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Circularity of the STFT and spectral kurtosis for
time-frequency segmentation in Gaussian

environment
Fabien Millioz*, Member, IEEEand Nadine Martin,Member, IEEE

Abstract—This paper investigates the circularity of Short Time
Fourier Transform (STFT) coefficients noise only, and proposes
a modified STFT such that all coefficients coming from white
Gaussian noise are circular. In order to use the spectral kurtosis
(SK) as a Gaussianity test to check if signal points are present
in a set of STFT points, we consider the SK of complex
circular random variables, and its link with the kurtosis of
the real and imaginary parts. We show that the variance of
the SK is smaller than the variance of the kurtosis estimated
from both real and imaginary parts. The effect of the non-
circularity of Gaussian variables upon the spectral kurtosis of
STFT coefficients is studied, as well as the effect of signal
presence. Finally, a time-frequency segmentation algorithm based
on successive iterations of noise variance estimation and time-
frequency coefficients detection is proposed. The iterations are
stopped when the spectral kurtosis on non-detected points reaches
zero. Examples of segmented time-frequency space are presented
on a dolphin whistle and on a simulated signal in non-white and
non-stationary Gaussian noise.

Index Terms—Short time Fourier transform, circularity, spec-
tral kurtosis, time-frequency segmentation, statisticalsegmenta-
tion, time-frequency analysis

EDICS: SSP-NSSP

I. I NTRODUCTION

Time-Frequency representations are useful tools for
non-stationary signal analysis as they describe the spectral
energy along time. A segmentation task is helpful in such
a signal characterization by highlighting time-frequency
patterns containing a signal of interest. Some enhancements
to the readability of time-frequency representations already
exist. An example is Coateset al. [1], which describes the
time-frequency plane by a set of basis functions. Chassande-
Mottin et al. propose a time-frequency segmentation based
on the reassignment method [2], which splitting the time-
frequency plane into different basins of attraction, wherethe
attractors are the time-frequency locations that are invariant
to reassignment.

Considering a deterministic signal embedded in a white
stationary Gaussian noise, we have already proposed a spec-
trogram segmentation ([3],[4]) based on a deterministic model,
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which has been successfully applied to automatic speech
recognition ([5], [6]). More recently, we proposed a second
algorithm based directly on the Short Time Fourier Transform
(STFT) ([7],[8]).

In this paper, we focus on the STFT segmentation and
extend the signal model. We consider any kind of signals[m]
embedded in a centered white Gaussian noisew[m] of variance
σ2

w.

x[m] = s[m] + w[m] (1)

s[m] is the signal to be segmented, which contains all the non-
stationary parts ofx[m], which may be either deterministic
or stochastic. The only condition ons[m] is that it is not a
stationary white Gaussian signal, which is the definition ofthe
noise. Our goal is to determine what time-frequency points
contain part of thes[m] energy.

To that end, we need to know the distribution of time-
frequency coefficients containing noise only. Section II in-
vestigates the non-circularity of some coefficients. A circular
complex random variable has a probability density indepen-
dent of its argument, permitting an easier way to handle it. We
proposes a modified STFT where all noise coefficients have
the same circular distribution.

A criterion is needed to characterize the noise. Section III
recalls the spectral kurtosis of a circular random variable, and
studies the link between the spectral kurtosis of a complex
variable and the kurtosis of the real or imaginary parts of
this variable. The influence of non-circularity for Gaussian
coefficient on the spectral kurtosis is detailed, as well as the
influence of the presence of signal in the STFT.

Section IV describes the proposed algorithm. Examples of
time-frequency segmentations are given on a real-life signal,
a dolphin whistle, and on a synthetic signal embedded in non-
white and non-stationary Gaussian noise.

II. CIRCULARITY OF THE TIME FOURIER TRANSFORM

The STFT of a discrete signalx[m], denoted asXφ[n, k], is
a collection ofN Fourier Transforms, computed on windowed
segments ofx[m] centered at timen. Xφ[n, k] describes the
spectral content’s change over time. The STFT is a complex-
valued transformed defined as

Xφ[n, k] =

n+
Mφ−1

2∑

m=n−
Mφ−1

2

x[m]φ[m − n] exp

(
−2iπk

m

Mφ + Z

)
(2)

= Xr
φ[n, k] + iX i

φ[n, k] (3)
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n andk are time and frequency indexes respectively, andφ[m]
an Mφ-length window. Z is the zero padding, which gives
K = Mφ + Z frequency bins.Xr

φ[n, k] and X i
φ[n, k]are the

real and imaginary parts ofXφ[n, k] respectively. We consider
an energy-normalized window, so that

+
Mφ−1

2∑

m=−

Mφ−1

2

φ[m]2 = 1. (4)

To simplify notations, the range of summation is omitted in
the following.

In a detection context, we need to determine the probability
density of time-frequency coefficients containing noise only.

Consideringx[m] as a centered white Gaussian noisew[m]
of variance σ2

w , the STFT coefficients ofw[m], denoted
Wφ[n, k], are Gaussian complex variables. Their variance is
given by

Var(Wφ[n, k]) = E(Wφ[n, k]Wφ[n, k]∗) = E
(
|Wφ[n, k]|2

)

(5)

= E
(
W r

φ [n, k]2
)

+ E
(
W i

φ[n, k]2
)

(6)

According to equation (2),W r
φ [n, k] andW i

φ[n, k], the real
and imaginary parts ofWφ[n, k] respectively, are the sum
of Mφ independent centered Gaussian variables. Therefore,
W r

φ [n, k] and W i
φ[n, k] are centered Gaussian variables with

second-order moment given by

E(W r
φ [n, k]2) = σ2

w

∑

m

φ[m − n]2 cos(−2πk
m

Mφ + Z
)2,

(7)

E(W i
φ[n, k]2) = σ2

w

∑

m

φ[m − n]2 sin(−2πk
m

Mφ + Z
)2.

(8)

Substituting (7) and (8) into (6) yields

Var(Wφ[n, k]) = E(W r
φ [n, k]2) + E(W i

φ[n, k]2) = σ2
w. (9)

assuming the normalized window (4).
As a result, we get the well-known result that a STFT

coefficient of Gaussian white noise of varianceσ2
w is a

Gaussian complex variable with the same variance.

A. Why circularity?

A complex variablez is circular if z and ejaz have the
same probability distribution for anya [9]. In other words,
the probability distribution ofz is independent of its argu-
ment. A Gaussian complex variable is circular if its real and
imaginary parts have the same probability distribution andare
independent. In this case, the spectrogram, defined as

Specw[n, k] = W r
φ [n, k]2 + W i

φ[n, k]2, (10)

is the sum of two independent squared Gaussian of the same
variance, and consequently have aχ2 distribution.

The continuous Fourier transform leads to circular variables
[9], but not the discrete Fourier transform. Koopmans [10] and
Johnson and Long [11] noticed that spectrogram coefficients

do not have aχ2 distribution atk = 0 and k =
Mφ

2 for a
boxcar window without zero padding, and atk = 0, k = 1,
k =

Mφ

2 − 1 and k =
Mφ

2 for a Hanning window without
zero padding.

B. Non-circularity of the Short-Time Fourier Transform

To study the circularity of the discrete STFT, we propose to
compare the second order moments ofW r

φ [n, k] andW i
φ[n, k]2

and their correlation.Wφ[n, k] is circular if its real and
imaginary parts are uncorrelated and have the same variance.
We defineα[n, k] as the second-order moment E(W r

φ [n, k]2)
normalized byσ2

w so that

α[n, k] =
E(W r

φ [n, k]2)

σ2
w

(11)

=
∑

m

φ[m − n]2 cos(−2πk
m

Mφ + Z
)2. (12)

Using trigonometric identities, equation (12) becomes

α[n, k] =
1

2
+

1

2

∑

m

φ[m]2 cos(4πk
m + n

Mφ + Z
). (13)

Given equations (9) and (12), we obtain a new expression of
equations (7) and (8)

E(W r
φ [n, k]2) = α[n, k]σ2

w (14)

E(W i
φ[n, k]2) = (1 − α[n, k])σ2

w. (15)

Parameterα[n, k] characterizes the second-order moments
of the Gaussian distributions ofW r

φ [n, k] andW i
φ[n, k].

Figure 1 shows the variation of this parameter for a STFT,
computed with a Blackman window of 31 points, an overlap
of 30 points between two consecutive windows and 128
frequency bins. Theα[n, k] leading to different real and
imaginary second-order moments are located around the low
and high frequencies.

For discrete frequenciesk far enough away from zero and
the index of the Shannon frequencyMφ+Z

2 , the cosine function
in equation (13) has a high enough frequency compared to
the variations ofφ[m]2 and correctly nullifies the second sum
in equation (13). We thus haveα[n, k] = 1

2 = 1 − α[n, k].
In other words, bothW r

φ [n, k] and W i
φ[n, k] have the same

Gaussian distribution of varianceσ
2
w

2 . In the other case,
for k close to zero andMφ+Z

2 , the edges of the window
will have an effect on the value ofα[n, k], which becomes
different from 1

2 , leading to a different Gaussian distribution
for W r

φ [n, k] andW i
φ[n, k].

To complete the characterization of the distribution of
Wφ[n, k], we consider the correlation coefficient between the
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Fig. 1. (left), α[n, k] variations on a STFT with a 31-point Blackman window, a 30-point overlap and 128 frequency bins. White area concernsα values
between 0.485 and 0.515. (middle), cross-section ofα[n, k] variations at frequenciesk = 0 to 4. (right), cross-section ofα[n, k] values at timen = 20, 32, 48
and64, over k = 0 to 10 only.
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Fig. 2. (left), ρ[n, k] variations on a STFT with a 31-point Blackman window, a 30-point overlap and 128 frequency bins. Time-frequency coefficients
whoseα[n, k] coefficient is

√

12 (Figure 1) have a correlation coefficient equal to zero. (middle), cross-section ofρ[n, k] variations at frequenciesk = 1 to
4. (right), cross-section ofρ[n, k] values at timen = 20, 32, 48 and64, over k = 0 to 10 only.

real and imaginary parts ofWφ[n, k], denotedρ[n, k]

ρ[n, k] =
E(W r

φ [n, k]W i
φ[n, k])

√
E(W r

φ [n, k]2)E(W i
φ[n, k]2)

(16)

=
σ2

w

∑
m φ[m]2 cos(−2πk m+n

Mφ+Z
) sin(−2πk m+n

Mφ+Z
)

σ2
w

√
α[n, k](1 − α[n, k])

(17)

=
1

2
√

α[n, k](1 − α[n, k])

∑

m

φ[m]2 sin(−4πk
m + n

Mφ + Z
)

(18)

This definition assumes thatα[n, k] 6= 0 and α[n, k] 6= 1. In
those cases, either the real or imaginary part ofWφ[n, k] is
zero, therefore the correlation between the two parts is zero
while the correlation coefficient is not defined.

Figure 2 shows the variation ofρ[n, k] for a STFT
computed with a Blackman window of 31 points, an overlap
of 30 points between two consecutive windows and 128
frequency bins. Likeα[n, k], values of ρ[n, k] leading to
a non-circularity of Wφ[n, k], that is non-zero values, are
located around the low and high frequencies.

To studyα[n, k] andρ[n, k], we rewrite equations (12) and
(18)

α[n, k] =
1

2
+

1

2
ℜ(Φ[n, k]), (19)

ρ[n, k] =
1

2
√

α[n, k](1 − α[n, k])
ℑ(Φ[n, k]) (20)

with a functionΦ[n, k] such that

Φ[n, k] = e
(−2jπ2k n

Mφ+Z
) ∑

m

φ[m]2e
(−2jπ2k m

Mφ+Z
)

(21)

The variations ofα[n, k] and ρ[n, k] are both described by
Φ[n, k]. Φ[n, k] (21) is made of the product of two terms:

a phase terme
(−2jπ2k n

Mφ+Z
)

depending on the time and
frequency indexes[n, k], and the Discrete Fourier Transform
(DFT) of the squared windowφ[m]2.

When Φ[n, k] is zero,α[n, k] is equal to 1
2 and ρ[n, k] is

zero, that isWφ[n, k] is circular. On the other hand,Wφ[n, k]
is not circular on two frequency bands depending on the DFT
of a window function, whereΦ[n, k] is not zero. The STFT
is not circular for normalized frequencies around zero and1

2 ,
depending on the window’s lengthMφ, the zero paddingZ
and the window’s type.

Figure 3 illustrates this phenomenon by showingΦ[n, k]
absolute values for various STFT parameters.

C. Rectified Short Time Fourier Transform

The STFT definition (2) is not unique. The time translation
may switch from the windowφ[m] to the signalx[m], leading
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Fig. 3. Variations ofφ[n, k] (21) for various STFT parameters, for the 25 first frequency bins. (left), impact of the number of computed frequenciesMφ +Z,

for a Blackman window of 31 points. The last blue point correspond to thek =
Mphi

2
− 1. (middle), impact of the lengthMφ of a Blackman window, for

256 frequency bins. (right), impact of the window’s type, for Mφ = 31 andMφ +Z = 256. WhenΦ[n, k] is zero,α[n, k] is equal to1

2
andρ[n, k] is equal

zero, soWφ[n, k] is circular.

to1.

Xφ[n, k] =

Mφ−1

2∑

m=
Mφ−1

2

x [n + m] φ[m]e

“

−2jπk m
Mφ+Z

”

(22)

Using (22) instead of (2) makes the second order moment of
the real and imaginary parts ofWφ[n, k] independent from the
time indexn. The functionΦ[n, k] of (21) becomes

Φ[n, k] =
∑

m

φ[m]2e
(−2jπ2k m

Mφ+Z
)
= Φ[0, k] (23)

Φ[n, k] does not depend onn, so do α[n, k] and ρ[n, k].
Additionally, assuming that window functionsφ[m] are even
and using Euler’s formula, (23) is

Φ[n, k] = φ[0]2 +

+Mφ−1

2∑

m=1

φ[m]2
(

exp(−2jπ2k
m

Mφ + Z
)... (24)

+ exp(2jπ2k
m

Mφ + Z
)
)

(25)

= φ[0]2 + 2

+Mφ−1

2∑

m=1

φ[m]2 cos(4πk
m

Mφ + Z
) (26)

Therefore, Φ[n, k] is real. According to equation (20),
coefficient correlationφ[n, k] between the real and imaginary
parts is zero for all time-frequency points.

Using STFT defined by (22) and an even window function
make the correlation between the real and imaginary parts
disappear. However, the variances of the real and imaginary
parts are not equal everywhere on the time-frequency plane,
depending onα[n, k].

In order to get a circular STFT, we propose arectified STFT

1This definition is the one used in theTime-Frequency Toolbox. This
Toolbox is a collection of about 100 free scripts for GNU Octave and Matlab
developed for the analysis of non-stationary signals usingtime-frequency
distributions. http://tftb.nongunu.org
Definition (2) is the definition used in Matlab.

denotedXφ[n, k]′ = Xr
φ[n, k]′ + iX i

φ[n, k]′, such as

Xr
φ[n, k]′ =Xr

φ[n, k],

X i
φ[n, k]′ =X i

φ[n, k], if α[n, k] = 0 or α[n, k] = 1 (27)

Xr
φ[n, k]′ =Xr

φ[n, k]/
√

2α[n, k],

X i
φ[n, k]′ =X i

φ[n, k]/
√

2(1 − α[n, k]) otherwise. (28)

Like classic STFT, all rectified STFT coefficients of a white
Gaussian noiseWφ[n, k]′ have a variance equal toσ2

w, but
now have the variances of their realW r

φ [n, k]′ and imaginary

W i
φ[n, k]′ both equal toσ2

w

2 .

The rectified STFT with an even window function is circular
for all time-frequency coefficients. Consequently,rectified
spectrogramcoefficients of noise only

Specw[n, k]′ = W r
φ [n, k]′2 + W i

φ[n, k]′2, (29)

have a χ2 distribution, with one degree a freedom if
α[n, k] = 0 or 1, or with two degree of freedom otherwise.

Huillery et al [12] shows that aχ2 distribution with two
degree of freedom is a good approximation of a single spec-
trogram coefficient, even with correlated noise, conditionally
that the window function has null boundaries. Here, we aim to
use a singleχ2 distribution with two degree of freedom to ap-
proximate the distribution of all spectrogram coefficients, and
to compare it with the distribution of all rectified spectrogram
coefficients.

We use the Kullback-Leibler divergenceDKL(p, q) to mea-
sure the distance between theχ2 distribution and the distribu-
tion of the classic or rectified spectrogram. It is calculated as
[13]

DKL(p, q) =

∫
p(x) log

(
p(x)

q(x)

)
dx (30)

As the natural logarithm is used in this expression, the
Kullback-Leibler divergence unit is the ’nat’. This divergence
is null if the two distributionsp andq are the same.

Figure 4 show the Kullback-Leibler divergence between
respectively the spectrogram (10) and the rectified spectrogram
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Fig. 4. Kullback-Leibler divergence between aχ2 distribution with two
degree of freedom and the distribution of a spectrogram of a 2000 points
white Gaussian noise (solid line) and the distribution of a rectified spectrogram
(dashed line), for several windows. On left, STFT are computed without
overlap, and a zero padding such asMφ + Z = 4Mφ. On right, STFT
are computed with an overlap of0.75Mφ points, and a zero padding such as
Mφ + Z = 4Mφ. Rectified spectrogram leads to a better approximation by
a χ2 distribution.

(29), and theχ2 distribution with two degree of freedom which
is the reference. The divergences are computed from 1000 runs
of the spectrogram of a white Gaussian noiseb[m] of 2000
points.

These results allows us to conclude that the rectified spec-
trogram distribution is better approximated by aχ2 distribution
than the usual spectrogram distribution, especially for low
window lengthMφ.

III. SPECTRAL KURTOSIS FORNOISE CHARACTERIZATION

This section investigates the use of the spectral kurtosis of
the STFT in the framework of noise characterisation.

The kurtosisK(x) of a random variablex is the fourth
normalized cumulant. Considering a real centered random
variable, the kurtosis is

K(x) =
E(x4)

E(x2)2
− 3 (31)

A kurtosis for a complex random variablez has been defined

in [14], and is called spectral kurtosisKS(x)

KS(z) =
E(z2z∗2)

E(zz∗)2
− 2 (32)

A real Gaussian random variable has a kurtosis equal to
zero, whereas a complex Gaussian variable has a spectral
kurtosis which is equal to zero. We propose to use kurtosis
for characterization if a set of STFT points is issued from a
Gaussian complex random variable, namely noise. First, the
link between kurtosis and spectral kurtosis is made, and their
relative variance is described. Second, the influence of the
non-circularity of noise coefficients on the spectral kurtosis
is studied, which shows the interest of the rectified STFT
presented in section II. Finally, we show the influence of signal
in a set of noise coefficients on the spectral kurtosis in order to
determine a way of using it in a time-frequency segmentation
algorithm.

A. Link between kurtosis and spectral kurtosis of circular
variable

STFT coefficients of noise may only be approximated to
be circular. In this section, we consider a random circular
complex variablez = a + jb. Spectral kurtosis ofz can be
given in regard to the kurtosis of its real or imaginary parts.

The variance ofz is

E(zz∗) = E(a2 + b2) = E(a2) + E(b2) = 2E(a2) (33)

The fourth moment is

E(z2z∗2) = E(a4 + b4 + 2a2b2) = 2E(a4) + 2E(a2b2) (34)

Considering thata = z+z∗

2 andb = z−z∗

2i
, (34) becomes

E(z2z∗2) = 2E(a4) −
1

8
E(z4 + z∗4 − 2z2z∗2) (35)

From the circularity ofz we deduce that both E(z4) and
E(z∗4) are both zero. Consequently, the fourth moment ofz
is

E(z2z∗2) =
3

8
E(a4) (36)

Substituting (36) and (33) into (31) and (32), the ratio of
the spectral kurtosis relative to the kurtosis of the real part is

KS(z)

K(a)
=

E(z2z∗2) − 2E(zz∗)2

E(zz∗)2
×

E(a2)2

E(a4) − 3E(a2)2
(37)

=
8
3E(a4) − 8E(a2)2

4(E(a4) − 3E(a2)2)
=

2

3
(38)

The spectral kurtosis of a complex circular random variable
is equal to 2

3 of the kurtosis of its real or imaginary parts.
Consequently, spectral kurtosis or usual kurtosis have the
same behaviour.

The variance of a usual kurtosis estimator is approximated
to 24

N
[15], while the variance of spectral kurtosis is approx-

imated by 4
N

[15], whereN is the number of independent
realizations of the random variable. Two phenomena explain
this difference of variance: first, a complex coefficient present
a real and a imaginary part, so there are twice the real



6

independent realizations as the complex realizations. Second,
the ratio between the spectral kurtosis and the kurtosis of its
real or imaginary part is23 (38). Taking into account these two
phenomena, we define an equivalent variance of usual kurtosis,
such that

Vareq(K(x)) =
1

2

(
2

3

)2
24

N
=

4

3

4

N
=

4

3
Var(KS(z)) (39)

Considering the kurtosis estimated on real and imaginary
parts of a complex variable leads to a greater variance than
considering the spectral kurtosis. As a result, only spectral
kurtosis will be used.

B. Influence of non-circularity of the STFT

We now consider a centered complex Gaussian variablez =
a+jb of varianceσ2, such that its real and imaginary parts are
independent, but with different variances. From (14) and (15)
of II-B, ασ2 is the variance of the real parta, and(1− α)σ2

is the variance of the imaginary partb.
The fourth moment ofz (36) becomes

E(z2z∗2) = E(a4 + b4 + 2a2b2) (40)

= E(a4) + E(b4) + 2E(a2b2) (41)

Given thata and b are centered independent real Gaussian
variables, their kurtosis is zero. Then applying equation (31)
to variablesa andb yields

E(z2z∗2) = 3E(a2)2 + 3E(b2)2 + 2E(a2)E(b2) (42)

Substituting the variances ofa (14) andb (15), E(z2z∗2) is

E(z2z∗2) = 3α2σ4 + (1 − α)2σ4 + 2α(1 − α)σ4 (43)

= σ4(3 − 4α + 4α2) (44)

The spectral kurtosis becomes

KS(z) =
E(z2z∗2)

E(zz∗)2
− 2 = (1 − 2α)2 (45)

Spectral kurtosis of a Gaussian complex variable is zero
only for circular variables. The greater the difference in
variance between the real and imaginary parts, the more
the spectral kurtosis differs from zero. Simulations confirm
this result. Spectral kurtosis estimated from a usual STFT
of white Gaussian points of 1000 points, computed with a
Hanning window of 63 points, an overlap of 31 points, and 128
frequency bins leads to 0.055. The spectral kurtosis estimated
from the rectified STFT of the same parameters leads to -
0.006. The absolute value of the bias is divided by ten when
using rectified STFT instead of the usual one.

C. Kurtosis in a STFT with an added signal of interest

The previous section describes the spectral kurtosis for the
Gaussian distribution, corresponding to a STFT containing
noise only. In this paper, the use of the spectral kurtosis aims
to determinate if a set of time-frequency coefficients contains
noise only or a part of the signal. Consequently, the behaviour
of the spectral kurtosis in a STFT with a signal of interest
must be known.
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Fig. 5. On the left, signalxp[m] (46) for p = 500. On the right, evolution
of the kurtoses of the STFT ofxp[m, in function of p. When xp[m] is a
white Gaussian noise, that is forp = 0 or p = 1000, the kurtoses are null.
In other cases, in presence of non-stationary signal, the kurtoses are positive.
Spectral kurtosis is equal to2

3
of the kurtosis of real or imaginary part for

any value ofp.

The spectral kurtosis has already been used as a signal
characterization in the spectrum [14], its value permits a
conclusion to whether a given frequency is stationary or not.

In our case, non-stationary signals in a time-frequency
approach, we only want to differentiate a STFT containing
noise only from a STFT containing noise and signal, regardless
of the analyzed signal.

Given the model of the signal (1), any kind of signal should
be studied. We only consider as a generic example a non-
stationary signalxp[m] of 1000 points, such that

xp[m] = sp[m] + w[m], (46)

with sp[m] =

{
g[m] for m ≤ p

0 otherwise,
(47)

wherew[m] is a white Gaussian Noise of varianceσ2
w = 1 and

g[m] a white Gaussian Noise of varianceσ2
x = 3. Signalsp[m]

is non-stationary, described by its parameterp, indicating the
number of points wherex[m] exists. Given thats[m] is white,
a proportion ofp/1000 points in the time domain wheresp[m]
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is non-zero leads to a proportion ofp/1000 points in the time-
frequency domain where the STFT ofsp[m] is non-zero.

Figure 5 shows on the leftxp[m] for p = 500 and on the
right the evolution of the kurtoses of all STFT coefficients with
respect top. For p = 0, x0[m] = w[m] is a white Gaussian
Noise of variance 1, the kurtoses are null. On the other hand,
for p = 1000, xp[m] = g[m] + w[m] is a white Gaussian
noise of variance3 + 1 = 4, its kurtosis is null. Between
these two extreme cases, the signalxp[m] is a mixture of two
Gaussian variables, that is to say it is not Gaussian anymore,
and the kurtoses are positive. As stated in (38), this figure
shows that the spectral kurtosis is2

3 of the kurtosis of the real
or imaginary parts of the STFT.

Time-frequency representations are meant to concentrate
energy on some time-frequency areas; a few points, containing
signal energy, will have great values while other will contain
small values, only noise energy. In other words, a set of STFT
coefficients tends to be super-Gaussian, and to have a positive
kurtosis, as illustrated on figure 5.

Consequently, we assume that a positive spectral kurtosis
of a set of STFT points means that some of these points
contain signal.

Next section proposes the use of the spectral kurtosis of the
STFT coefficients as a Gaussianity test for a time-frequency
segmentation algorithm.

IV. STATISTICAL SEGMENTATION OF THERECTIFIED

STFT

In this section, we propose an update of the time-frequency
segmentation algorithm proposed in ([3],[7]). Considering the
model of signalx[m] = s[m] + w[m] (1), wheres[m] is an
unknown signal to segment, andw[m] a white Gaussian noise
of unknown varianceσ2

w, the goal of the segmentation is to
determine automatically what are the time-frequency locations
where there is a part of the signals energy. In other words,
we aim to determine if a time-frequency coefficient contains
noise only or not.

A. Principle

a) Signal detection:Section II shows that a coefficient
of the rectified STFT containing noise only has a complex
circular Gaussian distribution. In the presence of a signals[m],
due to the linearity of the STFT, consequently of the rectified
STFT, the time-frequency coefficients become

Xφ[n, k]′ = Sφ[n, k]′ + Wφ[n, k]′ (48)

The problem is to discriminate coefficients for whichSφ[n, k]′

is non-zero. Given thats[m] is unknown,Sφ[n, k]′ is also
unknown, and may have a zero-mean. Consequently, we
consider the second-order moment of (48)

E(Xφ[n, k]′2) = γs[n, k]′2 + σ2
w (49)

whereγs[n, k]′2 is the second order moment ofSφ[n, k]′ only.
A time-frequency coefficient containing a signal energy has
a higher second-order moment than coefficients containing

noise only.

Given that the probability distribution of the signals[m]
is unknown, the probability distribution of the second-order
moment of rectified STFT coefficients containing signal is
also unknown. However, the distribution of the second-order
moment of the coefficients containing noise only is known
(29) to be aχ2 distribution with two degrees of freedom2.

Consequently, a detection based on a Neyman-Pearson
approach is achievable to determine if a STFT coefficient (48)
contains only noise,Sφ[n, k]′ = 0, called hypothesisH0, of if
it contains non-zero signal, called hypothesisH1. A threshold
tσ2

w
given a chosen false alarm probabilitypfa is defined by

tσ2
w

/ Prob
(
Wφ[n, k]′2 > tσ2

w

)
= pfa (50)

tσ2
w

= σ2
w ln(p−1

fa ) (51)

where ln(x) is the natural logarithm. All time-frequency
coefficients whose second-order moment is higher than
this threshold will be detected as a signal, and calledH1

set. The coefficients lower than the threshold are calledH0 set.

The thresholdtσ2
w

(51) depends on the chosen false alarm
probability, and the noise level, which has to be estimated.

b) Noise variance estimation:To estimate a noise vari-
ance, a Maximum Likelihood (ML) estimator is unbiased and
optimal in the case of noise only. The estimationσ̂2

w is

σ̂2
w =

1

NK

∑

n,k

(
Xr

φ[n, k]′2 + X i
φ[n, k]′2

)
(52)

whereK andK are the number of time and frequency indexes.
When the signals[m] is present, the estimator becomes

biased

E
(
σ̂2

w

)
= σ2

w +
1

NK

∑

n,k

|γs[n, k]′|2 (53)

The presence of the signalSφ[n, k] to segment results in an
overestimation of the noise level. Unfortunately, given that
this signal is unknown, its time-frequency location is also
unknown.

The idea is consequently to use an iterative algorithm: a first
noise variance is overestimated, but allows a first threshold
(51) to be defined and then leads to a first separation of
the STFT into two sets, theH1 set corresponding to the
time-frequency coefficients with a second-order moment than
the threshold, and theH0 set. At this iteration, theH0 set
contains some STFT coefficients containing signal. The next
iterations re-estimate the noise variance from theH0 set
only. As iterations go on, the noise variance is less and less
overestimated, leading to a lower detection threshold, andthus
time-frequency coefficients containing signal are detected in
theH1 set.

c) Stop criterion: Section III-B shows that the spectral
kurtosis estimated from a rectified STFT is either positive
when containing signal, or zero when the coefficients contain
noise only. Therefore we propose to use it as a stop criterion

2The casesα[n, k] = 0 or 1 is ignored here.
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for the iterative algorithm. The algorithm will stop when
the spectral kurtosis of theH0 set becomes smaller than a
thresholdtKS , and considers that the remaining points have a
complex Gaussian distribution corresponding to noise only.
To define this threshold, we will consider the variance of the
spectral kurtosis estimator.

The variance of a spectral kurtosis built fromR independent
Gaussian realizations is approximated by4

R
[15]. A rectified

STFT is a set ofNK non-independent time-frequency points.
In order to approximate a number of independent realizations
from non-dependant ones, we define aredundancy factorfr

such that

fr =
NK

M
(54)

whereM is the point number of the signals[m] in time.
At each iterationi of the algorithm, theH0 set hasNiKi

non-independent realizations. The number of independent re-
alizations is approximated byNiKi

fr
.

Finally, considering that the spectral kurtosis estimatorof a
Gaussian complex variable has a Gaussian distribution, 97.5%
of these realizations are within twice its standard-deviation.
We thus choose twice the standard-deviation of the spectral
kurtosis estimator as a thresholdtSK

tSK = 2

√
4fr

NiKi

(55)

d) Region growing:To create, we add at each iteration a
region growing algorithm [16], as in [3]. The main advantage
of this region growing is the possibility to limit the number
of detected points becoming segmented at each iteration. By
segmentation only a proportion ofpcand points, one can avoid
classifying as signal small isolated high realization of Gaussian
noise.

The region growth is executed by choosing the coefficient
of the H1 set with the highest second-order moment as a
”seed” for the region growing algorithm, labelledl. A search
for other detected points is carried out in its 8-connectivity
neighborhood in the time-frequency representation, assigning
to these points the same label. The spectral pattern labeledl
is thus created. When all neighbouring points are classified, a
new seed is chosen among the remaining detected points, and
a new pattern is created. Consequently, a segmented spectral
pattern is a set of coefficients connected in the time-frequency
plane.

An analysis of the influence of the algorithm parameters
pfa, pcand and tSK may be found in [17] and [18].

In summary, the time-frequency segmentation proposed in
this paper is an iterative process: at each iteration, the noise
variance is overestimated (53) due to the presence of the sig-
nal; then this noise level permits the detection of some signal
points (51). A region growing algorithm is applied to create
spectral patterns in theH1 set, and put isolate coefficients
back into theH0 set. The iterations are stopped when the
non-detected points have a Gaussian complex distribution,in
other words when the spectral kurtosis of these points becomes
smaller than the thresholdtSK .
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Fig. 6. Spectrogram of a synthetic signal at left. Segmentation results with
σ2

w = 1

2
at right. All time-frequency patterns are correctly detected.
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Fig. 7. Spectrogram of a dolphin whistle, bounded to a frequency band
where the noise is approximately white. The segmentation gives a pattern for
each frequency modulation.

B. Illustrations

Figure 6 shows the spectrogram of a synthetic signal of
8000 points made of three non-stationary signals: a linear
chirp of amplitude 0.5 and a sinusoidal frequency modulation
of amplitude 1, both windowed in time; the additive Gaussian
noise has a varianceσ2

s=32 windowed in time and frequency.
The additive noisew[m] has a varianceσ2

w = 1
2 . All time-

frequency patterns are well segmented, while the estimated
noise variance iŝσ2

w = 0.494. The spectral kurtosis of the
H0 set is 0.032, and the final threshold 0.049.

The hypothesis of white Gaussian noise may be limited to
the hypothesis of white Gaussian noise on a given frequency
band only. Figure 7 illustrates this with a dolphin whistle
in non-white underwater noise. The spectrogram here is
limited to a frequency band where noise is roughly white,
permitting the segmentation of the dolphin whistle into
different time-frequency patterns.

Another way deal with non-white and/or non-stationary
Gaussian noise is to apply the algorithm locally in the time-
frequency domain. In this case, the noise variance is estimated
separately for each time-frequency coefficient, on a given local
neighbourhood. A unique probability of false alarm allows the
algorithm to detect signal coefficients in relation to the local
noise level (51).

However, theH0 set has not a single Gaussian distribution
anymore, so the spectral kurtosis criterion is not directly
usable. By using the coefficients of theH0 set normalized
by the local estimation of the variance, we get a set having
a single Gaussian distribution, on which the spectral kurtosis
criterion is applied.
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Fig. 8. Segmentation a synthetic signal and a non-white non-stationary
Gaussian noise. Top left: spectrogram. Top right: theoretical variance of
the added Gaussian noise. Bottom left: segmentation result. Bottom right:
estimated variance.

Figure 8 illustrates the segmentation of a synthetic signal
embedded in a non-white and non-stationary Gaussian
noise, for a neighbourhood of 21 time points and 21
frequency points, and a probability of false alarm of 0.1.
The segmentation result is correct (top left), while the noise
variance is well estimated (bottom right).

Finally, this algorithm relies only on the linearity of the
STFT, and can be extended to other time-frequency transforms
[18] (in french). An application of this segmentation to the
Capongram of Barkhausen noise is detailed by Padoveseet al
[19].

V. CONCLUSION

This papers firstly deals with the circularity of the STFT
coefficients of white Gaussian noise. These coefficients are
not circular for normalized frequencies close to 0 and 0.5,
and we have described their non-circularity depending on their
position in the time-frequency plane. We propose a modified
STFT, where all coefficients are circular. We check that the
spectrogram of white Gaussian noise coming from this new
STFT has a distribution closer to aχ2 distribution with two
degrees of freedom than usual spectrogram.

We have then considered spectral kurtosis: first, we have
shown that the spectral kurtosis of a circular coefficient is
equal to 2

3 of the kurtosis of its real or imaginary part, and
that the variance of the spectral kurtosis is smaller than the
variance of the kurtosis estimated from both the real and
imaginary parts of the variable. We have also proved that
a non-circular Gaussian coefficient has a positive spectral
kurtosis, defending the interest of the rectified STFT. The
influence of the presence of signal in the STFT on the spectral
kurtosis has been illustrated, and we have shown that the signal
leads to positive spectral kurtosis.

These results are used to update a time-frequency
algorithm, based on successive iterations of noise variance

over-estimation and signal coefficient detection. Instead
of using a criterion to stop the algorithm based on the
convergence of the statistics of non-segmented points, we
use the spectral kurtosis as a Gaussianity test of non-
segmented coefficients. This new criterion is not open to local
convergences. When this spectral kurtosis becomes zero, all
non-segmented points have a single Gaussian distribution,
meaning that they comes from noise only.

The algorithm has been extended to non-white and non-
stationary Gaussian noise by applying the algorithm locally
in the time-frequency domain, and estimating the spectral
kurtosis on non-detected points normalized by the local noise
variance estimation. Results of the algorithm have been illus-
trated on a real-case signals for a stationary white Gaussian
noise, and on a synthetic signal embedded in a non-white and
non-stationary Gaussian noise.
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détection par modèle statistique et extraction de contour par le champ de
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