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Abstract

An important issue in wireless communication is the inteoacbetween selfish and independent wireless
communication systems in the same frequency band. Due teetifish nature of each system, this interaction is
well modeled as a strategic game where each player (systmybs to maximize its own utility. This paper studies
an interference interaction (game) where each systemdplémasincomplete informatiorabout the other player’s
channel conditions. Using partial information, playersase between frequency division multiplexing (FDM) and
full spread (FS) of their transmitted power. An importantion in game theory is the Nash equilibrium (NE) which
represents a steady point in the game; that is, each plapeordg lose by unilaterally deviating from it. A trivial
Nash equilibrium point in this game is where players mujuelioose FS and interfere with each other. This point
may lead to poor spectrum utilization from a global netwodinp of view and even for each user individually.

In this paper, we provide a closed form expression for a nore-pis e-Nash equilibrium point; i.e., an
equilibrium point where players choose FDM for some chamaalizations and FS for the others. To reach this
point, the only instantaneous channel state informatidi)@quired by each user is its own interference-to-signal
ratio. We show that operating in this non pure-&8ash equilibrium point increases each user’s throughpdt a
therefore improves the spectrum utilization, and demauestihat this performance gain can be substantial. Finally,
important insights are provided into the behaviour of delfiad rational wireless users as a function of the channel
parameters such as fading probabilities, the interferémagnal ratio.

Index Terms

Dynamic Spectrum Access, Bayesian Games, Interferencan@haFDM, Nash Equilibrium, incomplete
Channel State information.

|. INTRODUCTION

Wireless communication has become increasingly populaedent years since more and more com-
munication systems share the same band. Consider for eeamplirban area with wireless local access
networks (LAN), bluetooth systems, cordless phone, etes&lsystems create interference which results
in major performance loss. This is why, interference miimais such an important issue [e.g. 1-9].

In wireless networks, interference can be high and the adastime varying [see e.q. 10]. Furthermore,
users may be independent of each other and selfish in the femiseach one is only interested in
maximizing its own utility. Thus, non cooperative game tlyes an appropriate tool to analyze such
interactions. An important notion in game theory is the Neaghilibrium (NE) which represents a steady
point the game; that is, the NE point is a strategy profile Whécthe best response of each player given
that the others do not deviate from it. As such, it can be seffased on network users who are selfish
in nature.

For the case of a flat fading interference channel with fuibiimatiorfl , it was shown [1] that Full
Spread (FS) is a NE point, and a sufficient condition for itgjuaness was derived. It was further observed
that in many cases the FS NE point leads to inefficient soistid his happens when mutual FDM is
better for both users than mutual FS but the system openatasmnutual FS since the users are subject
to the prisoner’s dilemma [11].

The full information assumption is not always practical énege communicating channel gains between
different users in a time varying channel within the charcwierence time may lead to large overhead.

Part of this paper will appear in ICASSP 2010.
!By complete information, we mean that every user knows a&ldiect and cross channel gains of all users in the network.
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Fig. 1. (a) A wireless interference scenario with incompletformation. Each player knows the square magnitudessotliitect and
impinging channel gains and the statistics of its opposecitannel gains. For example player 1 knd&: |> and | H12|? but knows only
the statistics of Hxs|? and|H21|?. (b) the possible PSD configurations.

In this case, it is more appropriate to consider each chatwterence time as a one-stage game where
players are only aware of their own channel gains and th@oonent's channel statistics (which vary slowly
compared to the channel gains and therefore can be comnenhiGd). The interaction between the players
may be repeated but with a different and independent chaeaékation each time and therefore is not
a repeated game. This motivates the use of games with inetenipiformation, also known as Bayesian
games|[12, 13] which have been incorporated into wirelessneonications for problems such as power
control [14--16] and spectrum management in the interferehannel [2, 17]. In [15], a distributed uplink
power control in a multiple access (MAC) fading channel waglied and shown to have a unique NE
point. This result however does not apply to the interfeeealcannel which is radically different. In a
MAC channel, usei’s direct channel gain is equal to the gain of the interfeeehe creates for the other
users ( # 7) while in the interference channel these parameters ampamtient. Thus, the interference
channel is composed of a double number of parameters anefdhelis more complicated.

In this paper we analyze a two-user interference channél wdomplete information in which each
user knows the magnitudes of its direct channel and of thenigimpg channel gains and its noise power
spectrum density (PSD) but is unaware of his opponent'scd@ed impinging channel gains but only
knows it statistics (see Fif. I[a)). Based on their measemésnusers choose between pre-assigned FDM
or FS (see Fig??). This interaction may be repeated but a with different clehmealization each time.

With the same incomplete information, it was shown [2] thatai symmetrﬁ interference channel
with a one-time interaction, FS is the only symmetric sgatprofil@ which is a NE point. This result
however is limited to scenarios where all users statidyiaatperience identical channel conditions (due
to the symmetry assumption) and does not apply to intemti®tween weak and strong users.

A situation where both players use FS may lead to undesi@iitgomes from a global network point
of view and even for each user individually. Thus, it is daiie to derive non FS Nash equilibrium
points which Pareto (which is component-wise larger) dat@nthe FS equilibrium point and lead to
improved spectrum utilization. A first step toward this geals made in/[17] where it was shown that
if users can coordinate in advance to use orthogonal FDMgtherists a non pure-FS NE point which
Pareto dominates the pure-FS NE point. This result howey@iso limited to symmetric interference
channels. This paper is aimed to fill this gap and derive NBtgan the general case of arbitrary channel
distributions. For example, scenarios of weak and stroregsugvhere one experiences a high level of

2Symmetric in the sense that the all channel gains fig, for everyi, ¢) are identically distributed.
3In symmetric strategy profile users are restricted to idahtrategies.



interferences and the other experiences low interferertifgrent fading effects and cases where one
has a strong line of sight path and the other has no line oft.sigite assumptions of arbitrary channel
distribution together with the incomplete informationttleach user possesses about the other users in his
vicinity are most suitable to the reality of selfish usersrating independently in unlicensed frequency
bands. This paper provides a closed form expression for noepSe-NE point that increases each user’s
throughput and therefore improves the spectrum utilinateond demonstrates that this performance gain
can be substantial. The derived equilibrium point provishssghts into the the behaviour of selfish and
rational wireless users. Furthermore, it does not requicerdral authority that imposes compliance of
the protocol. Thus, it provides guidelines for designingratgcol that users will choose voluntarily to
follow.

The paper is orginazed as follows. In Sectidn Il we define tageBian Interference Game (BIG). This
is a two user interference interaction with incomplete infation where the channel’s direct and crosstalks
gains are arbitrarily distributed (but independent). Irctim [IIll we present the best response function
which is a user’s best action for his opponent’s given siraté/e then provide a simple expression for the
best response that depends only on the interference+tadsigtio. In Section_ IV we show (Proposition
[3) that non pure-FS NE points provide improved performamdgth(respect to pure-FS NE) to each user
individually and therefore a better spectrum utilizati®ve then derive a closed form expression for non
pure-FSe NE points. Theoreral5 provides a sufficient condition for tikestence of such points.

In section(Y we analyse the BIG in common wireless fading nodiee. Rieghley and Rician and
Nakagami) and learn the behaviour of selfish and rationalesss users in various wireless environments.

Il. PROBLEM FORMULATION
A. Notation and Definitions

Consider a flat-fading interference channel with two playevhere during a channel coherent time,
player i's signal is given by (see Fig. 1(a))

wherei,j € {1,2}, i # j, Vi(n),V;(n) are useri’s and j's transmit signals respectivelyy;(n) is a
white Gaussian noise with varianed, and H,,,i,q € {1,2} are the channel fading coefficients which
are random variables. Throughout this paper, the indéx never equal ta. Both players have a total
power constrainp. We denote usei’'s signal to noise ratio (SNR) and interference to noiseorétNR)
by X; = |Hy|*p/0% andY; = |Hy;|*p/c% respectively and denot€ NR; = E{X;}, INR; = E{Y;}.
We further denote the interference to signal ratio (ISR)Ay= Y;/X;. The realizations (sample points)
of X;,Y;, Z; are denoted by, y;, z; respectively. When we want to stress thaty;, z; are the observed
values of the SNR, INR and ISR they will be denoted$¥ R;, IN R; and I SR; respectively.

Assumption 1:The channel gain&H;,|?, i,q € {1,2} are continuous random variables with finite non
zero moments and the probability density functions (PDi) (%), i,q € {1,2} are finite for every
h > 0.

B. The Bayesian Interference Game (BIG)

In the BIG, user’s channel state information (CSI) at the transmitter sicke the realized values of
X, andY;. It does not observ&; and X, but only knows their distributions. The channel is dividetbi
two equal sub-bands and player 1's and 2’s actions are giyen b

(61) = plor, 1 —64]"
52(92) = g[l — 0y, 6] (2)

respectively (see Fig?), whered; € ©, = {1,1/2} andp is the total power constraint. The actiofs- 1
andf = 1/2 correspond to FDM and FS, respectively. This formalism iegpthat players coordinate



TABLE |
USERi’S PAYOFFu;(0;,6;, SNR;, INR;)

player j chooses FDM player j chooses FS
(91 = 1) 0; = 1/2
Playerz(gih:ools)es FDM Llog, (14 SNR,) Llog, (1 N 13%22/2)
playeri chooses FS SNR; SNR;/2 SNR,/2
(0; =1/2) %10g2 (1 + =3 ) + %10g2 (1 + 1+INR,i> log, (1 + 1+INR1:/2)

in advance to use disjoint subbands in the case of FDM. Thosdomation can be carried out by using
Carrier Sense Multiple Access (CSMA) techniques (see &@)) where each player randomly chooses
a subband and performs a random power backoff in case osicoiliThis is done at the first interaction
when users exchange information (channel statistics).

We assume that during a single coherence period, playeragaaheir spectrum only once, based on
their knowledge. Therefore, if the interaction is repeatetll be with different and independent channel
realizations. This represents a case where the channefastrpr a case where simplicity requirements
enable a single spectrum shaping every coherence per@yer?s utility function u,(6;,6;, SNR;, INR;)
is given in Tabléll. We are now ready to define the Bayesianfarence game.

Definition 1: The Bayesian interference game (BIG) is defined by the fofigw

1) Set of playerd1, 2}.

2) Action sets©; = {1,1/2},i = 1,2. Let §; € ©, be the action chosen by play&rthen according

to (@), 0; = 1 corresponds to FDM ané = 1/2 corresponds to FS.

3) A set of positive and independent random variables Y;, X», Y5 whose distributions are common

knowledge. Each playerobserves the realized values &f, Y; but does not observg;, Y.
4) A utility function u; (6;,0;, x;,y;) given in Tablell.
5) A set of pure strategieS = S; x S; where everysS; € S; is a function that maps values of, y;
to an action in®;, i.e. S; : X; x V; — O;, whereX; = Range(X;) and); = Range(Y;).
Playeri’s objective is to maximize his conditional expected payg¥fen his private information;, y;,
ie.
Wi(Sz', Sj,ﬂfi,yi) £ E{Ui(sz‘, Sj,Xz',YiNXi =x;,Y; = yi}7 Vi, y; € X x Vs 3

_ Definition 2: a NE point of the BIG is a strategy profi®= (.5;, S;) such that for every strategy profile
S = (5;,5;) and everyi € {1,2}

Wi(Sia Sjaxiayi) > W(gz', Sj,xuyz') V o,y € X x Y 4)

Since the action space is binary, a stratégyr;,y;) in the BIG is equivalent to a decision region
D, C X, x); such thatSZ-(xZ-,yZ-) =1 (le FDM) if T, Y € D; and Sl(xz,yl) =05 Iif T, Y € DZC

Two comments are in order:

« Only pure strategies are considered in the BIG; that is,gldg action is completely determined
by his observed signal;, y;. We do not consider mixed strategies which map values of tiserved
signalz;, y; to a probability distribution o®; i.e., playeri chooses randomly between FDM and FS
with probability a;(z;,v;) and1 — a;(z;, y;) respectively. A well known theorem in game theory is
the Purification Theorem [13, Theorem 6.2]. It asserts tinaeu some regularity conditions (among
others that each player's utility functiom;(6;,6;,z;,y;) should not be a function of; and y;),
every mixed strategy has a pure strategy equivalent. ThiuslEapoints can be reached using pure
strategies. The conditions of the Purification Theorem atisfied in the BIG.

« In the case where playgrchooses FDM, FS is not the best action for playeHis payoff can be
increased by performing waterfilling which will result in &yher rate. Therefore, it makes sense to
modify the FS action with the waterfilling action as consetkin [1,/6, 11] for interactions with
complete information. There are, however, two importanieass. The first is that the waterfilling



solution in the interference channel must be carried ouatiteely, where at every iteration players
measure their interference and shape their spectrum aogbrdThe process needs to be repeated
within the channel coherence time until convergndéhis may lead to large overhead in time
varying channels and therefore is impractical. Moreoves, iterative waterfilling procedure does not
necessarily convergel[8]. The second caveat is the anaf/the resulting game in the framework of
incomplete information. The result is a game with incompleformation where in addition to not
knowing their opponent’s utility, players do not know theiwn utility function since it depends on
their opponent’s CSI. The analysis of such games is more ngnd presents a greater challenge.
For example, the Purification Theorem is not satisfied if ptayuse iterative water filling.

[1l. BEST RESPONSE AND APPROXIMATE BEST RESPONSE

An important notion in game theory is the best response iomcThe best response function of player
1 maps each of playei's strategies to an action for which play#s payoff is maximized. This function is
used to derive NE points and is also important for understanthe players’ preferences and the nature
of the game.

In this section we present an expression for the best resplumgtion of the BIG. This expression,
however, is too complex for deriving a closed form exprassar NE points of the BIG. Worse, it does
not provide insights into the game. For these reasons weanohtaimple approximation for the best
response function which provides greater insights intogame and will enable us to obtain a closed
form expression for near NE points of the BIG.

A. Best Response Function

We now derive playei’'s best response t§); - player;’s strategy. Note thai, (1, 1, z;, v;) > u;(1,1/2, z;, y;)
since thelog is a monotonic function, and furthermore, due to Jensseeguality,u;(1/2,1/2, z;, y;) >
u;(1,1/2, x;,y;). Thus, the following situations are possible:

« A, is the case in which; (1,1, x;, y;) > u;(1/2,1, 24, y;) which is equivalent td NR; > SNR;/2

« B; is the case in which;(1/2,1, x;,y;) > u;(1, 1, z;,y;) which is equivalent td NR; < SNR; /2
Recall that playet is not aware of the state of his opponedy; (or B;) but only of his probabilities.

If player : experiences situatioB; (which is/SR; < 1/2), then FS is his best response. This is because
FS is a strongly dominating action; that is, it produces d&igrayoff to player given any action of his
opponent. It remains to find playés best response for situatia#;; i.e. the case wheréSR; > 1/2,
that is, strong interference. Lét(S; = 1) (the probability that playej chooses FDM), then playets
payoff is given by

71-i(FSiv Sjv xivyi) = P(Sj = 1)'&2(1/2, 17 s yl) + (1 - P(Sj = 1))”2(1/27 1/2,1’2‘, yl) (6)
Observe that playef’s payoff depends on his opponent’s strategy and channélildison only via
P(S; =1); hence the payoff will be denoted by(S;, a;, z;, y;) where

aj = P(SJ = 1) (7)
It follows that, playeri’s best response is invariant to strategies with equal gmtibafor choosing FDM
and is dependent of; only via a;.

Definition 3: Let S; be playerj’s strategy witha; = P(S; = 1). Playeri’s best response t6; is
defined by:
. a ] 0;=1, if e(x;,yi,a;) > 0and y;/x; > 1/2
Silwi yiraj) = { 0; =1/2, otherwise (8)

4 See[[BH8| 16-21] for further reference to the convergendhefterative waterfilling procedure.
® From playeri’s point of view,S; can be divided to into equivalent class&s = {S; : P(S; = 1) = a;} such thaiS; = Uogajg Sa;-



where
e(r,y,a) =m(FDM;, a;, 2, y;) — m(FS;, aj, i, y:) = %alog(l + ;) — 5 log (1 + %)

—3log <1 + %) — (1 —a)log <1 + 1+§ﬂ) 31— a)log (1 * 12+;’i> Y
Note that finding a NE point is equivalent to calculatiidganda, which solves the equations
ar = P (51(X1, Y1, a9) = 1) (10)

ay =P (SZ(X%Y%al) =1)

and thata; = 0, ay = 0 (pure-FS by both users) is a NE point regardless of the chatistibution
since FS is the best response of each player if his opponestkS. In this case each player’s payoff is
u;(1/2,1/2, x;,y;). The pure-FS NE point may be very poor for both users as withatestrated below.

B. Approximate Best Response

In order to analyze the best response function it will be &fired by an approximate best response.
This approximate best response plays in important role fividg equilibrium points and understanding
each player’s preferences. The following proposition isdel before presenting the approximate best
response.

Proposition 1: Let

r(a,q) = % — logy(1 + q) + §logy(2 + q) (11)
—a (1+1logy(1+q) — %log2(2 +4q) — %logQ(l + 2q))

then, for every0 < a < 1 the following equation

r(a,q(a)) =0 (12)

has a unique solutiop(a) > 1/2 and therefore it defines an implicit function: (0,1] — (0.5, o0].
Furthermoreg(a) is continuous and monotonically decreasing.
Proof: see Appendix_A.
Definition 4 (approximate best respons&)et S; be player;j’s strategy witha; = P(S; = 1). Player
i's approximate best response $¢ is defined by:

i { 0;=1, if ISR, =yi/v; > q(a;)

Si(@i, yi, aj) = 0; =1/2, otherwise 13)

i.e. the approximate best response compares the ISR to Shdkde](aj)ﬁ.
The intuition behind the approximation is now describedsttonsider the case 6fNR; >> 1 (recall
that z;, y; are used interchangeably withV R;, I N R; respectively). In this case

e(SNR;,INR;,a) ~ é(SNR;, INR;, a) (14)

where

INR;
SNR; aj SNR; SNR;
— (1 —a;)log (1 + 1%}%) — 4 log ( ]\;R ) — 3log <1 + 2[11\7\7}}%%1-

Thus,S’i(xi,yi,aj) can be approximated by replacirgSNR;, INR;,a) with é(SNR;, INR;,a). Fur-
thermore, note that

¢(SNR;,INR;,a) £ %aj log(SNR;) + %(1 — a;)log (1 + 2SNR¢>

(15)
)

e(SNR;,qSNR;,a) =1(aj;,q) (16)

®For a = 0, we defineq(0) = lim,_,0 g(a) = co. Under this definition, playei’s best response to the case where his opponent always
chooses FS is to choose FS.



Fig. 2. Numerical evaluation of the best response functemions given in[{B) for different values af; (a in the plot). For a giveru,
points above the corresponding line belong to the FDM region

and recall that the equatioria, ¢) = 0 (see [(1R)) defines the functieria). Thereforeg(a) represents an
ISR level for which FDM and FS vyield approximately equal pfgoThus, if SNR; >> 1, Si(xi,yi,aj)
can be approximated by a simple strategy which only compaees$SR to a threshold and choose action
accordingly, i.e. it chooses FDM if

INR;/SNR; = ISR; > q(a;) (17)

and chooses FS otherwise.

It remains to approximatd|(8) for the case whé&f& R; >> 1 is not satisfied. IffNR; >> 1 and
ISR, > 1/2 it can be shown thal8) chooses FDM for evéry a; < 1 and if a; = 0, it chooses
FS. Thus,[(1]7) is the best response in this case as well Sisie is greater tham(a;) (which is finite
for every0 < a; < 1 and is infinite fora; = d?]). In the case off SR, < 1/2, the best response il (8)
(which always chooses FS because it is a strictly dominaategfy for playeri) and the approximate
best response _(L7) coincide. This is becaySg) > 1/2 for every0 < a; < 1. For the case where
INR; > 1/2SNR; but INR; and SN R; are in the same magnitude as 1, the best respon&é in (8) cannot
be simplified. However, numerical evaluation indicates {Bis well approximated by (17) as is depicted
in Figure[2.

We now present this idea formally. To establish the relabetween the approximate and the ordinary
best responses, define:

DY ={(z,y) : e(x,y,a) >0, andy > 0.5z} (18)
DY ={(z,y) :y > q(a)z} = {(z,y) : é(x,y,a) > 0, andy > 0.5z} (29)

where [(19) is obtained by substituting= ¢« in (I15) and then invoking Propositidd 1. The following
lemma describes precisely the sense in wifigtx;, y;, a;) is approximately the best response. It shows
that in the high transmit power regime, the best responseecges in probability to the approximate best
response. Thus, each player is “approximately” indiffeterwhether his opponent uses the approximate
best response or the true best response.

Lemma 2: Assume the channel gain#,,|?, i,q € {1,2} are continuous random variables, then for
everye > 0, there exist som& N R, such that for evenSNR; > SNR,, i = 1,2 (or equivalently, for

everyp > i)

P <S (X, Y a;) # 5; (XZ-,YZ-,aj)) <e (20)

"under the convention thab > o is fuels.



furthermore, if|H,,|?, i,q € {1,2} satisfy the regularity conditions in Assumptibheldecreases like

o3 : 0% ox
€ S O =2 + Z ﬂsz|2 <1—V> ﬂHiq|2 <1—l/> (21)
7t p p
for every0) < v < 1.

Proof: see AppendixB.

IV. NE AND e-NE POINTS OF THEBIG

A trivial NE point in the BIG is the pure-FS strategy profile eWvould like to derive additional NE
points which are non-FS. These points are of interest bedgiuthey exist) they Pareto dominate pure-FS
NE points as shown in the following proposition.

Proposition 3: Let S}, S, be a non pure-FS NE point (i.€(S; = 1), P(S; = 1) # 0), then it Pareto
dominates the pure-FS NE point, i&(S;, S, z;, v;) > w;i(1/2,1/2, 2;,y;) for all z;,y; andi.

Proof: See AppendixC.

In the sequel, it is shown that if users are allowed to coatgirin advance to use disjoint subbands
in the case of FDM (as implied inl(2)), FDM is possible from argatheoretic point of view and also
increases the total system throughput as well as the indavithroughput.

A. Derivation of non pure-FS NE points

Proposition[8 shows that non pure-FS NE points are attectiowever, deriving such points an-
alytically is not always possible. For a symmetric game whait channel magnitudes are identically
distributed, NE points were derived in [17] where it was shdwat in addition to the pure-FS NE point,
there exists a non pure-FS NE given by the following strategfile:

Si(l'i,yi) - { 92‘ = 1/27 otherwise

However, in the general case of arbitrary distributions, pdints cannot be computed analytically. This
makes them impossible to implement and analyze. We therefddress to near NE points.
Definition 5: For e > 0, ane-near NE point is a strategy profil&;, S5) such that

T <gla g]u xza%) > sup 7 (SZ7 gj7xi7 yz) - €, vxﬂyl (23)
S, €S;

(22)

It is straightforward to show that for sufficiently smalle-near NE points also Pareto dominate the pure
FS NE point (this follows from the continuity of the expecteayoff with respect ta).

The main idea behind-near NE points is that if one of the players deviates fronihét,can gain no
more thane additional payoff. From a practical point of view, for suifintly smalle, e-near NE points
are as stable as ordinary NE points.

We are now ready to introduce the main theorem which provégeanalytic expression for such points:

Theorem 4:Assume the channel gain&;,|?, i,q € {1,2} are continuous random variables, then for
everye > 0, there exists som@& N R, such that for evenn 6 NR; > SNRy, ¢ = 1,2 (or equivalently, for
everyp > py) the following strategy profile is ap-near NE point:

Si = Si(x1,y1,2) (24)

Sy = Sa(x9, Yo, a1) (25)

where S; is the best response given [ (8), afid, a,) is a solution to the following equation system
a1 = 1— Fz, (q(az)) (26)

ay =1— Fg, (q(a1)) (27)



whereF,(z) is the distribution function of the ISR. Furthermore, if ttleannel gain$H,,|?, i,q € {1, 2}
satisfy the regularity conditions in Assumptibhe Hecreases like

o3 = oy oX
€ S @) ? + Z F1|sz|2 <p1—u) F]HinQ <p1—1/) (28)
q=1
for every0 < v < 1.

Proof: see AppendixD.

Theorem[# provides a procedure to calculateear NE points in the high averaged received SNR
regime. Firsta, anda, are obtained by solving equatioris [(26) and (27), theear NE points are given
by (24) and [(2b). Eacla, is associated with a unique threshdldR; = ¢(a;) where above it FDM is
approximately the best strategy and below it, FS is the aqmately the best strategy.

Although Theorenil4 is proven rigourously in Sectioh D, we rexplain it intuitively. The idea behind
the proof is to approximate playés best responss;(z;, ;, a;) by the simple approximate best response

Si(xi, vi, a;) that satisfies

P (8, Yi25) = 1) = P (Si(X;, Vi, 2) = 1) (29)

Note that the LHS 0of[(29) can be expressed in closed form. Whig the equations in_(10) are approxi-
mated by [(Z6)t(27). This enables us to obtajn a, analytically with the correspondingnear NE point

given in [24E25).

B. Existence of-near NE Points

Now that a procedure to derivenear NE points has been established, we investigate tlsteage
properties of such points. The following theorem presensuféicient condition for the existence of a
e-near NE point.

Theorem 5:Assume thatZ;, i = 1,2 are continuous random variables such thé¥, < 0.5) < 1 and
denote the corresponding densities fyy(z). A sufficient condition for the existence of a solution to
equations[(26)[(27) is that

blim fz,(b)b*log(b) = oo (30)
— 00
for everyi € {1,2}.
Proof: see SectionlE.
Theorenlb asserts that if the ISR’s PDF is tail heavy (as gaectly in [30)), non pure-FS strategies

are possible and beneficial to both users. This conditioatisfied in important channel models including
Rayleigh, Rician and Nakagami fading (as demonstrated ati@GeV).

V. THE BIG IN COMMON CHANNEL MODELS

In this section we study the BIG in practical channel modelshsas Rayleigh, Nakagami and Rician.
We will study the effect of different fading intensities ohet players’ preferences, the existence and
uniqueness properties of NE points and the performance gain
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5/ 3.5y
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T 2f ‘< 1.5
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ISR[dB] ISR[dB]
(a) symmetric scenarios (b) weak strong scenario

Fig. 3. The difference (dB) between the conditional expggayoffs of non pure-FS and pure-FS NE points as a functiohSat. The
channel distributions are Rayleigh. (a) Two symmetric gaeenarios: weak-weak (0 dB) and strong-strong (-6 dB). Eache represents
the gain in the corresponding scenario. (b) Weak-strongaste the weakl SR = —6 dB whereas the stron§SR = 0 dB.

A. Nakagami channel

The Nakagami distribution [see elg.] 10, Sec. 3.2.2] is patanzed by averaged received magnitude
and fading parameten, i.e. X's PDF is given by

m \" am ! —mx
= | =—— — 31
where SN R is the averaged level of the SNR.
We now study the existence of non pure-FS NE points using rEmed. Denote the averages and

the fading parameters ok andY by SNR, m; and INR, m, respectively. Using the formula for
transformation of random variables [see e.g. 22], the PDE ef X /Y is given by

ISR™ m™m2I (my + my) zm2~1
Con)l(ms) (e 4 T5Tmy) ™

where ISR = INR/SNR. Thus, by applying Theorefm 5, a sufficient condition for tlxésence of a
non pure-FS NE point is that the fading coefficient of the airchannel of both users must satisfy

In particular, this condition is satisfied in Rayleigh faglichannels.

Figure[3 shows the benefit of non pure-FS over pure-FS NE pdort different values off SR in
Rayleigh fading channel (i.en = 1 for all paths). Figuré 3(&) depicts a symmetric weak-weanado
and a symmetric strong-strong scenario. In both cases thditmmnal expected payoff is higher for both
players and increases with thié& R. However, in the weak-weak scenario, the gain is significaigjure
[B(b) depicts a weak-strong scenarid@ = —7 corresponds to the strong). In this case, it is clear that
the weak player gains more than the strong one, but non gains-Better for both of the players.

In order to obtain insights into the BIG in Nakigimi channeie address to numerical evaluation of the
approximate best response functibnl (13) for differentealof distribution parameters. To study the effect
of my, the fading parameter in the direct channel, Fidure 4 dgpia threshold SR of the approximate
best response of playeras a function ofn,. This is evaluated for different values 6 R. It is shown
that the threshold SR is a decreasing function ofi;. This is violated only if interference is very strong
(ISR; = 10 dB) whereas the thresholtS R is hardly affected by the values of,. From this we deduce
that a low fading effect (smaller probabilities of deep faohethe direct channel (i.e. high values of;)
encourages the use of FS (since the thresti6l® increases).

In Figure[®, we study the effect ofi,, the fading parameter of the interfering channel. In thisecae
see that the effect af, on the threshold ISR of the approximate best response dspmndther factors

fz(z) =

(32)
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1

<2

ISR [dB]
NN DX

my

Fig. 4. Numerical evaluation of the threshold ISR of the agpnate best response functions for Nakagami fading as etiumof m;
- the fading coefficient in the direct channdlSR = INR/SNR stands for the ratio between the averaged received INR aritl. $Ne
value ofm, is fixed and equal to 1 and the opponent’s probability of ch@p&DM is a; = 0.2.

ISR [dB]
oON N O

ISR [dB]
PRPNNWWS
onloUIouUIo

(b)

Fig. 5. The threshold ISR (above which playiechooses FDM) as determined by the approximate best respors@&lakagami fading
channel. The horizontal axes represent the fading coefficibthe interference channet.. Figure[5(d) depicts the threshold ISR for both
low and high level ofa; (the opponent’s probability of choosing FDM) with fixed valef the fading parameter in the direct channel
(m1 = 1). Figure[5(B) depicts the threshold ISR for two levelsnef with a; = 0.1.

such am; anda;. For low levels ofa;, it can be seen in Figufe 5[a) that the threshold ISR is a &sing
function of m, while it is a decreasing function for higher values@nIn other words, if your (assuming
that you are playef) opponent favours (does not favour) FDM, you should conski@M (FS) more
strongly as the interference to your receiver becomes moneirchnt by the line of sight path than by
the reflected paths. Figufe 5(b) shows the same for the p&eame; i.e. if a player experiences high
probability of fading in the direct channel, he should cdesiFDM (FS) more strongly if the interference
to his receiver becomes more dominant by the line of sight thathe multipath.

In Figured 6,77 we study the existence properties-oéar NE points in different channel configurations.
Figure[6(d) shows a Rayleigh fading channel with two usetsibimstrates thes-near NE point. Figure
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1. 1.
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Fig. 6. Numerical evaluation of thenear NE points for Nakagami fading in different scenaribise dashed (solid) lines represent player
1's (2's) best response for given valuesmafi and m». Each intersection between dashed and solid linesdsi@ar NE point. A user is
considered "strong” ("weak”) if itsf SR his 10 dB (0 dB).
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1

0.2 =2, m=2, SR= 108
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0C 02 04 06 08 1cC
a

Fig. 7. A scenario where the conditions of Theoigm 5 are niiéfied

[6(b) shows that-near NE points are not necessarily unique. In Filire 7 wevshscenario the conditions
of Theoren{b are not satisfied.

VI. CONCLUSIONS

In this paper we applied Bayesian games to analyze a two useless interference channel with
incomplete information. Each player knows its own directl amterfering channel magnitudes but only
knows the statistics of its opponent’s channel.

The main result of this paper is the derivation of a non puse-NE point in the BIG with minimal
coordination between users. This is a much better alten#tian the pure-FS NE point which may be
very inefficient. The non pure-FS point offers better speututilization efficiency than the pure-FS Nash
equilibrium. This is true for each user individually and erms of a global network. Through numerical
examples, we demonstrated that this performance gain caoldstantial. We further provided a sufficient
condition for the existence of non pure-ESNE and which is satisfied in particular in a Rayleigh fading
channel. We also demonstrated numerically that such peiist in many other scenarios.
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In addition to the derivation of the non pure-FS NE pointsSectior [l we presented the best response
and the approximate best response function that converg@sobability to the best response as the
transmitted-power to noise ratio increases. The appraeidnhest response funcntion simply compares
the measured interference-to-noise ratio to a threshat depends on the opponents’s probability of
choosing FDM and on channel distribution. These resulteuater used in SectidnlV to analyse selfish
and rational behaviour of wireless users as a function ofcttenel parameters. It was shown that:

« Strong fading (high probabilities for deep fade) in the dirghannel encourages wireless selfish users
to use FDM.

« Strong fading in the interfering channel encourages selfisbless users with strong fading in the
direct channel to use FDM, while it has the opposite effecusers with weak fading in the direct
channel.

« Strong fading in the interfering channel encourages seliistless users to use FDM if the opponent
chooses FDM with high probabilities, while it has the oppesffect if the opponent chooses FDM
frequently.

APPENDIX
A. Proof of Proposition 1

Observe that(a, b) is a continuous, differentiable and strictly increasingdiion of b for everya. It
can be shown that(a, 1/2) < 0 and thatlim,_, ., r(a,b) > 0 for all a > 0. Thus,r(a, ¢(a)) = 0 defines
an implicit differentiable function(a) that satisfieg;(a) > 1/2 for every0 < a < 1.

We show thaty(a) is a strictly monotonic decreasing functionfThis can be established by observing
the derivative ofg(a)

() =~ AL 240D ) (21 21og(1 + g(a)) — log(2 + (a)) — log(1 +24())) (34)

Sinceg(a) > 1/2 the derivative is negative. O

B. Proof of Lemm&l2
SinceS; and S; are binaries in their range, it is sufficient to show that
|P((X:,Y;) € D) — P((X;,Y;) € D7) < ¢, ¥Yp>py (35)

Henceforth, the indice j are omitted will denotea; and D*, D* will denote D;?, D;".

Let p,, «, be sequences satisfyingm,, .. pn,a, = oo such thato,, = o (pn) E denote X" =
PulHiil?/o%, Y™ = po|Hij|* /0%, Pu(A) =P ((X™,Y™) € A). Further denoted,, = {X" > «,} and
B, ={Y"> «a,/2}.

Define

- (DaADa) NG (36)

(see Figureé 8 for illustration) wher@;, = A, N B,,, G2 = AS(\B., Gz = A, BS andG, = AS () BE.
This partition satisfies

Py(D*AD") =) " P, (W9) (37)

8For deterministic sequences,, S, With lim, 00 an /B = M we say thatr, = O(3,) if M is finite and non zero and,, = o(8»)
if M =0.
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Fig. 8. Graphic illustration of the partition in the proof bémmal2.
and
P, (¥3) =0 (38)
P, (77) < Fye (0%@) (39)
Pn
P < Fpyp(0222) By o (0222 40
(V7)) < Flye <0an il \ OV g5 (40)

where [(38) is true because both strategies are identigakif0.5x. Therefore, to show the first part of
the Lemma (Equatiori (20)) , it is sufficient to show thiat(¥)) = o(1). This follows from the fact that
for everya > 0,

lim e, q(a)om, a) — é(an, gan, a) =0 (41)

Thus
limsup ¥} = ¢ (42)

and from the continuity from above of measures [seelelg. B8piem 1.8] it follows that
lim P, (¥,)=0 (43)
n—o0

which establishes the first part of the Lemma.
For the second part of the Lemma, we will show that

P(D*ADY) < O X 2 O T o 44
n( ) = — + ﬂH22|2 ON—= + H EHiq‘Q S1—v ( )
25 Dn i Prn

This requires an additional analysis 8f(V!) and P,(¥?). For the termP, (¥!), we first assume that
thatY™ > ¢(a)X™. In this case

P, (9| Z > q(a), A,) = P(e(X",Y",a) <0]A,, Y" > q(a)X") = P, + P, (45)

where

n

pPl=pP <e(X",Y",a) <0,q(a) < Z < qla) + 1| A, Y > q(a)X") (46)
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p2—p (e(X”,Y”,a) <0,q(a) + L < Z|A, V"> q(a)X”> (47)

n

and~, = o(a,). Before evaluating®! and P? the functione(z, y, a) will be simplified by substituting
y = zx (which is possible because y > 0)

2(xz+l) + 1) + 1 5 log ( + 1))
_(1 - CL) 1Og (xzﬁ_g + 1) +3 (1 - CL) 1Og (xz+2 + 1)

which is a bounded function of for everyz. Furthermore, it is easy to verify that the functieft., =, a)
is infinitely differentiable with bounded derivatives @t= 0. Thus, since

e(x,zx,a) =3alog(z +1) —a <% log < (48)

t(z,a) £ hmw—me(l ,a) =5 (a(l—1o +1
+(1—a)log (1+2 + 2(@ — 1)(log( (14 1g)() ) (49)

is bounded, continuous and differentiable o 0.5 for everya it is possible to expand(z, z =, a) with
respect tol /= and obtain

e(, 22.a) = r(a, 2) + Ola, z)% +0 (%) (50)

wherer(a, z) is defined in[(IlL), the residual absolute value can be boubged /x? where M is finite
and

—2az* —Taz® —6a2® —Taz —2a + 82+ 4
22(z+1)(z +2)(22+1)

is bounded for every, a; furthermore, since(a, z) is a continuous and increasing functionzofor every
a > 0 (as shown in Propositidn 1) that satisfigs;, g(a)) = 0, it follows that

r(a, z) = R(a)(z — q(a)) + O ((z — 4(a))?) (52)

where the residual absolute value can be bounded/By: — q(a))?> where M is finite for everya > 0
and

Qla,z) = (51)

(ag(a)* — ag(a) + 4q(a) +2) (53)
2q(a)(q(a) +1)(q(a) +2)(2¢(a) + 1)
is bounded and positive for evefy< a < 1 becausej(a) > 1/2.

In what follows it is shown that for sufficiently large, P> = 0. To see this, observe that for every
2> (a) + =
> -~

R(a) =

e(x,zx,a)>r(a,z) — % — % > r(a,z) — % — %
T 54
= 520 (5) - &
where M, M, are positive and finite for every anda. Therefore,
1 My,  Msy,
el z.0) 2 Rla)+0 () - Mo 2 55)
Tn (079 (07

and becomes th&(a) > 0,Va > 0 and becausé/; and M, are bounded, it follows thaP? = 0 for
sufficiently largen.

It remains to show thaP! decreases liké/p. By substituting the series expansions-¢d, z) into (50)
it follows that for everyz € (¢(a),q(a) + 1/v.), > oy,

e(x,y,a) = R(a)(z — )+Qaz +O( )+O(z—q)

< R(a) (z — q(a ))—%———Ms(z—Q) < (2 —gla)) — & )
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wheren, = R(a) — M3/v, and§, = My + My /a,,.

Thus,
oo q(a)z+E&n/nn
fyn(y) fxn (z)dydz
Pl < POY"—g(@)X" <min(&n/mn, X" /yn)sAn) _ on__wala)
T Pm>Xrq(a),An) I [ fyn()fxn(z)dyde

. an zq(a) (57)
J (Fyn(q(a)z+&n /mn)—Fyn(q(a)z)) fxn (z)dz

_ an — HUn

o Y

T (1=Fyn (q(@)2)) fx (2)dz

an,

Note thatlim inf,, \,, >0, because

A, = T<1 72, (2492)) o)z z:f (1= By (Z29)) fn ()
> [ (1= Fi 2 (2a(@)) Fion()dr = (1= Fi, e (020(0))) % (Fi o (o2g(a)) - (5
Fyp (B2 )) s (1= By 2 (020(0))) B, (020(@) > 0,

therefore, the first term oP! decreases likg,

2 (g(a)a-+6n /1) o2q(a)r ot
<f( |y 2 ( ™ ) P, e ( )) 2 (—)d‘”

o2 ‘HHQ( (@)v+02&n/(mnpn) )~ F, 1,12 (a(@)v)
T Tnbn 6f : 0260/ (Mnpn) f|H22‘2 ( )

(59)

Recall that by hypothe3|$|H E 2 (v) is bounded for every > 0. Thus by the LaGrange mean value
theorem, for every > §

Fly 2(a(@)v+02n/nnpn) )= F py 2 (g(a)v)
|Hjl |H;:| 0 no
J O < supyep sy (fim, e (alao+ 2222)) < M (50)

by invoking the dominant convergence theorem [seelelg. B8pfEm 2.24] on the integral in_(59)

°°F‘HU‘Q(q(a)v+03§n/(nnﬁn)) i, 2(q(a)

hmé—mhmn—)oof 020 [ (inbn) f|H“| ( )
5 (61)
= hmééoffmm? (a(a)v) fipp (v) dv = ff|Hm| (@)v) figz,2 (v) dv
where [61) is true becaus;(?H 2 (v), i,q € {1,2} are probability densities. Furthermore, it is positive
and finite for everya. From thls |t foIIows that
2
P! <O < ) (62)
Dn
and therefore
1
P01/ 2> gl 4) <0 () (63)

We now assume that that” < ¢(a)X™. In this case
P, (VL Z < qa), A,) = P (e(X",Y",a) > 0|A4,,Y" < q(a)X") = Py + P? (64)
where
Pl =P (e(X"Y"0) > 0,q(a) — L < Z < g(a)| A, Y™ < gla) X") (65)
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P2=P <6(X",Y",a) >0,7 < qla) = L] A, Y < q(a)X") (66)

n

In what follows it is shown that for sufficiently large, P> = 0. To see this, observe that for every

z < qla) — -

M1 M2 Ml M2
e(:)s,za?,a)Sr(a,z)+7+—2§r(a,z)+a—n+? (67)
1 M, M.
< - R<)+0< )+—1+—§ (68)
where M, M, are positive and finite for every anda. Therefore,
1 My, My,
e(z, zx,a) < —R(a) + O <—) TRl ML 33 (69)

and become the?(a) > 0,Va > 0 and becausé/,; and M, are bounded, it follows thaP? = 0 for
sufficiently largen.

It remains to show thaP! decreases liké/p. By substituting the series expansions-¢i, z) into (50)
it follows that for everyz € (¢(a) — 1/, q(a)), x > a,

e(x,y,a) < R(a) (z — q(a)) + 2 + 22 4 My(z — ¢)* <1 (2 — qla)) + & (70)
wheren, = R(a) + M3/, and§, = My + My /«,. Thus,
Pl < Plemin(n/mm, X" /)<Y —q(a) X" <0,An)
n = p(yn<an(a) An)
f (Fyn(q(a)x)—Fyn(qg(a)r—&n/mn)) fxn (x)de ; (71)
= n = ﬁ

I Fyna(aa) fx (@)da

Note thatlim inf,, \,, >0, to see this

A _f iy (2492) fn(a dx>fﬂH| () fye ()

72
zﬁf Fiiy? (020(0) foxr (2)dz = Fig 2 (02a(a)) x (1= Fig 2 (0a(a))) "
therefore, the first term oP! decreases likg,
o ] (2522 < B (25 e ()oe
= o [l O W) )< 0 (2)
which leads to
P, (9,/Z < q(a), A,) <O (pin) (74)
and therefore
Po(P,) < O (1/pn) (75)

It remains to evaluaté, (¥2). Note that

P, (V) = P (B,, A) P, (V2| B, AS) (76)
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and

2
P(B,, A% <O (FHMQ (0%%)) (77)
it follows that
2 2 T
Py (V3) < Py (V7|C) O | Fiy, 2 ; (78)

whereC,, = A¢ () B,,. Furthermore

P (W C)=Pu (W31, Z > 00/ P(Z > 0,/21C,) + P (V3G Z <0,/ P(Z < 0,/21Cy)
<P, (V2|Ch, Z > 0, /2) P(Z > a,,/2| Cy) + Py p (a?a%) 79)

)
Dn

where the last inequality is due to
_ Plan/2<Y"<X"an /2, X" <an)

P(Z < a,/2[Ch) = PV San/2, X" <an)
< Plon/2<yn<a?/2, X" <an)

= P(Y">an /2, X" <an)

80
= P(an/2 <Y" <0%,/2) < Fy p (a) (80)

P
It remains to calculate the term
P(U2|Ch, Z > 0y /2) = P(e(X™,Y",a) <0|Cp, Y"/X" > 0, /2) (81)

To evaluate[(81), consider the functieriz,y,a) — T'(z) whereT'(z) = §log (1 + 2z/(x + 2)). Similar
to the derivation of[(50) we obtain

2 _ —2 41 1
az baz a+ 8z + <_) (82)

e(g’y"‘) _T@) =r(e,z) + etz y N\

and because (a, z) is an increasing and positive function offor z > ¢(a) and for everya and because
T (y/z) > 0 for everyy,z > 0, the RHS of [[(81) is equal to zero for sufficiently large Thus, by
combining [(80) and[{78), it follows that

P((X"Y") € w?) <O <<F|H| (O"z‘fv ))2> (83)

and by combining it with[(38),[(40) and (I75) we obtain the deiresult. O

C. Proof of Proposition 13
Player i's conditional expected payoff is
(S5, S5, @i, yi) = max {aju; (1, 1, 2, y:) + (1 — aj)ui(1,1/2, 24, ;) (84)
wherea; = P(S; = 1). Thus, it is sufficient to show that
ajui(l/Q, 17%7%) + (1 — aj)ui(1/2, 1/2, Zi, y2> > u2(1/2, 1/2, Zi, y2)7 VCL’Z,yZ € Xz X yz (86)

This is equivalent to

3,.2 2.3 4

Y; T; Y L; 2.2 2 T;Yi

ot = +dyixl + 8yix;

2 g T eyt g
4

+22}y; + 92ty + 12y, + % + 228 + 622 + 62 > 0 (87)

+ 2yl +

which is always true. O
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D. Proof of Theorenhl4

We begin with the following definition: . .

Definition 6: An approximate NE point is the strategy profilé,(x1, y1, az2), S2(x2, y2,a1)) wherea,
anda, are a solution to equations_(26) and](27).

It remains to show that if there exists an approximate NE tpairen there exists anear NE point

given by [24) and[(25). Let
a; = P (S; (X3, Y;,a;) = 1) (89)

In words,a; is the probability that playef chooses FDM if he is not deviating from thenear NE point
and a; is the probability that playeir chooses FDM if he “cheats” and uses his best response torplaye
J’s true probability for choosing FDM; rather than the probability;.

To show that(S,— (i, vi, ;) , S; (xj,yj,di)) satisfies [(213), one needs to show that for everyy; €
X; x Y; and for sufficiently largep

AW@'('Tbyi) = ‘ﬂ-i (Sz (%’;yzwaj) ) Sj (%7%7@2‘)) - T (Sz (ﬁz’,yudj) ) Sj (%ayja&z’)) | <€ (90)

Note thatAx;(xz;,y;) # 0 if and only if (z;,;) € D% AD?”’ (since player;’s true probability for choosing
FDM is identical in both cases and is equaldg, thus

Aﬂ-i(xi) Ys, dj) d]) - |6(xi7 Yis a’i)|ID@jAij (xiv yl) (91)

where(z,y) denotes the indicator function, i.e. it is equalltéf (x,y) € A and zero otherwise. Since
(zi,y:) € DWAD} is equivalent toe(x;,y;,a;) > 0 and e(w;,y;,a;) < 0 or vice versa, and because
e(x,y,a) is a continuous function od, for everya;, a; there exists some* in the interval betwee;
and a; such thate(z;, y;,a*) = 0. By Lemmal2, we know thai; —— a;, thuse(z;,y;,a;) —— 0,

p—o0 p—r00

furthermore because(z, y, a) is bounded for every, y and is a linear function oé it follows that
le(@i, i, @)1 o, p s (i 9i) = O (@i — @) (92)
O

E. Proof of Theorerl5
Denotew;(a;) =1 — Fy,(¢q(a;)) for i # j. Thus
wi(a;) = —fz,(a(a;))q (a;) (93)

Before analyzing[(93) recall théim ¢(a),—o = oo, furthermore, it can be verified that

. q'(a)

lim =M 94

™ P (@) g q(a) ©Y
(this follows immediately from[(34). Thus, if(80) is satesfi

lim w'(a;) = oo (95)

Consider the curves (26) and {27) in a two-dimensional semesystem where,; anda, are given by
the horizontal and the vertical coordinates respectivBbth curves are continuous and differentiable.
Furthermore, the poinf0,0) is a common point of the two curves and the poifits— F, (0.5),1),
(1,1 — Fz,(0.5)) lie on curves[(26) and_(27) respectively. Since the slop o¥e26) tends to zero as
a; — 0 and the slope of curvé (R7) tends to infinity @s — 0, the two curves must intersect at least
once. U
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