
ar
X

iv
:1

00
9.

22
74

v1
  [

cs
.IT

]  
12

 S
ep

 2
01

0
1

Robust Beamforming for Security in MIMO
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Abstract—In this paper, we investigate methods for reducing
the likelihood that a message transmitted between two multi-
antenna nodes is intercepted by an undetected eavesdropper. In
particular, we focus on the judicious transmission of artificial
interference to mask the desired signal at the time it is broadcast.
Unlike previous work that assumes some prior knowledge of
the eavesdropper’s channel and focuses on maximizing secrecy
capacity, we consider the case where no information regarding
the eavesdropper is available, and we use signal-to-interference-
plus-noise-ratio (SINR) as our performance metric. Specifically,
we focus on the problem of maximizing the amount of power
available to broadcast a jamming signal intended to hide the
desired signal from a potential eavesdropper, while maintaining
a prespecified SINR at the desired receiver. The jamming signal
is designed to be orthogonal to the information signal when it
reaches the desired receiver, assuming both the receiver and the
eavesdropper employ optimal beamformers and possess exact
channel state information (CSI). In practice, the assumption
of perfect CSI at the transmitter is often difficult to justif y.
Therefore, we also study the resulting performance degradation
due to the presence of imperfect CSI, and we present robust
beamforming schemes that recover a large fraction of the
performance in the perfect CSI case. Numerical simulations
verify our analytical performance predictions, and illustrate the
benefit of the robust beamforming schemes.

I. INTRODUCTION

Due to their broadcast nature, wireless communications are
inherently insecure. A passive eavesdropper within range of a
wireless transmission obtains information about the transmit-
ted signal without risk of detection. While encryption can be
used to ensure confidentiality, its computational cost may be
prohibitive and there are difficulties and vulnerabilitiesasso-
ciated with key distribution and management [1]. Even when
encryption is available, it is often still desirable to augment the
security of the link and decrease the likelihood that its signals
are detected or intercepted. As a result, there has recentlybeen
considerable interest in the use of physical layer mechanisms
to increase the security of wireless communications systems.

Early work on the eavesdropper scenario, often referred
to as the wiretap channel, focused on determining what
conditions were necessary for secure communications in the
presence of an eavesdropper [2]–[4]. In particular, this work
led to the development of the notion ofsecrecy capacity, which
quantifies the rate at which a transmitter can reliably send a
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secret message to the receiver, without the eavesdropper being
able to decode it. Ultimately, for a wiretap channel without
feedback, it was shown that a non-zero secrecy capacity can
only be obtained if the eavesdropper’s channel is of lower
quality than that of the intended recipient. The work cited
above assumed single antenna nodes; secrecy capacity for the
multiple-antenna (MIMO) wiretap channel, where all nodes
may possess multiple antennas, has been studied in [5]-[10].

A key consideration in the MIMO wiretap problem is what
information is available about the eavesdropper. In principle, to
compute the secrecy rate, one must know the eavesdropper’s
channel state information (CSI), or at least its distribution.
Such information is unlikely to be available in many scenarios,
especially those involving purely passive eavesdroppers.As a
result, in this paper we take a different approach in which
the transmitter minimizes the transmit power required to
guarantee a certain Quality of Service (QoS) at the desired
receiver, and uses the remaining resources to transmit an
artificial interference signal that jams any eavesdroppersthat
are present [11], [12]. The use of artificial interference has
been considered by a number of others even for the case where
the eavesdropper’s CSI is known, although such an approach
is known to be suboptimal. For example, assuming that the
transmitter has more antennas than the intended recipient so
that the corresponding channel has a non-trivial nullspace,
one of the approaches taken in [13] is to broadcast artificial
interference in this nullspace. Such interference will have
no impact on the receiver, but will in general degrade the
eavesdropper’s channel since its nullspace (if any) will be
different. The high-SNR performance of this type of technique
was shown to be nearly optimal in [6], and the optimal power
distribution between data and interference has been examined
in [14]. While [13] studied the case where only the distribution
of the eavesdropper’s channel was known, [6] focused on the
situation where the transmitter has access to the eavesdropper’s
instantaneous CSI, and developed an algorithm to optimally
exploit such information for the case where the intended
recipient has a single antenna.

Another key consideration is the accuracy of the available
CSI. The impact of imperfect CSI on the secrecy rate of
the single-antenna wiretap channel has been investigated in
[15], [16]. As we illustrate, techniques based on knowledge
of the eavesdropper’s channel in the multiple antenna case
are very sensitive to even slight perturbations in the CSI.
If unaccounted for, imprecise CSI for the primary channel
also causes interference leakage to the desired recipient when
artificial noise is used to jam the eavesdropper, resulting
in significant degradation in the desired user’s performance.
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Consequently, we are interested in developing robust schemes
that are insensitive to CSI errors. As such, we assume the
transmitter uses beamforming rather than spatial multiplexing
to communicate with the desired receiver. Beamforming is
known to provide higher capacity than spatial multiplexing
in many situations where the CSI at the transmitter is in the
form of a mean and covariance (similar to the case considered
here), even when the receiver has perfect CSI [17]. When
the receiver CSI is also subject to errors, recent work has
shown that beamforming is optimal even for small channel
perturbations [18].

Since we focus on transmission of a single data stream using
beamforming, and we let the received signal-to-interference-
plus-noise-ratio (SINR) of the data stream at the desired
receiver serve as our QoS metric. We design robust algorithms
that minimize the transmit power required for the desired
receiver to achieve the target QoS in the presence of CSI
errors. This in turn maximizes the power available to transmit a
jamming signal that distrupts the ability of the eavesdroppers
to recover the desired signal. The robust algorithms rely on
knowledge of the statistics of the CSI errors, and use a
second-order perturbation analysis of the primary channel’s
singular value decomposition to account for the effects of
the perturbation on the desired data stream. As a result, the
algorithms provide the following benefits: (1) they minimize
the effect of the jamming interference at the desired receiver
when CSI errors are present, which means that (2) they require
less transmit power to achieve the desired QoS, which in
turn (3) maximizes the power available for degrading the
channel of the eavesdroppers. Our simulations demonstrate
that the resulting secrecy capacity is significantly improved
compared with what would be obtained by a naive scheme that
did not take CSI errors into account. We note that a similar
approach can be taken to study the impact of imperfect CSI
on schemes that make use of relays or neighboring users to
jam eavesdroppers [19]-[23].

The paper is organized as follows. In the next section, the as-
sumed mathematical model is presented, and the capabilities of
the transmitter, receiver and eavesdropper are detailed. We also
discuss the use of artificial interference, and examine the use
of secrecy capacity and SINR as performance metrics. Fixed-
QoS beamforming algorithms are described in Section III
for the perfect CSI case, and the effects of imperfect CSI
are analytically evaluated in Section IV. Robust beamforming
methods that compensate for the degradation in SINR are
then developed in Section V. The resulting SINR performance
for a range of antenna configurations and CSI perturbations
is studied via simulation in Section VI, and conclusions are
drawn in Section VII.

II. SYSTEM MODEL WITH PERFECT CSI

We assume a scenario with two cooperating nodes, Alice
and Bob, and a passive eavesdropper, Eve. Each of the
nodes may possess multiple antennas, the number of which
we denote byNa, Nb and Ne, respectively. By the term
“cooperating,” we mean that Alice and Bob share information
with each other about channel state information, desired link

quality and coding/decoding strategies. Eve is non-cooperative
in the sense that Alice and Bob are unaware of Eve’s operating
parameters, including her channel state information, number of
antennas,etc. Alice is attempting to communicate a message
to Bob in the presence of Eve, who is able to overhear
Alice’s transmissions. Eve need not be a single receiver with
colocated antennas; our definition of “Eve” in this context
could be multiple receivers in scattered locations who are
able to coherently coordinate their received data. The signals
received by Bob and Eve can be represented as follows:

yb = Hbaxa + nb (1)

ye = Heaxa + ne, (2)

wherexa is the signal vector transmitted by Alice,nb,ne are
the naturally occurring noise and interference received byBob
and Eve, respectively, andHba,Hea are the corresponding
Nb × Na and Ne × Na channel matrices. The channels
Hba,Hea are assumed to be deterministic quantities unrelated
to each other, and no assumptions are made about their
dimensions or structure.

The background noise is assumed to be spatially white, with
possibly different power levels:

E{nbn
H
b } = σ2

bI

E{nen
H
e } = σ2

eI,

whereE{·} denotes expectation,(·)H the Hermitian transpose,
and I is an identity matrix of appropriate dimension. The
transmit power available for Alice is bounded byP :

E{xax
H
a } = Qa

Tr(Qa) ≤ P ,

where Tr(·) denotes the trace operator. Without loss of gener-
ality, we normalizeHba so that its elements have unit-average
gain (excess energy available fromHba is assumed to be
included inP ):

‖Hba‖2F
NbNa

= 1

‖Hea‖2F
NeNa

= γ2
ea .

A. Artificial Interference

Techniques that employ artificial interference devote a frac-
tion of Alice’s power to the transmission of a noise-like
waveform, in an attempt to degrade the ability of Eve to
intercept the signal destined for Bob. Since we are focusing
on a beamforming scenario, Alice’s signal is split into two
components: one being a scalar data stream denoted asz
that contains the message for Bob, and one that contains the
jamming signal, which we denote by theNa × 1 vector z′.
Bob therefore receives

yb = Hbatz +Hbaz
′ + nb, (3)

where t is the Na × 1 transmit beamformer used for the
information signal. Similarly, Eve sees

ye = Heatz +Heaz
′ + ne. (4)
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AssumetHt = 1 and letE{|z|2} = ρP , where0 < ρ ≤ 1
is the fraction of the power devoted to the information signal,
so that

E{z′z′H} = Q′
z

Tr(Q′
z) = (1 − ρ)P .

The QoS experienced by Bob and the probability of Eve
intercepting the message intended for Bob will be determined
by Alice’s choice of the following parameters: the covariance
matrix Q′

z, the transmit beamformert, and the power alloca-
tion parameterρ. The impact of these parameters on secrecy
capacity and SINR are discussed in Sec. II-B.

It is important to note that the design of a complete
transmission strategy for secrecy must also involve the con-
struction of a “secrecy codebook” that is comprised of sub-
codebooks for both the secret message and a randomization
message intended to confuse the eavesdropper [24]. This is
true even for situations where little or no information about
the eavesdropper is present; in such cases, one can design
the codebook using a set of worst-case assumptions about
the eavesdropper. In a sense, the beamforming techniques
discussed here represent a version of this idea in the spatial
domain, where the secret and random messages are assigned
to different spatial precoders (beamformers) with different
transmit powers. An optimal design would presumably involve
the joint construction of encoding schemes in both space and
time, but such an effort is beyond the scope of this paper.

B. Performance Metrics

Early work on the wiretap channel [2]–[4] led to the concept
of secrecy capacity, which is defined to be the maximum rate
at which Alice and Bob can communicate without allowing the
eavesdropper to obtain any information about the transmitted
message. In [7], it was shown that for the case where the
background noise for Bob and Eve is of equal power (and
no artificial interference is generated,z′ = 0), the secrecy
capacity for the MIMO wiretap channel is given by

Csec = max
Qa≥0

I(Xa;Yb)− I(Xa;Ye) (5)

= max
Qa≥0

log |I+HbaQaH
H
ba| − log |I+HeaQaH

H
ea| ,

whereI(·; ·) represents mutual information, and whereYb,Ye

andXa are the random variable counterparts to the specific
realizationsyb,ye andxa, respectively. The secrecy-capacity-
achieving choice forQa was derived in [7] for the case where
the transmitter has knowledge of bothHba andHea, which
were assumed to be fixed.

The use of secrecy capacity as the performance metric with
artificial interference was studied in [13], where knowledge of
only the distribution ofHea was assumed and the expected
value of (6) was maximized to obtain the ergodic secrecy
capacity. The approach of [13] allowed for the transmission
of multiple data streams to Bob, but restricted attention tothe
case whereNa > Nb, and forced Alice to choose a transmit
covariance matrix according to the standard water-filling solu-
tion without regard to the possibility of an eavesdropper. The
expected value of (6) was then maximized overρ, where the

expectation was taken over the distribution of eavesdropper
channels, and it was assumed thatσ2

e = 0. Note that,
although this approach obviates the need for knowledge of
Eve’s instantaneous channel, optimization overρ still requires
knowledge of the number of antennas Eve possesses and the
strength of Eve’s channel relative to Bob’s (inherent in the
assumption that the channel distribution is available).

Without any information aboutHea, the above maximiza-
tion problem is ill-posed, although (6) can still be used to
quantify the secrecy rate of a given transmission scheme.
In our work, we restrict attention to situations where Alice
transmits only a single data stream to Bob since (1) we will
focus on cases where the CSI is imperfectly known, and (2)
we can develop methods that make beamforming robust to
CSI errors. As a result, we choose to work directly with SINR
rather than capacity. We will calculate the SINR assuming that
both Bob and Eve use linear receive beamforming, recognizing
the fact that both could use more sophisticated nonlinear
techniques for decoding Alice’s signal. The SINR achieved by
linear beamforming will nonetheless provide an indicationof
the relative ability of Bob and Eve to determine the transmitted
signal regardless of which decoding approach is used.

Let wb,we respectively denote theNb × 1, Ne × 1 beam-
formers employed by Bob and Eve to determinez, so that

ẑb = wH
b yb = wH

b (Hbatz +Hbaz
′ + nb) (6)

ẑe = wH
e ye = wH

e (Heatz +Heaz
′ + ne) . (7)

The resulting SINR available for Bob and Eve to decodez
will be given by

SINRb =
ρP |wH

b Hbat|2
wH

b

(

HbaQ′
zH

H
ba + σ2

b I
)

wb

(8)

SINRe =
ρP |wH

e Heat|2
wH

e (HeaQ′
zH

H
ea + σ2

eI)we
. (9)

Intuitively, as long as SINRb > SINRe, there will exist mod-
ulation and coding schemes that allow Bob but not Eve to
reliably decodez.

III. FIXED-SINR BEAMFORMING WITH PERFECT
CSI

In many applications, it is impractical to assume that any
information about the eavesdropper’s CSI is available. To
increase communications security in such cases, we propose
an approach that attempts to achieve the following two per-
formance objectives: (1) maintain a certain guaranteed level
of link quality (e.g., SINR) for the intended receiver, and
(2) maximize the power available for a jamming signal that
makes the unintended reception of the signal more difficult.
Obviously, the performance of such a scheme cannot be
guaranteed; a fortuitous eavesdropper in the right location
could end up with a better quality signal. Here the goal is to
reduce the likelihood of such an event. Note that this approach
does not imply that a low-power transmission from Alice to
Bob will be more secure; reducing the power of the desired
signal may allow one to better degrade Eve’s channel, but it
also reduces the requirements for Eve to decode the signal as
well. To illustrate the proposed artificial interference concept,
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we assume here that the CSI is perfectly known by all parties,
Alice, Bob and Eve. The case where Bob and Alice have
imperfect or perturbed CSI is examined in Section IV.

A. Unknown Eavesdropper CSI

The proposed approach can be generally outlined as follows,
using SINR as the QoS metric:

1) Specify a target SINR for Bob.
2) Allocate the smallest possible fractionρ of the available

transmit power to achieve the desired SINR (if possible)
assuming Bob experiences no interference other than the
background noise of powerσ2

b .
3) Allocate all of Alice’s remaining power to a jamming

signal that is uniformly distributed in space, subject to
the constraint that when the interference is received by
Bob, it lies in a subspace orthogonal to the desired
signal.

Obviously, a givenHba may not support the desired SINR with
a total transmit powerP ; in such cases, the link is assumed
to be in outage.

Let S denote the target SINR for Bob. To minimize the
fraction of the transmit power required to achieveS, Alice
should chooset to be the right singular vector ofHba with
largest singular value, and Bob should choosewb = Hbat as
his receive beamformer. Using this approach, we have

ρ =
σ2
bS

tHHH
baHbatP

=
σ2
bS

σ2
1P

, (10)

where σ1 is the largest singular value ofHba. As long as
ρ < 1, Alice has power available for generating artificial
interference.

Since the CSI of the eavesdropper is unknown, the best
option available to Alice is to uniformly spread the remaining
transmit power along spatial dimensions that will produce no
interference for Bob. In particular, we require that

Hbat ⊥ Hbaz
′ (11)

for all z′. With t chosen as above, it is easy to see thatz′ must
be chosen as a linear combination of theNa−1 right singular
vectors ofHba with smallest singular values, which we denote
by T′. Uniformly distributing the remaining transmit power
over these vectors yields the following transmit covariance for
the artificial interference:

Q′
z =

(1− ρ)P

Na − 1
T′T′H . (12)

As a consequence, the optimal (in the maximum SINR
sense) receive beamformer for Bob is simply the maximal
ratio combiner,wb = Hbat, since Bob experiences only white
noise. For Eve, the beamformer that maximizes SINR is given
by

we =
(

HeaQ
′
zH

H
ea + σ2

eI
)−1

Heat, (13)

whereQ′
z is given by (12). The use of an optimal beamformer

here presumes that Eve is aware ofHeat, as well as the spatial
covariance matrix of the transmitted interference. With this

choice forwe, the SINR experienced by Eve can be expressed
as

SINRe = ρP tHHH
ea

(

HeaQ
′
zH

H
ea + σ2

eI
)−1

Heat . (14)

Sinceρ is proportional toσ2
b , two observations are immediate

for the case of low background noise (σ2
b , σ

2
e → 0):

1) If HeaQ
′
zH

H
ea is full rank, which will generically be

true if Alice has more antennas than Eve, then

lim
σ2

b
→0

SINRe = 0 ,

regardless ofσ2
e .

2) If HeaQ
′
zH

H
ea is rank deficient, for example if Eve has

more antennas than Alice, then

lim
σ2
e
→0

(

HeaQ
′
zH

H
ea + σ2

eI
)−1

=
1

σ2
e

RRH ,

where R is an orthonormal basis for the subspace
orthogonal toHeaQ

′
1/2
z . In this case, ifσ2

b → 0 but
σb/σe ≃ O(1), then in general SINRe remains non-zero.

B. Known Eavesdropper CSI

While our focus is on the case where Eve’s CSI is unknown,
it is useful to compare the performance of the artificial noise
scheme with the optimal transmission strategy that takes
knowledge of Eve’s CSI into account. If perfect CSI of the
eavesdropper’s channel is available, then it is known that
the use of artificial interference is suboptimal. The optimal
approach to the problem posed in this paper is for Alice to
transmit with full power using the beamformer that minimizes
the eavesdropper’s SINR given that the intended receiver’s
SINR isS:

min
t

SINRe

s.t. SINRb = S.
(15)

It is straightforward to show that the solution to (15) is
the generalized eigenvectort corresponding to the largest
generalized eigenvalueλmax in the equation

HH
baHbat = λmaxH

H
eaHeat , (16)

wheret is scaled to ensure that SINRb = S, provided that the
transmit powerP is large enough. Clearly, ifNe < Na, thent
will lie in the nullspace ofHea and SINRe = 0. In such cases,
it is preferable from a numerical point of view to calculatet
as the generalized eigenvector with the smallest generalized
eigenvalue in this equation:

HH
eaHeat = λminH

H
baHbat . (17)

IV. IMPACT OF IMPERFECT CSI

The assumption of perfect CSI at the transmitter is ob-
viously impossible to achieve in practice. CSI uncertainty
at Alice can be due to a number of different phenomena,
including estimation error, quantized feedback, or channel
mobility. CSI at the receiver is typically much more accurate,
due to the receiver’s ability to employ rapid channel tracking
techniques based on, for example, decision direction. In this
section, we examine the effect of inaccurate or mismatched



5

CSI between Alice and Bob using a second-order perturbation
analysis of the singular value decomposition (SVD) ofHba,
assuming that the channel error is described as a zero-mean
random matrix with a given covariance. In the simulation
section, we will demonstrate two important aspects of our anal-
ysis. First, we will show that the analysis accurately captures
the effect of imperfect CSI even for relatively large channel
errors, where the magnitude of the perturbation approaches
that of the elements of the channel matrix itself. Second, our
analysis will show that the previously proposed beamforming
algorithms are very sensitive to imperfect CSI, and result in
large degradations in SINR even when the channel perturba-
tion is relatively small. This provides motivation for us to
consider beamforming schemes that are robust to CSI errors,
as developed in Section V.

For the analysis, we assume thatHba is of full rank F =
min (Nb, Na), and we define the singular value decomposition
of the unperturbed channel as follows:

Hba = UΣVH (18)

= [Us uF ]

[

Σs 0
0 σF

]

[Vs vF ]
H (19)

= UsΣsV
H
s + σFuFv

H
F , (20)

whereUs,Vs contain respectively the firstF − 1 left and
right singular vectors whose singular values are found in the
diagonal matrixΣs, anduF ,vF are respectively the left and
right singular vectors corresponding to the smallest singular
valueσF . The partitioning of the SVD will be useful as we
use the perturbation analysis of [25].

For purposes of our analysis, we assume that the CSI error
is confined to Alice, who is assumed to have available the
following perturbed channel estimate:

H̃ba = Hba +∆Hba (21)

where∆Hba is modeled as a zero-mean circularly-symmetric
random matrix with covariance matrix given by

C∆Hba
= E

{

(vec(∆Hba)) (vec(∆Hba))
H
}

,

and vec(·) denotes the column stacking operator. The singular
value decomposition of the perturbed channel can be written
as

H̃ba = ŨsΣ̃sṼ
H
s + σ̃F ũF ṽ

H
F , (22)

where

Ũs = Us +∆Us ũF = uF +∆uF

Σ̃s = Σs +∆Σs σ̃F = σF +∆σF

Ṽs = Vs +∆Vs ṽF = vF +∆vF ,

(23)

and quantities preceded by∆ are perturbations to those in (20).
The analysis of [25] assumes either a fat or square matrix
(Na ≥ Nb in our case), so we perform our derivation for this
case. A similar analysis holds whenNb > Na, except that
we would work with the transpose of the channel matrix, and
we would focus on perturbations to the left rather than right
singular vectors.

It will be convenient for our analysis to also define∆σ1

and ∆v1 as the perturbation to the largest singular value

and the corresponding right singular vectorv1, respectively.
Furthermore, we define∆T′ as the perturbation to theNa−1
right singular vectors ofHba with smallest singular values.
With ∆σ1 defined, the perturbed power allocation factor can
be expressed as:

ρ̃ =
σ2
bS

σ̃2
1P

= ρ
1

(

1 +
2σ1∆σ1+∆σ2

1

σ2

1

) (24)

≈ ρ

(

1− 2∆σ1

σ1

− ∆σ2
1

σ2
1

)

,

(25)

If Alice has an inaccurate estimate of the CSI and both Alice
and Bob are unaware of the CSI mismatch, then the SINR for
Bob is expected to be significantly degraded. There are three
factors that contribute to this degradation:

1) Alice will incorrectly allocate power for data and artifi-
cial noise based oñρ = (σ2

bS)/(σ̃
2
1P ).

2) Alice continues to use (12) to generate the interference
signal, although with imperfect CSI the artificial noise
covariance matrix becomes

Q̃′
z =

(1− ρ̃)P

Na − 1
(T′ +∆T′)(T′ +∆T′)H . (26)

3) Alice will use t = ṽ1 = v1 + ∆v1 as the transmit
beamformer, whereas Bob continues to usewb = Hbav1

as his receive beamformer. Bob’s beamformer will no
longer cancel the artificial interference, causing a sig-
nificant loss of SINR and the bulk of the resulting
performance degradation.

This case of mismatched beamformers and erroneous power
allocation due to imperfect CSI is referred to as the “naive”
scheme.

In the presence of CSI errors, Bob’s average SINR can be
approximated as the ratio of the expected value of the received
signal power to the expected value of the received noise and
interference power. This approximation is valid to the order
of the perturbation analysis assumed in [25], and its accuracy
will be demonstrated later in our simulation results. Usingthis
approximation, the average SINR achieved by Bob under the
naive scheme can be expressed as

SINRnaive
b =

PE
{

ρ̃|vH
1 HH

baHba(v1 +∆v1)|2
}

E
{

vH
1 HH

ba

(

HbaQ̃′
zH

H
ba + σ2

b I
)

Hbav1

} ,

(27)
where the remaining expectation is with respect to∆Hba.
Based on the distribution of∆Hba, we can compute

E
{

vH
1 HH

baHbaQ̃
′
zH

H
baHbav1

}

= σ4
1β̃E

{

vH
1 T̃′

(

T̃′
)H

v1

}

(28)

= σ4
1β̃E

{

vH
1

(

I− ṽ1ṽ
H
1

)

v1

}

≈ −σ4
1βE

{

vH
1 ∆v1 +∆vH

1 v1

}

,

whereβ̃ = (1− ρ̃)P/(Na − 1) andβ = (1 − ρ)P/(Na − 1).

Let Υ = 2∆σ1

σ1

+
∆σ2

1

σ2

1

. Using the familiar relations

Hbav1 = σ1u1 and HH
bau1 = σ1v1, and after dropping

higher-order perturbation terms from the numerator and
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denominator, we obtain the following expression for
SINRnaive

b :

σ2
1ρP

[

1 + E
{

vH
1 ∆v1

}

+ E
{

∆vH
1 v1

}

−E {Υ}
]

−σ2
1β

[

E
{

vH
1 ∆v1

}

+ E
{

∆vH
1 v1

}]

+ σ2
b

. (29)

It is apparent that when perfect CSI is available at Alice (i.e.,
∆v1 → 0 and∆σ1 → 0), (29) reduces to (10).

Next, we obtain the expected values of the perturbation
terms vH

1 ∆v1, ∆σ1, and ∆σ2
1 in (29), the derivations of

which are relegated to the Appendix. For convenience, let
Cij = E

{

(∆Hba):,i (∆Hba)
H
:,j

}

represent the covariance of

columns i and j from ∆Hba, i.e., Cij is the (i, j) block
of C∆Hba

. We also define the matrixG whose(i, j) entry
is given by [G]i,j = vH

F CijvF . The expressions needed to
evaluate Bob’s SINR are given in (30)-(36):

E
{[

VH
s ∆Vs

]}

= −σ2
F

2
DVH

s GVsD (30)

− σ2
F

2
Σ−1

s D
([

(σ2
F + 1)I+D−1

]

×

. . .×UH
s GUsD+ D−1UH

s GUs

)

Σ−1
s

E {∆Σs} ≈
(

σ2
FU

H
s GUsD+UH

s GUs

)

Σ−1
s (31)

−D
(

ΣsV
H
s GVsΣs + . . .

. . .+ σ2
FU

H
s GUs

)

DΣs

+ΣsE
[

VH
s ∆Vs

]

E
{

vH
1 ∆v1

}

= E
{[

VH
s ∆Vs

]}

1,1
(32)

D =
(

ΣsΣ
H
s − σ2

F I
)−1

(33)

E {∆σ1} = E
{

[∆Σs]1,1

}

(34)

E
{

∆σ2
1

}

=
[

UH
s KUs

]

1,1
(35)

[K]i,j = Tr
(

VH
s CijVs

)

. (36)

Therefore, the naive SINR at Bob expressed in terms of the
second-order statistics of∆Hba is obtained by substituting the
expected values in (32), (34), and (32) into (29). For the special
case of i.i.d CSI errors whereC∆Hba

= σ2
HI, the expressions

above simplify considerably since in this caseG = σ2
HI.

Note that Alice’s use of imperfect transmit beamformers
does not implicitly impact the SINR available to Eve. As far
as Eve is concerned, use ofv1 + ∆v1 rather thanv1 as the
transmit beamformer for the desired signal, andT′ + ∆T′

rather thanT′ as the interference precoder, has on average no
effect on her performance since we assume thatHba andHea

are unrelated.

V. ROBUST BEAMFORMING APPROACHES

While the instantaneous CSI perturbation cannot be de-
termined, if Bob has information about the statistics of the
perturbation, then he may take remedial measures to overcome
at least some of the significant SINR degradation that occurs
with the naive scheme. In particular, if Bob has knowledge of
C∆Hba

, then the spatial covariance of the artificial interference
that impacts Bob can be calculated, and incorporated into the
maximum SINR beamformer. In this section, we examine two
such approaches for the case where Alice does not possess

CSI for Eve. The first case corresponds to a frequency-
division duplex (FDD) scenario where Bob estimates the CSI,
quantizes it, and sends this information to Alice via a feedback
channel. In this case, Bob is aware of the CSI used by Alice
for her transmission parameters. In the second case, which
corresponds to a time-division duplex (TDD) scenario, Alice
and Bob obtain individual channel estimates on their own,
and neither is aware of the other’s CSI. In both cases, we
assume that (1) Alice’s transmission allows Bob to obtain an
exact estimate of the current CSIHba (the estimation error
will be negligible compared with errors due to quantization
and channel time variations), and that (2) Bob informs Alice
of the power fractionρ needed to obtain his desired SINR.

A. Robust Beamforming - FDD Case

When Alice has imperfect CSI for Bob and applies a
mismatched transmit beamformer, the interference-plus-noise
portion of Bob’s received signal is, from (3),

ñb = Hbaz
′ + nb ,

with covariance

E
{

ñbñ
H
b

}

= Qint . (37)

In the FDD case, Bob is aware of the value ofH̃ba since this
was information he computed and fed back to Alice. He can
thus determine the exact value ofQint as follows:

Qint = H̃baQ̃
′
zH̃

H
ba + σ2

bI , (38)

as well as the exact beamformert̃ = ṽ1 that Alice uses for the
information-bearing signal. He is then in turn able to calculate
the optimal receive beamformer that maximizes SINR:

wopt = Q−1
intHbat̃ . (39)

The resulting SINR at Bob is given by

S = ρP t̃HHH
baQ

−1
intHbat̃ . (40)

B. Robust Beamforming - TDD Case

In the TDD case, Bob is unaware of the exact values of
Q̃′

z and ṽ1 that Alice uses. However, assuming Bob knows
the statistics of the CSI error, in particularC∆Hba

, he can
compute expected values for these quantities and use these
as estimates to determine his receive beamformer. Using the
second-order perturbation analysis of the previous section, the
expected interference-plus-noise covariance matrixQ̂int can
be computed as

Q̂int = E
{

Hbaz
′z′

H
HH

ba + nbn
H
b

}

(41)

= β̃
(

HbaH
H
ba − σ2

1u1u
H
1

)

− βσ2
1u1E {∆v1}HH

ba

− βσ1HbaE {∆v1}uH
1 + σ2

b I.

Furthermore, Alice’s transmit beamformer can be estimatedas

t̂ = E (ṽ1) = v1 + E (∆v1) . (42)

Both of the above quantities require knowledge of∆v1. In
the Appendix, we show that

E {∆v1} = E
{

[∆Vs]:,1

}

, (43)
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where

E {∆Vs} = vFE
{

P̄1

}

+VsE
{

P̄2

}

(44)

E
{

P̄1

}

= (1 + σ2
F )v

H
F GVsD

H + σ2
Fv

H
F G′′VsD

H

− σFu
H
F G′Us

(

I+ σ2
FD

H
)

Σ−1
s (45)

+ σFu
H
F GUsD

H
(

σ2
FD

H + I
)

Σ−1
s

[G]i,j = vH
F CijvF (46)

[G′]i,j = Tr
(

VsD
HVH

s Cij

)

(47)

[G′′]i,j = Tr
(

UsD
HUH

s Cij

)

, (48)

and where the expected value ofP̄2 = VH
s ∆Vs is given in

(30). The interference-plus-noise covariance matrix is obtained
by substituting (43) into (42). Bob’s receive beamformer is
calculated as

ŵopt = Q̂−1
intHbat̂ . (49)

Since Q̂int 6= Qint, the resulting SINR for Bob must be
determined as follows:

SINRb =
ρP

∣

∣

∣
t̂HHH

baQ̂
−1
intHbat̃

∣

∣

∣

2

t̂HHH
baQ̂

−1
intQintQ̂

−1
intHbat̂

. (50)

VI. SIMULATION RESULTS

We present some examples that show the SINR and secrecy
capacity performance of Bob and Eve for various array sizes,
target performance levels, and array perturbations. In allsim-
ulations, the channel matrices were assumed to be composed
of independent, zero-mean Gaussian random variables with
unit variance (γ2

ea = 1). The channel perturbation covariance
matrix is assumed to beC∆Hba

= σ2
HI which corresponds to

the case where the CSI errors are independent and identically
distributed. In the simulation plots,σH is specified in dB ac-
cording to20 log10 σH . For example, a value ofσH = −20dB
corresponds toσH = 0.1, indicating channel perturbations on
the order of 10% of the channel coefficients themselves. All
displayed results are calculated based on an average of 3000
independent trials. The background noise power was assumed
to be the same for both Bob and Eve:σ2

b = σ2
e = 1, and

in all cases the available transmit power was assumed to be
P = 100, or 20dB. In situations where the desired SINR for
Bob cannot be achieved with the givenP , rather than indicate
an outage, we simply assign all power to Bob and zero to
artificial interference and average the resulting SINR withthe
others.

A. Effects of Eavesdropper CSI

Figure 1 illustrates the performance of the algorithms when
S = 20dB andNe ∈ [1, 20]. The number of antennas for
Alice and Bob are assumed to be equal, and results are shown
for Na = Nb = 4, 8. The desired SINR for Bob was set to
20dB, and the available transmit power was sufficient in this
simulation for the target to be met in all 3000 trials. Three
curves are included for Eve, showing the performance of the
algorithms for different assumptions about the eavesdropper’s
CSI (ECSI): (1) when it is unknown, in which case the artificial
noise approach of Section III-A is used, (2) when it is perfectly
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Fig. 1. SINR versus number of antennas for Eve.

known, in which case the generalized eigenvector approach of
Section III-B is used, and (3) when it is imperfectly known,
where again the approach of Section III-B is used, but the
ECSI perturbation is unaccounted for. The perturbed ECSI
was generated by the following equation, assumingγ = 0.05
(which corresponds to a perturbation of about -13dB):

H̃ea =
√

1− γHea +
√
γWea , (51)

whereHea and Wea are independent, zero-mean Gaussian
with unit-variance elements, and hence so isH̃ea. In the
simulations, the actual channel isHea, but Alice assumes it is
H̃ea. The assumption of perfect ECSI provides a significant
benefit whenNe < {Na, Nb}; in fact, the eavesdropper’s
SINR can theoretically be driven to zero. The gain when
Ne ≥ {Na, Nb} is not as large, particularly forNa = Nb = 4,
when it is less than 2dB. Much of the benefit of ECSI is lost
however if it is imprecisely known; even for this case when
the perturbation is relatively small, we see that for smallNe

it is often better to ignore the ECSI than to use a perturbed
version of it.

B. SINR Degradation Analysis

In Figure 2, we compare the SINR expressions for the naive
case based on second-order perturbation theory derived in
Section IV with measured SINR values from simulations for
a range of channel perturbation powers. The set of channel
matrices have dimensions of eitherNa = Nb = Ne = 2
or Na = Nb = Ne = 5, and the desired SINR for Bob
is set to S = 20dB. For both antenna configurations, the
second-order approximations appear to be accurate up to about
σH = −10dB, which corresponds toσH = 0.32. This is a
relatively large perturbation for channels with unit-variance
elements. We see that inaccurate CSI substantially impacts
Bob’s SINR, even for relatively small values ofσH . For
example, whenNa = 10, Bob loses 6dB of SINR for the
relatively small valueσH = 0.1.
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C. Robust Beamforming Results
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Fig. 3. Measured SINR values versus desired SINR for Bob and Eve with
perfect and imperfect CSI at Alice forNa = Nb = Ne = 5 antennas,
σH = −10dB.

Figure 3 shows the SINR for Bob and Eve as a function of
S for various approaches, including the robust beamforming
schemes presented earlier. The channel perturbation poweris
fixed atσH = −10dB, and we assumeNa = Nb = Ne = 5.
It is evident that the naive schemes incur a significant SINR
penalty for relatively small channel perturbations, with the
achieved SINR at the intended receiver being 15-17dB below
the target SINR and 6-7dB worse than the SINR for Eve. Note
however that the robust receive beamforming schemes are able
to restore Bob’s SINR performance at or near the desired
value. Obviously, the presence of uncancelled artificial inter-
ference due to imperfect CSI requires Alice to use additional
power for the desired signal, thus reducing the amount of noise
available to jam the eavesdropper. This is why Eve’s SINR

increases with the robust beamforming methods. As expected,
Eve’s performance is best degraded in the FDD case where
Bob has exact knowledge of Alice’s transmission scheme1.
Note also that Eve’s SINR increases slightly for high values
of S. This is due to the fact that asS increases, there will
be an increasing number of cases where no power is available
for jamming. This also inadvertently helps Bob in the naive
case, since the lack of jamming eliminates interference forthe
desired signal.
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Fig. 4. Secrecy capacity versus desired SINR for Bob with perfect and
imperfect CSI at Alice forNa = Nb = Ne = 5 antennas,σH = −10dB.

Figure 4 plots the secrecy capacity that results for the case
considered here, for various CSI assumptions. The case where
Eve’s CSI is perfectly known is shown for reference, and
obviously for this case the best secrecy capacity is obtained.
As expected, the benefit of knowing the eavesdropper’s CSI is
largest when Bob demands a high QoS, and minimal for low
values ofS where more resources are available for jamming.
The robust beamforming strategies provide non-zero secrecy
capacity for all values ofS, and recover a reasonable fraction
of the performance available in the perfect CSI case. However,
in the naive case, the secrecy capacity is reduced to zero
since Eve’s SINR is always larger than Bob’s. This assumes
of course that Bob does nothing to counteract the interference,
while Eve uses an optimal beamformer that requires exact
knowledge of the interference covariance.

The effect of the magnitude of the channel perturbation
on SINR performance is illustrated in Figure 5 for the case
studied in the previous figures, assumingS = 20dB. Robust
beamforming in the FDD case realizes little performance
loss for values ofσH up to -15dB, while the threshold for
degradation in the TDD case is somewhat lower. Recall that
Figure 4 showed a positive secrecy capacity for the TDD case

1This does not imply that FDD systems are better than TDD systems for
this application; one may expect that in practice the value for σH will be
somewhat larger in the FDD case due to quantization and the added delay
required for feedback.
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Fig. 5. Average SINR for Bob and Eve as a function ofσH for Na =

Nb = Ne = 5 antennas andS = 20dB.

at σH = −10dB, even though in Figure 5 both Bob and Eve
appear to have approximately the same average SINR. This is
because the secrecy capacity must be non-negative; a positive
result is obtained when Bob’s SINR exceeds Eve’s, but the
capacity is assumed to be zero otherwise.

VII. CONCLUSIONS

We have presented beamforming-based approaches for im-
proving the secrecy of the wireless communications between
two multi-antenna nodes. The algorithms allocate transmit
power in order to achieve a target SINR for a desired user,
and then broadcast the remaining available power as artificial
noise in order to disrupt the interception of the signal by a
passive eavesdropper. The proposed approaches rely heavily
on the availability of accurate CSI, and their performance
can be quite sensitive to imprecise channel estimates. As
a result, we conducted a detailed second-order perturbation
analysis in order to precisely quantify the effects of inaccurate
CSI. Simulations were used to demonstrate the validity of the
analysis, and to illustrate the sensitivity of algorithms that
depend on precise CSI. To reduce the impact of the CSI
errors, we proposed two robust beamforming schemes that
are able to recover a large fraction of the SINR lost due to
the channel estimation errors. These techniques were shown
to perform very well for moderate CSI errors, but ultimately
a large enough channel mismatch can eliminate the secrecy
advantage of using artificial noise.

APPENDIX

Define D ,
(

ΣsΣ
H
s − σ2

F I
)−1

, as well as the following
matrices:

Ess , UH
s ∆HbaVs (52)

Esn , UH
s ∆HbavF (53)

Ens , uH
F ∆HbaVs (54)

Enn , uH
F ∆HbavF . (55)

Using the results of [25], the perturbation inVs can be
approximated up to second order in∆Hba as

∆Vs = vF P̄1 +VsP̄2 (56)

whereP̄1 ≈ −Q̄H
1 and P̄2 ≈ − 1

2
F̄F̄

H
, and

F̄ = −σFDEH
ns − σ2

FΣ
−1
s DEsn −Σ−1

s Esn, (57)

Q̄1 ≈ D
(

EssDΣsE
H
ns − σFDEH

nsE
H
nn

)

Σn (58)

−DEH
nsEnn + σ2

FD
(

EH
ssDEsn −DEH

nsEnn

)

+ σ2
FΣ

−1
s D

(

EssΣ
−1
s Esn −DEsnΣ

H
n Enn + . . .

. . .+ σ2
FEssΣ

−1
s DEsn

)

+Σ−1
s EssΣ

−1
s

(

Esn + σ2
FDEsn

)

−σFΣ
−1
s DEsnEnn

+ σFΣ
−1
s D

(

σ2
FEssDEH

ns − σ2
FDEsnE

H
nn −EsnE

H
nn

)

+ σFΣ
−1
s EssDEH

ns + F̄ .

Exploiting the circular symmetry of∆Hba in (59) leads to

E
{

P̄1

}

= (1 + σ2
F )E

{

EH
nnEns

}

DH (59)

+ σ2
FE

{

EH
snD

HEss

}

DH

− σFE
{

EnsD
HEH

ss

} (

I+ σ2
FD

H
)

Σ−1
s

+ σFE
{

EnnE
H
sn

}

DH
(

σ2
FD

H + I
)

Σ−1
s .

Next, recall that Vs⊥vF and VH
s Vs = I, so that

VH
s ∆Vs = P̄2. After some manipulations based on the

circular symmetry of∆Hba, we obtain

E
[

VH
s ∆Vs

]

= −σ2
F

2
Σ−1

s

(

(σ2
F + 1)DE

{

EsnE
H
sn

}

DH + . . .

. . .+ E
{

EsnE
H
sn

}

DH + E
{

EsnE
H
sn

})

Σ−1
s

− σ2
F

2
DE

{

EH
nsEns

}

DH . (60)

The perturbation to the singular valuesΣs can be approxi-
mated as

E {∆Σs} ≈
(

σ2
FE

{

EsnE
H
sn

}

DH + E
{

EsnE
H
sn

})

Σ−1
s

+ E
{

ΣsP̄2 −P2Σs

}

, (61)

whereP2 ≈ − 1

2
FFH is a component of the perturbation in

∆Us, and

F = −D
(

ΣsE
H
ns + σFEsn

)

. (62)

From the expression forP2:

E {P2Σs} = D
(

ΣsE
{

EH
nsEns

}

Σs (63)

+ σ2
FE

{

EsnE
H
sn

}

)DHΣs.

It remains to express (59) and (61) in terms
of the second-order statistics of ∆Hba. Let
Cij = E

{

(∆Hba):,i (∆Hba)
H
:,j

}

represent the covariance of
the ith and jth columns of∆Hba. It is straightforward to
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show that

E
{

EsnE
H
sn

}

= UH
s E

[

∆HbavFv
H
F ∆HH

ba

]

Us

= UH
s GUs (64)

E
{

EH
nsEns

}

= VH
s G′′Vs (65)

E
{

EnnE
H
sn

}

= uH
F GUs (66)

E
{

EH
nnEns

}

= vH
F G′′Vs (67)

E
{

EnsD
HEH

ss

}

= uH
F G′Us (68)

E
{

EH
snD

HEss

}

= vH
F G′′Vs , (69)

where the(i, j) entry of G is [G]i,j = vH
F CijvF , [G′]i,j =

Tr
(

VsD
HVH

s Cij

)

, and [G′′]i,j = Tr
(

UsD
HUH

s Cij

)

.
The required expected values in (32), (34), (32) and (43)

immediately follow from the results derived above.
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