)2

≤ R(a) (z − q(a))− M1

x
− M2

x2 −M3(z − q)2 ≤ ηn (z − q(a))− ξn
x

(56)
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whereηn = R(a)−M3/γn andξn = M1 +M2/αn.
Thus,

P 1
n ≤ P (0<Y n−q(a)Xn<min(ξn/ηn,Xn/γn),An)

P (Y n>Xnq(a),An)
=

∞∫

αn

q(a)x+ξn/ηn∫

xq(a)

fY n (y)fXn (x)dydx

∞∫

αn

∞∫

xq(a)

fY n(y)fXn (x)dydx

=

∞∫

αn

(FY n (q(a)x+ξn/ηn)−FY n(q(a)x))fXn(x)dx

∞∫

αn

(1−FY n (q(a)x))fX(x)dx
= µn

λn

(57)

Note thatlim infn λn >0, because

λn =
∞∫
αn

(
1− F 2

|Hij |

(
σ2
vq(a)x
p̄n

))
fXn(x)dx ≥

p̄n∫
αn

(
1− F|Hij |

2

(
σ2
vq(a)x
p̄n

))
fXn(x)dx

≥
p̄n∫
αn

(
1− F|Hij |

2 (σ2
vq(a))

)
fXn(x)dx =

(
1− F|Hij |

2 (σ2
vq(a))

)
×
(
F|Hij |

2 (σ2
vq(a))

−F|Hij |
2

(
σ2
vq(a)αn

p̄n

))
−−−→
n→∞

(
1− F|Hij |

2 (σ2
vq(a))

)
F|Hij |

2 (σ2
vq(a)) > 0,

(58)

therefore, the first term ofP 1
n decreases likeµn

µn≤
∞∫
0

(
F|Hij |

2

(
σ2
v(q(a)x+ξn/ηn)

p̄n

)
− F|Hij |

2

(
σ2
vq(a)x
p̄n

))
σ2
v

p̄n
f|Hii|

2

(
σ2
vx
p̄n

)
dx

= σ2
vξn

ηnp̄n

∞∫
0

F
|Hij |

2(q(a)v+σ2
vξn/(ηn p̄n))−F

|Hij |
2 (q(a)v)

σ2
vξn/(ηn p̄n)

f|Hii|
2 (v) dv

(59)

Recall that by hypothesisf|Hiq|
2 (v) is bounded for everyv > 0. Thus by the LaGrange mean value

theorem, for everyv ≥ δ

F
|Hij |

2(q(a)v+σ2
vξn/ηnp̄n))−F

|Hij |
2(q(a)v)

σ2
vξn/(ηnp̄n)

≤ supθ∈[0,1]

(
f|Hij |

2

(
q(a)v + θξnσ2

v

ηnp̄n

))
≤ M (60)

by invoking the dominant convergence theorem [see e.g. 23, Theorem 2.24] on the integral in (59)

limδ→0limn→∞

∞∫
δ

F
|Hij |

2(q(a)v+σ2
vξn/(ηn p̄n))−F

|Hij |
2 (q(a)v)

σ2
vξn/(ηnp̄n)

f|Hii|
2 (v) dv

= limδ→0

∞∫
δ

f|Hij |
2 (q(a)v)f|Hii|

2 (v) dv =
∞∫
0

f|Hij |
2 (q(a)v)f|Hii|

2 (v) dv
(61)

where (61) is true becausef|Hiq|
2 (v) , i, q ∈ {1, 2} are probability densities. Furthermore, it is positive

and finite for everya. From this it follows that

P 1
n ≤ O

(
σ2
v

p̄n

)
(62)

and therefore

Pn

(
Ψ1

n

/
Z > q(a),An

)
≤ O

(
1

p̄n

)
(63)

We now assume that thatY n ≤ q(a)Xn. In this case

Pn

(
Ψ1

n

∣∣Z ≤ q(a),An

)
= P ( e(Xn, Y n, a) > 0 |An, Y

n ≤ q(a)Xn) = P 1
n + P 2

n (64)

where

P 1
n = P

(
e(Xn, Y n, a) ≥ 0, q(a)− 1

γn
< Z < q(a)

∣∣∣An, Y
n ≤ q(a)Xn

)
(65)
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P 2
n = P

(
e(Xn, Y n, a) ≥ 0, Z ≤ q(a)− 1

γn

∣∣∣An, Y
n ≤ q(a)Xn

)
(66)

In what follows it is shown that for sufficiently largen, P 2
n = 0. To see this, observe that for every

z ≤ q(a)− 1
γn

e(x, z x, a) ≤ r(a, z) +
M1

x
+

M2

x2
≤ r(a, z) +

M1

αn
+

M2

α2
n

(67)

≤ −
R(a)

γn
+O

(
1

γ2
n

)
+

M1

αn
+

M2

α2
n

(68)

whereM1, M2 are positive and finite for everyz anda. Therefore,

γne(x, zx, a) ≤ −R(a) +O

(
1

γn

)
+

M1γn
αn

+
M3γn
α2
n

(69)

and become theR(a) > 0, ∀a > 0 and becauseM1 and M2 are bounded, it follows thatP 2
n = 0 for

sufficiently largen.
It remains to show thatP 1

n decreases like1/p̄. By substituting the series expansions ofr(a, z) into (50)
it follows that for everyz ∈ (q(a)− 1/γn, q(a)), x > αn

e(x, y, a) ≤ R(a) (z − q(a)) + M1

x
+ M2

x2 +M3(z − q)2 ≤ ηn (z − q(a)) + ξn
x

(70)

whereηn = R(a) +M3/γn and ξn = M1 +M2/αn. Thus,

P 1
n ≤ P (−min(ξn/ηn,Xn/γn)<Y n−q(a)Xn<0,An)

P (Y n≤Xnq(a),An)

=

∞∫

αn

(FY n (q(a)x)−FY n (q(a)x−ξn/ηn))fXn(x)dx

∞∫

αn

FY n (q(a)x)fX(x)dx
= µn

λn

(71)

Note thatlim infn λn >0, to see this

λn =
∞∫
αn

F 2
|Hij |

(
σ2
vq(a)x
p̄n

)
fXn(x)dx ≥

∞∫
p̄n

F|Hij |
2

(
σ2
vq(a)x
p̄n

)
fXn(x)dx

≥
∞∫
p̄n

F|Hij |
2 (σ2

vq(a))fXn(x)dx = F|Hij |
2 (σ2

vq(a))×
(
1− F|Hij |

2 (σ2
vq(a))

) (72)

therefore, the first term ofP 1
n decreases likeµn

µn≤
∞∫
0

(
F|Hij |

2

(
σ2
v(q(a)x)

p̄n

)
− F|Hij |

2

(
σ2
v(q(a)x−ξn/ηn)

p̄n

))
σ2
v

p̄n
f|Hii|

2

(
σ2
vx
p̄n

)
dx

= σ2
vξn

ηnp̄n

∞∫
0

F
|Hij |

2 (q(a)v)−F
|Hij |

2(q(a)v−σ2
vξn/(ηn p̄n))

σ2
vξn/(ηn p̄n)

f|Hii|
2 (v) dv ≤ O

(
σ2
v

p̄n

) (73)

which leads to

Pn

(
Ψ1

n

/
Z ≤ q(a),An

)
≤ O

(
1

p̄n

)
(74)

and therefore

Pn(Ψ
1
n) ≤ O (1/p̄n) (75)

It remains to evaluatePn (Ψ
2
n). Note that

Pn

(
Ψ2

n

)
= P (Bn,A

c
n)Pn

(
Ψ2

n

∣∣Bn,A
c
n

)
(76)
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and

P (Bn,A
c
n) ≤ O

(
F|Hii|

2

(
σ2
vαn

p̄n

))
(77)

it follows that

Pn

(
Ψ2

n

)
≤ Pn

(
Ψ2

n

∣∣ Cn
)
O

(
F|Hii|

2

(
σ2
vαn

p̄n

))
(78)

whereCn = Ac
n

⋂
Bn. Furthermore

Pn (Ψ
2
n| Cn)=Pn (Ψ

2
n| Cn, Z > αn/2)P (Z > αn/2| Cn) + Pn (Ψ

2
n| Cn, Z ≤ αn/2)P (Z ≤ αn/2| Cn)

≤Pn (Ψ
2
n| Cn, Z > αn/2)P (Z > αn/2| Cn) + F|Hij |

2

(
σ2
vα

2
n

p̄n

) (79)

where the last inequality is due to

P (Z ≤ αn/2| Cn) =
P (αn/2<Y n<Xnαn/2, Xn≤αn)

P (Y n>αn/2, Xn≤αn)

≤
P(αn/2<Y n<α2

n/2, Xn≤αn)
P (Y n>αn/2, Xn≤αn)

= P (αn/2 < Y n < α2
n/2) ≤ F|Hij |

2

(
σ2
vα

2
n

p̄n

) (80)

It remains to calculate the term

P
(
Ψ2

n

∣∣ Cn, Z > αn/2
)
= P (e (Xn, Y n, a) < 0| Cn, Y

n/Xn > αn/2) (81)

To evaluate (81), consider the functione (x, y, a) − T (x) whereT (x) = a
2
log (1 + 2x/(x+ 2)). Similar

to the derivation of (50) we obtain

e
(y
z
, y, a

)
− T

(y
z

)
= r (a, z) +

az2 − 5az − 2a+ 8z + 4

2(z + 1)(z + 2)(2z + 1)

1

y
+O

(
1

y2

)
(82)

and becauser (a, z) is an increasing and positive function ofz for z > q(a) and for everya and because
T (y/z) ≥ 0 for every y, z ≥ 0, the RHS of (81) is equal to zero for sufficiently largen. Thus, by
combining (80) and (78), it follows that

P
(
(Xn, Y n) ∈ Ψ2

n

)
≤ O

((
F|Hii|2

(
α2
nσ

2
N

p̄

))2
)

(83)

and by combining it with (38), (40) and (75) we obtain the desired result. �

C. Proof of Proposition 3

Player i’s conditional expected payoff is

πi(Si, Sj, xi, yi) = max {ajui(1, 1, xi, yi) + (1− aj)ui(1, 1/2, xi, yi) (84)

, ajui(1/2, 1, xi, yi) + (1− aj)ui(1/2, 1/2, xi, yi)} (85)

whereaj = P (Sj = 1). Thus, it is sufficient to show that

ajui(1/2, 1, xi, yi) + (1− aj)ui(1/2, 1/2, xi, yi) > ui(1/2, 1/2, xi, yi), ∀xi, yi ∈ Xi × Yi (86)

This is equivalent to

y3i x
2
i

2
+ 2y3i xi +

y2i x
3
i

2
+ 4y2i x

2
i + 8y2i xi +

x4
i yi
8

+2x3
i yi + 9x2

i yi + 12yixi +
x4
i

4
+ 2x3

i + 6x2
i + 6xi > 0 (87)

which is always true. �
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D. Proof of Theorem 4

We begin with the following definition:
Definition 6: An approximate NE point is the strategy profile(S̃1(x1, y1, â2), S̃2(x2, y2, â1)) where â1

and â2 are a solution to equations (26) and (27).
It remains to show that if there exists an approximate NE point, then there exists aǫ-near NE point

given by (24) and (25). Let

ãj = P
(
Šj (Xi, Yi, âi) = 1

)
(88)

ãi = P
(
Ši (Xi, Yi, ãj) = 1

)
(89)

In words,ãj is the probability that playerj chooses FDM if he is not deviating from theǫ-near NE point
and ãi is the probability that playeri chooses FDM if he “cheats” and uses his best response to player
j’s true probability for choosing FDM̃ai rather than the probabilitŷaj .

To show that
(
Ši (xi, yi, âj) , Šj (xj , yj, âi)

)
satisfies (23), one needs to show that for everyxi, yi ∈

Xi × Yi and for sufficiently largēp

∆πi(xi, yi) = |πi

(
Ši (xi, yi, ãj) , Šj (xj, yj, âi)

)
− πi

(
Ši (xi, yi, âj) , Šj (xj , yj, âi)

)
| < ǫ (90)

Note that∆πi(xi, yi) 6= 0 if and only if (xi, yi) ∈ Ďâj∆Ď
ãj
i (since playerj’s true probability for choosing

FDM is identical in both cases and is equal toãj), thus

∆πi(xi, yi, âj, ãj) = |e(xi, yi, ãi)|IĎâj∆Ď
ãj
i

(xi, yi) (91)

whereIA(x, y) denotes the indicator function, i.e. it is equal to1 if (x, y) ∈ A and zero otherwise. Since
(xi, yi) ∈ Ďâj∆Ď

ãj
i is equivalent toe(xi, yi, âj) > 0 and e(xi, yi, ãj) ≤ 0 or vice versa, and because

e(x, y, a) is a continuous function ofa, for every âj, ãj there exists somea∗ in the interval between̂aj
and ãj such thate(xi, yi, a

∗) = 0. By Lemma 2, we know that̃aj −−−→
p̄→∞

âj , thus e(xi, yi, ãj) −−−→
p̄→∞

0,

furthermore becausee(x, y, a) is bounded for everyx, y and is a linear function ofa it follows that

|e(xi, yi, ãi)|IĎâj∆Ď
ãj
i

(xi, yi) = O (ãi − âj) (92)

�

E. Proof of Theorem 5

Denotewi(aj) = 1− FZi
(q(aj)) for i 6= j. Thus

w′
i(aj) = −fZi

(q(aj))q
′(aj) (93)

Before analyzing (93) recall thatlim q(a)a→0 = ∞, furthermore, it can be verified that

lim
a→0

q′(a)

q2(a) log(q(a))
= M (94)

(this follows immediately from (34). Thus, if (30) is satisfied

lim
aj→0

w′(aj) = ∞ (95)

Consider the curves (26) and (27) in a two-dimensional cartesian system wherea1 and a2 are given by
the horizontal and the vertical coordinates respectively.Both curves are continuous and differentiable.
Furthermore, the point(0, 0) is a common point of the two curves and the points(1 − FZ1(0.5), 1),
(1, 1 − FZ2(0.5)) lie on curves (26) and (27) respectively. Since the slop of curve (26) tends to zero as
a1 → 0 and the slope of curve (27) tends to infinity asa1 → 0, the two curves must intersect at least
once. �



20

REFERENCES

[1] R. Etkin, A. Parekh, and D. Tse, “Spectrum sharing for unlicensed bands,”IEEE J. Sel. Areas Comm.,
vol. 25, pp. 517–527, April 2007.

[2] S. Adlakha, R. Johari, and A. Goldsmith, “Competition inwireless systems via Bayesian interference
games.” arXiv:0709.0516v1, Aug. 2007.

[3] A. Leshem and E. Zehavi, “Cooperative game theory and theGaussian interference channel,”IEEE
J. Sel. Areas Comm., vol. 26, pp. 1078–1088, Sep 2008.

[4] S. Hayashi and Z.-Q. Luo, “Dynamic spectrum management:When is FDMA sum-rate optimal,” in
IEEE Int. Conf. Acoust. Speech, Signal Process. (ICASSP), vol. 3, pp. 609–612, IEEE, April 2007.

[5] Z. Ji and K. Liu, “Cognitive radios for dynamic spectrum access-dynamic spectrum sharing: A game
theoretical overview,”IEEE Comm. Mag., vol. 45, no. 5, pp. 88–94, 2007.

[6] W. Yu, G. Ginis, and J. Cioffi, “Distributed multiuser power control for digital subscriber lines,”
IEEE J. Sel. Areas Comm., vol. 20, pp. 1105–1115, june 2002.

[7] G. Scutari, D. Palomar, and S. Barbarossa, “Asynchronous iterative water-filling for Gaussain
frequency-selective interference channles,”IEEE Trans. Inf. Theory, vol. 54, pp. 2868–2878, July
2008.

[8] A. Leshem and E. Zehavi, “Game theory and the frequency selective interference channel,”IEEE
Sig. Process. Mag., vol. 26, pp. 28–40, Sep. 2009.

[9] E. A. Jorswieck, E. G. Larsson, M. Luise, and H. V. Poor, eds., Game theory in signal processing
& communication, vol. 26. IEEE Sig. Process. Mag., Sep. 2009. special issue.

[10] A. Goldsmith,Wireless communications. Cambridge University Press, 2005.
[11] A. Laufer, A. Leshem, and H. Messer, “Game theoretic aspects of distributed spectral coordination

with application to DSL networks.” arXiv:cs/0602014, 2005.
[12] J. Harsanyi, “Games with incomplete information played by Bayesian players,”Management Science,

no. 14, pp. 159–182,320–334,486–502, 1967–68.
[13] D. Fudenberg and J. Tirole,Game Theory. MIT Press, 1991.
[14] H. T, “A minimax game of power control in a wireless network under incomplete information,”

Technical Report 99-43, DIMACS, August 1999.
[15] G. He, M. Debbah, and E. Altman, “A Bayesian game-theoretic approach for distributed resource

allocation in fading multiple access channels.” submittedto EURASIP J. on Wireless Commun. and
Net., available at: http://www.supelec.fr/d2ri/flexibleradio/pub/Journals2010/J1018.pdf, 2009.

[16] S. Jean and B. Jabbari, “Bayesian game-theoretic modeling of transmit power determination in a
self-organizing CDMA wireless network,” inProc. IEEE VTC Fall 2004, vol. 5, pp. 3496–3500,
Sep. 2004.

[17] Y. Noam, A. Leshem, and H. Messer, “Competitive spectrum sharing in symmetric fading channel
with incomplete information.” to appear, ICASSP 2010.

[18] S. T. Chung, S. J. Kim, J. Lee, and J. Cioffi, “A game-theoretic approach to power allocation
in frequency-selective gaussian interference channels,”in IEEE Int. Symposium Inf. Theory (ISIT),
pp. 316–316, 2003.

[19] Z. Luo and J. Pang, “Analysis of iterative waterfilling algorithm for multiuser power control in digital
sibcriber lines,”EURASIP J. Applied Signal Process., vol. 2006, pp. 1–10, 2006.

[20] K. W. Shum, K.-K. Leung, and C. W. Sung, “Convergence of iterative waterfilling algorithm for
Gaussian interference channels,”IEEE J. Sel. Areas Comm., vol. 25, pp. 1091–1099, August 2007.

[21] J.-S. Pang, G. Scutari, F. Facchinei, and C. Wang, “Distributed power allocation with rate constraints
in Gaussian parallel interference channels,”IEEE Trans. Inf. Theory, vol. 54, pp. 3471–3489, Aug.
2008.

[22] A. Papoulis,Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill,
third ed., 1991.

[23] G. Folland,Real Analysis: Modern Techniques and their Applications. New York, NY: John Wiley

http://arxiv.org/abs/0709.0516
http://arxiv.org/abs/cs/0602014
http://www.supelec.fr/d2ri/flexibleradio/pub/Journals2010/J1018.pdf


21

& sons, 1984.


	I introduction
	II problem formulation
	II-A Notation and Definitions
	II-B The Bayesian Interference Game (BIG)

	III Best response and approximate best response
	III-A Best Response Function
	III-B Approximate Best Response

	IV NE and -NE Points of the BIG
	IV-A Derivation of non pure-FS NE points
	IV-B Existence of -near NE Points

	V The BIG in Common Channel Models
	V-A Nakagami channel

	VI Conclusions
	Appendix
	A Proof of Proposition ??
	B Proof of Lemma ??
	C Proof of Proposition ??
	D Proof of Theorem ??
	E Proof of Theorem ??


