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Abstract

In this paper, we consider a queue-aware distributive resource control algorithm for two-hop MIMO

cooperative systems. We shall illustrate that relay buffering is an effective way to reduce the intrinsic

half-duplex penalty in cooperative systems. The complex interactions of the queues at the source node

and the relays are modeled as an average-cost infinite horizon Markov Decision Process (MDP). The

traditional approach solving this MDP problem involves centralized control with huge complexity. To

obtain a distributive and low complexity solution, we introduce a linear structure which approximates the

value function of the associated Bellman equation by the sumof per-node value functions. We derive a

distributive two-stage two-winner auction-basedcontrol policy which is a function of the local CSI and

local QSI only. Furthermore, to estimate thebest fitapproximation parameter, we propose a distributive

online stochastic learning algorithm using stochastic approximation theory. Finally, we establish technical

conditions for almost-sure convergence and show that underheavy traffic, the proposed low complexity

distributive control is global optimal.

I. INTRODUCTION

Cooperative relay communication has been a hot research topic in both the academia [1], [2] and

the industry [3], [4] because it could exploit the broadcastnature of wireless communication to achieve

cooperative diversity.One potential issue of cooperative communication is the half-duplex penalty in the

relay nodes.There have been some recent works to address the half-duplexissue in cooperative relay

systems. For example, complex echo cancelation technique is used at the relay to cancel the coupled

interference from the transmitting path [5], [6]. However,these works all focused at the physical layer

signal processing. In [7], the authors exploit special topology and proposed some relay protocols to get
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rid of the half-duplex penalty. Moreover, this approach depends heavily on the locations of the relays and

it cannot be extended to general relay channel. In this paper, we are interested to explore a system level

solution to deal with the half-duplex issue. We consider a simple MIMO cooperative relay system with a

multi-antenna source node (Src),M multi-antenna relay nodes (RS) and a multi-antenna destination node

(Dst). We shall illustrate that relay buffering can be utilized to significantly reduce the intrinsic half-duplex

penalty. Since buffering is involved, it is important to consider not only the throughput performance but

also the associated end-to-end delay performance. As a result, we shall focus on delay-optimal resource

control for the two-hop protocol in MIMO cooperative relay systems.

Delay-optimal resource control in cooperative relay system is a very difficult problem. Most of the

existing works have assumed infinite backlogs of information and focus on optimizing the throughput

performance only. A systematic approach is to model the delay-optimal control as Markov Decision

Process (MDP) [8], [9].However, there is a well-known issue of thecurse of dimensionalityand brute

force value iteration or policy iteration could not give simple implementable solutions1. For multi-hop

systems, there is a unique challenge concerning the complexinteractions of buffers at the source node

and theM RS nodes and the existing solutions for single-hop systems cannot be extended easily to deal

with this situation. There are a few recent works that considered queue dynamics in relay systems [10],

[11]. However, these works have focused on the characterization of the stability regionand throughput

optimal control. The question of delay-optimal control forcooperative relay system remains to be open.

In addition, another important technical challenge is the distributive implementation consideration. For

instance, the entire system state could be characterized bythe global CSI(CSI among every pair of nodes

in the system) as well as theglobal QSI(QSI of every buffer in the system).Brute-force solution of the

MDP will yield a control policy that isadaptive to the global CSI and global QSI. This poses a huge

implementation challenges because these global system state information are distributed locally at each of

the source and relay nodes.

In this paper, we shall address the above challenges as follows. We shall first formulate the delay-optimal

resource control policy (such as the power control and RS selection) as an average-cost infinite horizon

Markov Decision Process (MDP). To alleviate thecurse of dimensionality, and to obtain a distributive and

1For example, for a system with maximum buffer length of20, 3 CSI states andM RSs, the total number of system states is

20M+1 × 32M , which is unmanageable even for small number of RS.
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low complexity solution, we first introduce aper-node value functionto approximate the value function of

the associated Bellman equation. Based on the per-node value function, we derive a distributivetwo-stage

two-winner auction-basedcontrol policy, which is a function of the local CSI and localQSI. The per-node

value function is obtained via a distributive online stochastic learning algorithm, which requires local

CSI and local QSI only. The proposed online stochastic learning is quite different from the conventional

reinforced learning [12] in mainly two ways: (1) We are dealing with constrained MDP(CMDP) and our

online iterative solution updates both the value function and the Lagrange multipliers (LM) simultaneously;

(2) The control action is determined from the per-node valuefunction of all the nodes via a per-slot auction

mechanism. Therefore, the algorithm dynamics of the per-node online learning is not acontraction mapping

and hence, standard convergence proof using fixed point theorem cannot be applied in our case directly.

Using the technique of separation of different time scales,we establish technical conditions for the almost

sure convergence of the proposed distributive stochastic learning. We also show that the proposed low

complexity distributive solution is asymptotically global optimal under heavy traffic loading. Finally, we

demonstrate by simulation that the proposed scheme has significant performance gain over various baselines

(such as conventionalCSIT-onlycontrol and thethroughput-optimal control(in stability sense)) with low

complexityO(M) and low signaling overhead.

II. SYSTEM MODELS

A. System Architecture and MIMO Relay Physical Layer Model

We consider a two-hop multi-antenna cooperative relay communication system with one multi-antenna

source node (NT antennas),M multi-antenna half-duplex relay stations (RS, each withNR antennas) and

one multi-antenna destination node (NT antennas), as illustrated in Fig. 1. The source node cannot deliver

packets directly to the destination node due to limited coverage and the cooperative RSs are deployed to

extend the source node’s coverage.

Denote the Rx-RS and the Tx-RS as them-th RS and then-th RS for notation simplicity2. LetNSR and

NRD be the number of data streams transmitted in the S-R link and the R-D link respectively, where we

requireNRD = min(NT , NR −NSR) for simultaneous interference-free transmission. We shall illustrate

the signal model of the S-Rm link and the Rn-D link as follows:

2Since the RSs are half-duplex under practical consideration, we requirem 6= n implicitly.
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Fig. 1. Illustration of the two-hop MIMO cooperative systemwith a multi-antenna source node, 2 multi-antenna RS nodes and a

multi-antenna destination node. By exploiting buffers at the 2 MIMO RSs, the S-R link (source node to RS1) and R-D link (RS2 to

destination node) can deliver packets simultaneouslywithout interfering with each other using signal processing techniques (with

appropriate precoder and decorrelator designs). Thus, by exploiting relay buffering, we could substantially reduce the intrinsic

penalty associated with half duplex relays.

• S-Rm link: Let XS ∈ CNSR×1 andFS ∈ CNT×NSR be the symbol vector and the precoder matrix of

the source node respectively,Gm ∈ CNSR×NR be the decorrelator matrix at them-th RS node, the

NSR × 1 post-processing symbol vector at them-th RS is given byYm = GmHS,mFSXS + ZS,m,

whereHS,m ∈ CNR×NT is the zero-mean unit variance i.i.d. complex Gaussian fading matrix from

the source node to them-th RS,ZS,m ∈ CNSR×1 is the zero-mean unit variance complex Gaussian

channel noise.

• Rn-D link: Let Xn ∈ CNRD×1 andFn ∈ CNR×NRD be the transmit symbol vector and the precoder

of the n-th RS respectively, theNT × 1 received symbol vector at the destination node is given by3

YD = Hn,DFnXn + Zn,D, whereHn,D ∈ CNT×NR is complex Gaussian fading matrix from the

n-th RS to the destination node,Zn,D ∈ CNT×1 is the complex Gaussian channel noise.

In this paper, the resource control is performed distributively on each RS and therefore, we define the

local channel state information (CSI) available at each RS as follows. For them-th RS, there are two

types of local CSI, namely thetype-I local CSIand type-II local CSIas illustrated in Fig. 2. The type-I

and type-II local CSI of them-th RS are denoted byHI
m = {HS,m} andHII

m = {Hm,D} ∪ {Hm,n|n 6=

3Due to the limited coverage of the source node, we assume the received signal from the source node is negligible compared

with the received signal from the relay node.
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m, 1 ≤ n ≤ M}, respectively. For notation convenience, letHm = HI
m ∪HII

m be the local CSI4 at the

m-th RS andH = ∪M
m=1 Hm be the global CSI (GCSI) of the system.Moreover, the assumption on the

channel is summarized below:

Assumption 1 (Assumption on Channel Fading): We assume the channel fading elements in the global

CSIH are i.i.d. CN (0, 1). The CSI is quasi-static within a frame but i.i.d. between frames.

We assume strong channel coding is used and hence, the maximum achievable data rate is given by the

instantaneous mutual information5. If the source node transmitsRS,m information bits to them-th RS in the

current frame, the frame will be successfully received ifRS,m ≤ τ log2 det
[
I+GmHS,mFSF

†
SH

†
S,mG

†
m

]
,

where † denotes the matrix conjugate transpose andτ is the frame duration. Similarly, the destination

node could successfully decode a frame withRn,D information bits (transmitted from then-th RS) if

Rn,D ≤ τ log2 det
[
I+Hn,DFnF

†
nH

†
n,D

]
.

B. Buffered Decode and Forward

Although the RS nodes are half-duplex relays6, it is possible to reduce the system half-duplex penalty

by exploiting buffers at the half-duplex RSs. Specifically,the source node could transmit a packet to the

m-th RS (denoted as the Rx-RS) and at the same time, then-th RS (denoted as the Tx-RS) transmits

its buffered packetto the destination node without interfering the Rx-RS. Thisis possible by means of

precoder-decorrelator designs at the source node, Rx-RS (m-th RS) and the Tx-RS (n-th RS).Let pS,m

andpn,D denote the total transmit power at the source node for the S-Rm link and the Tx-RS(n-th RS)

for the Rn-D link, respectively. For any givenNSR, pS,m for the S-Rm link as well asNRD, pn,D for

the Rn-D link (whereNRD = min(NT , NR −NSR) implicitly), the decorrelator and precoder designs are

elaborated below.

• Precoder and Decorrelator Design of the S-Rm Link at the Rx-RS Node7: The precoder at the

source node (FS) and the decorrelator at the Rx-RS node (Gm) are chosen to optimize the mutual

4Note that both the type-I and type-II local CSI at them-th RS refers to all the outgoing links from the m-th RS and hence,

they can be measured at the m-th RS using channel reciprocityand preambles. For example, there are standard signaling and

channel sounding mechanisms in the WiMAX (802.16j, 802.16m) and LTE systems for the RS to acquire the local CSI.

5For example, LDPC with reasonably large block length (e.g 8kbyte) can achieve the instantaneous mutual information within

0.5dB SNR [13].

6Half-duplex relay means that the RS nodes do not have any Tx/Rx echo-cancelation capability.

7Type-I local CSIHI
m is required at them-th Rx-RS node to compute the precoder and decorrelator of the S-Rm link.



November 5, 2018 6

information of the S-Rm link subject to the transmit power constraint as follows:

{G∗
m(NSR),F

∗
S(NSR, pS,m)} = arg max

FS ,Gm

log2 det
[
I+Gm(NSR)HS,mFSF

†
SH

†
S,mG

†
m(NSR)

]

s.t. tr(FSF
†
S) = pS,m (Transmit power constraint). (1)

Let HS,m = US,mΣS,mV
†
S,m be the SVD decomposition of channel matrixHS,m, where the singular

values inΣS,m are sorted in a decreasing order along the diagonal,US,m = [u1
S,m, ...,uNR

S,m] and

VS,m = [v1
S,m, ...,vNT

S,m]. Using standard optimization techniques [14], the source precoderF∗
S is

given by

F∗
S(NSR, pS,m) = [v1

S,m, ...,vNSR

S,m ]× diag
{ 1

λS,m
−

1

η1S,m
, ...,

1

λS,m
−

1

ηNSR

S,m

}
, (2)

whereη1S,m ≥ η2S,m... ≥ ηNSR

S,m are the firstNSR singular values of channel matrixHS,m, λS,m is the

Lagrange multiplier corresponding to the transmit power constraint in (1). The decorrelatorG∗
m is

given by

G∗
m(NSR) = [u1

S,m, ...,uNSR

S,m ]†. (3)

• Precoder Design of the Rn-D Link at the Tx-RS Node8: Similarly, given the decorrelatorG∗
m

in (3), the precoder at the Tx-RS nodeFn ∈ CNRD×NR is selected to maximize R-D link mutual

information subject to the transmit power constraint and the interference nulling constraint (at the

Rx-RS node) as follows:

F∗
n(NRD, pn,m) = argmax

Fn

log2 det
[
I+Hn,DFnF

†
nH

†
n,D

]

s.t. G∗
m(NSR)Hn,mFn = 0 (Interference nulling constraint) (4)

tr(FnF
†
n) = pn,D (Transmit power constraint) (5)

The interference nulling constraint in (4) is to allow simultaneously active R-D and S-R links using

half-duplex RSs. LetHn,D × null(GmHn,m) = Un,DΣn,DV
†
n,D be the SVD decomposition, where

the singular values inΣn,D are sorted in a decreasing order along the diagonal,null(GmHn,m)

denotes the null space of matrixGmHn,m andVn,D = [v1
n,D, ...,v

NR−NSR

n,D ]. Using standard opti-

mization techniques [14], the precoder at the Tx-RS (F∗
n) is given by:

F∗
n(NRD, pn,m) = [v1

S,n, ...,v
NRD

S,n ]× diag
{ 1

λn,D
−

1

η1n,D
, ...,

1

λn,D
−

1

ηNRD

n,D

}
, (6)

8Type-II local CSIHII
n is required at then-th Tx-RS node to compute the precoder of the Rn-D link.
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whereη1n,D ≥ η2n,D... ≥ ηNRD

S,m are the firstNRD singular values of channel matrixHn,D×null(GmHn,m),

λn,D is the Lagrange multiplier corresponding to the power constraint in (5).

C. Bursty Source Model and Queue Dynamics

There is one queue in the source node and one queue in each of theM RSs respectively for the storage

of received information bits. LetNQ be the maximum buffer size (number of bits) for the buffers inthe

source node and all the RSs. LetX(t) indicates thenumber ofnew information bits arrival in thet-th

frame at the source node. The assumption on the bit arrival process is given below:

Assumption 2 (Assumption on Arrival Process): We assumeX(t) is i.i.d. over frames based on a

general distributionfX(x) with E[X(t)] = λS and the information bitsarrive at the end of each frame.

Moreover, letQS(t) andQm(t) denote the number of information bits in the source node’s queue and

the m-th RS’s queue (1 ≤ m ≤ M ) at frame t. We assume each RS has the knowledge of its own

queue length and the source node’s queue length. Thus, the local QSI of them-th RS is
(
QS(t), Qm(t)

)
.

Q(t) =
(
QS(t), Q1(t), · · · , QM (t)

)
denotes theglobal queue state information(GQSI) at framet.

The overall system queue dynamics at the source node and the RSs are summarized below.

• If the source node successfully deliversRS,m(t) information bits to them-th RS at framet, then

QS(t+1) = min {max{QS(t)−RS,m(t), 0} +X(t), NQ} andQm(t+1) = min {Qm(t) +RS,m(t), NQ}.

• If the source node fails to deliver any information bit to theRSs , thenQS(t+1) = min {QS(t) +X(t), NQ}.

• If the n-th RS successfully deliversRn,D(t) information bits to the destination at framet, then

Qn(t+ 1) = max{Qn(t)−Rn,D(t), 0}.

Remark 1:Each information bit delivered from the source node will be received by one of the RSs

and different RSs may have different information bits in thebuffer. When the source node is to deliver

information bits to one RS, selecting different RSs with different buffer lengths may have different effects

on the average packet delay of the system. Therefore, not only the CSI of all S-R links but also the

QSI of all RSs should be considered in directing the source node’s transmission. Such coupling on the

system QSI is a unique challenge in delay-optimal control ofmulti-hop systems. Fig. 1 shows the top

level architecture illustrating the interactions among all the queues in the two-hop cooperative system.



November 5, 2018 8

Fig. 2. Illustration of an example of bidding protocol for a 2-RS system.

D. Distributive Contention Protocol

Based on the BDF in Section II-B, we still need to determine (a) which RS should be the Rx-RS (m∗),

(b) which RS should be the Tx-RS (n∗) and (c) the number of data streams transmitted by the sourcenode

(N∗
SR) and the Tx-RS (N∗

RD). Due to the decentralized control requirement, we shall propose atwo-stage

two-winner auctionmechanism for distributive9 contention resolution.

Figure 2 illustrates an example of bidding protocol for a 2-RS system.As a result, the RS selection and

data stream allocation procedure can be parameterized by a bidding vector
{(

Am(0), ..., Am(min(NT , NR))
)
,

Bm)|∀m
}

. We shall refer the bidding vector as theRS selection and data stream allocation policyin the

rest of the paper.

E. Optimization Objective and Control Policy

Definition 1 (Distributive Stationary Control Policy): A distributive stationary control policyΠ = {Πm|1 ≤

m ≤ M} is a collection of stationary control policiesΠm at them-th RS, whereΠm = {Πm
p ,Πm

A ,Πm
B }

9Similar to the common notion of distributive algorithms in the literature [15], [16], the term “distributive” in this paper refers

to algorithms that perform computation locally but requireexplicit message passing. Yet, the message passing overhead in the

bidding process is quite mild [17], [18].
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includesthepower allocation policy of S-R link and R-D linkΠm
p , the first-stage and second-stage bidding

policy Πm
A andΠm

B . Specifically,

Πm
p (Sm) =

{
pS,m(NSR), pm,D(NRD) : NSR, NRD = 0, 1, · · · ,min(NT , NR)

}
, pm (7)

Πm
A (Sm) =

{
Am(NSR)|NSR = 0, 1, ...,min(NT , NR)

}
, Am (8)

Πm
B (Sm,∪M

m′=1Am′) =
{
Bm, Im, (NSR,m, NRD,m)|NRD = min(NT , NR −NSR)

}
, Bm (9)

for m = 1, 2, ...,M , wherepS,m(NSR) is the total transmit power allocation at the source node forthe

S-R link withNSR data streams,pm,D(NRD) is the total transmit power allocation at the Tx-RS for the

R-D link withNRD data streams.

Denote the local system state of them-th RS asSm = (QS , Qm,Hm) (1 ≤ m ≤ M ). Therefore, the

global system state is given byS = ∪M
m=1 Sm = (Q,H).

Remark 2 (Distributive Consideration of Stationary Control Policy Π in Definition 1): The stationary con-

trol policy Π = {Πm|1 ≤ m ≤ M} is distributive in the sense that the policyΠm at each RSm only

depends on the local system stateSm and the broadcast bidding information available at RSm. Thus, for

notation simplicity, we shall omit the biddinginformation when the meaning is clear, i.e. we shall use

Πm(Sm) = {Πm
p (Sm),Πm

A (Sm),Πm
B (Sm)} in the rest of the paper.

A stationary control policyΠ induces a joint distribution for the random process{S(t)}. Under As-

sumption 1 and 2,S(t+ 1) only depends onS(t) and actions at framet, and hence the induced random

process{S(t)} for a given control policyΠ is Markovian with the following transition probability:

Pr
[
S(t+ 1)

∣∣S(t),Π
(
S(t)

)]
= Pr

[
H(t+ 1)

]
Pr

[
Q(t+ 1)

∣∣S(t),Π
(
S(t)

)]
, (10)

where the equality is because of Assumption 1 and the queue dynamics transition probabilityPr
[
Q(t+

1)
∣∣S(t),Π

(
S(t)

)]
is given by

Pr
[
Q(t+ 1)

∣∣S(t),Π
(
S(t)

)]
(11)

=





Pr
[
X(t) = QS(t+ 1)− [QS(t)−RS,m∗(t)]+

]
, if Qm(t+ 1) = Qm(t) (∀m 6= m∗, n∗)

andQm∗(t+ 1) = min{Qm∗(t) +RS,m∗(t), NQ}, Qn∗(t+ 1) = max{Qn∗(t)−Rn∗,D(t), 0}

0, otherwise

Given a unichain policyΠ, the induced Markov chain{S(t)} is ergodic and there exists a unique steady

state distributionπS [8] . Therefore, we have the average end-to-end delay of the two-hop cooperative RS
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system summarized in the following lemma:

Lemma 1 (Average End-to-End Delay):For small average packet drop rate constraintD, the average

end-to-end delay of the two-hop cooperative RS system is given by

T (Π) = lim
T→∞

1

T

T∑

t=1

EΠ
[∑M

m=S Qm(t)

λS

]
= EπS

[∑M
m=S Qm

λS

]
(12)

wherem = S, 1, 2, ...,M in the equation10, EπS
means taking the expectation with respect to the induced

steady state distributionπS (induced by the unichain control policyΠ) andλS is the average number of

arrival bits per frame at the source node.

Proof: Please refer to Appendix A.

Similarly, the source node’s average drop rate constraint11, the source node’s average power constraint and

each RSm’s average power constraint are given by

D(Π) = lim
T→∞

1

T

T∑

t=1

EΠ
[
I[QS(t) = NQ]

]
= EΠ

πS

[
I[QS = NQ]

]
≤ D (13)

PS(Π) = lim
T→∞

1

T

T∑

t=1

EΠ
[ M∑

m=1

Nmin∑

i=1

IiS,m(t)pS,m(i)(t)
]
= EΠ

πS

[ M∑

m=1

Nmin∑

i=1

IiS,mpS,m(i)
]
≤ PS (14)

Pm(Π) = lim
T→∞

1

T

T∑

t=1

EΠ
[Nmin∑

i=1

Iim,D(t)p
i
m,D(t)

]
= EπS

[Nmin∑

i=1

Iim,Dp
i
m,D

]
≤ PR, 1 ≤ m ≤ M (15)

whereNmin = min(NT , NR), IiS,m = I[m = m∗]I[i = N∗
SR] andIim,D = I[m = n∗]I[i = N∗

RD].

III. C ONSTRAINED MARKOV DECISION PROBLEM FORMULATION

In this section, we shall formulate the delay-optimal problem as an infinite horizon average cost

constrained Markov Decision Problem (CMDP) and discuss thegeneral solution.

A. CMDP Formulation

The goal of the controller is to choose an optimal stationaryfeasible unichain policyΠ∗ that minimizes

the average end-to-end transmission delay in (12). Specifically, the delay-optimal control problem is

summarized below.

10This abuse will also appear in the following of this paper as long as the meaning is clear.

11Since the source node andM RSs have buffers with the same buffer sizeNQ, the average drop rate at each RS node is much

lower than the average drop rate at the source node. Therefore, we omit the average drop rate constraint at each RS to simplify

the problem.
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Problem 1 (Delay-Optimal Control Problem for MIMO Relay System): Find a feasible stationary unichain

policy Π = (Π1, ...,ΠM ) such that the average end-to-end delay is minimized subjectto the average drop

rate constraint at the source node and the average power constraint at the source node and each RS node12,

i.e. min
Π

T (Π) = lim
T→∞

1
T

∑T
t=1 E

Π
[∑M

m=S Qm(t)
]
s.t. (13), (14), (15).

Problem 1 is an infinite horizon average cost constrained Markov Decision Problem (CMDP) [19] with

system state spaceS = {S1,S2, · · · } = Q × H (whereQ is the global QSI state space andH is the

global CSI state space), action spaceP×A×B (whereP = {∀pm|∀m} is power allocation action space,

A = {∀Am|∀m} is the first-stage bidding action space andB = {∀Bm|∀m} is the second-stage bidding

action space), transition kernel given by (10), and the per-stage cost functiond
(
S,Π(S)

)
=

∑M
m=S Qm.

B. Lagrangian Approach for the CMDP

The CMDP in Problem 1 can be converted into unconstrained MDPby the Lagrange theory [14]. For

any vector of Lagrange multiplier (LM)γ = [γS,d, γS,p, γ1,p, ..., γM,p]
T , we define the Lagrangian as

L(Π, γ) = lim
T→+∞

1
T

∑T
t=1 E

Π
S

[
g
(
S(t),Π

(
S(t)

)
, γ

)]
, where

g
(
S,Π

(
S
)
, γ

)
= QS + γS,p

M∑

m=1

Nmin∑

i=1

IiS,mpS,m(i) + γS,dI[QS = NQ] +

M∑

m=1

[
Qm + γm,p

Nmin∑

i=1

Iim,Dpm,D(i)
]
.

Therefore, the corresponding unconstrained MDP for a particular vector of LMsγ is given by

G(γ) = min
Π

L(Π, γ) = min
Π

lim
T→∞

1

T

T∑

t=1

EΠ
[
g
(
S(t),Π

(
S(t)

)
, γ

)]
(16)

whereG(γ) gives the Lagrange dual function. The dual problem of the primal problem in Problem 1 is

given bymaxγ�0 G(γ). It is shown in [20] that there exists a Lagrange multiplierγ ≥ 0 such thatΠ∗

minimizesL(Π,γ) and the saddle point condition the saddle point conditionL(Π, γ∗) ≥ L(Π∗, γ∗) ≥

L(Π∗, γ) holds. Using standard Lagrange theory [14],Π∗ is the primal optimal (i.e. solving Problem 1),

γ∗ is the dual optimal (solving the dual problem) and the duality gap is zero. Thus, by solving the dual

problem, we can obtain the primal optimalΠ∗. Therefore, we shall first solve the unconstrained MDP in

(16) in the following.

For a given LM vectorγ, the optimizing unichain policy for the unconstrained MDP (16) can be obtained

by solving the associatedBellman equationw.r.t. (θ, {J(S)}) as follows

θ + J(Si) = min
Π(Si)

{
g
(
Si,Π(Si), γ

)
+
∑

Sj

Pr[Sj |Si,Π(Si)]J(Sj)
}

∀Si ∈ S, (17)

12To simplify the notation, we shall normalizeλS = 1 in the rest of the paper.
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where{J(S)} is the value function of the MDP andPr[Sj |Si,Π(Si)] is the transition kernel which can

be obtained from (10),θ = minΠ L(Π, γ) is the optimal average cost per stage and the optimizing policy

is Π∗ with Π∗(Si) minimizing the R.H.S. of (17) at any stateSi. For any unichain policy with irreducible

Markov Chain{S(t)}, the solution to (17) is unique [19]. We restrict our policy space to beunichain

policies13 and we denoteΠ∗ as the optimal unichain policy.

C. Equivalent Bellman Equation for the CMDP

The Bellman equation in (17) is a fixed point problem over the functional space and this is very

complicated to solve due to the huge cardinality of the system state space. Brute-force solution could not

lead to any useful implementations. In this subsection, we shall illustrate that the Bellman equation in (17)

can be simplified into a equivalent form by exploiting the i.i.d. structure of the CSI processH(t). For

notation convenience, we partition the unichain policyΠ into a collection of actions based on the QSI.

Specifically, we have the following definition.

Definition 2 (Partitioned Actions for them-th Relay): Given a unichain control policyΠm, we define

Πm(Q) = Πm(QS , Qm) = {Πm(QS , Qm,Hm)|∀Hm} as the collection of actions under a given local

QSI (QS , Qm) for all possible local CSIHm. The complete policyΠm for them-th RS is therefore equal

to the union of all the partitioned actions, i.e.Πm = ∪(QS,Qm)Π
m(QS , Qm).

Therefore, we haveΠ = ∪QΠ(Q) and we show that the optimal policyΠ∗ of (16) can be obtained by

solving anequivalent Bellman equationsummarized in the following lemma.

Lemma 2 (Equivalent Bellman Equation):The control policy obtained by solving the Bellman equation

in (17) is the same as that obtained by solving theequivalent Bellman equationdefined below:

θ + V (Qi) = min
Π(Qi)

{
g
(
Qi,Π(Qi), γ

)
+
∑

Qj

Pr[Qj|Qi,Π(Qi)]V (Qj)
}
,∀Qi ∈ Q (18)

whereθ = minΠ L(Π, γ) is the original optimal average cost per stage,V (Qi) = EH[J(Qi,H)|Qi] is

the conditional average value function for stateQi, and

g
(
Qi,Π(Qi), γ

)
= EH

[
g
(
(Qi,H),Π(Qi,H), γ

)∣∣Qi
]

(19)

13For most of the policies we are interested, the associated Markov chain is irreducible and hence, there is virtually no loss by

restricting ourselves to unichain policies.
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is the conditional per-stage cost andPr[Qj |Qi,Π(Qi)] = EH

[
Pr[Qj |(Qi,H),Π(Qi,H)]

]
is the condi-

tional average transition kernel.

Proof: Please refer to Appendix B.

Remark 3:Note that solving the R.H.S. of (18) for eachQi will get an overall control policy which is

a function of both the CSIH and QSIQi. This is illustrated by the following example.

Example 1:Consider a simple example with global CSI state spaceH = {H1,H2} and global QSI

state spaceQ = {Q1,Q2}. Hence, the control variables are collectively denoted by the policy Π =
{
Π(H1,Q1),Π(H2,Q1), Π(H1,Q2),Π(H2,Q2)

}
. Using definition 2, the partitioned actions are simply

regroups of variables given byΠ(Q1) =
{
Π(Q1,H1), Π(Q1,H2)

}
andΠ(Q2) =

{
Π(Q2,H1),Π(Q2,H2)

}
.

For any QSI stateQi (i = 1, 2), using Lemma 2, the optimal partitioned actionsΠ∗(Qi) can be obtained

by solving the R.H.S. of (18) as follows

Π∗(Qi) = arg min
{Π(Qi,H1),Π(Qi,H2)}

{ 2∑

k=1

Pr[Hk]
[
g
(
(Qi,Hk),Π(Qi,Hk), γ

)

+
∑

Qj

Pr
[
Qj|(Qi,Hk),Π(Qi,Hk)

]
V (Qj)

]}
(20)

Observe that the R.H.S. of (20) is a decoupled objective function w.r.t. the variables{Π(Qi,H1),Π(Qi,H2)}.

Hence, applying standard decomposition theory,∀k = 1, 2, we have

Π∗(Qi,Hk) = arg min
Π(Qi,Hk)

{
g
(
(Qi,Hk),Π(Qi,Hk), γ

)
+
∑

Qj

Pr
[
Qj|(Qi,Hk),Π(Qi,Hk)

]
V (Qj)

}

Using the results in Lemma 2, the optimal control of the original problem when the QSI and CSI realizations

are (Q1,H2) is Π∗(Q1,H2). Hence, the solution obtained by solving (18) is adaptive toboth the CSI

and QSI.

IV. D ISTRIBUTIVE ONLINE ALGORITHM BASED ON APPROXIMATED MDP

There are still two major obstacles ahead. Firstly, obtaining the value functions{V (Q)} w.r.t. (18)

involves solving a system of exponential number of equations and unknowns and brute force solution has

exponential complexity. Secondly, even if we could obtain the solution{V (Q)}, the derived control actions

will depend on global QSI and CSI, which is highly undesirable. In this section, we shall overcome the

above challenges using approximate MDP and distributive stochastic learning. The linear approximation

architecture of the value function is given below [21]:

V (Q) =

M∑

m=S

NQ∑

q=0

Ṽm(q)I[Qm = q] or in the vector form V = MW, (21)
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where we shall refer{Ṽm(q)} asper-node value functions14 (∀m = S, 1, · · · ,M ) and{V (Q)} asglobal

value functionin the rest of this paper,V = [V (Q1), ..., V (Q|Q|)]T is the vector form of global value

functions, theparameter vectorW andmapping matrixM is given below:

W =
[
ṼS(0), ..., ṼS(NQ), Ṽ1(0), ..., Ṽ1(NQ), ..., ṼS(NQ), ṼM (0), ..., ṼM (NQ)

]T

M =




I[Q1
S = 0] ... I[Q1

S = NQ] ... I[Q1
M = 0] ... I[Q1

M = NQ]

... ... ... ... ... ... ...

I[Q
|Q|
S = 0] ... I[Q

|Q|
S = NQ] ... I[Q

|Q|
M = 0] ... I[Q

|Q|
M = NQ]



,

where we letṼS(0) = Ṽ1(0) = ... = ṼM (0) = 0 and setQI = (0, · · · , 0) (i.e. all buffer empty) as the

reference state without loss of generality. Compared with the original value function in (18), the dimension

of the per-node value functions is much smaller. Therefore,the per-node value function can only satisfy

the Bellman equation (18) in some pre-determined system queue states. In this paper, we shall refer the

pre-determined subset of system queue states as therepresentative states[21]. Without loss of generality,

we define the reference statesQR = {βm,q|∀m = S, 1, 2, ...,M ; q = 1, 2, ..., NQ}, whereβm,q denotes the

QSI with Qm = q andQn = 0 ∀n 6= m. Moreover, we also define the inverse mapping matrixM−1 as

M−1 =




0 I[Q1 = βS,1] ... I[Q1 = βS,NQ
], ... , 0 I[Q1 = βM,1] ... I[Q1 = βM,NQ

]

... ... ... ... ... ... ... ... ...

0 I[Q|Q| = βS,1] ... I[Q|Q| = βS,NQ
], ... , 0 I[Q|Q| = βM,1] ... I[Q|Q| = βM,NQ

]




T

.

Thus, we haveW = M−1V. Instead of offline computing thebest fitparameter vectorW (per-node value

function vector) w.r.t. the global value functionV (which is quite complex), we shall propose an online

learning algorithm to estimate the parameter vectorW (per-node value function) in Section IV-B.

A. Distributive Control Policy under Linear Value FunctionApproximation

Using the approximate value function in (21), we shall derive a distributive control policy which depends

on the local CSI and local QSI as well as the per-node value functions{Ṽm(q)} at each nodem (∀m =

S, 1, · · · ,M ). Specifically, using the approximation in (21), the control policy in (18) can be obtained by

solving the following simplified optimization problem.

14In this paper, we assume each RS (say them-th RS) has the knowledge of the source node’s queue lengthQS and its own

queue lengthQm. Therefore, the per-node value functioñVS and Ṽm is known at them-th RS.
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Problem 2 (Optimal Control Action with Approximated Value Function): For any given value function

V (Qi) =
∑M

m=S

∑NQ

q=0 Ṽm(q)I[Qi
m = q], the optimal control policy is given by

Π∗(Qi) = arg min
Π(Qi)

{
g
(
Qi,Π(Qi), γ

)
+
∑

Qj

Pr[Qj|Qi,Π(Qi)]V (Qj)
}

=arg
{ M∑

m=S

Qi
m + γS,dI[Q

i
S = NQ] +

∑

n

fX(n)V (Qi
S,n)

+ min
Π(Qi)

EH

[ ∑

m,NSR

INSR

S,m GS,m(NSR, pS,m) +
∑

n,NRD

INRD

n,D Gn,D(NRD, pn,D)
]}

⇔ arg min
Π(Qi)

EH

[ ∑

m,NSR

INSR

S,m GS,m(NSR, pS,m) +
∑

n,NRD

INRD

n,D Gn,D(NRD, pn,D)
]}

(22)

where Qi
S,n = [Qi

S + n,Qi
1, Q

i
2, ..., Q

i
M ] and GS,m(NSR, pS,m) = γS,ppS,m +

∑
n fX(n)

(
ṼS

(
Qi

S −

RS,m(NSR, pS,m)+n
)
−ṼS(Q

i
S+n)

)
+Ṽm

(
Qi

m+RS,m(NSR, pS,m)
)
−Ṽm

(
Qi

m

)
andGn,D(NRD, pn,D) =

γn,ppn,D + Ṽn

(
Qi

n −Rn,D(NRD, pn,D)
)
− Ṽn(Q

i
n).

The solution of Problem 2 is summarized in Lemma 3 below.

Lemma 3 (Distributive Control Policy):Given the per-node value functions{Ṽm(q)} (∀m = S, 1, ...,M )

and any realization of CSIH and QSIQi15, the following distributive control solves the Problem 2:

• Power control for the S-R link and R-D link (∀m = 1, · · · ,M ):

p∗S,m(NSR) = argmin
pS,m

GS,m(NSR, pS,m) and p∗m,D(NRD) = arg min
pm,D

Gn,D(NRD, pn,D) (23)

whereNSR, NRD = 0, 1, ...,min(NT , NR).

• First-stage bid at RSs (∀m = 1, · · · ,M ):

A∗
m(NSR) = GS,m

(
NSR, p

∗
S,m(NSR)

)
(24)

whereNSR = 0, 1, ...,min(NT , NR).

• Second-stage bid at RSs (∀n = 1, · · · ,M ):

(
In, NSR,n

)
=arg min

(m,NSR)

{
A∗

m(NSR) +Gn,D

(
NRD, p

∗
n,D(NRD)

)}

B∗
n =GS,In

(
NSR,n, p

∗
S,m(NSR,n)

)
+Gn,D

(
NRD,n, p

∗
n,D(NRD,n)

)
(25)

whereNRD = min(NT , NR −NSR).

15Note that the following expressions are all functions of thesystems state. We omit the system state for notation simplicity

when the meaning is clear.
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In addition, for sufficiently large source arrival rateλS , NQ

λS
and the average transmit power constraints

{PS , PR}, the power control policy in (23) has the following closed-form expression:

p∗S,m(NSR) =
NSR

[
Ṽ

′

S(Q
i
S)− Ṽ

′

m(Qi
m)

]

γS,p ln 2
−

NSR∑

j=1

1

η
j
S,m

(26)

p∗m,D(NRD) =
NRDṼ

′

m(Qi
m)

γm,p ln 2
−

NRD∑

j=1

1

η
j
m,D

, (27)

whereṼ
′

S(Q
i
S) =

ṼS(Qi
S+1)−ṼS(Qi

S−1)
2 and Ṽ

′

m(Qi
m) = Ṽm(Qi

m+1)−Ṽm(Qi
m−1)

2 .

Proof: Please refer to Appendix C.

Remark 4 (Multi-level Water-Filling Structure of the Control Policy): The power control policy (26) and

(27) as well as the RS selection and data stream allocation control policy in (24) and (25) are functions of

both the CSI and QSI where they depend on the QSI indirectly via the per-node value functions{Ṽm(q)}

(∀m = S, 1, · · · ,M ). The power control solution has the form of multi-level water-filling where the power

is allocated according to the CSI while the water-level is adaptive to the QSI.

B. Online Distributive Stochastic Learning Algorithm to Estimate the Per-node Value Functions{Ṽm(q)}

and the LMs{γS,d, γS,p, γm,p}

In Lemma 3, the control actions are functions of per-node value functions{Ṽm(q)} and the LMs

{γS,d, γS,p, γm,p}. In this section, we propose an online learning algorithm todetermine the per-node

value functions and the LMs realtime. The almost-sure convergence proof of this algorithm is provided

in the next section. The system procedure of the proposed distributive online learning is given below.

• Step 1 [Initialization]: Each RSm initiates its per-node value functions and LMs, denoted as{Ṽ 0
m(q)}

andγ0m,p, as well as the per-node value functions and LMs for the source node, denoted as{Ṽ 0
S (q)}

and{γ0S,p, γ
0
S,d}. The initialization ofṼ 0

S and{γ0S,p, γ
0
S,d} at each RS should be the same.

• Step 2 [Determination of control actions]: At the beginning of thet-th frame, the source node broad-

casts its QSIQS(t) to the RS nodes. Based on the local system information
(
QS(t), Qm(t),Hm(t)

)

and the per-node value functions{Ṽ t
m(q)} and {Ṽ t

S(q)}, each RSm determines the distributive

control actions including the S-R and R-D power allocationp∗S,m(NSR, t), p∗m,D(NRD, t) the first-

stage bidA∗
m(NSR, t) (NSR = 1, · · · , Nmin) as well as the second-stage bidB∗

m(t), In(t), NSR,n(t)

according to Lemma 3. Based on the contention resolution protocol described in Section II-D,

the Rx-RS and the Tx-RS pair is given by (m∗(t), n∗(t)) (where n∗(t) = argminnB
∗
n(t) and
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m∗(t) = In∗(t)(t)) and the corresponding number of data streams pair is given by (N∗
SR(t), N

∗
RD(t))

(whereN∗
SR(t) = NSR,n∗(t)(t) andN∗

RD(t) = NRD,n∗(t)(t)).

• Step 3 [Per-node value functions and LMs update]: Each RSm updates the per-node value function

{Ṽ t+1
S (q)}, {Ṽ t+1

m (q)} as well as the LMs{γt+1
S,d , γ

t+1
S,p , γ

t+1
m,p} according to Algorithm 1. Finally, let

t = t+ 1 and go to Step 2.

Algorithm 1 (Online distributive learning algorithm for per-node value functions and LMs):

Ṽ t+1
m (q) =Ṽ t

m(q) + ǫtv

[
γS,dI[QS(t) = NQ] + q +B∗

n∗(t)(t)− Ṽ t
m(q)

]
I[Q(t) = βm,q],m = S, 1, ...,M

(28)

γt+1
S,d =

(
γtS,d + ǫtd(I[QS(t) = NQ]−D)

)+
(29)

γt+1
S,p =

(
γtS,p + ǫtp

( Nmin∑

NSR=1

INSR

S,m (t)pS,m(NSR, t)− PS

))+
(30)

γt+1
m,p =

(
γtm,p + ǫtp

( Nmin∑

NSR=1

INRD

m,D (t)pm,D(NRD, t)− PR

))+
, m = 1, 2, ...,M (31)

where INSR

S,m (t) = I[m = m∗(t)]I[NSR = N∗
SR(t)], INRD

m,D (t) = I[m = n∗(t)]I[NRD = N∗
RD(t)], and

{ǫtv > 0}, {ǫtd > 0} {ǫtp > 0} are the step size sequences satisfying
∞∑

t=0

ǫtv = ∞,

∞∑

t=0

ǫtp = ∞,

∞∑

t=0

ǫtd = ∞,

∞∑

t=0

[
(ǫtv)

2 + (ǫtp)
2 + (ǫtd)

2

]
< ∞, lim

t→+∞

ǫtp

ǫtv
= 0, lim

t→+∞

ǫtd
ǫtv

= 0.

C. Almost-Sure Convergence of Distributive Stochastic Learning

In this section, we shall establish technical conditions for the almost-sure convergence of the online

distributive learning algorithm. Since{ǫtv}, {ǫtp}, {ǫtd} satisfy ǫtp = o(ǫtv), ǫ
t
d = o(ǫtp), the LMs update

and the per-node potential functions update are done simultaneously but over two different time scales.

During the per-node potential functions update (timescaleI), we haveγt+1
p − γt+1

p = O(ǫtp) = o(ǫtv) and

γt+1
S,d −γt+1

S,d = O(ǫtd) = o(ǫtv). Therefore, the LMs appear to be quasi-static [22] during the per-node value

function update in (28). For the notation convenience, define the sequences of matrices{At} and{Bt} as

At−1 = (1− ǫt−1
v )I +M−1P(Πt)Mǫt−1

v andBt−1 = (1− ǫt−1
v )I+M−1P(Πt−1)Mǫt−1

v , whereΠt is a

unichain system control policy at thet-th frame,P(Πt) is the transition matrix of system states given the

unichain system control policyΠt, I is identity matrix. The convergence property of the per-node value

function update is given below:
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Lemma 4 (Convergence of Per-Node Value Function Learning over Timescale I):Assume for all the fea-

sible policy in the policy space, there exists some positiveintegerβ andτβ > 0 such that

[Aβ−1...A1](a,I) ≥ τβ, [Bβ−1...B1](a,I) ≥ τβ ∀a, (32)

where[·](a,I) denotes the element ina-th row andI-th column (whereI corresponds to the reference state

QI) andτ t = O(ǫtv) (∀t). The following statements are true:

• The update of the parameter vector (or per-node potential vector) will converge almost surely for any

given initial parameter vectorW0 and LMsγ, i.e. lim
t→∞

Wt(γ) = W∞(γ).

• The steady state parameter vectorW∞ satisfies:

θe+W∞(γ) = M−1T
(
γ,MW∞(γ)

)
(33)

whereθ is a constant,W∞ is given by

W∞ =
[
Ṽ ∞
S (0), ..., Ṽ ∞

S (NQ), Ṽ
∞
1 (0), ..., Ṽ ∞

1 (NQ), ..., Ṽ
∞
S (NQ), Ṽ

∞
M (0), ..., Ṽ ∞

M (NQ)
]T

,

and the mappingT is defined asT(γ,V) = minΠ[g(γ,Π) +P(Π)V].

Proof: Please refer to Appendix D.

Remark 5 (Interpretation of the Sufficient Conditions in Lemma 4): Note thatAt andBt are related to

the transition probability of the reference states. Condition (32) simply means that there is one reference

state accessible from all the other reference states after some finite number of transition steps. This is a

very mild condition and will be satisfied in most of the cases in practice.

Note that (33) is equivalent to the following Bellman equation on the representative statesSR:

θ+ Ṽ ∞
m (q) = min

Π(βm,q)

{
g
(
βm,q,Π(βm,q), γk

)
+
∑

Qj

Pr
[
Qj|βm,q,Π(βm,q)

] M∑

m=S

Ṽ ∞
m (Qj

m)
}
, ∀βm,q ∈ SR.

Hence, Lemma 4 basically guarantees the proposed online learning algorithm will converge to thebest

fit parameter vector (per-node potential) satisfying (21). Onthe other hand, since the ratio of step sizes

satisfies
ǫtp
ǫtv
,
ǫtd
ǫtv

→ 0 during the LM update (timescale II), the per-node value function will be updated

much faster than the Lagrange multipliers. Hence, the update of Lagrange multipliers in timescale II will

trigger another update process of the per-node value function in timescale I. By the Corollary 2.1 of [23],

we have lim
t→∞

||Ṽt
m − Ṽ∞

m (γt)|| = 0 w.p.1. Hence, during the LM updates in (31), (30) and (29), the

per-node value function update in (28) is seen as almost equilibrated. Moreover, convergence of the LMs

is summarized below.
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Lemma 5 (Convergence of the LMs over Timescale II):The iteration on the vector of LMsγ = [γS,d, γS,p,

γ1,p, ..., γM,p]
T converges almost surely toγ∗ = [γ∗S,d, γ

∗
S,p, γ

∗
1,p, ..., γ

∗
M,p]

T , which satisfies the power and

packet drop rate constraints in (14),(15) and (13).

Proof: Please refer to Appendix E.

Based on the above lemmas, we summarized the convergence performance of the online per-node value

functions and LMs learning algorithm in the following theorem.

Theorem 1 (Convergence of Online Learning Algorithm 1):For the same conditions as in Lemma 4, we

have(γt,Wt) →
(
γ∗,W∞(γ∗)

)
w.p.1., where

(
γ∗,W∞(γ∗)

)
satisfiesθe+W∞(γ∗) = M−1T

(
γ∗,MW∞(γ∗)

)

and the average power constraint (14,15) as well as the average packet drop rate constraint (13), wheree

is a (M + 1)(NQ + 1)× 1 vector with all elements equal to 1.

D. Asymptotic Optimality

Finally, we shall show that the performance of the distributive algorithm is asymptotically global optimal

for high traffic loading.

Theorem 2 (Asymptotically Global Optimal at High Traffic Loading): For sufficiently largeNQ and high

traffic loading such that the optimization problem in Problem 1 is feasible, the performance of the proposed

distributive control algorithm is asymptotically global optimal.

Proof: Please refer to Appendix F.

V. SIMULATIONS AND DISCUSSIONS

In this section, we shall compare our proposed online per-node value function learning algorithm to

five reference baselines. Baseline 1 and 4 refer to the proposed buffered decode and forward(BDF)

protocol with throughput optimal policy(in stability sense), namely thedynamic backpressurealgorithm

[24], where we utilize full-duplex RSs in Baseline 1 and half-duplex RSs in Baseline 4. Baseline 2 and

5 refer to the regular decode-and-forward protocol (DF) with theCSIT only scheduling(the link selection

and power allocation are adaptive to the CSIT only so as to optimize the end-to-end throughput). We

utilize full-duplex RSs in Baseline 2 and half-duplex RSs inBaseline 5. Moreover, Baseline 3 refers to the

proposed BDF protocol with CSIT only scheduling and half-duplex RSs. In the simulations, we assume

the total bandwidth is 1 MHz, the packet arrival at the sourcenode is Poisson with average arrival rate

λS = 200pck/s and deterministic packet sizeNb bits. The number of antennas at the source node and the
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Fig. 3. Average end-to-end delay versus average transmit SNR. Baseline 1 refers to the dynamic backpressure algorithm with

BDF protocol and full-duplex relays. Baseline 2 refers to the CSIT only scheduling with traditional DF protocol and full-duplex

relays. Baseline 3 refers to the CSIT only scheduling with BDF protocol and half-duplex relays. Baseline 4 refers to the dynamic

backpressure algorithm with BDF protocol and half-duplex relays. Baseline 5 refers to the CSIT only scheduling with traditional

DF protocol and half-duplex relays. The deterministic packet size isNb = 25K bits and the number of antennas at each RS is

NR = 4. The packet drop rates of the Baselines 1-5 and the proposed distributive online learning are 0.2% 0.2% 13%, 3%, 24%

and 0.2% respectively.
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antennas at each RS isNR = 4. The packet drop rates of the Baselines 1-5 and the proposed distributive online learning are all

10%.

destination node isNT = 2. Moreover, the maximum buffer size of each node (source nodeand RSs) is

NQ = 10.

Figure 3 andFigure 4 illustrate the average end-to-end delay andaverage throughputversus average

transmit SNR per node withNR = 4 antennas at each RS, respectively. It can be observed that the proposed
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Nb = 25K bits and the number of antennas at each RS isNR = 4. The packet drop rates of the Baseline 1-5 and the proposed

distributive online learning are 23%, 23%, 86%, 82%, 96% and0.5% respectively.
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Fig. 6. Average end-to-end delay versus the number of relay antennas with transmit SNR =5dB. The deterministic packet size

is Nb = 20K bits and the number of antennas at each RS isNR = 4. The packet drop rates of the Baseline 1-5 and the proposed

distributive online learning are 3%, 4%, 9%, 5%, 20% and 0.1%, respectively.

distributive algorithm with half-duplex RS could achieve significant performance gainin both average

delay and average throughputover all baselines with full-duplex RSs, and even more significant gain over

the baselines with half-duplex RSs. This illustrates the advantages of the proposed BDF algorithm with

distributive delay-optimal control policy, which could effectively reduce the intrinsic half-duplex penalty

in the cooperative communication systems.
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Figure 5 andFigure 6illustrate the average end-to-end delay versus the number of relays andthe number

of relay antennaswith NR = 4 antennas at each RS, respectively.It can be observed that the average

delay of all the schemes decreases as the number of relays or the number of relay antennas increases.

Furthermore,the proposed BDF algorithm with distributive delay-optimal control policy has significant

gain in delay over all the baselines.

Figure 7 illustrates the convergence property of the proposed distributive online learning algorithm. We

plot the per-node value function of the first relay versus scheduling slot index at a transmit SNR=10dB.

The average delay at the200-th scheduling slot is already very close to the steady-state value, which is

much better than all the baselines. Furthermore, unlike theiterations in deterministic NUM problems, the

proposed algorithm is online, meaning that normal payload is delivered during the iteration steps.
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Ṽ1(4)
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Ṽ1(8)

Ṽ1(10)

Average Delay
Proposed: 2.6

Baseline 1 (Backpressure,FD,BDF): 4.7
Baseline 2 (CSIT,FD,DF): 4.9
Baseline 3 (CSIT,HD,BDF): 32

Baseline 4 (Backpressure,HD,BDF): 30
Baseline 5 (CSIT,HD,DF): 43

Average Delay
Proposed: 2.5

Baseline 1 (Backpressure,FD,BDF): 4.7
Baseline 2 (CSIT,FD,DF): 4.9
Baseline 3 (CSIT,HD,BDF): 32

Baseline 4 (Backpressure,HD,BDF): 30
Baseline 5 (CSIT,HD,DF): 43

Fig. 7. Illustration of the convergence of the proposed online learning algorithm. The instantaneous per-node value function is

plotted versus time slot index for a cooperative MIMO systemwith a source node (with 2 antennas) and 2 RS nodes (each with

4 antennas). The transmit SNR of the source and the RS nodes are 10 dB and the target packet drop rate is 0.2%. Unlike the

iterations in deterministic NUM problems, the proposed algorithm is online, meaning that normal payload is delivered during the

iteration steps.

VI. SUMMARY

In this paper, we consider queue-aware resource control fortwo-hop cooperative MIMO systems. We

show that by exploiting buffering in each MIMO relay, we could substantially reduce the intrinsic half-

duplex loss in cooperative systems. The delay-optimal resource control policy is formulated as an average-

cost infinite horizon Markov Decision Process (MDP). To obtain a low complexity solution, we approximate
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the value function by a linear combination of per-node valuefunctions. The per-node value function is

obtained using a distributive stochastic learning algorithm. We also established technical conditions for

almost-sure convergence and show that in heavy traffic limit, the proposed low complexity distributive

algorithm converges to global optimal solution.

APPENDIX A: PROOF OFLEMMA 1

The average number of bits received by the source node is given by λS(1 − D), which is also the

average number of information bits received by the relay clusters as the source node and the relay cluster

are cascade. LetW , WS and WR be the average time (with the unit of frames) one informationbit

staying in the system, the source node’s queue and some relay’s queue respectively,NS andNR be the

average number of information bits in the source node’s queue and the relays’ queues respectively, we have

NS = (1−D)λSWS andNR = (1−D)λSWR by Little’s Law. Notice thatW = WS+WR, we haveW =

NS+NR

λS(1−D) . Since the change of system queue state forms a Markov chain,we haveW = Eπκ

[
QS+

∑
M

m=1
Qm

λS(1−D)

]
,

whereπκ is the steady state distribution. For sufficiently small packet drop rate requirement1−D ≈ 1,

the end to end average delay becomesW = Eπκ

[
QS+

∑
M

m=1
Qm

λS

]
.

APPENDIX B: PROOF OFLEMMA 2

From the Bellman equation of the original state space (18), we have

θ + V (Qi,H) = min
Π(Qi,H)

{
g
(
(Qi,H),Π(Qi,H), γ

)
+

∑

(Qj ,H′)

Pr
[
(Qj ,H′)|(Qi,H),Π(Qi,H)

]
J(Qj,H′)

}

(a)
= min

Π(Qi,H)

{
g
(
(Qi,H),Π(Qi,H), γ

)
+
∑

Qj

Pr
[
Qj|(Qi,H),Π(Qi,H)

]
V (Qj)

}
, (34)

where (a) is due to the definitionV (Qj) = EH′ [V (Qj,H′)|Qj ], and the optimal control actions are given

by Π∗(Qi,H) = argminΠ(Qi,H)

{
g
(
(Qi,H),Π(Qi,H), γ

)
+

∑
Qj Pr

[
Qj|(Qi,H),Π(Qi,H)

]
V (Qj)

}
.

Thus, by the partitioning of the optimal control actions in Definition 1, i.e.Π∗(Qi) = {Π∗(Qi,H)|∀H},

Π∗(Qi) = arg min
Π(Qi)

∑

H

Pr(H)
{
g
(
(Qi,H),Π(Qi,H), γ

)
+
∑

Qj

Pr
[
Qj |(Qi,H),Π(Qi,H)

]
V (Qj)

}

(35)

From (34) and (35), we haveθ + Pr(H)V (Qi,H) = minΠ(Qi)

∑
H Pr(H)

{
g
(
(Qi,H),Π(Qi,H), γ

)
+

∑
Qj Pr

[
Qj|(Qi,H),Π(Qi,H)

]
V (Qj)

}
(b)
= minΠ(Qi)

{
g
(
Qi,Π(Qi), γ

)
+
∑

Qj Pr
[
Qj|Qi,Π(Qi)

]
V (Qj)

}
,

where the equality (b) is due to the definition ofg in (19). As a result, the control policy obtained by

solving (18) is the same as that obtained by solving (17) and this completes the proof.
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APPENDIX C: PROOF OFLEMMA 3

We shall prove the general control policy first, followed by the closed-form power control derivation.

According to (22), givenNSR andNRD, the optimal power control is given by:

min
{Πm

p }
EH

[ ∑

m,NSR

INSR

S,m GS,m(NSR, pS,m) +
∑

n,NRD

INRD

n,D Gn,D(NRD, pn,D)
]}

=EH

[ ∑

m,NSR

INSR

S,m min
pS,m

GS,m(NSR, pS,m) +
∑

n,NRD

INRD

n,D min
pm,D

Gn,D(NRD, pn,D)
]}

Therefore,p∗S,m(NSR) = argminpS,m
GS,m(NSR, pS,m) andp∗m,D(NSR) = argminpm,D

Gn,D(NRD, pn,D).

To determine the optimal Rx-RS, Tx-RS and stream allocation, the biding is divided into two stages:

• First Biding: Each RS (say them-th RS) broadcasts one bid for each possibleNSR indicating that if

itself is selected as Rx-RS and the number of S-R streams isNSR, what would be the corresponding

GS,m(NSR, p
∗
S,m).

• Second Biding: After receiving the bids in the first round, each RS (say then-th RS) should calculate

that if itself is selected as the Tx-RS, which RS else is the best Rx-RS (say them-th RS is the best

Rx-RS), what’s the bestNSR and NRD and what’s the correspondingB∗
n = GS,m(NSR, p

∗
S,m) +

Gn,D(NRD, p
∗
n,D). Then, broadcast the calculation resultsB∗

n as the second bid.

• After comparing theB∗
n, the optimal Rx-RS, Tx-RS and stream allocation can be determined.

Therefore, the first-stage bidding and the second-stage bidding is straight-forward.

WhenλS and NQ

λ
(m = S, 1, 2, ...,M ) are sufficiently large, it with large probability thatQm

λ
(m =

S, 1, 2, ...,M ) is sufficiently large. Hence, following a similar approachin [25], it can be proved that

the value functionṼm (m = S, 1, 2, ...,M ) is increasing polynomially inQ = [QS , Q1, ..., QM ]T . The

optimization onpS,m is given by

p∗S,m(NSR) = argmin
pS,m

GS,m(NSR, pS,m)

= argmin
pS,m

{
γS,ppS,m +

∑

n

fX(n)
(
ṼS

(
Qi

S −RS,m(NSR, pS,m) + n
)
− ṼS(Q

i
S + n)

)

+ Ṽm

(
Qi

m +RS,m(NSR, pS,m)
)
− Ṽm

(
Qi

m

)}
. (36)

Similar to [25], we can do Taylor expansion as follows:

ṼS

(
Qi

S −RS,m(NSR, pS,m) + n
)
= ṼS

(
Qi

S

)
+

(
n−RS,m(NSR, pS,m)

)
Ṽ

′

S

(
Qi

S

)
, (37)

ṼS(Q
i
S + n) = ṼS

(
Qi

S

)
+ nṼ

′

S

(
Qi

S

)
(38)



November 5, 2018 25

whereṼ
′

S is the first order derivative oñVS and the higher order is neglectable. Same apporach can be used

to expand̃Vm

(
Qi

m+RS,m(NSR, pS,m)
)

asṼm

(
Qi

m+RS,m(NSR, pS,m)
)
= Ṽm

(
Qi

m

)
+RS,m(NSR, pS,m)Ṽ

′

m

(
Qi

m

)
.

At high SNR region, we have

∂RS,m(NSR, pS,m)

∂pS,m
=

N

ln 2

1

pS,m +
∑NSR

j=1
1

η
j

S,m

. (39)

According to (37,38,39), taking derivative on the RHS of (36) and letting it be zero, we can get the closed-

from expression for power allocation in (26). Moreover, (27) can be proved in the same way. Finally, when

Qm andQS are sufficiently large, according to the definition of derivative, we have

Ṽ
′

S(Q
i
S) =

ṼS(Q
i
S + 1)− ṼS(Q

i
S − 1)

2
Ṽ

′

m(Qi
m) =

Ṽm(Qi
m + 1)− Ṽm(Qi

m − 1)

2
.

APPENDIX D: PROOF OFLEMMA 4

From [26], the convergence property of the asynchronous update and synchronous update is the same.

Therefore, we consider the convergence of related synchronous version without loss of generality.

Let c ∈ R be a constant, we haveTI(cṼ
l
S) = cTI(Ṽ

l
S), whereTI is one element of mappingT

corresponding to the state with all buffers empty. Similar to [27], the per-node value function{Ṽm}

is bounded almost surely during the iterations of algorithm. According to the construction of parameter

vectorW, the update oñVm is equivalent to the update onW and proving the convergence of Lemma 4

is equivalent to proving the convergence of update onW. In the following, we first introduce and prove

the following lemma on the convergence of learning noise.

Lemma 6:Defineql = M†
[
g(Πl)+P(Πl)MWl−MWl−TI(MWl)e

]
, when the number of iterations

l ≥ j → ∞, the procedure of update can be written as follows with probability 1: Wl+1 = Wj +

∑l
i=j ǫ

i
vq

i
m.

The proof of above lemma follows the standard approach of stochastic approximation with Martingale

noise [22]. Moreover, the following lemma is about the limitof sequence{ql
m}.

Lemma 7:Suppose the following two inequalities are true forl = a, a+ 1, ..., a + b

g(Πl) +P(Πl)MWl ≤g(Πl−1) +P(Πl−1)MWl (40)

g(Πl−1) +P(Πl−1)MWl−1 ≤g(Πl) +P(Πl)MWl−1, (41)

then we have

|qa+b
i | ≤ C1

⌊ b

β
⌋−1∏

i=0

(1− τa+iβ) ∀i, (42)
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whereqa+b
i denotes theith element of the vectorqa+b, C1 is some constant.

Proof: From (40) and (41), we have

ql = M†
[
g(Πl) +P(Πl)MWl −MWl − wle

]
≤ M†

[
g(Πl−1) +P(Πl−1)MWl −MWl − wle

]

ql−1 =M†
[
g(Πl−1) +P(Πl−1)MWl−1 −MWl−1 − wl−1e

]

≤M†
[
g(Πl) +P(Πl)MWl−1 −MWl−1 − wl−1e

]

wherewl = TI(MWl) = TI(MWl). According to Lemma 6, we haveWl = Wl−1+ ǫl−1
v ql−1 ⇒ Wl =

Wl−1 + ǫl−1
v ql−1. Therefore,

ql ≤
[
(1− ǫl−1

v )I+M†P(Πl−1)Mǫl−1
v

]
ql−1 + wl−1e− wle = Bl−1ql−1 + wl−1e− wle

ql ≥
[
(1− ǫl−1

v )I+M†P(Πl)Mǫl−1
v

]
ql−1 + wl−1e− wle = Al−1ql−1 + wl−1e− wle.

Notice thatAl−1e = Bl−1e, we haveAl−1...Al−βql−β − C1e ≤ ql ≤ Bl−1...Bl−βql−β − C1e

⇒(1− τ l)[minql−β] ≤ ql + C1e ≤ (1− τ l)[maxql−β] ⇒






maxql + C1 ≤ (1− τ l)maxql−β

minql + C1 ≥ (1− τ l)minql−β

⇒maxql −minql ≤ (1− τ l)[maxql−β −minql−β] ⇒ |qli| ≤ maxql −minql ≤ C2(1− τ l) ∀i,

where the first step is due to conditions of Lemma 4 on matrix sequence{Al} and {Bl}, maxql and

minql denote the maximum and minimum elements inql respectively,C1 and C2 are all constants, the

first inequality of the last step is becauseminql ≤ 0. This completes the proof of Lemma 7.

Therefore, the proof of Lemma 4 can be divided into the following steps: (1) From the property of

sequence{ǫlv}, we have
∏⌊ l

β
⌋−1

i=0 (1 − ǫ
iβ
v ) → 0 (l → ∞). (2) According to the first step, note that

τ l = O(ǫlv), from (42), we haveql → 0 (l → ∞). (3) Therefore, the update on{Wl} will converge, and

the fixed point of the convergenceW∞ satisfiesTI(MWl)e+W∞ = M†T(MW∞).

APPENDIX E: PROOF OFLEMMA 5

Due to the page limit, we only provide the sketch of the proof.The convergence proof of the LMs

{γS,p, γ1,p, ..., γM,p} for a givenγS,d is as follows:

• For the notation convenience, we first define the average transmit power of each node as follows:

P̃S(γ) = EΠ
[∑M

m=1

∑min(NT ,NR)
i=1 ηiS,mpiS,m

]
and P̃m(γ) = EΠ

[∑M
m=1

∑min(NT ,NR)
i=1 ηim,Dp

i
m,D

]
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(m = 1, 2, ...,M ), where EΠ[·] denotes the expectation w.r.t. the policyΠ(γ). Using standard

stochastic approximation theory, the dynamics of the LMs update equation{γS,p, γ1,p, ..., γM,p} can

be represented by the following ODE:

[
γ̇S,p(t), ..., γ̇M,p(t)

]T
=

[
P̃S(γ)− PS , P̃1(γ)− PR, ..., P̃M (γ)− PR

]T
. (43)

• Using perturbation analysis in [28], we have∂P̃m(γ)
∂γm,p

< 0 (m = S, 1, 2, ...,M ) and
∣∣∣∂P̃m(γ)

∂γm,p

∣∣∣ >>
∣∣∣∂P̃m(γ)

∂γn,p

∣∣∣ (m = S, 1, 2, ...,M, n 6= m). Thus, the update ofγm,p (m = S, 1, ...,M ) in ODE (43) will

drive P̃m−PR (or P̃S −PS) to 0 whenever̃Pm−PR (or P̃S −PS) is non-zero. Therefore, the ODE

(43) will converge. The converged LMs{γ∗S,p(γS,d), γ
∗
1,p(γS,d), ..., γ

∗
M,p(γS,d)} can be characterized

by the equilibrium point of the ODE (43), which is given by theRHS of (43)→ 0.

Suppose for a givenγS,d, {γS,p, γ1,p, ..., γM,p} converge to{γ∗S,p(γS,d), γ
∗
1,p(γS,d), ..., γ

∗
M,p(γS,d)}. Since

∂
(
EΠ

γ∗

1,p
,...,γ∗

M,p
,γ∗

S,p
[QS=NQ]

)

∂γS,d
< 0, the update onγS,d will converge as well for a similar reason as in the

convergence of{γS,p, γ1,p, ..., γM,p}. Similarly, the convergedγ∗S,d can be characterized by the equilibrium

point of the ODEγ̇S,d(t) = EΠ
γ∗

1,p,...,γ
∗

M,p,γ
∗

S,p
[QS = NQ]−D, which is given by the RHS→ 0.

APPENDIX F: PROOF OFTHEOREM 2

Without loss of generality, we shall consider the approximate value functionV (Q) =
∑M

m=S

∑NQ

q=1 Ṽm(q)

I[Qm = q] on the following redefined set of representative statesQR = {δm,q|m = S, 1, 2, ...,M ; q =

0, 1, ..., qI − 1, qI + 1, ..., NQ}, where the stateδm,q is given byδm,q = [QS = qI , Q1 = qI , ..., Qm =

q, ..., QM = qI ]
T andqI < NQ is sufficiently large. Correspondingly,M−1 should also be redefined such

that the per-node value function{Ṽm} is updated on the representative statesQR [21].

First of all, following the similar approach in the proof of Lemma 4, the per-node value function (under

the new reference states) would also converge almost surelyto {Ṽ∞
m (γ)} for any given LMsγ.

Next, when the conditions of Theorem 2 are satisfied, given any ǫ > 0, there is one integerQ0(ǫ) such

that for all q > Q0(ǫ) andqI = Q0(ǫ), we have (from the proof of Lemma 3):

Ṽ ∞
m (q − r)− Ṽ ∞

m (q) = Ṽ ∞
m (qI − r)− Ṽ ∞

m (qI) +O(ǫ). (44)

Moreover, since{Ṽ ∞
m (q)} are all monotonically increasing functions with respect toq and {Ṽ ∞

m (NQ)}
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are all bounded16, we haveṼm

(
Q0(ǫ)

)
= O(ǫ) for sufficiently large arrivals. Therefore, (44) holds for

all q ∈ [0, NQ] for sufficiently largeNQ and input arrivals. Similarly, we have

Ṽ ∞
S (q + n− r)− Ṽ ∞

S (q + n) = Ṽ ∞
S (qI + n− r)− Ṽ ∞

S (qI + n) +O(ǫ) (45)

Ṽ ∞
m (q + r)− Ṽ ∞

m (q) = Ṽ ∞
m (qI + r)− Ṽ ∞

m (qI) +O(ǫ). (46)

Hence, with the above equations and substituting the converged per-node value function{Ṽ∞
m (γ)} into

(18) for the reference states, we get

Ṽ ∞
S (q) =q + γS,dI[q = NQ] +

∑

n

fX(n)
(
Ṽ ∞
S (q + n)− Ṽ ∞

S (n)
)
+min

Π
EH

{ ∑

m,NSR

ηNSR

S,m

[
γS,p

∑

k

pNSR

S,m

+
∑

n

fX(n)
(
Ṽ ∞
S (q + n− rNSR

S,m )− Ṽ ∞
S (q + n)

)
+ Ṽ ∞

m (qI + rNSR

S,m )− Ṽ ∞
m (qI)

]}
(47)

Ṽ ∞
m (q) =q + Ṽ ∞

m (q) + min
u

EH

{ ∑

NRD

ηNRD

m,D

[
γm,p

∑

k

pNRD

m,D + Ṽ ∞
m (q − rNRD

m,D )− Ṽ ∞
m (q)

]}
, (48)

wherem = 1, 2, ...,M .

Finally, for any system stateQi = [Qi
S , ..., Q

i
M ]T , substitute the above equations into the RHS of the

original Bellman equation in (18), we get RHS of (18)
a
=

∑M
m=S Qi

m+γS,dI[Q
i
S = NQ]+

∑
n fX(n)Ṽ ∞

S (Qi
S+

n) +
∑M

m=1 Ṽ
∞
m (Qi

m) + minΠ(Qi)EH

{∑
m,NSR

ηNSR

S,m

[
γS,pp

NSR

S,m +
∑

n fX(n)
(
Ṽ ∞
S (Qi

S + n − rNSR

S,m ) −

Ṽ ∞
S (Qi

S+n)
)
+Ṽ ∞

m (qI+rNSR

S,m )−Ṽ∞
m (qI)

]
+
∑

m,NRD
ηNRD

m,D

[
γm,pp

NRD

m,D+Ṽ∞
m (Qi

m−rNRD

m,D )−Ṽ ∞
m (Qi

m)
]}

+

O(ǫ)
b
=

∑M
m=S Ṽ ∞

m (Qi
m)+

∑
n fI(n)Ṽ

∞
S (n)+O(ǫ) = V (Qi)+

∑
n fI(n)Ṽ

∞
S (n)+O(ǫ), where equality

(a) is due to (46), equality (b) is due to (47) and (48). Since
∑

n fX(n)Ṽ ∞
S (n) is a constant indepen-

dent of Qi and ǫ is chosen arbitrarily, we have shown that the approximate value function V (Q) =

∑M
m=S

∑NQ

q=1 Ṽ
∞
m (q)I[Qm = q] can satisfy the original Bellman equation (18) asymptotically (when

NQ → +∞). As a result, the proposed distributive update algorithm converges to the global optimal

solution and this completes the proof.
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