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Abstract

In this paper, we consider a queue-aware distributive megocontrol algorithm for two-hop MIMO
cooperative systems. We shall illustrate that relay birfeis an effective way to reduce the intrinsic
half-duplex penalty in cooperative systems. The complegrattions of the queues at the source node
and the relays are modeled as an average-cost infinite ImoMarkov Decision Process (MDP). The
traditional approach solving this MDP problem involves tcelized control with huge complexity. To
obtain a distributive and low complexity solution, we irdte a linear structure which approximates the
value function of the associated Bellman equation by the stiper-node value functions. We derive a
distributive two-stage two-winner auction-basedntrol policy which is a function of the local CSI and
local QSI only. Furthermore, to estimate thest fitapproximation parameter, we propose a distributive
online stochastic learning algorithm using stochasticayximation theory. Finally, we establish technical
conditions for almost-sure convergence and show that uneavy traffic, the proposed low complexity

distributive control is global optimal.

. INTRODUCTION

Cooperative relay communication has been a hot researét iopoth the academid [1]/[2] and
the industry [[8], [4] because it could exploit the broadazesture of wireless communication to achieve
cooperative diversityOne potential issue of cooperative communication is thé&dagblex penalty in the
relay nodesThere have been some recent works to address the half-digsle& in cooperative relay
systems. For example, complex echo cancelation techngjueseéd at the relay to cancel the coupled
interference from the transmitting pathl [5], [6]. Howevttese works all focused at the physical layer

signal processing. Iri_[7], the authors exploit special togp and proposed some relay protocols to get
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rid of the half-duplex penalty. Moreover, this approachetes heavily on the locations of the relays and
it cannot be extended to general relay channel. In this payeiare interested to explore a system level
solution to deal with the half-duplex issue. We considernapé® MIMO cooperative relay system with a
multi-antenna source node (Srd); multi-antenna relay nodes (RS) and a multi-antenna ddigtimaode
(Dst). We shall illustrate that relay buffering can be a#lil to significantly reduce the intrinsic half-duplex
penalty. Since buffering is involved, it is important to swter not only the throughput performance but
also the associated end-to-end delay performance. As &, regushall focus on delay-optimal resource
control for the two-hop protocol in MIMO cooperative relaysseems.

Delay-optimal resource control in cooperative relay sysie a very difficult problem. Most of the
existing works have assumed infinite backlogs of informmatmd focus on optimizing the throughput
performance only. A systematic approach is to model theydaimal control as Markov Decision
Process (MDP)[]8],[I9]However there is a well-known issue of thmurse of dimensionalitand brute
force value iteration or policy iteration could not give gil® implementable squtioHsFor multi-hop
systems, there is a unique challenge concerning the conipiesactions of buffers at the source node
and theM RS nodes and the existing solutions for single-hop systeanaat be extended easily to deal
with this situation. There are a few recent works that cosr®id queue dynamics in relay systems [10],
[11]. However, these works have focused on the charactenizaf the stability regionand throughput
optimal control. The question of delay-optimal control fmoperative relay system remains to be open.
In addition, another important technical challenge is tisrithutive implementation consideration. For
instance, the entire system state could be characterizéietylobal CSI(CSI among every pair of nodes
in the system) as well as tlggobal QSI(QSI of every buffer in the systemBrute-force solution of the
MDP will yield a control policy that isadaptive to the global CSI and global QSI. This poses a huge
implementation challenges because these global systeéenistarmation are distributed locally at each of
the source and relay nodes.

In this paper, we shall address the above challenges as/fol\e shall first formulate the delay-optimal
resource control policy (such as the power control and R&cteh) as an average-cost infinite horizon

Markov Decision Process (MDP). To alleviate therse of dimensionalityand to obtain a distributive and

IFor example, for a system with maximum buffer length26f 3 CSI states and/ RSs, the total number of system states is

20M+1 % 32M which is unmanageable even for small number of RS.
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low complexity solution, we first introduce@er-node value functioto approximate the value function of
the associated Bellman equation. Based on the per-node fatation, we derive a distributivievo-stage
two-winner auction-basedontrol policy, which is a function of the local CSI and lo€@6l. The per-node
value function is obtained via a distributive online stosti@alearning algorithm, which requires local
CSl and local QSI only. The proposed online stochastic lagris quite different from the conventional
reinforced learning [12] in mainly two ways: (1) We are degliwith constrained MDR(CMDP) and our
online iterative solution updates both the value functind the Lagrange multipliers (LM) simultaneously;
(2) The control action is determined from the per-node vélmetion of all the nodes via a per-slot auction
mechanism. Therefore, the algorithm dynamics of the peeramline learning is noteontraction mapping
and hence, standard convergence proof using fixed pointdireoannot be applied in our case directly.
Using the technique of separation of different time scalesgstablish technical conditions for the almost
sure convergence of the proposed distributive stochastiming. We also show that the proposed low
complexity distributive solution is asymptotically gldbaptimal under heavy traffic loading. Finally, we
demonstrate by simulation that the proposed scheme hageagiperformance gain over various baselines
(such as convention&@SIT-onlycontrol and thehroughput-optimal contro{in stability sense)) with low

complexity O(M) and low signaling overhead.

[l. SYSTEM MODELS
A. System Architecture and MIMO Relay Physical Layer Model

We consider a two-hop multi-antenna cooperative relay comeoation system with one multi-antenna
source node N antennas)) multi-antenna half-duplex relay stations (RS, each wNth antennas) and
one multi-antenna destination nod¥,{ antennas), as illustrated in FId. 1. The source node carglived
packets directly to the destination node due to limited cage and the cooperative RSs are deployed to
extend the source node’s coverage.

Denote the Rx-RS and the Tx-RS as theh RS and the:-th RS for notation simplici@. Let Ngr and
Ngrp be the number of data streams transmitted in the S-R link la@&4D link respectively, where we
require Ngp = min(Np, Ng — Ngg) for simultaneous interference-free transmission. Wel sthadtrate

the signal model of the S;Rlink and the R-D link as follows:

2Since the RSs are half-duplex under practical considerati@ requirem # n implicitly.
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Fig. 1. lllustration of the two-hop MIMO cooperative systevith a multi-antenna source node, 2 multi-antenna RS nodésa
multi-antenna destination node. By exploiting buffershet 2 MIMO RSs, the S-R link (source node to RS1) and R-D linkARS
destination node) can deliver packets simultaneowdtiiout interfering with each other using signal procegdiechniques (with
appropriate precoder and decorrelator desigmils, by exploiting relay buffering, we could substamyiakduce the intrinsic

penalty associated with half duplex relays.

e SR, link: Let Xg € CNsrx1 andFg € CNrxNsr pe the symbol vector and the precoder matrix of
the source node respectiveli,,, € CVs=*Nr pe the decorrelator matrix at the-th RS node, the
Nsr x 1 post-processing symbol vector at theth RS is given byY,, = G,,Hg,,FsXgs + Zg ,
whereHg,,, € CV#*N1 s the zero-mean unit variance i.i.d. complex Gaussiamtadaatrix from
the source node to the-th RS,Zg,, € CNsrxl s the zero-mean unit variance complex Gaussian
channel noise.

e R,-D link: Let X,, € CNrox1 andF,, € CNexNro pe the transmit symbol vector and the precoder
of the n-th RS respectively, thé&/; x 1 received symbol vector at the destination node is giv£1 by
Yp = H, pF.,X,, + Z,, p, whereH,, p € CN7*N= js complex Gaussian fading matrix from the
n-th RS to the destination nod&,, p € CNrx1 is the complex Gaussian channel noise.

In this paper, the resource control is performed distril@lyi on each RS and therefore, we define the
local channel state information (CSI) available at each RSoHows. For them-th RS, there are two
types oflocal CS| namely thetype-I local CSlandtype-Il local CSlas illustrated in FiglJ2. The type-I
and type-ll local CSI of then-th RS are denoted bi! = {Hg,,} andHZ! = {H,, p} U {H, n|n #

3Due to the limited coverage of the source node, we assumestieved signal from the source node is negligible compared

with the received signal from the relay node.
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m,1 < n < M}, respectively. For notation convenience, K, = H U H!! be the local Cg at the
m-th RS andH = UM_, H,, be the global CSI (GCSI) of the systeioreover, the assumption on the
channel is summarized below:

Assumption 1 (Assumption on Channel Fading): We assumenhtmnel fading elements in the global
CSIH are i.i.d.CN(0,1). The CSI is quasi-static within a frame but i.i.d. betweemfes.

We assume strong channel coding is used and hence, the maxichievable data rate is given by the
instantaneous mutual informat&nf the source node transmifs ,,, information bits to then-th RS in the
current frame, the frame will be successfully receiveif,, < 7log, det [I+GmH57mFngHTS7mGL],
where denotes the matrix conjugate transpose anid the frame duration. Similarly, the destination
node could successfully decode a frame with p information bits (transmitted from the-th RS) if

Ry.p < 7logy det [T+ H, pF,FLH! .

B. Buffered Decode and Forward

Although the RS nodes are half-duplex reBiyis is possible to reduce the system half-duplex penalty
by exploiting buffers at the half-duplex RSs. Specificalhge source node could transmit a packet to the
m-th RS (denoted as the Rx-RS) and at the same timenttie RS (denoted as the Tx-RS) transmits
its buffered packeto the destination node without interfering the Rx-RS. Tigigpossible by means of
precoder-decorrelator designs at the source node, Rx+R® RS) and the Tx-RSntth RS). Let pg
andp, p denote the total transmit power at the source node for the, 34 and the Tx-RSn-th RS)
for the R,-D link, respectively. For any givetNsg, ps,» for the S-R, link as well asNgp, p,,p for
the R,-D link (where Ngpp = min(N7, Nr — Ngg) implicitly), the decorrelator and precoder designs are
elaborated below.

o Precoder and Decorrelator Design of the S-R,,, Link at the Rx-RS NodeH: The precoder at the

source nodeKs) and the decorrelator at the Rx-RS nod&,() are chosen to optimize the mutual

“Note that both the type-l and type-Il local CSI at theth RS refers to all the outgoing links from the m-th RS anddeen
they can be measured at the m-th RS using channel recipracidypreambles. For example, there are standard signalihg an
channel sounding mechanisms in the WiMAX (802.16j, 802.Jlédnd LTE systems for the RS to acquire the local CSI.

SFor example, LDPC with reasonably large block length (e lgy8¥) can achieve the instantaneous mutual informatiohimit
0.5dB SNR[[13].

®Half-duplex relay means that the RS nodes do not have anyxTe#Ro-cancelation capability.

"Type-I local CSIHZ, is required at then-th Rx-RS node to compute the precoder and decorrelatoreoStR,, link.
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information of the S-R, link subject to the transmit power constraint as follows:

{G},(Nsr),F5(Nsr.ps,m)} = arg Jnax log, det I+Gm(NSR)HS,mFSFTgHL,mGIn(NSR)}
s.t. tr(FSFL) =psm (Transmit power constraint) (@H)

LetHg,, = U57m257mvgm be the SVD decomposition of channel matt ,,,, where the singular
values inXg,, are sorted in a decreasing order along the diagddal,, = [u},,, ...,ugf;b] and
Vgm = [v}g,m,...,vggb]. Using standard optimization techniqués|[14], the souneeqerFy is

given by

1 1 1 1 }
Asm né,m""’As,m névf;f

)

F5(Nsis psm) = [VE s s VAST] X dz'ag{

wherengvm > U%m > ngifj are the firstNgr singular values of channel matHs ., As n, is the
Lagrange multiplier corresponding to the transmit powenst@int in [1). The decorrelatds?, is
given by

G}, (Nsr) = [, - ug; 7] 3)

o Precoder Design of the R,,-D Link at the Tx-RS NodJ;: Similarly, given the decorrelatoG;,
in @), the precoder at the Tx-RS nodg, ¢ CV=r*Nr s selected to maximize R-D link mutual
information subject to the transmit power constraint angl ititerference nulling constraint (at the

Rx-RS node) as follows:

F, (Nrp,pnm) = arg r%ax log, det [I + Hn,DFnFLHL’D
st. G}, (Nsp)Hp,»nF, =0 (Interference nulling constraint) 4
tr(F,Fl) = pn,p (Transmit power constraint) (5)

The interference nulling constraint inl (4) is to allow sitameously active R-D and S-R links using

half-duplex RSs. LeH,, p x null(G,,,H;, ) = Un,Dzn,DVL p be the SVD decomposition, where

the singular values irE,, p are sorted in a decreasing order along the diagonal(G,,H,, )
Nr—Nsr

denotes the null space of mat*,,H,, ,, andV,, p = [v}L,D,...,vnD ]. Using standard opti-

mization techniques [14], the precoder at the Tx-B3)(is given by:

1 1 1 1
F'(Ngp, = [vi 7,.,7VNR'D X dia { - yaens - }, 6
n( RD pn,m) [ Sin Sin ] g )\n,D 7771L,D >\n,D 777];[%) ( )

8Type-Il local CSIH.! is required at ther-th Tx-RS node to compute the precoder of the-R link.



November 5, 2018 7

wheren}%D > ng,D... > né\f’;f are the firstVyp singular values of channel mat#,, p xnull(G,,H,, ),

An,p is the Lagrange multiplier corresponding to the power aamst in (3).

C. Bursty Source Model and Queue Dynamics

There is one queue in the source node and one queue in eaah/df RSs respectively for the storage
of received information bits. LelNy be the maximum buffer size (number of bits) for the buffersha
source node and all the RSs. L&t(¢) indicates thenumber ofnew information bits arrival in the-th
frame at the source node. The assumption on the bit arrieadess is given below:

Assumption 2 (Assumption on Arrival Process): We assunig is i.i.d. over frames based on a
general distributionfx () with E[X (¢)] = As and the information bitsrrive at the end of each frame.
Moreover, letQgs(t) and @Q,,(t) denote the number of information bits in the source nodesuguand
the m-th RS’s queuel( < m < M) at framet. We assume each RS has the knowledge of its own
queue length and the source node’s queue length. Thus,¢aeQS| of them-th RS is(Qs(t), Qm(t)).
Q(t) = (Qs(t),Q1(t), - ,Qum(t)) denotes thelobal queue state informatiofGQSI) at framer.

The overall system queue dynamics at the source node andIbeiR® summarized below.

« If the source node successfully delivey ,,,(¢) information bits to them-th RS at framet, then
Qs(t+1) = min {max{Qg(t) — Rsm(t),0} + X (t), No} andQ,, (t+1) = min {Q(t) + Rsm(t), Ng}-

« If the source node fails to deliver any information bit to R8s , therQs(t+1) = min {Qs(t) + X (t), Ng}.

o If the n-th RS successfully deliver®,, p(t) information bits to the destination at frante then
Qn(t +1) = max{Q,(t) — R, p(t),0}.

Remark 1:Each information bit delivered from the source node will leeaived by one of the RSs
and different RSs may have different information bits in théfer. When the source node is to deliver
information bits to one RS, selecting different RSs witHadi#nt buffer lengths may have different effects
on the average packet delay of the system. Therefore, ngttbel CSI of all S-R links but also the
QSI of all RSs should be considered in directing the souraeisotransmission. Such coupling on the
system QSI is a unique challenge in delay-optimal contromeiti-hop systems. Fid.]1 shows the top

level architecture illustrating the interactions amonigtta¢ queues in the two-hop cooperative system.
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/ RS2 broadcasts second-stage bid B2, preferred Rx_RS (say RS1), as well as number of preferred
SR&RD data streams [1,1] (one data stream for SR link and RD link respectively).
First-Stage Auction:
RS1 broadcasts first-stage bids {A1(0),A1(1),A1(2)};
RS2 broadcasts first-stage bids {A2(0) A2(1).A2(2)}

Fig. 2. lllustration of an example of bidding protocol for a 2-RS teys.

D. Distributive Contention Protocol

Based on the BDF in Sectign 1B, we still need to determinfewfaich RS should be the Rx-R%1(),
(b) which RS should be the Tx-R&7) and (c) the number of data streams transmitted by the sowde
(N$p) and the TX-RS K ;). Due to the decentralized control requirement, we shalppse awo-stage
two-winner auctiormechanism for distributi&contention resolution.

Figure[2 illustrates an example of bidding protocol for a 2-8/stemAs a result, the RS selection and
data stream allocation procedure can be parameterizedibgiady vector{ (A4,,(0), ..., A, (min(N7, Ng))),
Bm)|vm}. We shall refer the bidding vector as tRS selection and data stream allocation polinythe

rest of the paper.

E. Optimization Objective and Control Policy

Definition 1 (Distributive Stationary Control Policy): Agtributive stationary control policyl = {I1"*|1 <

m < M} is a collection of stationary control policieH™ at the m-th RS, wherdl™ = {IT*, 1T’y , IT}; }

°Similar to the common notion of distributive algorithms hetliterature[[15],[[16], the term “distributive” in this par refers
to algorithms that perform computation locally but requipelicit message passing. Yet, the message passing odeitnehe

bidding process is quite mild [17].[18].
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includesthe power allocation policy of S-R link and R-D lidk’, the first-stage and second-stage bidding

policy IT’y and IT’;. Specifically,

I (Sm) = {ps.n(Nsr) m.p(Np) : Nsg, Np = 0,1, ,min(Nr, Ni) } 2 Py (7)
I5(Sim) = { Am(Nsr) [ Nsg = 0,1, .., min(Nr, Np) } £ A, &)
I (S, Ubt—1 ) = { By Iy (Ns s Nep,n) N = min(Np, Ng = Nsp) } 2 By (9)

form =1,2,..., M, wherepg ,,(Nsr) is the total transmit power allocation at the source node tfoe
S-R link withNgr data streamsp,, p(Ngrp) is the total transmit power allocation at the Tx-RS for the
R-D link with Npp data streams.

Denote the local system state of theth RS asS,,, = (Qs, Qm,H,,) (1 < m < M). Therefore, the
global system state is given &= UM_, S,, = (Q,H).

Remark 2 (Distributive Consideration of Stationary Cohffolicy II in Definition[1): The stationary con-
trol policy IT = {II"*|1 < m < M} is distributive in the sense that the poli€)™” at each RSn only
depends on the local system st&tg and the broadcast bidding information available at/RSThus, for
notation simplicity, we shall omit the biddinmformation when the meaning is clear, i.e. we shall use
0™(Sy,) = {I1;*(Sm), I} (Sm), 15 (Sm) } in the rest of the paper.

A stationary control policyll induces a joint distribution for the random procegst)}. Under As-
sumption’1 an@12S(¢ + 1) only depends o18(¢) and actions at frame, and hence the induced random

process{S(t)} for a given control policyll is Markovian with the following transition probability:
Pr[S(t +1)[S(¢), I(S(t))] = Pr [H(t + 1)] Pr [Q(t + 1)|S(t), TI(S(t))], (10)

where the equality is because of Assumpfibn 1 and the quenndgs transition probabilityr [Q(t +
1)|S(t),11(S(t))] is given by

Pr[Q(t+1)[S(¢), II(S(?))] (11)
Pr [X(t) = QS(t + 1) - [QS(t) - RS,m* (t)]+]> if Qm(t + 1) = Qm(t) (\V/m - m*yn*)

= and Q- (t + 1) = min{ Q@+ (t) + Rgm=(t), No}t, Qn-(t + 1) = max{Qy-(t) — Rn- p(t),0}

0, otherwise

Given a unichain policyl, the induced Markov chaifiS(¢)} is ergodic and there exists a unique steady

state distributionrs [8] . Therefore, we have the average end-to-end delay ofwbenbp cooperative RS
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system summarized in the following lemma:
Lemma 1 (Average End-to-End Delayjor small average packet drop rate constrdintthe average

end-to-end delay of the two-hop cooperative RS system isnghy

T(I) = lim ZEH[ MSQm()}:EWS[M (12)

T—o0 T )\S

>
N

wherem = S,1,2,..., M in the equati]a E,. means taking the expectation with respect to the induced
steady state distributiong (induced by the unichain control polidyf) and \g is the average number of
arrival bits per frame at the source node.

Proof: Please refer to Appendix A. [ |
Similarly, the source node’s average drop rate conﬁarﬂﬁe source node’s average power constraint and

each RSmn’s average power constraint are given by

D(1) = lim — ZEH[ [Qs(t) = Nol| = B [11Qs = N < D (13)
Nmin M Nupin

Ps(Il) = lim — Z E"| Z > LnOpsm@®] = BL[ 3" Hupsm@] < Ps 14)
m=1 i=1 m=1 i=1

P, (1) Th_{I;OTZEH[Nf i, p()] = E [Z hpPup| < Prl<m<M - (15)

where Ny, = min(Np, Ng), I, =I[m = m*|I[i = Niz] and I’ ,, = I[m = n*|I[i = N},).

[1l. CONSTRAINED MARKOV DECISION PROBLEM FORMULATION

In this section, we shall formulate the delay-optimal pesblas an infinite horizon average cost

constrained Markov Decision Problem (CMDP) and discusgytiteeral solution.

A. CMDP Formulation

The goal of the controller is to choose an optimal statiorfaagible unichain policyT* that minimizes
the average end-to-end transmission delay[id (12). Speltjfiche delay-optimal control problem is

summarized below.

This abuse will also appear in the following of this paper @yl as the meaning is clear.
Hsince the source node aid RSs have buffers with the same buffer si¥g, the average drop rate at each RS node is much
lower than the average drop rate at the source node. Therefer omit the average drop rate constraint at each RS toi§impl

the problem.
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Problem 1 (Delay-Optimal Control Problem for MIMO Relay &ys): Find a feasible stationary unichain
policy IT = (IT', ..., IT1) such that the average end-to-end delay is minimized sutgjebe average drop
rate constraint at the source node and the average powdraiahat the source node and each RS nagde
Le.min T(I) = lim 3770, BY 3500 5 Qu(t)] st. @3), @4), @3

Problen is an infinite horizon average cost constraineckabecision Problem (CMDP) [19] with
system state spacg = {S!,S2%,---1 = Q x H (where Q is the global QSI state space affis the
global CSI state space), action sp&e A x B (whereP = {Vp,,|vm} is power allocation action space,
A = {VA,,|Vm} is the first-stage bidding action space ad-= {VB,,|Vm} is the second-stage bidding
action space), transition kernel given lhy](10), and thespage cost functiod(S,H(S)) = Z]nvfzs Qm.

B. Lagrangian Approach for the CMDP

The CMDP in Probleni]1 can be converted into unconstrained Ndpfhe Lagrange theory [14]. For

any vector of Lagrange multiplier (LMY = [vs.4,75.ps V1.ps - Y] L, We define the Lagrangian as

L(IL4) = lim A7 1EH[ (S(t),H(S(t)),y)],where

T—+4o00
M Npin M Nuin
( ( ) QS""YS,pZ ZISmpSm +’YSdI[QS—NQ +Z [Qm""}’m,pzf meD()
m=1 i=1 m=1 i=1

Therefore, the corresponding unconstrained MDP for a qdai vector of LMs~ is given by

G(y) = mHinL(H, v) = mlnTh_Igo—ZEH[ ( S(t)),’y)] (16)
whereG(v) gives the Lagrange dual function. The dual problem of thenagkiproblem in Problerh]1 is
given by max.~o G(v). It is shown in [20] that there exists a Lagrange multiphee> 0 such thatIT*
minimizes L(I1,~) and the saddle point condition the saddle point condifigil,~*) > L(IT*,~*) >
L(IT*,~) holds. Using standard Lagrange thedry|[14}, is the primal optimal (i.e. solving Problefm 1),
~* is the dual optimal (solving the dual problem) and the dyaiiép is zero. Thus, by solving the dual
problem, we can obtain the primal optimidl. Therefore, we shall first solve the unconstrained MDP in
(@8) in the following.

For a given LM vectory, the optimizing unichain policy for the unconstrained M@E) can be obtained

by solving the associateBellman equatiorw.r.t. (0, {J(S)}) as follows

0+ J(S) = min {g(si, T(S).7) + Y Pr[S7|S", H(si)]J(sj)} VS € S, (17)

S;

12To simplify the notation, we shall normalizes = 1 in the rest of the paper.
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where{J(S)} is the value function of the MDP anBlr[S7|S?, TI(S¢)] is the transition kernel which can
be obtained from{10Y¥ = miny; L(II,~) is the optimal average cost per stage and the optimizingyoli
is IT* with IT*(S?) minimizing the R.H.S. of[(1I7) at any sta®. For any unichain policy with irreducible
Markov_Chain{S(¢)}, the solution to[(1l7) is uniqué [19]. We restrict our poligyase to beunichain

policies? and we denotél* as the optimal unichain policy.

C. Equivalent Bellman Equation for the CMDP

The Bellman equation in[{17) is a fixed point problem over thacfional space and this is very
complicated to solve due to the huge cardinality of the systtate space. Brute-force solution could not
lead to any useful implementations. In this subsection, redl dlustrate that the Bellman equation [n{17)
can be simplified into a equivalent form by exploiting thedi.istructure of the CSI procedd(t). For
notation convenience, we partition the unichain poli€yinto a collection of actions based on the QSI.
Specifically, we have the following definition.

Definition 2 (Partitioned Actions for the:-th Relay): Given a unichain control policyi™, we define
IMmQ) = I"(Qs, Qm) = {II"(Qs, Qm,H,,)|VH,,} as the collection of actions under a given local
QSI(Qs, Q) for all possible local CSH,,,. The complete policyI™ for the m-th RS is therefore equal
to the union of all the partitioned actions, i.B™ = U(g, o, 1" (Qs, Qm)-

Therefore, we havél = UqQII(Q) and we show that the optimal polidf* of (I8) can be obtained by
solving anequivalent Bellman equatiosummarized in the following lemma.

Lemma 2 (Equivalent Bellman Equationifhe control policy obtained by solving the Bellman equation

in (I7) is the same as that obtained by solving ¢lggivalent Bellman equatiodefined below:

0+ V(@) = min {7(Q1(Q).7) + D PHQIIQLIQV@)} V@ e e a8)
Q;

wheref = miny L(I1,v) is the original optimal average cost per staggQ’) = Ex[J(Q%, H)|Q'] is

the conditional average value function for st&é and

5(Q1,1(Q"),7) = Eu[g((Q", H). 1(Q", H),7) Q'] (19)

13For most of the policies we are interested, the associatattdMahain is irreducible and hence, there is virtually nssldoy

restricting ourselves to unichain policies.
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is the conditional per-stage cost aRd[Q’|Q’, T1(Q?)] = En [ Pr(Q’|(Q', H),TI(Q¢,H)]| is the condi-
tional average transition kernel.
Proof: Please refer to Appendix B. [ |

Remark 3:Note that solving the R.H.S. df (I1L8) for ea€} will get an overall control policy which is
a function of both the CSH and QSIQ'. This is illustrated by the following example.

Example 1:Consider a simple example with global CSI state spHce- {H', H?} and global QSI
state spac& = {Q' Q?}. Hence, the control variables are collectively denoted Hw policy IT =
{II(H', QY),II(H2, Q"), II(H', Q?),II(H?,Q?) }. Using definitior( 2, the partitioned actions are simply
regroups of variables given By(Q') = {II(Q',H'), II(Q', H?)} andI(Q?) = {II(Q? H'),II(Q? H?)}.
For any QSI stat&’ (i = 1,2), using Lemmadl2, the optimal partitioned actidiis(Q?) can be obtained
by solving the R.H.S. of(18) as follows

2
(O — - k ik ik
Q) = are {H(Qi,Hgl)l,lrIIl(Qi,HZ)} { ;Pr[H ][g((Q HY), Q' HY), )

+> Pr(Q/(@ HY),IQ HY)V(Q)] ] (0)
Qj
Observe that the R.H.S. &f(20) is a decoupled objectivetfomev.r.t. the variable$I1(Q?, H'), I1(Q¢, H?)}.

Hence, applying standard decomposition thedty—= 1,2, we have

I*(Q',H") = arg  min
(Q*,H") g in,

Using the results in Lemnia 2, the optimal control of the aragiproblem when the QSI and CSl realizations

{o((Q" B, (Q", HY),7) + > Pr [Q7|(Q" HY), Q! HY)] V(@) }
QI

are (Q', H?) is I1*(Q', H?). Hence, the solution obtained by solvirig](18) is adaptivéddth the CSI
and QSI.

IV. DISTRIBUTIVE ONLINE ALGORITHM BASED ON APPROXIMATED MDP

There are still two major obstacles ahead. Firstly, obtajirthe value functiondV(Q)} w.r.t. (I8)
involves solving a system of exponential number of equatamd unknowns and brute force solution has
exponential complexity. Secondly, even if we could obtaim solution{ V' (Q)}, the derived control actions
will depend on global QSI and CSI, which is highly undesieabh this section, we shall overcome the
above challenges using approximate MDP and distributigehststic learning. The linear approximation

architecture of the value function is given beldwl[21]:

M Ng
V(Q) => Y Vau(@IQmn=gq] orinthe vector form V =MW, (21)
m==S q=0
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where we shall refefV;,(¢)} asper-node value functio@ (Ym = S,1,--- , M) and{V(Q)} asglobal
value functionin the rest of this pape& = [V(Q!),...,V(Q!9N]T is the vector form of global value

functions, theparameter vectoW andmapping matrixM is given below:

W = [‘75(0),---,‘75(NQ)7‘71(0)7---,‘71(NQ)7---,‘75(1\7@),‘7M(0)>---,‘7M(NQ) !
IQy=0] .. IQy=Ng] .. I[Q=0 .. I[Q} = Nog]
M = :
Q2 =0 .. 1Q'=nNg .. TIQ' =0 .. 11QIY = Ny
where we letVs(0) = V;(0) = ... = V3;(0) = 0 and setQ’ = (0,--- ,0) (i.e. all buffer empty) as the

reference state without loss of generality. Compared highariginal value function if{18), the dimension
of the per-node value functions is much smaller. Thereftive,per-node value function can only satisfy
the Bellman equatiori (18) in some pre-determined systemeays&ates. In this paper, we shall refer the
pre-determined subset of system queue states agpinesentative statd@1]. Without loss of generality,
we define the reference stat@% = {3, 4|Vm = 5,1,2,..., M;q =1,2,..., Ng }, whereg,, , denotes the
QSI with Q,,, = ¢ andQ,, = 0 ¥n # m. Moreover, we also define the inverse mapping mamix' as

0 IQ'=ps1] - IQ'=Bsny)s - 0 IQ'=8u1] .. IQ'=Bun,]
M=

0 IQ2=8g1] ... IQ9=58sn,], . .0 IQC=28u1] ... I[QC =7un]
Thus, we havéV = M~!'V. Instead of offline computing thigest fitparameter vectoW (per-node value
function vector) w.r.t. the global value functidvi (which is quite complex), we shall propose an online

learning algorithm to estimate the parameter ve®r(per-node value function) in Sectign 1V-B.

A. Distributive Control Policy under Linear Value Functidpproximation

Using the approximate value function [n{21), we shall deawistributive control policy which depends
on the local CSI and local QSI as well as the per-node valuetifums {V;,(¢)} at each noden (vm =
S,1,---, M). Specifically, using the approximation in{21), the cohpolicy in (I8) can be obtained by

solving the following simplified optimization problem.

YIn this paper, we assume each RS (sayrih¢h RS) has the knowledge of the source node’s queue leRgttand its own

queue lengthQ,,. Therefore, the per-node value functid@ andV,, is known at them-th RS.
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Problem 2 (Optimal Control Action with Approximated ValuenEtion): For any given value function

V(QY) = Z%:S Zflvjo Vi ()I[QE = ¢], the optimal control policy is given by

(@) = arg min {5(Q", Q) +ZPrQJIQZ mQv(Q)}

—arg{ Z Qi+ 75,41[Q% = Ng +ZfX V(Qs,)

+ min EH{ > I Gy m(Nsr,psm) + Y I,]@Y%DGn,D(NRDypn,D)]}

H(QT) m,NSR TL,NRD
& arg ér(lgg)EH[ > 1 Gom(Nsropsm) + > I3 Gun(Nap,pan)| | (22)
m,Nsr n,Nrp

where Qi,, = [Q% + n,Qi, Q5. ... Q4] and Gs,m(Nsg,ps.n) = Ysppsim + Yo fx(n) (f@(Qg -
R m(Nsp. psm)+1) = Vs(Qis+1) ) + Vi (Qi + R (N, ps.m)) — Vi (i) 814G, p(N e, b, ) =
YpPn.D + Vi (Q4 — Rn,p(Nrp,Pn,p)) — V(Q3).
The solution of Problerl2 is summarized in Leminha 3 below.

Lemma 3 (Distributive Control PoIicyiven the per-node value functiofi§,, (¢)} (vm = S, 1, ..., M)

and any realization of CSH and QSIQ™Y, the following distributive control solves the Probléin 2:

« Power control for the S-R link and R-D link/(n = 1,--- , M):

Ps.m(Nsr) = arg g;in Gsm(Nsr,psm) and pg, p(Nrp) = al‘g;nin Gn,p(NrD,Pn,p) (23)

where Nggr, Nrp = 0,1, ..., min(Np, Ng).
o First-stage bid at RSs/(n =1,--- , M):
Ay (Nsr) = Gs,m(Nsr, p§,m(Nsr)) (24)
where Ngr = 0, 1, ..., min(Np, Ng).

» Second-stage bid at RSgn(=1,--- , M):

(In,Nsg,) =arg min {A;kn(NSR)+Gn,D(NRDap:L,D(NRD))}

(m NSR
By =Gs1,(Nsgrn: Psm(Nsrn)) + Gn.o (NrD s Py p(NrD M) (25)

WhereNRD = min(NT, Np — NSR)-

Note that the following expressions are all functions of slystems state. We omit the system state for notation siityplic

when the meaning is clear.
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In addition, for sufficiently large source arrival rakg, jj—g and the average transmit power constraints

{Ps, Pr}, the power control policy in[(23) has the following closexh expression:

Nsr |V4(Q%) — ‘Z%(an)} Nsr

1

Psm(Nsr) = - : (26)

Vs,pIn2 ; Ufg,m

NepVo (@) T2 1
P,p(NrD) = ——— 15 — 3 ——, (27)
VrmpIn 2 ]Z:; nin,D
where V4(Q) = VS(Q2+1);VS(Q2—1) and V', (Q! ) = \Zn(QiﬂH)ng(Q;—n_

Proof: Please refer to Appendix C. [ |

Remark 4 (Multi-level Water-Filling Structure of the CasitPolicy): The power control policy(26) and
(27) as well as the RS selection and data stream allocatiotnat@olicy in (24) and[(25) are functions of
both the CSI and QSI where they depend on the QSI indirecélythé per-node value functiod#/,(¢)}
(Ym = S,1,--- , M). The power control solution has the form of multi-level eatilling where the power

is allocated according to the CSI while the water-level ia@ve to the QSI.

B. Online Distributive Stochastic Learning Algorithm totiisate the Per-node Value Functiof¥, (q)}
and the LMs{vs 4, vs.ps Ym,p}

In Lemmal3, the control actions are functions of per-nodeiealinctions{V,,(q)} and the LMs
{Vs.d:vs,p» Ymp}- In this section, we propose an online learning algorithndétermine the per-node
value functions and the LMs realtime. The almost-sure cayarece proof of this algorithm is provided
in the next section. The system procedure of the proposedbdisve online learning is given below.

o Step 1[Initialization]: Each RSn initiates its per-node value functions and LMs, denote@l%%(q)}
and~), ,, as well as the per-node value functions and LMs for the sonorle, denoted a{§7§(q)}
and{~?_,73 }. The initialization of V9 and{+3_,,7%,} at each RS should be the same.

» Step 2 [Determination of control actions]: At the beginning of the-th frame, the source node broad-
casts its QS (t) to the RS nodes. Based on the local system informat@g(t), Q. (t), Hy, (1))
and the per-node value functiofd’’,(¢)} and {ffg(q)}, each RSm determines the distributive
control actions including the S-R and R-D power allocatign,,(Nsr,t), py, p(Nrp,t) the first-
stage bidA?,(Nsgr,t) (Nsr =1, -+, Nmin) @s well as the second-stage W}, (¢), I,,(t), Nsrn(t)
according to Lemmal3. Based on the contention resolutioiopod described in Sectioh 14D,

the Rx-RS and the Tx-RS pair is given by {(t),n*(t)) (where n*(t) = argmin, B} (t) and
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m*(t) = I,-4)(t)) and the corresponding number of data streams pair is giyeiNG (t), N (t))
(Where Np(t) = Nspp-) (t) and Njp(t) = Nrp p-) (1))

« Step 3 [Per-node value functionsand L Msupdate]: Each RSn updates the per-node value function
(Vi (@)}, (V5 ()} as well as the LMs{yL, 5 751} according to AlgorithniIl. Finally, let

t=1t+ 1 and go to Step 2.

Algorithm 1 (Online distributive learning algorithm for paode value functions and LMs):

Vi (a) =Vi(a) + € [1s.allQs(t) = Nol + 4+ Bi (1) = Vib@) [TIQ(E) = Bgl,m = 8,1, M

(28)
+
V5t = (Vs + 4(1Qs(t) = Nl - D)) (29)
Noin .
sy :<’Yf9,p +eb (Y IR )psm(Nsr,t) — PS)) (30)
NSR:1
Noio .
Vi :<%tn,p +6( Z Iﬁfﬁ (t)pm,p(NrD, 1) — PR)) ., m=1,2 .., M (31)
Nsp=1

where 155 (t) = Tfm = m*()I[Nsg = Nig(t)], IN B (t) = Im = n*()I[Ngp = Njp(t)], and

{el, > 0}, {¢, > 0} {¢}, > 0} are the step size sequences satisfying

t t

o0 o0 [ee] oo

€
E €l = oo, g €, = 00, g e, = oo, E [(6’;)2 + (6;)2 + (62)2} <00, lim 2 =0, lim 6—? =0.
t=0 t=0

t——+o0 et t—4o00 €
t=0 t=0 v

C. Almost-Sure Convergence of Distributive Stochastiarieg

In this section, we shall establish technical conditionstfee almost-sure convergence of the online
distributive learning algorithm. Sincge! }, {e}}, {¢/} satisfy e/, = o(e!), €, = o(€},), the LMs update
and the per-node potential functions update are done simedusly but over two different time scales.

During the per-node potential functions update (timestglee havey!™ — /1 = O(c!) = o(¢,) and

p p

7&1 —7&1 = O(€) = o(¢€!). Therefore, the LMs appear to be quasi-static [22] durirgptar-node value
function update in[{28). For the notation convenience, @effire sequences of matriceA’} and{B!} as
AT =1 - DI+ M'P(ITHMe ! andB ! = (1 — )T + M—'P(IT- 1) Mel !, wherell? is a
unichain system control policy at theth frame,P(I1') is the transition matrix of system states given the
unichain system control policii?, T is identity matrix. The convergence property of the pereedlue

function update is given below:
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Lemma 4 (Convergence of Per-Node Value Function Learnirg dnescale 1): Assume for all the fea-

sible policy in the policy space, there exists some posititeger 3 andr? > 0 such that
AP A =7, BFLBY > Va, (32)

where[-], 1) denotes the element inth row and/-th column (wherel corresponds to the reference state

Q') and 7! = O(€!) (vt). The following statements are true:

« The update of the parameter vector (or per-node potent@bxlewill converge almost surely for any
given initial parameter vectow® and LMs~, i.e. tlim Wi(y) = W>2(v).
—00

o The steady state parameter vecWr> satisfies:
e + W™ (v) = M 'T (7, MW>(y)) (33)
whered is a constantW is given by
W = [VE2(0), ... VE"(NQ), Vi*(0), ..., Vi (Ng), ..., VE* (NQ), ViF (0), -, ViR (N)]

and the mappind is defined asl'(v, V) = miny[g(~, 1) + P(II)V].

Proof: Please refer to Appendix D. [ |
Remark 5 (Interpretation of the Sufficient Conditions in beafd): Note thatA? and B! are related to
the transition probability of the reference states. Coowli{32) simply means that there is one reference
state accessible from all the other reference states aftee sinite number of transition steps. This is a

very mild condition and will be satisfied in most of the casepiactice.

Note that[(3B) is equivalent to the following Bellman eqaaton the representative stat8g:

m,q

M
9"“77;0(‘]) = min) {?(ﬁm,qan(ﬁm,q)a%’c) +ZP1" [ijm,q»r[(ﬁm,q)] Z ‘Z;O(an)}a Vﬂm,q € Sg.
QI m=S

Hence, Lemmal4 basically guarantees the proposed onlimeigaalgorithm will converge to théest

fit parameter vector (per-node potential) satisfying (21).tmn other hand, since the ratio of step sizes

t
Ca
€

satisfiesi—%, — 0 during the LM update (timescale IlI), the per-node value fiomcwill be updated

much faster than the Lagrange multipliers. Hence, the @pafaitagrange multipliers in timescale 11 will
trigger another update process of the per-node value famati timescale |. By the Corollary 2.1 df [23],
we havetlggoﬂffﬁn — V(4Y)|| = 0 w.p.1. Hence, during the LM updates i (31),1(30) ahd (29 th
per-node value function update 0 {28) is seen as almostile@ied. Moreover, convergence of the LMs

is summarized below.
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Lemma 5 (Convergence of the LMs over TimescaleThe iteration on the vector of LM$ = [vs. 4, Vs,p,
Y1ps - YMp) L cONverges almost surely tg = (Vs.a5 V5. p0 Vi o ...,ﬁva]T, which satisfies the power and
packet drop rate constraints in_{14)J15) ahd (13).

Proof: Please refer to Appendix E. [ |

Based on the above lemmas, we summarized the convergericenpaarce of the online per-node value
functions and LMs learning algorithm in the following thear.

Theorem 1 (Convergence of Online Learning Algorifim BEgr the same conditions as in Lempla 4, we
have(y!, W') — (v*, W™ (v*)) w.p.1., wherg(y*, W™ (y*)) satisfiedde+W>(v*) = M~ !T (v*, MW>(y*))
and the average power constrainfl{1#,15) as well as the gergracket drop rate constraiff(13), where

is a (M +1)(Ng + 1) x 1 vector with all elements equal to 1.

D. Asymptotic Optimality

Finally, we shall show that the performance of the distilialgorithm is asymptotically global optimal
for high traffic loading.

Theorem 2 (Asymptotically Global Optimal at High Traffic do®g): For sufficiently largeNg and high
traffic loading such that the optimization problem in Probl@ is feasible, the performance of the proposed
distributive control algorithm is asymptotically globabtomal.

Proof: Please refer to Appendix F. [ |

V. SIMULATIONS AND DISCUSSIONS

In this section, we shall compare our proposed online pdenalue function learning algorithm to
five reference baselines. Baseline 1 and 4 refer to the pedplosffered decode and forwar(BDF)
protocol with throughput optimal policyin stability sense), namely thdynamic backpressur@gorithm
[24], where we utilize full-duplex RSs in Baseline 1 and kalfplex RSs in Baseline 4. Baseline 2 and
5 refer to the regular decode-and-forward protocol (DFhwiite CSIT only scheduling¢he link selection
and power allocation are adaptive to the CSIT only so as timige the end-to-end throughput). We
utilize full-duplex RSs in Baseline 2 and half-duplex RS8#mseline 5. Moreover, Baseline 3 refers to the
proposed BDF protocol with CSIT only scheduling and halplen RSs. In the simulations, we assume
the total bandwidth is 1 MHz, the packet arrival at the sourode is Poisson with average arrival rate

As = 200pck/s and deterministic packet si2g, bits. The number of antennas at the source node and the



November 5, 2018 20

@
S
1

IS
&
T

Baseline 5
HD RS,CSIT Only,DF|

IS
S

Baseline 4
HD RS,Dyanmic Backpressure,
BDF
Baseline 3
HD RS,CSIT Only,BDF|
Baseline 2 .
FD RS,CSIT Only,DF|

w
&

@
=]
T

Average End-to-End Packet Delay
NN
S &
T T

N
@
T

8
Average Transmit SNR (dB)

Fig. 3. Average end-to-end delay versus average transnfk. 8dseline 1 refers to the dynamic backpressure algoritliim w
BDF protocol and full-duplex relays. Baseline 2 refers te @SIT only scheduling with traditional DF protocol and fdliplex
relays. Baseline 3 refers to the CSIT only scheduling withFBDotocol and half-duplex relays. Baseline 4 refers to theacic
backpressure algorithm with BDF protocol and half-duplebays. Baseline 5 refers to the CSIT only scheduling witHitianal

DF protocol and half-duplex relays. The deterministic mackize is/N, = 25K bits and the number of antennas at each RS is
Nr = 4. The packet drop rates of the Baselines 1-5 and the propasgtbudtive online learning are 0.2% 0.2% 13%, 3%, 24%

and 0.2% respectively.
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Fig. 4. Average throughput versus average transmit SNR.dEterministic packet size 87, = 30K bits and the number of
antennas at each RS Mz = 4. The packet drop rates of the Baselines 1-5 and the propdseibdtive online learning are all

10%.

destination node iV = 2. Moreover, the maximum buffer size of each node (source ROWERSS) is
Ng = 10.
Figure[3 andFigure[4illustrate the average end-to-end delay awerage throughputersus average

transmit SNR per node with/y = 4 antennas at each RS, respectively. It can be observed ¢hptdhosed
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Fig. 6. Average end-to-end delay versus the number of reltgnaas with transmit SNR 5dB. The deterministic packet size

is N, = 20K bits and the number of antennas at each R§jis= 4. The packet drop rates of the Baseline 1-5 and the proposed

distributive online learning are 3%, 4%, 9%, 5%, 20% and Q.i8épectively.

distributive algorithm with half-duplex RS could achievigrsficant performance gaiim both average

delay and average throughpater all baselines with full-duplex RSs, and even more $iicgmit gain over

the baselines with half-duplex RSs. This illustrates theaathges of the proposed BDF algorithm with

distributive delay-optimal control policy, which couldfeétively reduce the intrinsic half-duplex penalty

in the cooperative communicat

ion systems.
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Figure[® andrigure[Billustrate the average end-to-end delay versus the nunibietays andhe number
of relay antennasvith Ny = 4 antennas at each RS, respectivdfycan be observed that the average
delay of all the schemes decreases as the number of relaye orumber of relay antennas increases.
Furthermore the proposed BDF algorithm with distributive delay-optineantrol policy has significant
gain in delay over all the baselines.

Figure[T illustrates the convergence property of the pregakstributive online learning algorithm. We
plot the per-node value function of the first relay versusesiciting slot index at a transmit SNRHAB.
The average delay at th2)0-th scheduling slot is already very close to the steadyestatue, which is
much better than all the baselines. Furthermore, unlikéténations in deterministic NUM problems, the

proposed algorithm is online, meaning that normal payl@adeilivered during the iteration steps.
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Baseline 1 (Backpressure,FD,BDF): 4.7 |Baseline 1 (Backpressure,FD,BDF): 4.1
Baseline 2 (CSIT,FD,DF): 4.9 Baseline 2 (CSIT,FD,DF): 4.9
Baseline 3 (CSIT,HD,BDF): 32 Baseline 3 (CSIT,HD,BDF): 32
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Fig. 7. llustration of the convergence of the proposedranliearning algorithm. The instantaneous per-node valoetifon is
plotted versus time slot index for a cooperative MIMO systsith a source node (with 2 antennas) and 2 RS nodes (each with
4 antennas). The transmit SNR of the source and the RS nodeR)ailB and the target packet drop rate is 0.2%. Unlike the
iterations in deterministic NUM problems, the proposedétgm is online, meaning that normal payload is deliveredrdy the

iteration steps.

VI. SUMMARY

In this paper, we consider queue-aware resource contrdiMothop cooperative MIMO systems. We
show that by exploiting buffering in each MIMO relay, we cdwdubstantially reduce the intrinsic half-
duplex loss in cooperative systems. The delay-optimaluesocontrol policy is formulated as an average-

cost infinite horizon Markov Decision Process (MDP). To @btalow complexity solution, we approximate
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the value function by a linear combination of per-node vdlugctions. The per-node value function is
obtained using a distributive stochastic learning al@anit We also established technical conditions for
almost-sure convergence and show that in heavy traffic,lithé proposed low complexity distributive

algorithm converges to global optimal solution.

APPENDIXA: PROOF OFLEMMA 1]

The average number of bits received by the source node i diye\s(1 — D), which is also the
average number of information bits received by the relagtelts as the source node and the relay cluster
are cascade. LeWV, Wg and Wy be the average time (with the unit of frames) one informatidn
staying in the system, the source node’s queue and somésreglague respectivelyys and Ni be the
average number of information bits in the source node’s gaad the relays’ queues respectively, we have

Ng = (1-D)\sWgs andNg = (1— D) \sWg by Little’s Law. Notice that?’ = Wg+ Wg, we havell =

gs(j_]\g%) . Since the change of system queue state forms a Markov ahainavell’ = E . [%] ,

wherer, is the steady state distribution. For sufficiently smallkecdrop rate requiremerit— D =~ 1,

Qs+z,ﬂ,/f:1 Qm

the end to end average delay becoriés= E, S

APPENDIX B: PROOF OFLEMMA

From the Bellman equation of the original state spacé (18)heve

6+V(Q.H) = min {g((Q"H),I(Q H),y)+ > Pr[(Q H)(Q H),IQ H)/Q H);

H(leH) (Qj,H’)
@ . i i O i j
< min {o((Q ), 1(Q" ), ) + %IP QIQH) QB V(Q)},  (34)

where (a) is due to the definitioi(Q’) = Eg/ [V (Q’, H')|Q’], and the optimal control actions are given
by TI*(Q, H) = arg min(q s {9((Q", ), TH(Q, H), ) + g, Pr[Q7)(Q, H), TH(Q', H)] V(Q) }.
Thus, by the partitioning of the optimal control actions iefDition[, i.e.IT*(Q?) = {IT*(Q¢, H)|VH},

I1°(Q) = arg min >~ Pr(H) {g((Q" H), INQ", H),7) + 3 Pr [@/](Q", H), INQ', H)V(Q))}
H Qi

(35)
From (33) and[(35), we havé-+ Pr(H)V(Q', H) = minq) Yg Pr(H){g((Qi,H),H(Qi,H),fy) +
S Pr Q@ H), Q) V(@) } & mingqy {7(Q1T(Q1),7)+5q, Pr[@7]Q7, Q)] V(Q)},
where the equality (b) is due to the definition @fin (I9). As a result, the control policy obtained by
solving [18) is the same as that obtained by solving (17) aieddompletes the proof.
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APPENDIX C: PROOF OFLEMMA

We shall prove the general control policy first, followed e tclosed-form power control derivation.

According to [22), givenNsi and Nyp, the optimal power control is given by:

{%HP}EH[ > I3 Gsm(Nsr,psm) + Y IgijGmD(NRD;pn,D)]}
P m,Nsg n,Nrp

ZEH[ > I3 minGsm(Nsg,psm) + > TIN5 ;?niI;Gn,D(NRDapn,D)}}

m,Nsnr bem n,Nrp
Thereforepgm(NSR) = argminy,  Gsm(Nsr,Ps,m) andpme(NSR) = argminy,  , Gn p(NrD,Pn,D)-
To determine the optimal Rx-RS, Tx-RS and stream allocatios biding is divided into two stages:
o First Biding: Each RS (say thax-th RS) broadcasts one bid for each possiBlg; indicating that if
itself is selected as Rx-RS and the number of S-R streamg; jg what would be the corresponding
Gsm(NsR: PG )
» Second Biding: After receiving the bids in the first roundcle®S (say the:-th RS) should calculate
that if itself is selected as the Tx-RS, which RS else is th&t Bx-RS (say then-th RS is the best
Rx-RS), what's the besNgsr and Nrp and what's the corresponding; = Gs,m(NSR,p*s,m) +
Gn,0(Nrp,p;, p)- Then, broadcast the calculation results as the second bid.
« After comparing theB;, the optimal Rx-RS, Tx-RS and stream allocation can be deted.
Therefore, the first-stage bidding and the second-stagbngds straight-forward.

When Ag and % (m = 5,1,2,..., M) are sufficiently large, it with large probability th%ﬂ (m =
S,1,2,..., M) is sufficiently large. Hence, following a similar approaich[25], it can be proved that
the value functionV/, (m = S,1,2,..., M) is increasing polynomially irQ = [Qs,Q1,...,Qa]". The

optimization onpg ,, is given by
p*S,m(NSR) = arg min GS,m(NSRapS,m)

S,m

—argmin{ vsppsm + > fx(n)(Vs (Q% — Rsm(Nsgr,psm) +n) — Vs(Q% + n)
Ps,m

+ ‘7m (Q;n + RS,m(NSRapS,m)) - ‘7771 (Qin) } (36)
Similar to [25], we can do Taylor expansion as follows:
Vs(Q% — Rsm(Nsr,psm) + 1) = Vs (Q%) + <n — RS,m(NSR>pS,m)> Ve (QY), (37)

Vs (Q% +n) = Vs(Q%) + nVe(Q%) (38)
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Whereffé is the first order derivative ofig and the higher order is neglectable. Same apporach can te use

to expand;, (Qi,+Rs,m(Nsr, psm)) @SV (Qh+Rsm(Nsr, psm)) = Vin (Qh) +Rsm(Nsrs psm) Vi (@)
At high SNR region, we have
ORsm(Nsr,psm) _ N 1
Ips,m In2pg.. + Z;V:Sf‘ nél,m
According to [31.38.39), taking derivative on the RHS[of))(86d letting it be zero, we can get the closed-

(39)

from expression for power allocation in_(26). Moreover,)(2@n be proved in the same way. Finally, when

Q. and Qg are sufficiently large, according to the definition of detiva, we have
~ o Vs(Qh+1) —Vs(Qh —1 o V(@ 4 1) — Vi (QF — 1

APPENDIX D: PROOF OFLEMMA [4

From [26], the convergence property of the asynchronousitigpand synchronous update is the same.
Therefore, we consider the convergence of related synolsomersion without loss of generality.

Let ¢ € R be a constant, we havEI(cf/Sl) = cTI(f/Sl), where 77 is one element of mappin@
corresponding to the state with all buffers empty. Similar[27], the per-node value functio{n{/m}
is bounded almost surely during the iterations of algoritiracording to the construction of parameter
vectorW, the update oV, is equivalent to the update &W and proving the convergence of Lemfda 4
is equivalent to proving the convergence of updatéWin In the following, we first introduce and prove
the following lemma on the convergence of learning noise.

Lemma 6:Defineq' = M [E(Hl)JrP(Hl)MWl—MWl—TI(MWl)e , when the number of iterations
l > j — oo, the procedure of update can be written as follows with podig 1: Wi+l = W7 +
Zé:j €4l

The proof of above lemma follows the standard approach ahststic approximation with Martingale
noise [22]. Moreover, the following lemma is about the liroftsequencedq’,,}.

Lemma 7:Suppose the following two inequalities are true fee a,a +1,...,a +b

g1l + P(IHMW! <g(1' ) + P H MW! (40)
g + P~ MW <g(I') + P(IT")MW' ™, (41)
then we have
[%]-1
gt <o I =7+ i, (42)

1=0



November 5, 2018 26

Whereq“+b denotes théth element of the vectog®*?, C; is some constant.

Proof: From [40) and[{411), we have

g = M'[gIl') + P(M)MW' - MW' — wie] < M'[g(IT" ") + P )MW' — MW' — wje]

¢t =M [ 1) + PAT-H)MW!! - MWL — ]
<M [g(I') + P(IYMW'! - MW" —w;_se]
wherew; = Tr(MW!) = T;(MW!). According to LemmBl6, we haW' = W!~=! ¢ ~1gi=1 = W! =
Wil 4 =1gl=1, Therefore,
q [(1 — e DI+ MTP(HI 1)Mei)_1]ql_1 +w_1e —we = Bl g 4 w_1e — wie
>[(1- HI+ MPITHYMeS ]ql_l +w_1e —we = A7 +w_e — we.
Notice thatA!~'e = B!~ le, we haveA!~1. A!=Bq!=F — Cle < ¢! <BI"1..BIA¢=P — Cie

maxq’ + Oy < (1 — 7)) maxq'=#
=(1- Tl)[min ql_ﬁ] < ql +Cire<(1-— Tl)[max ql_ﬁ] =

ming' + C; > (1 — 7") minq'=*#
= maxq' —ming’ < (1 — 7)[maxq'™® — minq?] = |¢}| < maxq' —minq’ < Cy(1 —7!) Vi,

where the first step is due to conditions of Lenitha 4 on matixesece{A'} and {B'}, maxq' and
min ql denote the maximum and minimum elementqlimespectivelycl and Cy are all constants, the
first inequality of the last step is becausgn q' < 0. This completes the proof of Lemida 7. |

Therefore, the proof of Lemma 4 can be divided into the foilmysteps: (1) From the property of
sequencele}, we have]"[ié_l(l - 62}5) — 0 (I — o0). (2) According to the first step, note that
t = O(€), from [@2), we havey' — 0 (I — ). (3) Therefore, the update oW’} will converge, and
the fixed point of the convergend® > satisfiesT;(MW')e + W™ = MIT(MW>).

APPENDIX E: PROOF OFLEMMA

Due to the page limit, we only provide the sketch of the prddfe convergence proof of the LMs

{¥S.p» V1ps - Y1} TOF @ givenyg,q is as follows:

« For the notation convenience, we first define the averagertrarpower of each node as follows:

~ in(Ne,Ng) i i 5 N, NR) i
Ps(7) = B | oy SE M g p | and Pay) = BR[0T 0 ot o]
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(m = 1,2,.., M), where E''[] denotes the expectation w.r.t. the politl(y). Using standard
stochastic approximation theory, the dynamics of the LMdau@ equatioq~s , v1,p; -, Yam,p} €anN

be represented by the following ODE:

Wsp(t), o 015 (] " = [Ps(v) = Ps, Pr(7) = Py Prs(v) — Pr]™ (43)

« Using perturbation analysis in_[28], we ha\?éDﬁ <0 (m=51,2,..,M) and ‘87’ ‘ >>

‘873%(: (m = S,1,2,..., M,n # m). Thus, the update of,,, (m = 5,1,..., M) in ODE {@3) will

drive P,,, — Pr (or Py — Ps)to O wheneveP,, — Pg (or Py — Ps) is non-zero. Therefore, the ODE

(43) will converge. The converged LM8YS ,(vs.d): 77, (Vs.d)s -+ Yar,(75.4)} can be characterized
by the equilibrium point of the ODH_(43), which is given by tR&S of [43)— 0.

Suppose for a givens.a, {vsp: 11,p; s Ymp} CONVErge to{vg ,(vs.d), V1 p(v5.d)s - Var,p(Vs.a) }. Since

o(EL . . [Qs=Nol) _ - .
Ly g < 0, the update onys 4 will converge as well for a similar reason as in the

convergence ofys p, v1,p, -, Ym,p }- Similarly, the converged? , can be characterized by the equilibrium

point of the ODEYs4(t) = EN. . .. [Qs = Ng] - D, which is given by the RHS- 0.

APPENDIX F: PROOF OFTHEOREM[Z

Without loss of generality, we shall consider the approxenalue functior/ (Q) = Zm g ZNQ Vin(q)
I|Q. = ¢} on the following redefined set of representative stalgs= {0,, ,/m = S,1,2,...,M;q =
0,1,...qr —1,qr +1,..., Ng}, where the staté,, , is given byd,,, = [Qs = q¢1,Q1 = q1,...,Qm =
q,....,Qun = q7]" andqr < Ng is sufficiently large. CorrespondinglixI—! should also be redefined such
that the per-node value functio[rf/'m} is updated on the representative stafgs [21]].

First of all, following the similar approach in the proof oetnma#, the per-node value function (under
the new reference states) would also converge almost stm{[i?;’f (v)} for any given LMs~.

Next, when the conditions of Theordrh 2 are satisfied, givenean 0, there is one integef(e) such

that for allg > Qo (e) andg; = Qo(e), we have (from the proof of Lemnid 3):
Vidlg =) = Vid(a) = Vidlar =) = Vi lar) + O(e). (44)

Moreover, since{V,2°(¢)} are all monotonically increasing functions with respecijtand {f/,;’f(NQ)}
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are all boundQ, we havev, <Q0(6)> = O(e) for sufficiently large arrivals. Thereford, (44) holds for

all ¢ € [0, Ng] for sufficiently largeNg and input arrivals. Similarly, we have
V(g +n—71) = V§(q+n) = V§(ar +n —r) = V§(ar +n) + O(c) (45)
Villa +7) = Vid(a) = Vi lar +7) = Vi¥lar) + O(e). (46)

Hence, with the above equations and substituting the cgadeper-node value functio{ff;’f (v)} into

(@8) for the reference states, we get

V(a) =+ 1salla = Nol + 3 fx(n )V (a+n) ~ Vs*(m)) + minEa{ Y ul [’Ys,pZPNSR
m,Nsr
+ 3 Ix(n )(Veo(a+n—rllsm) = VE(a+m)) + Vidlar +7d50) = Veran)| § (47)
Ver(a) =g + V2 (g) + min B { > 055 [ D g+ Ve =g - V@] ) (48)
NRD

wherem = 1,2, ..., M.

Finally, for any system stat®)’ = [Q%, ..., Q%,]T, substitute the above equations into the RHS of the
original Bellman equation ifi.{18), we get RHS BE(E8)S" Y Qi +v5.41[Q% = Ngl+3,, fx (n)VE (Qis+

n) + S0 Vad (@) + mingq Ba{ 5, x, 8 [’Ys,ppgir’f + 50 F ) (Vo(QY + = rm) —
Veo(Q+m) )+ Ve ar+rds) - Mq»} Y e T [vm,pp%%ﬁml ) =V (@) |
0(6) 2 M V2o(QL) + X0, f1(m) Ve (n) + O(e) = V(Q) + X2, f1(n)Vg*(n) + O(e), where equality
(a) is due to[(46), equality (b) is due tb {47) andl(48). Sidce fX(n)V§°(n) is a constant indepen-
dent of Q‘ and ¢ is chosen arbitrarily, we have shown that the approximataevéunction V(Q) =
Zn]‘f:s Zflv‘?l Vo ()IlQ.n = q] can satisfy the original Bellman equation(18) asymptdiicvhen
Ng — +00). As a result, the proposed distributive update algorittonverges to the global optimal

solution and this completes the proof.
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