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Circularity of the STFT and spectral kurtosis for
time-frequency segmentation in Gaussian
environment

Fabien Millioz*, Member, IEEEand Nadine MartinMember, IEEE

Abstract—This paper investigates the circularity of Short Time ~ which has been successfully applied to automatic speech
Fourier Transform (STFT) coefficients noise only, and propses recognition ([5], [6]). More recently, we proposed a second

a modified STFT such that all coefficients coming from white algorithm based directly on the Short Time Fourier Transfor
Gaussian noise are circular. In order to use the spectral kuiosis (STET) ([7],[8])

(SK) as a Gaussianity test to check if signal points are pres¢ . i
in a set of STFT points, we consider the SK of complex In this paper, we focus on the STFT segmentation and
circular random variables, and its link with the kurtosis of extend the signal model. We consider any kind of sigifal]

the real and imaginary parts. We show that the variance of embedded in a centered white Gaussian noise] of variance
the SK is smaller than the variance of the kurtosis estimated 2
from both real and imaginary parts. The effect of the non- %'

circularity of Gaussian variables upon the spectral kurtoss of x[m] = s[m] + w[m) (1)
STFT coefficients is studied, as well as the effect of signal ) . . .

presence. Finally, a time-frequency segmentation algotim based s[m] is the signal to be segmented, which contains all the non-
on successive iterations of noise variance estimation anditte-  stationary parts ofc[m], which may be either deterministic
frequency coefficients detection is proposed. The iteratis are or stochastic. The only condition os{m] is that it is not a
stopped when the spectral kurtosis on non-detected pointeaches stationary white Gaussian signal, which is the definitiothe

zero. Examples of segmented time-frequency space are presed . o i d . hat ti f .
on a dolphin whistle and on a simulated signal in non-white ad  N0I1S€. Our goal is to determine what time-frequency points

non-stationary Gaussian noise. contain part of thes[m| energy.
To that end, we need to know the distribution of time-

Index Terms—Short time Fourier transform, circularity, spec- . . . . .
frequency coefficients containing noise only. Section H in

tral kurtosis, time-frequency segmentation, statisticalsegmenta-

tion, time-frequency analysis vestigates the non-circularity of some coefficients. A uliac
EDICS: SSP-NSSP complex random variable has a probability density indepen-
dent of its argument, permitting an easier way to handle & W
|. INTRODUCTION proposes a modified STFT where all noise coefficients have

Time-Frequency representations are useful tools f81€ Same circular distribution.

non-stationary signal analysis as they describe the spectr A criterion is needed to characterize the noise. Section IlI

. . . : lIs the spectral kurtosis of a circular random variahtel
energy along time. A segmentation task is helpful in sudffc . X
9y 9 g P tudies the link between the spectral kurtosis of a complex

a signal characterization by highlighting time-frequency . . . :
patterns containing a signal of interest. Some enhanceme nable_ and the k_urt05|s of the real_or imaginary parts_ of
this variable. The influence of non-circularity for Gaussia

to the readability of time-frequency representations adse . - .
exist. An example is Coatest al. [1], which describes the poefﬂment on the spectral kurtosis is detailed, as wellhas t

time-frequency plane by a set of basis functions. Chassanggluence of the presence of signal in the STFT.

. : : Section IV describes the proposed algorithm. Examples of
Mottin et al. propose a time-frequency segmentation bas‘ﬁgne-fre Lency seamentations are given on a real-life aian
on the reassignment method [2], which splitting the time- d y s€d 9 19

frequency plane into different basins of attraction, whitre a dolphin whistle, and on a synthetic signal embedded in non-

. . . white and non-stationary Gaussian noise.
attractors are the time-frequency locations that are iawar y
to reassignment. II. CIRCULARITY OF THE TIME FOURIER TRANSFORM

Considering a deterministic signal embedded in a white The STFT of a discrete signa(m], denoted ast,[n, k], is
: ga . 9 a collection of N Fourier Transforms, computed on windowed
stationary Gaussian noise, we have already proposed a spec-

trogram segmentation ([3],[4]) based on a deterministidealo segments Ofﬂ[m], centered at t|m_ez. Xo[n, K] des_c ribes the
spectral content’s change over time. The STFT is a complex-
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n andk are time and frequency indexes respectively, ahd] do not have ay? distribution atk = 0 and k = Mq’ for a
an Mgy-length window. Z is the zero padding, which glvesboxcar window without zero padding, and fat= 0 k=1,
K = My + Z frequency binsX;[n, k| and X} [n, k]are the &k = T —1 andk = =2 for a Hanning window without
real and imaginary parts of 4[n, k] respectlvely We consider zero padding.
an energy-normalized window, so that

1\I¢ 1

$lm]* = (4)
zﬂ;(b 1 B. Non-circularity of the Short-Time Fourier Transform

2

To simplify notations, the range of summation is omitted in To study the circularity of the discrete STFT, we propose to
the following. compare the second order moment$iof[n, k] and W [n, k]?
and their correlation.Wy[n, k] is circular if its real and
In a detection context, we need to determine the probabilitpaginary parts are uncorrelated and have the same variance
density of time-frequency coefficients containing nois¢yon We definea(n, k] as the second-order momentiE} [n, k]*)
Consideringz[m] as a centered white Gaussian naige:] normalized byo?, so that
of variance 02, the STFT coefficients ofw[m], denoted

m=—

Wyn, k], are Gaussian complex variables. Their variance is E(Wj[n, k]?)
given by afn, k] = 072 (11)
Var(Wy(n, k]) = E(Wyln, k]Ws[n, k") = E (|Ws[n, k]IQ() ) = Z ¢[m — n]? cos( 27TkM T Z)7 (12
5
= E(Wjn, k]?) + E(Wj[n, k]*) (6)

Using trigonometric identities, equation (12) becomes
According to equation (Z)W(;[n, k] and W;[n, k], the real

and imaginary parts of¥y[n, k] respectively, are the sum 1 m-+n

of M, independent centered Gaussian variables. Therefore, + Z¢ * cos(drk M, + Z)'

Wjn, k] and W/[n, k] are centered Gaussian variables with

second-order moment given by

(13)

m

Given equations (9) and (12), we obtain a new expression of

E(W}n, K]?) = o2 Z‘b 2 cos( kaqu - 2)2 equations (7) and (8)
(7) E(WZ[n, k%) = a[n, k]o?, (14)
E(Wj[n, k?) = o2, Zﬂ: élm % sin( QWkM¢ n Z)2 E(W.[n, k)*) = (1 — an, k]) o2. (15)
C)

Parameter(n, k] characterizes the second-order moments
Substituting (7) and (8) into (6) yields of the Gaussian distributions 6¥}[n, k| and W [n, k].
Var(Wy[n, k) = E(W3[n, k|2) + E(Wiln, £2) = 02. (9) Figure 1 shows the variation of this parameter for a STFT,
computed with a Blackman window of 31 points, an overlap
assuming the normalized window (4). of 30 points between two consecutive windows and 128
As a result, we get the well-known result that a STFfrequency bins. Thea[n, k] leading to different real and

coefficient of Gaussian white noise of varianeé, is a imaginary second-order moments are located around the low
Gaussian complex variable with the same variance. and high frequencies.

A. Why circularity? For discrete frequenciels far enough away from zero and
the index of the Shannon frequen%;ﬁ, the cosine function

in equation (13) has a high enough frequency compared to
the variations ofp[m]? and correctly nuIIifies the second sum

A complex variablez is circular if z and e’*z have the
same probability distribution for any [9]. In other words,
the probability distribution ofz is independent of its argu-
ment. A Gaussian complex variable is circular if its real anld €duation (13). We thus haveln, k] = 5 = 1 — a[n, k].
imaginary parts have the same probability distribution arel " Other words, bothVi[n, k] and W¢[” k] have the same
independent. In this case, the spectrogram, defined as ~ Gaussian distribution of Ivigancgﬂ In the other case,

. i for £ close to zero and”—q’ the edges of the window

Speg,[n, k| = Wiln, k] + Wiln, k], (10) " will have an effect on the value af[n, k], which becomes
is the sum of two independent squared Gaussian of the sadiféerent from 3, leading to a different Gaussian distribution
variance, and consequently have adistribution. for Wiln, k] and W[n, k].

The continuous Fourier transform leads to circular vagabl
[9], but not the discrete Fourier transform. Koopmans [IiJa To complete the characterization of the distribution of
Johnson and Long [11] noticed that spectrogram coefficierits,[n, k], we consider the correlation coefficient between the
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Fig. 1. (left), a[n, k] variations on a STFT with a 31-point Blackman window, a 3@poverlap and 128 frequency bins. White area concernslues
between 0.485 and 0.515. (middle), cross-sectioa[af, k| variations at frequenciels = 0 to 4. (right), cross-section ef[n, k] values at timer = 20, 32, 48
and64, overk = 0 to 10 only.
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Fig. 2. (left), p[n, k] variations on a STFT with a 31-point Blackman window, a 3@poverlap and 128 frequency bins. Time-frequency coeffits
whosea(n, k] coefficient is\/12 (Figure 1) have a correlation coefficient equal to zero. (&)l cross-section gf[n, k] variations at frequenciek = 1 to
4. (right), cross-section gf[n, k] values at timen = 20, 32,48 and 64, over k = 0 to 10 only.

real and imaginary parts dy[n, k], denotedp[n, k] with a function®[n, k] such that
E(W;[n, k]W{[n, k])
pln, k] = _ (16) (—2jm2k 112 ) (—2jm2k )
\/E(Wg[n,k]Q)E(Wj)[n,k]Q) O, k] =e TN gl T MTE(21)
02, > ¢lm)? cos(—2mk I\Z:TLZ) sin(—27k J\Ztnz) an
= 17
o2~/ aln, K|(1 — aln, k]) The variations ofa[n, k] and p[n, k] are both described by
1 . m+n ®[n, k]. ®[n,k] (21) is made of the product of two terms:
= B[m)? sin(—4rk ——— ’ T ook . .
2\/aln, k(1 — an, k]) ; " sin( M¢+Z) a phase terme’ ™" 757) depending on the time and

(18) frequency indexe$n, k|, and the Discrete Fourier Transform

This definition assumes thatn, k] # 0 andafn, k] # 1. In (DFT) of the squared window[m]*.

those cases, either the real or imaginary partiofjn, k] is ~ When ®[n, k] is zero,a[n, k] is equal tog and p[n, k] is

zero, therefore the correlation between the two parts is zetero, that isW[n, k] is circular. On the other hand¥s[n, k]

while the correlation coefficient is not defined. is not circular on two frequency bands depending on the DFT
Figure 2 shows the variation of[n,k] for a STFT of a window function, whereb[n, k] is not zero. The STFT

computed with a Blackman window of 31 points, an overlal not circular for normalized frequencies around zero émd

of 30 points between two consecutive windows and 1Z#pending on the window’s length/,, the zero padding’

frequency bins. Likea[n, k], values of p[n, k] leading to and the window’s type.

a non-circularity of Wy [n, k], that is non-zero values, are Figure 3 illustrates this phenomenon by showid{, k|

located around the low and high frequencies. absolute values for various STFT parameters.

To studya[n, k] and p[n, k], we rewrite equations (12) and
(18)

afn, k] = % + %%(¢[n7k])7 (19) C. Rectified Short Time Fourier Transform
1

I(®[n, k])  (20) The STFT definition (2) is not unique. The time translation

P[n, k] -
2y/aln, k(1 - an, k]) may switch from the windows[m] to the signal:[m], leading
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Fig. 3. Variations ofp[n, k] (21) for various STFT parameters, for the 25 first frequenicys b(left), impact of the number of computed frequencldg + Z,
for a Blackman window of 31 points. The last blue point cop@sd to thek = @ — 1. (middle), impact of the lengtid/, of a Blackman window, for
256 frequency bins. (right), impact of the window’s typer ff, = 31 and My + Z = 256. When®([n, k] is zero,«[n, k] is equal to% andp[n, k] is equal

zero, soWy[n, k| is circular.

tol. denotedX(n, k| = X}[n, k| + iX}[n, k], such as
Mg -1 Xyln, k] =Xg[n, k],
Xgln, k] = Z x[n+ m] qb[m]e(_QjWkMa&%) (22)  Xjn k' =X}[n,k], if an,k]=0o0raln,k]=1 (27)
m=21"1 Xjn, k]" =X{[n, k|/\/2aln, k],
[n, k] [

7 [ /51 _ T L1 .
Using (22) instead of (2) makes the second order moment ofX‘b n.k Xoln, K]/ v2(1 —aln,k]) - otherwise.  (28)
the real and imaginary parts &F;[n, k] independent from the Like classic STFT, all rectified STFT coefficients of a white

time indexn. The function®[n, k| of (21) becomes Gaussian noiséV,[n, k]’ have a variance equal te2, but
now have the variances of their reldi}[n, k] and imaginary
—2jm2k 72— .
ln, k] = Y dlmlPe T Z 00,k (28) Wiln, k]’ both equal to%-.

The rectified STFT with an even window function is circular
for all time-frequency coefficients. Consequenthgctified
spectrograncoefficients of noise only

®[n, k] does not depend om, so do «an,k] and p[n, k].
Additionally, assuming that window functiongm] are even
and using Euler's formula, (23) is

s Speg, [n, k)" = Wj[n, k] + W[n, k], (29)
+=5— C . .
_ 9 9 Y m have a x? distribution, with one degree a freedom if
®ln, k] = 9[0] +Z:1 olm] (eXp( 2]F2kM¢ + Z)"' (24) a[n, k] =0 or 1, or with two degree of freedom otherwise.
. m
+eXP(2J”2kW)) (25)  Huillery et al [12] shows that a2 distribution with two
Mo1 degree of freedom is a good approximation of a single spec-
T m trogram coefficient, even with correlated noise, condibn
— 2 2 ’ f
= ¢l0]" +2 Z ¢lm]” cos(4mk M, + Z) (26)  that the window function has null boundaries. Here, we aim to

m=1

use a single? distribution with two degree of freedom to ap-
According to equation (20), proximate the d_istributio_n qf aI_I spectrograrr.\.coefficierasd
yto compare it with the distribution of all rectified spectram
coefficients.
We use the Kullback-Leibler divergené#x (p, ¢) to mea-
sure the distance between thé distribution and the distribu-
Pon of the classic or rectified spectrogram. It is calculases

Therefore, ®[n, k] is real.
coefficient correlationp[n, k] between the real and imaginar
parts is zero for all time-frequency points.

Using STFT defined by (22) and an even window functio
make the correlation between the real and imaginary pa ]
disappear. However, the variances of the real and imaginary
parts are not equal everywhere on the time-frequency plane, D _ / 1 p(x)
depending oru|[n, k. KL(p:q) p(z)log q(z) de (30)

In order to get a circular STFT, we proposeeatified STFT Ag the natural logarithm is used in this expression, the
Kullback-Leibler divergence unit is the 'nat’. This divengce

IThis definition is the one used in th&@me-Frequency ToolboxThis is null if the two distributiong andg are the same.
Toolbox is a collection of about 100 free scripts for GNU Qetand Matlab

developed for the analysis of non-stationary signals ugimge-frequency . . .
distributions. http://tftb.nongunu.org Figure 4 show the Kullback-Leibler divergence between

Definition (2) is the definition used in Matlab. respectively the spectrogram (10) and the rectified spgrm



18710 — in [14], and is called spectral kurtosi&S(z)
Blackman 2 %2

Gaussian E(z%2*%)
Hanning KS(z) = EGo)? 2 (32)

A real Gaussian random variable has a kurtosis equal to
zero, whereas a complex Gaussian variable has a spectral
kurtosis which is equal to zero. We propose to use kurtosis
for characterization if a set of STFT points is issued from a
sr Gaussian complex random variable, namely noise. First, the
ab link between kurtosis and spectral kurtosis is made, anu the

relative variance is described. Second, the influence of the
non-circularity of noise coefficients on the spectral kaito

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ is studied, which shows the interest of the rectified STFT

400 ength window, with Zero paddmg, without overiap 0 o presented in section I1. Finally, we show the influence ofialg
15x10° in a set of noise coefficients on the spectral kurtosis in ciae

Boxcar determine a way of using it in a time-frequency segmentation

Blackman

Gaussian algorlthm

Hanning

16r

14

12

10

10 A. Link between kurtosis and spectral kurtosis of circular

variable

STFT coefficients of noise may only be approximated to
be circular. In this section, we consider a random circular
complex variablez = a + jb. Spectral kurtosis ot can be
given in regard to the kurtosis of its real or imaginary parts

The variance ot is
OfTTTTTTTTTmmmm e STooTTmmmmmmmmm E(zz*) = E(a® 4+ V*) = E(a?) + E(b*) = 2E(a®)  (33)

.
80 100 120 140 160 180 200 220 240
M¢ length window, with zero padding and overlap

The fourth moment is

Fig. 4. Kullback-Leibler divergence between)& distribution with two  E(222*?) = E(a* + b* + 2a%b?) = 2E(a?) + 2E(ab?) (34)
degree of freedom and the distribution of a spectrogram 0D@02points

white Gaussian noise (solid line) and the distribution cetified spectrogram Considering that; = 242" andp = 2==" (34) becomes
(dashed line), for several windows. On left, STFT are comguivithout 2 20

overlap, and a zero padding such + Z = 4M,. On right, STFT 1

are computed with an overlap 0f75MBf¢points, and a iero padding such as E(ZQZ*Q) = QE(G4) - —E(Z4 + Z* - 22’22*2) (35)

My + _Z = 4M¢. Rectified spectrogram leads to a better approximation by 8

ax? distribution. From the circularity ofz we deduce that both (E*) and
E(z**) are both zero. Consequently, the fourth moment of
is

(29), and they? distribution with two degree of freedom which E(2%2%2) = §E(a4) (36)

is the reference. The divergences are computed from 10G0 run 8

of the spectrogram of a white Gaussian nobse| of 2000 Substituting (36) and (33) into (31) and (32), the ratio of

points. the spectral kurtosis relative to the kurtosis of the reat g

These results allows us to conclude that the rectified spec- 2 w2\ 2 o\
trogram distribution is better approximated by#distribution Ks() = B(z"2"7) — 2B(22") X E(a’) (37)
P ; K(a) E(zz*)? E(a*) — 3E(a?)?
than the usual spectrogram distribution, especially faw lo ee 4 o
window lengthM,. _ 3E(a%) —8E(a")" 2 (38)

~ 4(E(a*) — 3E(a?)2) 3

11l. SPECTRALKURTOSIS FORNOISE CHARACTERIZATION The Spectral kurtosis of a Complex circular random variable
is equal to% of the kurtosis of its real or imaginary parts.

This section investigates the use of the spectral kurtdsis @ynsequently, spectral kurtosis or usual kurtosis have the
the STFT in the framework of noise characterisation. same behaviour.

The kurtosis/C(z) of a random variabler is the fourth
normalized cumulant. Considering a real centered randomrhe variance of a usual kurtosis estimator is approximated

variable, the kurtosis is to 2 [15], while the variance of spectral kurtosis is approx-
E(z?) imated by« [15], where N is the number of independent
K(z) = E(a2)2 -3 (31) realizations of the random variable. Two phenomena explain

this difference of variance: first, a complex coefficientgmeat
A kurtosis for a complex random variabtehas been defined a real and a imaginary part, so there are twice the real



independent realizations as the complex realizationsor8kc

the ratio between the spectral kurtosis and the kurtosigsof
real or imaginary part i% (38). Taking into account these two ar 8
phenomena, we define an equivalent variance of usual ksyto:
such that 2 ]
2 g ol
1/2\°24 44 4 2 0
Var,, (K =—|2) =—=-—=-Var(KS 39 >
) =3 (3) F =5 = svase) e F 7
Considering the kurtosis estimated on real and imagina @
parts of a complex variable leads to a greater variance th —Ar i
considering the spectral kurtosis. As a result, only spécti sl i
kurtosis will be used.
_80 260 400 600 860 1000
B. Influence of non-circularity of the STFT Temporal signal x, for p=500
We now consider a centered complex Gaussian variable 1.8 —— —
a-+jb of variances2, such that its real and imaginary parts an 4| Kurtosis of the imagmary part
independent, but with different variances. From (14) arf) (1 Ll —— Spectral kurtosis
of 1I-B, ao? is the variance of the real paat and (1 — )o? '
is the variance of the imaginary padrt g 121 7
The fourth moment of (36) becomes § 1t 8
E(222*2) = E(a* + b* + 2a%) (40)  gos 1
= E(a*) + E(b*) + 2E(a®b?) (41) =08 ]
0.4r 1
Given thata and b are centered independent real Gaussic
variables, their kurtosis is zero. Then applying equatidh) ( 02 ]
to variablesa andb yields 0

0 200 400 600 800 1000
Number of points p where sp is not zero

E(2?2"%) = 3E(a®)* + 3E(b?) + 2E(a®)E(b?)  (42)

Substituting the variances af (14) andb (15), E§222*2) is  Fig. 5. On the left, signak,[m] (46) for p = 500. On the right, evolution
of the kurtoses of the STFT of,[m, in function of p. Whenx,[m] is a
E(222*2) =30%0* + (1— a)?ot +2a(1 — a)o? (43) Wwhite Gaussian noise, that is fpr= 0 or p = 1000, the kurtoses are null.
4 5 In other cases, in presence of non-stationary signal, thieses are positive.
=0"(3 —4da+4a”) (44)  spectral kurtosis is equal t§ of the kurtosis of real or imaginary part for
any value ofp.
The spectral kurtosis becomes

E(ZQZ*Q) 9

-~ 2 _2=(1-2a) (45)

E(zz*)? The spectral kurtosis has already been used as a signal
Spectral kurtosis of a Gaussian complex variable is zegbaracterization in the spectrum [14], its value permits a

only for circular variables. The greater the difference igonclusion to whether a given frequency is stationary or not

variance between the real and imaginary parts, the more

the spectral kurtosis differs from zero. Simulations confir In our case, non-stationary signals in a time-frequency

this result. Spectral kurtosis estimated from a usual STRpproach, we only want to differentiate a STFT containing

of white Gaussian points of 1000 points, computed with @oise only from a STFT containing noise and signal, regasile

Hanning window of 63 points, an overlap of 31 points, and 12 the analyzed signal.

frequency bins leads to 0.055. The spectral kurtosis estidna Given the model of the signal (1), any kind of signal should

from the rectified STFT of the same parameters leads tdbe studied. We only consider as a generic example a non-

0.006. The absolute value of the bias is divided by ten whetationary signal,[m] of 1000 points, such that

using rectified STFT instead of the usual one.

KS(z) =

zp[m] = sp[m] + wlm], (46)
C. Kurtosis in a STFT with an added signal of interest , g[m] form <p
. ' : . with s,[m] = , (47)
The previous section describes the spectral kurtosis #®r th 0 otherwise,

Gaussian distribution, corresponding to a STFT containing

noise only. In this paper, the use of the spectral kurtosisai wherew[m)] is a white Gaussian Noise of variangg = 1 and
to determinate if a set of time-frequency coefficients ciorta g[m] a white Gaussian Noise of varianeg = 3. Signals,[m]

noise only or a part of the signal. Consequently, the behavids non-stationary, described by its parametemdicating the
of the spectral kurtosis in a STFT with a signal of interestumber of points where[m] exists. Given that[m] is white,
must be known. a proportion ofp/1000 points in the time domain wherg,[m|



is non-zero leads to a proportion pf1000 points in the time- noise only.
frequency domain where the STFT @f[m] is non-zero.
Figure 5 shows on the left,[m] for p = 500 and on the  Given that the probability distribution of the signajm]
right the evolution of the kurtoses of all STFT coefficienighw is unknown, the probability distribution of the second-ard
respect top. For p = 0, x9[m| = w[m] is a white Gaussian moment of rectified STFT coefficients containing signal is
Noise of variance 1, the kurtoses are null. On the other haradso unknown. However, the distribution of the second-prde
for p = 1000, z,[m] = g[m] + wim] is a white Gaussian moment of the coefficients containing noise only is known
noise of variance3 + 1 = 4, its kurtosis is null. Between (29) to be ay? distribution with two degrees of freedém
these two extreme cases, the signgln| is a mixture of two ~ Consequently, a detection based on a Neyman-Pearson
Gaussian variables, that is to say it is not Gaussian anymapproach is achievable to determine if a STFT coefficien} (48
and the kurtoses are positive. As stated in (38), this figucentains only noiseSy[n, k]’ = 0, called hypothesig{,, of if
shows that the spectral kurtosisésof the kurtosis of the real it contains non-zero signal, called hypothekis. A threshold
or imaginary parts of the STFT. t,2 given a chosen false alarm probability, is defined by
Time-frequency representations are meant to concentrate 9
energy on some time-frequency areas; a few points, congini toz, | Prob (Wo[n, k]” > tvﬁ,) =Pfa (50)
signal energy, will have great values while other will canta toz = o2 1n(p;al) (51)
small values, only noise energy. In other words, a set of STFTh

coefficients tends to be super-Gaussian, and to have avgositf ef;_e _ln(x) 'Sh the naturalj Io%anthm. Al t|r.ne-1;1r_ecg]uenc%
kurtosis, as illustrated on figure 5. coefficients whose second-order moment is higher than

Consequently, we assume that a positive spectral kurtogf’stS _It_f;]resholftf:i_ \.N'”t ble det(teﬁtedthastha SE]nIgI, and difa(;];e?
of a set of STFT points means that some of these poirﬁg' € coetficients lower than the threshold are catgaset.

contain signal.
d The threshold, 2 (51) depends on the chosen false alarm

Next section proposes the use of the spectral kurtosis of t’ﬁr&bab'“ty’ and the noise level, which has to be estimated.

STFT coefficients as a Gaussianity test for a time-frequenc b) l\l\l/?'sg Var'af_ﬁel_ismgaﬂffm ?_stlrrlate: a n(t))l_se v;m- d
segmentation algorithm, ance, a Maximum Likelihood (ML) estimator is unbiased an

optimal in the case of noise only. The estimati®f is

IV. STATISTICAL SEGMENTATION OF THERECTIFIED o 1 T 2 % 2
02 = E Xyn, k) + X3[n, k (52)

In this section, we propose an update of the time-frequenghere i and K are the number of time and frequency indexes.
segmentation algorithm proposed in ([3],[7]). Considgrihe  \yhen the signals[m] is present, the estimator becomes
model of signalz[m] = s[m] + w[m] (1), wheres[m] is an piased
unknown signal to segment, angm] a white Gaussian noise - 1
of unknown variancer2, the goal of the segmentation is to E (030) =00+ == > |s[n. K (53)

determine automatically what are the time-frequency iooat NEK n,k

where there is a part of the signalenergy. In other words, . .

) S : - . The presence of the signaly[n, k| to segment results in an
we aim to determine if a time-frequency coefficient contains - . .

. overestimation of the noise level. Unfortunately, givemtth
noise only or not. e . o L2
this signal is unknown, its time-frequency location is also

unknown.
A. Principle The idea is consequently to use an iterative algorithm: & firs

a) Signal detection:Section Il shows that a coefficientN0ise variance is overestimated, but allows a first threshol

of the rectified STFT containing noise only has a compleel) to be defined and then leads to a first separation of
circular Gaussian distribution. In the presence of a sighal, the STFT into two sets, thé{, set corresponding to the
due to the linearity of the STFT, consequently of the redifiime-frequency coefficients with a second-order moment tha

contains some STFT coefficients containing signal. The next
Xgln, k] = Spn, k] + Wy[n, k| (48) iterations re-estimate the noise variance from tHg set

only. As iterations go on, the noise variance is less and less
overestimated, leading to a lower detection threshold,tand
time-frequency coefficients containing signal are detkdte
W]ee H, set.

c) Stop criterion: Section 1lI-B shows that the spectral
(49) kurtosis estimated from a rectified STFT is either positive
when containing signal, or zero when the coefficients contai

where~,[n, k]'* is the second order moment 8f [n, k] only. noise only. Therefore we propose to use it as a stop criterion
A time-frequency coefficient containing a signal energy has

a higher second-order moment than coefficients containingThe casesy[n, k] = 0 or 1 is ignored here.

The problem is to discriminate coefficients for whish[n, k]’
is non-zero. Given thak[m] is unknown,Sy[n, k] is also
unknown, and may have a zero-mean. Consequently,
consider the second-order moment of (48)

E(Xg[n, k) = vsln, k] + o

w



for the iterative algorithm. The algorithm will stop when i :
the spectral kurtosis of thé{, set becomes smaller than a *’ | :
thresholdt x5, and considers that the remaining points have ..
complex Gaussian distribution corresponding to noise.only ;
To define this threshold, we will consider the variance of th:’,
spectral kurtosis estimator. sttt RS

The variance of a spectral kurtosis built frafiindependent  *f A e
Gaussian realizations is approximated $y[15]. A rectified | : '
STFT is a set ofV K non-independent time-frequency points.
In order to approximate a number of independent realization

_ - Fig. 6. Spectrogram of a synthetic signal at left. Segmantatesults with
from non dependant ones, we defineedundancy factorf, 02 = % at right. All time-frequency patterns are correctly desect
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such that
NK P o
= 54 5 |
=" G N [
|
where M is the point number of the signa[m| in time. oty . 1
At each iterationi of the algorithm, the/, set hasN,K; :* J B LA J A
non-independent realizations. The number of independent :o= bt | e .
alizations is approximated bf::. Y, R j
Finally, considering that the spectral kurtosis estimatoa .. e :

Gaussian complex variable has a Gaussian distributioBd97. = @ 2 s e e e B e e
of these realizations are within twice its standard-déwrat

We thus choose twice the standard-deviation of the specg’f}fi’[9 7. Spectrogram of a dolphin whistle, bounded to  fregyeband

re the noise is approximately white. The segmentativesga pattern for

kurtosis estimator as a threshdlgly each frequency modulation.
Af:
tsk =2 (55)
N;K; B. lllustrations

d) Region growing:To create, we add at each iteration a Figure 6 shows the spectrogram of a synthetic signal of
region growing algorithm [16], as in [3]. The main advantag8000 points made of three non-stationary signals: a linear
of this region growing is the possibility to limit the numberchirp of amplitude 0.5 and a sinusoidal frequency modufatio
of detected points becoming segmented at each iteration. &yamplitude 1, both windowed in time; the additive Gaussian
segmentation only a proportion pf,.q points, one can avoid noise has a varianee?=32 windowed in time and frequency.
classifying as signal small isolated high realization oti€sian The additive noisew[m] has a variance’?, = 1. All time-
noise. frequency patterns are well segmented, while the estimated

The region growth is executed by choosing the coefficienbise variance is52 = 0.494. The spectral kurtosis of the
of the H; set with the highest second-order moment as %, set is 0.032, and the final threshold 0.049.
"seed” for the region growing algorithm, labellédA search
for other detected points is carried out in its 8-connettivi The hypothesis of white Gaussian noise may be limited to
neighborhood in the time-frequency representation, agsig the hypothesis of white Gaussian noise on a given frequency
to these points the same label. The spectral pattern labelasand only. Figure 7 illustrates this with a dolphin whistle
is thus created. When all neighbouring points are classifiedin non-white underwater noise. The spectrogram here is
new seed is chosen among the remaining detected points, lmited to a frequency band where noise is roughly white,
a new pattern is created. Consequently, a segmented dpegieamitting the segmentation of the dolphin whistle into
pattern is a set of coefficients connected in the time-fraque different time-frequency patterns.
plane.

An analysis of the influence of the algorithm parameters Another way deal with non-white and/or non-stationary
Dfar Peand aNAtsx may be found in [17] and [18]. Gaussian noise is to apply the algorithm locally in the time-

frequency domain. In this case, the noise variance is etiina

In summary, the time-frequency segmentation proposed saparately for each time-frequency coefficient, on a gieeall
this paper is an iterative process: at each iteration, thieenoneighbourhood. A unique probability of false alarm allows t
variance is overestimated (53) due to the presence of the sidgorithm to detect signal coefficients in relation to thedb
nal; then this noise level permits the detection of someaigmoise level (51).
points (51). A region growing algorithm is applied to create However, theH, set has not a single Gaussian distribution
spectral patterns in thé{; set, and put isolate coefficientsanymore, so the spectral kurtosis criterion is not directly
back into theH, set. The iterations are stopped when thasable. By using the coefficients of tl#¢, set normalized
non-detected points have a Gaussian complex distribuition,by the local estimation of the variance, we get a set having
other words when the spectral kurtosis of these points besona single Gaussian distribution, on which the spectral lgisto
smaller than the threshold; . criterion is applied.
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over-estimation and signal coefficient detection.
of using a criterion to stop the algorithm based on the
convergence of the statistics of non-segmented points, we
use the spectral kurtosis as a Gaussianity test of non-
segmented coefficients. This new criterion is not open talloc
convergences. When this spectral kurtosis becomes zdro, al
non-segmented points have a single Gaussian distribution,
meaning that they comes from noise only.

Instead

The algorithm has been extended to non-white and non-
.. Stationary Gaussian noise by applying the algorithm lgcall
. in the time-frequency domain, and estimating the spectral
= kurtosis on non-detected points normalized by the locasaoi
" variance estimation. Results of the algorithm have bees-ill

trated on a real-case signals for a stationary white Gaussia

noise, and on a synthetic signal embedded in a non-white and

non-stationary Gaussian noise.

Fig. 8. Segmentation a synthetic signal and a non-white statienary
Gaussian noise. Top left: spectrogram. Top right: thecaktvariance of
the added Gaussian noise. Bottom left: segmentation reBattom right:
estimated variance.

(1]

Figure 8 illustrates the segmentation of a synthetic signil
embedded in a non-white and non-stationary Gaussi
noise, for a neighbourhood of 21 time points and 21
frequency points, and a probability of false alarm of 0.1[3]
The segmentation result is correct (top left), while thespoi
variance is well estimated (bottom right).
(4]

Finally, this algorithm relies only on the linearity of the
STFT, and can be extended to other time-frequency transform
[18] (in french). An application of this segmentation to thelS]
Capongram of Barkhausen noise is detailed by Pado¥esak
[19]. [6]

V. CONCLUSION

This papers firstly deals with the circularity of the STFTI[/]
coefficients of white Gaussian noise. These coefficients are
not circular for normalized frequencies close to 0 and 0.5,
and we have described their non-circularity depending eir th [8]
position in the time-frequency plane. We propose a modified
STFT, where all coefficients are circular. We check that thgg
spectrogram of white Gaussian noise coming from this new
STFT has a distribution closer to @ distribution with two
degrees of freedom than usual spectrogram. [11]

We have then considered spectral kurtosis: first, we have
shown that the spectral kurtosis of a circular coef“ficiento'ﬁ2

2 . . . . ]
equal tos of the kurtosis of its real or imaginary part, an
that the variance of the spectral kurtosis is smaller than th
variance of the kurtosis estimated from both the real aftf!
imaginary parts of the variable. We have also proved thgy,
a non-circular Gaussian coefficient has a positive spectral
kurtosis, defending the interest of the rectified STFT. T ?]
influence of the presence of signal in the STFT on the spect aEI
kurtosis has been illustrated, and we have shown that tinlsig[16]
leads to positive spectral kurtosis.

These results are used to update a time—frequerﬁl:y
algorithm, based on successive iterations of noise vagianc
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