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Energy-Efficient Precoding for

Multiple-Antenna Terminals

Elena Veronica Belmeg&tudent Member, IEEEBnd Samson Lasaulcklember, IEEE

Abstract

The problem of energy-efficient precoding is investigatdtemw the terminals in the system are equipped
with multiple antennas. Considering static and fast-fgdimultiple-input multiple-output (MIMO) channels, the
energy-efficiency is defined as the transmission rate to poat® and shown to be maximized at low transmit
power. The most interesting case is the one of slow fading ®lIbhannels. For this type of channels, the
optimal precoding scheme is generally not trivial. Funthere, using all the available transmit power is not
always optimal in the sense of energy-efficiency (whichhis tase, corresponds to the communication-theoretic
definition of the goodput-to-power (GPR) ratio). Finding thptimal precoding matrices is shown to be a new
open problem and is solved in several special cases: 1. wieza is only one receive antenna; 2. in the low
or high signal-to-noise ratio regime; 3. when uniform powdocation and the regime of large numbers of
antennas are assumed. A complete numerical analysis isdptbto illustrate the derived results and stated
conjectures. In particular, the impact of the number of mnés on the energy-efficiency is assessed and shown

to be significant.

Index Terms

Energy-efficiency, MIMO systems, outage probability, pow#ocation, precoding.

. INTRODUCTION

In many areas, like finance, economics or physics, a commgrofvassessing the performance of a system is

to consider the ratio of what the system delivers to whatiitstones. In communication theory, transmit power
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and transmission rate are respectively two common meastities cost and benefit of a transmission. Therefore,
the ratio transmission rate (say in bit/s) to transmit pogerJ/s) appears to be a natural energy-efficiency
measure of a communication system. An important questitreis. what is the maximum amount of information

(in bits) that can be conveyed per Joule consumed? As repiortEl], one of the first papers addressing this
issue is [2] where the author determines the capacity pércast for various versions of the photon counting
channel. As shown in [1], the normaliZedapacity per unit cost for the well-known additive white Gsian

. - . . . . 1 1+5
channel modely = X + Z is maximized for Gaussian inputs and is givenlibyip_. ng(P ) = 02}n2’

whereE|X|?> = P andZ ~ CN(0,0?). Here, the main message of communication theory to engirie¢that
energy-efficiency is maximized by operating at low transpotver and therefore at low transmission rates.
However, this answer holds for static and single input ginglitput (SISO) channels and it is legitimate to
ask: what is the answer for multiple-input multiple-outgiMIMO) channels? In fact, as shown in this paper,
the case of slow fading MIMO channels is especially relewanbe considered. Roughly speaking, the main
reason for this is that, in contrast to static and fast fadihgnnels, in slow fading channels there are outage
events which imply the existence of an optimum tradeoff leetwthe number of successfully transmitted bits
or blocks (called goodput in [3] and [4]) and power consumptilntuitively, this can be explained by saying
that increasing transmit power too much may result in a maigincrease in terms of quality or effective
transmission rate.

First, let us consider SISO slow fading or quasi-static cleéém The most relevant works related to the
problem under investigation essentially fall into two slas corresponding to two different approaches. The
first approach, which is the one adopted by Verdl in [1] ansl dleeady been mentioned, is an information-
theoretic approach aiming at evaluating the capacity péraast or the minimum energy per bit (see e.qg., [5],
[6], [71, [8]). In [1], two different cases were investigatelepending on whether the input alphabet contains or
not a zero cost or free symbol. In this paper, only the caseemhe input alphabet does not contain a zero-cost
symbol will be discussed (i.e., the silence at the tranemitde does not convey information). The second
approach, introduced in [9] is more pragmatic than the previone. In [9] and subsequent works [4], [10],
the authors define the energy-efficiency of a SISO commuaitasu(p) = %(") where R is the effective
transmission data rate in bitg,the signal-to-noise-plus-interference ratio (SINR) ghés a benefit function
(e.g., the success probability of the transmission) whighethds on the chosen coding and modulation schemes.

To the authors’ knowledge, in all works using this approd&), (4], [10], [11], [12], [13], etc.), the same
In [1] the capacity per unit cost is in bit/s per Joule and mobit/J, which amounts to normalize by a quantity in Hz.
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(pragmatic) choice is made fgt. f(z) = (1—e~*)", wherea is a constant and&/ the block length in symbols.
Interestingly, the two mentioned approaches can be linkedhaking an appropriate choice fgr. Indeed, if

f is chosen to be the complementary of the outage probalulitg, obtains a counterpart of the capacity per
unit cost for slow fading channels and gives an informatimewretic interpretation to the initial definition of
[9]. To our knowledge, the resulting performance metric hasbeen considered so far in the literature. This
specific metric, which we call goodput-to-power ratio (GPR)Il be considered in this paper. Moreover, we
consider MIMO channels where the transmitter and recereeirdormed of the channel distribution information
(CDI) and channel state information (CSI) respectively.cémclude the discussion on the relevant literature,
we note that some authors addressed the problem of endiggefy in MIMO communications but they did
not consider the proposed energy-efficiency measure bas#tkeooutage probability. In this respect, the most
relevant works seem to be [15], [16] and [17]. In [15], thehau$ adopt a pragmatic approach consisting in
choosing a certain coding-modulation scheme in order tohr@agiven target data rate while minimizing the
consumed energy. In [16], the authors study the tradeoffide the minimum energy-per-bit versus spectral
efficiency for several MIMO channel models in the wide-baegime assuming a zero cost symbol in the input
alphabet and unform power allocation over all the antenimagl7], the authors consider a similar pragmatic
approach to the one in [4], [10] and study a multi-user MIMGachel where the transmitters are constrained
to using beamforming power allocation strategies.

This paper is structured as follows. In Sec. I, assumptamshe signal model are provided. In Sec. Ill, the
proposed energy-efficiency measure is defined for staticfastefading MIMO channels. As the case of slow
fading channels is non-trivial, it will be discussed sepayain Sec. IV. In Sec. IV, the problem of energy-
efficient precoding is discussed for general MIMO slow faditnannels and solved for the multiple input single
output (MISO) case, whereas in Sec. V asymptotic regimege(ms of the number of antennas and SNR) are
assumed. In Sec. VI, simulations illustrating the derivesutts and stated conjectures are provided. Sec. VI

provides concluding remarks and open issues.

Il. GENERAL SYSTEM MODEL

We consider a point-to-point communication with multipletenna terminals. The signal at the receiver is
modeled by:
y(r) = H(r)z(r) + 2(7), 1)

where H is the n,, x n; channel transfer matrix and; (resp.n,) the number of transmit (resp. receive)

antennas. The entries &1 are i.i.d. zero-mean unit-variance complex Gaussian nandariables. The vector
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x is the n;-dimensional column vector of transmitted symbols ands an n,.-dimensional complex white
Gaussian noise distributed A$(0, o%I). In this paper, the problem of allocating the transmit powetween
the available transmit antennas is considered. We will ey Q = E[z2"] the input covariance matrix
(called the precoding matrix), which translates the chgsewer allocation (PA) policy. The corresponding
total power constraint is

Te(Q) < P. 2)

At last, the time index- will be removed for the sake of clarity. In fact, dependingtbe rate at whichH
varies withr, three dominant classes of channel models can be distimeplis

1) the class of static channels;

2) the class of fast fading channels;

3) the class of slow fading channels.
The matrixH is assumed to be perfectly known at the receiver (coherentmmication assumption) whereas
only the statistics oH are available at the transmitter. The first two classes ofiicbis are considered in Sec.

Il and the last one is treated in detail in Sec. IV and V.

I1l. ENERGY-EFFICIENT COMMUNICATIONS OVER STATIC AND FAST FADINGMIMO CHANNELS
A. Case of static channels

Here the frequency at which the channel matrix varies isthtrzero that is;H is a constant matrix. In this
particular context, both the transmitter and receiver @asumed to know this matrix. We are exactly in the
same framework as [18]. Thus, for a given precoding sch@nthe transmitter can send reliably to the receiver
log, | I, + pHQH| bits per channel use (bpcu) with= 2. Then, let us define the energy-efficiency of this

communication by:

log, |I,,, + pHQH!
Gstatic(Q) - 082 | Tr((g) Q ‘

The energy-efficiencyrs;atic (Q) corresponds to an achievable rate per unit cost for the MINM@noel as

®3)

defined in [1]. Assuming that the cost of the transmitted syimf) denoted byb[z], is the consumed energy
~ I(z;
blz] = ||z||* = Tr(zz™), the capacity per unit cost defined in [1] Ko £  sup M The supremum
2 Eppiz)) <P EDLZ]]

is taken over the p.d.f. of such that the average transmit power is limitefd[z]] < P.

It is easy to check that:
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Cslow = SUp sup  I(z;y)
Qn@<P @) 2E@r-q

- sup _Gstatic (Q) .
QTr(Q)<P

The second equality follows from [18] where Telatar provieat the mutual information for the MIMO static

(4)

channel is maximized using Gaussian random codes. In othietspfinding the optimal precoding matrix which
maximizes the energy-efficiency function corresponds tirfig the capacity per unit cost of the MIMO channel
where the cost of a symbol is the necessary power consumee ti@fismitted. The question is then whether
the strategy “transmit at low power” (and therefore at a lomngmission rate) to maximize energy-efficiency,
which is optimal for SISO channels, also applies to MIMO ahela. The answer is given by the following
proposition, which is proved in Appendix A.

Proposition 3.1 (Static MIMO channels): The energy-efficie of a MIMO communication over a static
channel, measured b¥tatic, IS maximized whe® = 0 and this maximum is

. 1 Tr(HHH)

static = 9 o3 )

Therefore, we see that, for static MIMO channels, the eneffigiency defined in Eq. (3) is maximized by
transmitting at a very low power. This kind of scenario osclar example, when deploying sensors in the ocean
to measure a temperature field (which varies very slowlysdme applications however, the rate obtained by
using such a scheme can be not sufficient. In this case, @irgijdthe benefit to cost ratio can turn out to be
irrelevant, meaning that other performance metrics haveet@onsidered (e.g., minimize the transmit power

under a rate constraint).

B. Case of fast fading channels

In this section, the frequency with which the channel mataxies is the reciprocal of the symbol duration
(z(7) being a symbol). This means that it can be different for ehelmnel use. Therefore, the channel varies over
a transmitted codeword (or packet) and, more precisely) eadeword sees as many channel realizations as the
number of symbols per codeword. Because of the correspgseéifraveraging effect, the following transmission
rate (also called EMI for ergodic mutual information) candmhieved on each transmitted codeword by using

the precoding strateg® :

Riast (Q) = Em [logs | I, + pHQH™ ] . (6)
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Interestingly, Rt (Q) can be maximized w.r.tQ by knowing only the statistics oH that is, E [HHH]
under the standard assumption that the entrieEl agire complex Gaussian random variables. In practice, this
means that only the knowledge of the path loss, power-delafjlgy antenna correlation profile, etc is required
at the transmitter to maximize the transmission rate. Atrdaiver however, the instantaneous knowledge of

H is required. In this framework, let us define energy-efficiehy:

En |1 I, HQHH
Gras(Q) = H[ng‘T;(g)p eilly (7)

By definingg, as thei-th column of the matrix,/pHU, i € {1,...,n:}, U and{p;};*; an eigenvector matrix

and the corresponding eigenvalues@frespectively, and also by rewritinG.s¢(Q) as

Nt
L+ pigg
i=1

Ny
EE:I%
i=1

it is possible to apply the proof of Prop. 3.1 for each rediiwa of the channel matrix. This leads to the

log,

: (8)

Gfast(Q) - IEH

following result.
Proposition 3.2 (Fast fading MIMO channelsThe energy-efficiency of a MIMO communication over a fast

fading channel, measured My, is maximized whe®@ = 0 and this maximum is
. 1 Tr(E [HH"))
st =15 o 9)
We see that, for fast fading MIMO channels, maximizing egegtjficiency also amounts to transmitting at low
power. Interestingly, in slow fading MIMO channels, whergtage events are unavoidable, we have found that

the answer can be different. This is precisely what is showtné remaining of this paper.

IV. SLOwW FADING MIMO CHANNELS: FROM THE GENERAL CASE TO SPECIAL CASES
A. General MIMO channels

In this section and the remaining of this paper, the frequemith which the channel matrix varies is the
reciprocal of the block/codeword/frame/packet/time-sloration that is, the channel remains constant over a
codeword and varies from block to block. As a consequencenvihie channel matrix remains constant over a
certain block duration much smaller than the channel colueréime, the averaging effect we have mentioned
for fast fading MIMO channels does not occur here. Therefore has to communicate at rates smaller than
the ergodic capacity (maximum of the EMI). The maximum EMihisrefore a rate upper bound for slow fading

MIMO channels and only a fraction of it can be achieved (ség f@r more information about the famous

September 29, 2010 DRAFT



diversity-multiplexing tradeoff). In fact, since the matunformation is a random variable, varying from block
to block, it is not possible (in general) to guaranteel@ % that it is above a certain threshold. A suited
performance metric to study slow-fading channels [14] & phobability of an outage for a given transmission
rate targetR. This metric allows one to quantify the probability that tta¢e targetR is not reached by using

a good channel coding scheme and is defined as follows:
Pout(Q, R) = Pr [log, |1, + pPHQH"| < R] . (10)

In terms of information assumptions, here again, it can telobd that only the second-order statisticdoére
required to optimize the precoding mati@ (and therefore the power allocation policy over its eigdunes).

In this framework, we propose to define the energy-efficiemsyollows:

R[1 — Pout(Q, R)]
™Q)

In other words, the energy-efficiency or goodput-to-poveadioris defined as the ratio between the expected

I'Q,R) = (11)

throughput (see [3],[20] for details) and the average corelitransmit power. The expected throughput can be
seen as the average system throughput over many transmsiskiccontrast with static and fast fading channels,
energy-efficiency is not necessarily maximized at low tnaihgpowers. This is what the following proposition
indicates.

Proposition 4.1 (Slow fading MIMO channels): The goodmipbwer ratiol’(Q, R) is maximized, in gen-
eral, for Q # 0.
The proof of this result is given in Appendix B. Now, a natuisgue to be considered is the determination of
the matrix (or matrices) maximizing the goodput-to-powadra (GPR) in slow fading MIMO channels. It turns
out that the corresponding optimization problem is notidiiMndeed, even the outage probability minimization
problem w.r.t.Q (which is a priori simpler) is still an open problem [18], [2122]. This is why we only
provide here a conjecture on the solution maximizing the GPR

Conjecture 4.2 (Optimal precoding matrices): There existsower thresholdP, such that:

o if P < PjthenQ* ¢ argngnPout(Q,R) = Q"¢ arngXF(Q,R);

o if P> Py thenT'(Q, R) has a unique maximum iQ* = %Im wherep* < P.

This conjecture has been validated for all the special caslesd in this paper. One of the main messages of
this conjecture is that, if the available transmit poweeeissl than a threshold, maximizing the GPR is equivalent
to minimizing the outage probability. If it is above the thheld, uniform power allocation is optimal and using

all the available power is generally suboptimal in terms oérgy-efficiency. Concerning the optimization
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problem associated with (11) several comments are in oFdlet, there is no loss of optimality by restricting
the search for optimal precoding matrices to diagonal wedrifor any eigenvalue decompositign= UDU
with U unitary andD = Diag(p) with p = (p1,...,pn,), both the outage and trace are invariant w.r.t. the

choice ofU and the energy-efficiency can be written as:

R[1 — Poui (D, R)]
Zpi
i=1

Second, the GPR is generally not concave wibt.In Sec. IV-B, which is dedicated to MISO systems, a

I'(D,R) =

: 12)

counter-example where it is not quasi-concave (and thusomtave) is provided.

Uniform Power Allocation policy

An interesting special case is the one of uniform power alion (UPA):D = 21, wherep € [0, P] and
Tupa(p, R) 2T (%Im, R).

One of the reasons for studying this case is that the famaus@ore of Telatar given in [18]. This conjecture
states that, depending on the channel parameters and tatgdt.e.,o?, R), the power allocation (PA) policy
minimizing the outage probability is to spread all the aafalié power uniformly over a subset&fe {1,...,n;}
antennas. If this can be proved, then it is straightforwardhow that the covariance matdiXx* that maximizes
the proposed energy-efficiency function %Diag(gp), wheree,. € S;.2. Thus,D* has the same structure
as the covariance matrix minimizing the outage probab#ikgept that using all the available power is not
necessarily optimaly* € [0, P]. In conclusion, solving Conjecture 4.2 reduces to solvietafr's conjecture
and also the UPA case.

The main difficulty in studying the outage probability ordathe energy-efficiency function is the fact that
the probability distribution function of the mutual infoation is generally intractable. In the literature, the
outage probability is often studied by assuming a UPA patliegr all the antennas and also using the Gaussian
approximation of the p.d.f. of the mutual information. Thisproximation is valid in the asymptotic regime of
large number of antennas. However, simulations show thalsd quite accurate for reasonable small MIMO
systems [23], [24].

Under the UPA policy assumption, the GRRpa (p, R) is conjectured to be quasi-concave wgp.t.Quasi-

concavity is not only useful to study the maximum of the GPRi$also an attractive property in some scenarios

*We denote byS, = {v € {0,1}™| 31", v; = ¢} the set ofn; dimensional vectors containingones andn; — ¢ zeros, for all
le {1,...77’”}.

September 29, 2010 DRAFT



H Is D* known? | Is TVFA(p) quasi-concave”.* Is p* known?

General MIMO Conjecture Conjecture Conjecture
MISO Yes Yes Yes
1x1 Yes Yes Yes

Large MIMO Conjecture Yes Yes
Low SNR Yes Yes Yes
High SNR Yes Yes Conjecture

TABLE |

SUMMARY OF PROVED RESULTS AND OPEN PROBLEMS

such as the distributed multiuser channels. For exampleobgidering MIMO multiple access channels with

single-user decoding at the receiver, the correspondstglilited power allocation game where the transmitters
utility functions are their GPR is guaranteed to have a puashNequilibrium after Debreu-Fan-Glicksberg
theorem [25].

Before stating the conjecture describing the behavior efahergy-efficiency function when the UPA policy

is assumed, we study the limits when— 0 andp — +oco. First, let us prove thalir%FUpA(p, R)=0.
p—)

Observe thatlir%Pout (ﬁlm,R> =1 and thus the limit is not trivial to prove. The result can beven
p— n¢

by considering the equivalent+ Z—’t’Tr(HHH) of the determinan*ln,‘ + fL—’t’HHH‘ wheno — +oo. As the
entries of the matrix are i.i.d. complex Gaussian random variables, the quamtitfIH") = i i\hijyz
is a2n,n; Chi—sqijare distributed random variable. THuspa (p, R) can be approximated bﬁ;:p:(;,lR) =
Rexp (—%) A i—f}% with d = ny (2% — 1)02. It is easy to see that this approximate tends to zero when

p — 0. Second, note that the limitim T'ypa(p, R) = 0. This is easier to check sincéim Py <£I, R) =0.
p—+00 p—+00 Nt
Conjecture 4.3 (UPA and quasi-concavity of the GPR): AsstvaeD = %Im. ThenI'ypa(p, R) is quasi-
concave W.rtp € [0, P].
Table IV-A distinguishes between what has been proven m pghper and the conjectures which remain to be

proven.
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B. MISO channels

In this section, the receiver is assumed to use a single matdat is,n,. = 1, while the transmitter can have
an arbitrary number of antennas, > 1. The channel transfer matrix becomes a row vegtes (hq, ..., hy, ).
Without loss of optimality, the precoding matrix is assuntedoe diagonal and is denoted by = Diag(p)
with QT = (p1, ..., pn,)- Throughout this section, the rate targetand noise levet? are fixed and the auxiliary
quantityc is defined byr = 0%(27—1). By exploiting the existing results on the outage probghitiinimization
problem for MISO channels [22], the following propositioarcbe proved (Appendix C).

Proposition 4.4 (Optimum precoding matriéiels for MISO chelah For all ¢ e {1,...,ny — 1}, let ¢, be the

unique solution of the equation (in) Pr e+1Z|X ?<az|—Pr 1Z:|X > <x| =0 whereX; are i.i.d.

=1
zero-mean Gaussian random variables with unlt varlancecBryventlonco = 400, ¢, = 0. Lety,, be the

ng—1 ;
unique solution of the equation (in) (n _1 Z Y — 0. Then the optimum precoding matrices have the

=0
following form:

%Diag(gé) if Pe [ﬁ, c—i)
min{g2(2R_1), %} I ifP>

VUny

D* = (13)

Cny—1
wherec = 02(2% — 1) and ¢, € S;.

Similarly to the optimal precoding scheme for the outagebphility minimization, the solution maximizing
the GPR consists in allocating the available transmit pawgformly between only a subsét< n; antennas.
As i.i.d entries are assumed fof, the choice of these antennas does not matter. What matténs number
of antennas selected (denoted®)ywhich depends on the available transmit powerthe higher the transmit
power, the higher the number of used antennas. The differertween the outage probability minimization
and GPR maximization problems appears when the transmiep@vgreater than the thresholcgfj. In
this regime, saturating the power constraint is suboptifmathe GPR optimization. The corresponding sub-
optimality becomes more and more severe as the noise leveWwissimulations (Sec. VI) will help us to
quantify this gap.

Unless otherwise specified, we will assume from now on th24 is used at the transmitter. This assumption
is, in particular, useful to study the regime where the almd transmit power is sufficiently high (as conjectured
in Proposition 4.1). Under this assumption, our goal is tovprthat the GPR is quasi-concave wy.tc [0, P]
with D = ,%Im and determine the (unique) solutiphwhich maximizes the GPR. Note that the quasi-concavity
property w.r.t.p is not always available for MISO systems (and thus is not ydnavailable for general MIMO

channels). In Appendix D, a counter-example proving thathm case where, = 1 andn; = 2 (two input
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11

single output channel, TISO) the energy-efficiedcy>© (Diag(g_a), R) is not quasi-concave W.rp. = (p1,p2)
is provided.

Proposition 4.5 (UPA and quasi-concavity (MISO channelg)$sume the UPAQ = n%Im, thenT'(p, R)
is quasi-concave w.r.p € [0, P| and has a unique maximum point it = min {W,F} wherev,, is
the solution (w.r.ty) of:

ng—1 4

Y Yy
_ . —0. 14

1=

Tt

Tt

Proof: Since the entries ok are complex Gaussian random variables, the @:njlhkﬁ is a2n;— Chi-

k=1
square distributed random variable, which implies that:

R {1 — Prllog, (1 + Z—fﬁHﬁ) < R]}

p
o N2 d
R{l " ;W <P” (15)

MBSO, R) =

ng—1 i

with d = en; = (2% — 1)ny02. The second order derivative of the goodpm{e‘% E <£l> l'] W.I.t. p is
, p)
=0

R[ L e P (d — (ny + 1)p)]. Clearly, the goodput is a sigmoidal function and has a umimpilection

p"’t+3

point in py = #. Therefore, the functiom™SO(p, R) is quasi-concave [26] and has a unique maximum in
p* = min {V%,F} wherew,, is the root of the first order derivative afS°(p, R) that is, the solution of
(14). [ |
The SIMO case f; = 1, n, > 2) follows directly since|I + pphh!?| = 1+ pph*h.

To conclude this section, we consider the most simple cabd®0 channels namely the SISO case £ 1,

n, = 1). We have readily that:

e r

TS50 (p, ) =

(16)

To the authors’ knowledge, in all the works using the enefiiciency definition of [4] for SISO channels,
the only choice of energy-efficiency function made is basedhe empirical approximation of the block error
rate which is%, M being the block length and the operating SINR. Interestingly, the function given

by (16) exhibits another possible choice. It can be checkad the functione > is sigmoidal and therefore
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"SISO s quasi-concave w.r.p [26]. The first order derivative ofSS© s

orsso (c— p)e_i
o =R e . a7

The GPR is therefore maximized in a unique point whic¢h= ¢ = ¢2(2% — 1). To make the bridge between

this solution and the one derived in [4] for the power confrablem over multiple access channels, the optimal

power level can be rewritten as:

2
* . o R D
P —mm{W@ —1),P} (18)
whereE|h|? = 1 in our case. In [4], instantaneous CSI knowledge at the métex's is assumed while here
only the statistics are assumed to be known at the transmitterefore, the power control interpretation of

(18) in a wireless scenario is that the power is adapted tq#tle loss (slow power control) and not to fast

fading (fast power control).

V. SLOW FADING MIMO CHANNELS IN ASYMPTOTIC REGIMES

In this section, we first consider the GPR for the case whearesite of the MIMO system is finite assuming
the low/high SNR operating regime. Then, we consider the gé¥#cy and prove that Conjecture 4.3 claiming
thatT'ypa (p, R) is quasi-concave w.r.h (which has been proven for MISO, SIMO, and SISO channelssis a
valid in the asymptotic regimes where either at least oneedsion of the systemm(, n,.) is large but the SNR
is finite. Here again, the theory of large random matricesutcassfully applied since it allows one to prove

some results which are not available yet in the finite case ¢sg., [19], [28] for other successful examples).

A. Extreme SNR regimes

Here, all the channel parameters,(n,, and P in particular) are fixed. The low (resp. high) SNR regime
is defined byc? — 400 (resp.o? — 0). In both cases, we will consider the GPR and the optimal powe
allocation problem.

1) Low SNR regime:Let us consider the general power allocation problem wHere= Diag(p) with
p = (p1,---,pn,). In [22], the authors extended the results obtained in thedad high SNR regimes for
the MISO channel to the MIMO case. In the low SNR regime, ththans of [22] proved that the outage
probability P,.(Diag(p), R) is a Schur-concave (see [29] for details) function wp.tThis implies directly
that beamforming power allocation policy maximizes theaget probability. These results can be used (see

Appendix E) to prove the following proposition:
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Proposition 5.1 (Low SNR regime): Wheh — +oo, the energy-efficiency functidi(Diag(p), R) is Schur-
concave w.r.tp and maximized by a beamforming power allocation polizy = PDiag(ey).

2) High SNR regimeNow, let us consider the high SNR regime. It turns out thatUFé policy maximizes
the energy-efficiency function. In this case also, the pufathe following proposition is based on the results
in [22] (see Appendix E).

Proposition 5.2 (High SNR regime): WheR — 0, the energy-efficiency functidn(Diag(p), R) is Schur-
convex w.r.tp and maximized by an uniform power allocation polloy = %Im with p* € (0, P]. Furthermore,
the limit whenp — 0 such thatl, — £ isT (n%lm,R) — +o0o0 which implies thap* — 0.

In other words, in the high SNR regime, the optimal structafehe covariance matrix is obtained by
uniformly spreading the power over all the antennBs, = %Im the same structure which minimizes the
outage probability in this case. Nevertheless, in conttaghe outage probability optimization problem, in

order to be energy-efficient it is not optimal to use all thaikable powerP but to transmit with zero power.

B. Large MIMO channels

The results we have obtained can be summarized in the foltpywroposition.
Proposition 5.3 (Quasi-concavity for large MIMO systemK)the system operates in one of the following
asymptotic regimes:
(@) ny < +o00 andn, — +oc;
(b) ny — +o00 andn, < +oc;
() ny — 400, n,. — +oo with m_}i}iorge{w} Z—Z = [ < +o0,
thenT'ypa (p, R) is quasi-concave w.r.p € [0, P].
Proof: Here we prove each of the three statements made above andgpummments on each of them
at the same time.
Regime (a)n; < +o00 andn, — oo. The idea of the proof is to consider a large system equivaléiite
function I'uypa (p, R). This equivalent is denoted tiAy%JPA(p, R) and is based on the Gaussian approximation
of the mutual informationlog, ‘I+ Z—fHHH‘ (see e.g., [30]). The goal is to prove that the numerator of

%50, (p, R) is a sigmoidal function w.r.tp which implies that"%,, (p, R) is a quasi-concave function [26]. In

the considered asymptotic regime, we know from [30] that:

log, [T+ %HHH‘ - N (nt log, (1 + ﬂpp> L 10g2(6)> . (19)
U U Ny
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A large system equivalent of the numeratorlafpa (p, R), which is denoted bWa(p, R), follows:
R — n¢ log, <1 + Z—:pp)

Z—j log, (e)

Na(p,R) = RQ ( (20)

whereQ(x) = \/% f:oo exp (—%) dt. Denote the argument @ in (20) by «,,. The second order derivative
of Na(p, R) w.rt. p

62]/\\7“ ’R 1 / " Qg 2
AR — = o) @) — o) exp (-2 ). 1)

ThereforeN, (p, R) has a unique inflection point

b = n¢ {2[%,<R—n%(%gf(e))%/2>} _1}. (22)

nyp
Clearly, for each equivalent dfypa (p, R), the numerator has a unique inflection point and is sigmpidiaich
concludes the proof. In fact, in the considered asymptetitmne we have a stronger result sirlgkqurooﬁa =0,
which implies thatN,(p, R) is concave and therefoi&;,, (p, R) is maximized inp; = 0 as in the case of
static MIMO channels. This translates the well-known cl@rrardening effect [30]. However, in contrast to
the static case, the energy-efficiency becomes infinite siaeI'ypa (p, R) — % with p? — 0.

Regime (b):n; — +o00 and n, < 4+o0. To prove the corresponding result the same reasoning as is (a

applied. From [30] we know that:

2
PP H Ny pp
I+ 5HH?| - N 0, logy(1+pp), /=1 . 23
o ' (n ogs(1 + pp) ( o 0g2(6)1+pp> ) (23)

A large system equivalent of the numeratorlafpa (p, R) is ]\Afb(p, R) = RQ (ap(p)) with

log,

n 1+ pp
ay(p) = |/ = logy(€) —E R = n, logy(1 + pp)]. (24)
Ny PP
The numerator functiomvb(p, R) can be checked to have a unique inflection point given by:

By = o (f . 1) (25)
and is sigmoidal, which concludes the proof. We see thatrifiection point does not vanish this time (with
n; here) and therefore the functidﬁb(p, R) is quasi-concave but not concave in general. From [26], wavkn
that the optimal solutiop; represents the point where the tangent that passes thrbagirigin intersects the

S-shaped functiolRQ (o (p)). As n, grows large, the functiod) (o, (p)) becomes a Heavyside step function

sinceVp < py, limy,, 4 @ (ap(p)) = 0 andVp > py, lim,, 4 @ (a(p)) = 1. This means that the optimal
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power p} that maximizes the energy-efficiency approachgss n; grows large,p; — o> (2% — 1). The

1
202( 2nr —1

whenn; — +oc.

optimal energy-efficiency tends 1131’(531%) —

Regime (c)n; — 400, n, — co. Here we always apply the same reasoning but exploit thetsedalived

in [31]. From [31], we have that:

10g2

I+ %HHH‘ — N (nypr, o) (26)
t

wherep; = Blogy(1 + pp(1 — 7)) — 7 +logy(1 + pp(B — 7)), 0f = —logy (1 - %)
v = % (1 + 08+ i — \/(1 +0+ #)2 — 46). It can be checked thdt.(p))?a.(p) — o/’(p) = 0 has a unique

solution wheren..(p) = %%(”). We obtaina’,(p) = ”t“f"f_";é‘fc”_R"f and
I

" " 1 2 / ’ / /
_ (prof—nypior—Ro})o7—20107 (nepror—nepyor—Rog

a(p) = ). We observe that, in the equatign’.(p))?a.(p) —

a!(p) = 0, there are terms im}, n?, n; and constant terms w.ri,. Whenn, becomes sufficiently large the
first order terms can be neglected, which implies that thet®wl is given byu;(p) = 0. It can be shown
that 1;(0) = 0 and thatu; is an increasing function w.r.p which implies that the unique solution js = 0.

Similarly to regime (a) we obtain the trivial solutigri = 0.

VI. NUMERICAL RESULTS

In this section, we present several simulations that astour analytical results and verify the two conjec-
tures stated. Since closed-form expressions of the outaxpabpility are not available in general, Monte Carlo
simulations will be implemented. The exception is the MISt@mnel for which the optimal energy-efficiency
can be computed numerically (as we have seen in Sec. |V-Bjowitthe need of Monte Carlo simulations.

UPA, the quasi-concavity property and the large MIMO chdane

Let us consider the case of UPA. In Fig. 1, we plot the GPRa (p, R) as a function of the transmit
powerp € [0, P] W for an MIMO channel where:, = n; = n with n € {1,2,4,8} andp =10 dB, R =1
bpcu, P = 1 W. First, note that the energy-efficiency for UPA is a quasiaave function w.r.tp, illustrating
Conjecture 4.3. Second, we observe that the optimal p@#enaximizing the energy-efficiency function is
decreasing and approaching zero as the number of anteroraases and also thBtpa (p*, R) is increasing
with n. In Fig. 2, this dependence of the optimal energy-efficieacygt the number of antennasis depicted
explicitly for the same scenario. These observations aaed@ordance with the asymptotic analysis in subsection

V-B for Regime (c).
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Similar simulation results were obtained for the case wheris fixed andn,. is increasing, thus illustrating
the asymptotic analysis in subsection V-B for Regime (a).

In Fig. 3, we plot the energy-efficiendyypa (p, R) as a function of the transmit powerc [0, P] W for
MIMO channel such that,. = 2, n; € {1,2,4,8} andp = 10 dB, R = 1 bpcu,P = 1 W. The difference w.r.t.

the previous case, is that the optimal powéroes not go to zero whemy increases. This figure illustrates the

results obtained for Regime (b) in section V-B where theroptipower allocatiorp;, — 2"7[)‘1 = 0.0414 W

and the optimal energy-efficiendy;; ,, — 2(2£_1) = 12,07 bit/Joule whenn; — +o0.

UPA and the finite MISO channel

In Fig. 4, we illustrate Proposition 4.4 far; = 4. We trace the cases where the transmitter uses an optimal
UPA over only a subset of € {1,2,3,4} antennas fop = 10 dB, R = 3 bpcu. We observe that: i) iP < -
then the beamforming PA is the generally optimal structuith W* = P Diag(e,); ii) if P ¢ [éé) then
using UPA over three antennas is the generally optimal streavith D* = P/2 Diag(e,); iii) if P € [é C—i)
then using UPA over three antennas is generally optimal With= P/3 Diag(es); iv) if P > + then the UPA
over all the antennas is optimal wilb* = %min {47’10,?} 14. The saturated regime illustrates the fact that it
is not always optimal to use all the available power after rage threshold.

UPA and the finite MIMO channel

Fig. 5 represents the success probability, P, (D, R), in function of the power constraitt for n; = n, =
2, R =1 bpcu,p = 3 dB. Since the optimal PA that maximizes the success prabalslunknown (unlike the
MISO case) we use Monte-Carlo simulations and exhaustiaecbeo compare the optimal PA with the UPA
and the beamforming PA. We observe that the result is in decwe with Telatar’s conjecture. There exists a
thresholds = 0.16 W such that ifP < §, the beamforming PA is optimal and otherwise the UPA is oalir®f
course, using all the available power is always optimal wimeximizing the success probability. The objective
is to check whether Conjecture 4.2 is verified in this palicicase. To this purpose, Fig. 6 represents the
energy-efficiency function for the same scenario. We oleséinat for the exact thresholdl = 0.16 W, we
obtain that if P < § the beamforming PA using all the available power is optirtfaP > § the UPA is optimal.
Here, similarly to the MISO case, we observe a saturatedneegihich means that after a certain point it is
not optimal w.r.t. energy-efficiency to use up all the adaiatransmit power. In conclusion, our conjecture has
been verified in this simulation.

Note that for the beamforming PA case we have explicit retestifor both the outage probability and the
energy-efficiency (it is easy to check that the MIMO with béamming PA reduces to the SIMO case) and

thus Monte-Carlo simulations have not been used.
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VIlI. CONCLUSION

In this paper, we propose a definition of energy-efficiencyrimevhich is the extension of the work in [1] to
static MIMO channels. Furthermore, our definition bridges gap between the notion of capacity per unit cost
[1] and the empirical approach of [4] in the case of slow fgdimannels. In static and fast fading channels, the
energy-efficiency is maximized at low transmit power and ¢beresponding rates are also small. On the the
other hand, the case of slow fading channel is not trivial extiibits several open problems. It is conjectured
that solving the (still open) problem of outage minimizatis sufficient to solve the problem of determining
energy-efficient precoding schemes. This conjecture islatd by several special cases such as the MISO case
and asymptotic cases. Many open problems are introducetieoproposed performance metric, here we just
mention some of them:

o First of all, the conjecture of the optimal precoding scherf@ general MIMO channels needs to be

proven.

o The quasi-concavity of the goodput-to-power ratio wherfarm power allocation is assumed remains to
be proven in the finite setting.

o A more general channel model should be considered. We havsidaved i.i.d. channel matrices but
considering non zero-mean matrices with arbitrary cotiataprofiles appears to be a challenging problem
for the goodput-to-power ratio.

« The connection between the proposed metric and the diyersittiplexing tradeoff at high SNR has not
been explored.

o Only single-user channels have been considered. Cleatitj-user MIMO channels such as multiple
access or interference channels should be considered.

o The case of distributed multi-user channels become morarand important for applications (unlicensed
bands, decentralized cellular networks, etc.). Only oseltes mentioned in this paper: the existence of a
pure Nash equilibrium in distributed MIMO multiple accedsnnels assuming uniform power allocation

transmit policy.
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Fig. 1. Energy-efficiency (GPR) vs. transmit powere [0,1] W for MIMO channels wheren, = n; = n € {1,2,4,8}, UPAD = %Int,
p =10 dB, R =1 bpcu. Observe that the energy-efficiency is a quasi-conftaveion w.r.t.p. The optimal poinp* is decreasing anflypa (p*, R)

is increasing withrn.

Optimal energy efficiency I'ypa (p*, R) [bit/Joule]

120
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Number of antennas n

Fig. 2. Energy-efficiency vs. the number of antennagor MIMO n, = n: = n € {1,2,4,8}, UPA,D = %Int, p=10dB, R =1 bpcu and
P =1 W. Observe thal'ypa (p*, R) is increasing withn.
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Energy Efficiency I'ypa (p, R) [bit/Joule]
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Transmit power p [W]

Fig. 3. Energy-efficiency vs. transmit powgre [0, 1] W for MIMO n, = 2, nt € {1,2,4,8}, UPAD = %Im, p =10 dB, R = 1 bpcu. Observe
that the energy-efficiency is a quasi-concave functiont.yar.The optimal pointp* is not decreasing wit but almost constant.
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Fig. 4. Optimal energy-efficiency vs. constraint power for MISQ = 4, n, = 1, UPA over a subset of € {1,2,3,4} antennasp = 10 dB,
R = 3 bpcu. We illustrate the results of Proposition 4.4Pf< i is low enough, the beamforming PA with full power is optiml.P > é is high

enough, the UPA is optimal but not with full power necessa(ib* = min{y—z,?}) which explains the saturated regime.
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Fig. 5. Success probability vs. power constraift comparison between beamforming PA, UPA and General PA idd®n; = n, =2, R =1
bpcu, p = 3 dB. We observe that Telatar's conjecture is validated. &hera threshold§ = 0.16 W, below which P < §) the beamforming PA is
optimal and above it, UPA is optimal.

2.5
/5 =0.16 W
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Optimal Energy Efficiency I" [bit/Joule]
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Power constraint P [W]

Fig. 6. Optimal energy-efficiency vs. power constraiRf comparison between beamforming PA, UPA and General PA iM® n; = n, = 2,
R =1 bpcu, p = 3 dB. We observe that our Conjecture 4.2 is validated. For #@etesames = 0.16 W, we have that forP < § the beamforming
PA structure optimal and above it, UPA structure is optimal.
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APPENDIX A

ProOOF OFPROPOSITION3.1

As Q is a positive semi-definite Hermitian matrix, it can alwaysdpectrally decomposed @@= UDU#
whereD = Diag(ps, - .., pn,) iS @ diagonal matrix representing a given PA policy &hé unitary matrix. Our
goal is to prove that, for everlJ, Ggatic is maximized wherD = Diag(0,0, ...,0). To this end we rewrite

Gstatic as

Nt
logy Lo, + > pig,g!"

= : (27)
> v
=1

whereg. represents the” column of then, x n; matrix G = /PHU and proceed by induction om; > 1.

Gstatic(U Diag(ph cee )pnt) UH) =

First, we introduce an auxiliary quantity (whose role wi## nade clear a little further)

ny -1 e
EC)(py,...,pn,) & Tr (Inr +2_pigg, > (Zpiﬂzﬂf )
i=1 i=1

Ny
—logy I, + Zp,-gigf]'.
i=1

(28)

and prove by induction that it is negative that'¥pi,...,p,,) € R, EC)(p1,...,p,,) < 0.

For n; = 1, we haveE(W(p;) = Tr [(Im —I—plglgf)_lplglg{{] — log,

L,, +p1g1gf". The first order
derivative of EM) (p1) W.r.t. p; is:
oEM)
op1
and thuse® (p;) < EM(0) = 0.

= —pilg) (Tn, +prg,9)) g, )? <0 (29)

Now, we assume that™~1(p) < 0 and want to prove thak™)(p, p,,) < 0, wherep = (p1, ..., pn,—1).

It turns out that: )

—1
o) = 2
o > vilg! (In,‘ +Y pigg” ) 9,| <0, (30)
e j=1 i=1

and therefor@(nt)(ph e 7pm—17pnt) S E(nt)(ph <y Png—1, O) - E(nt_l) (p17 cee apm—l) S 0.

As a second step of the proof, we want to prove by inductiompoh 1 that

arg max Uil (p.po,) = 0. (31)
log, [T, +p1g. g7|  log(1+p1g” . . . .
Forn, = 1 we haveG')  (p;) = 2! arl i _—— B, %) \which reaches its maximum ip; = 0.
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Now, we assume thatrg max Gggg(})(p) =0 and want to prove thatrg (max) Gé?;t)ic(p, Pn,) = 0.
p - PiPny -
-1

Letk=arg _min Tr||L + > piggl | g9"| By calculating the first order derivative @f

w.r.t. p;, one obtains that:

(ne)
aGstautic — N (32)

Opy, ne\ 2
S
i=1
-1
o Nt
S DT L L o)
i=1 j=1

Nt
I, + Zpigigf‘
i=1

with

(33)

— 10g2

(n¢) (ne) o
and thuQaGstatic < E (p17 7pn,)

> ) ~ ; 3
o (> pi)
F(nt)(pla v ka—17oapk+17 oo 7pnt)

= F("t_l)(pl, e ooy Dk—1,DPk+1,- -+ DPn, ), Which is maximized wher(py,...,pk—1,Pk+1,---,Pn,) = 0 by
assumption. We therefore have ti@it = U0OU! = 0 is the solution that maximizes the functiGh;.:i.(Q). At

<0 andp; =0 for all p1,...,pk—1,Pk+1,---,Dn,. We obtain that

last, to find the maximum reached BY;.:;. One just needs to consider the the equivalent ofd@@\lm + pHQHH\
aroundQ =0
mﬂ%+ﬁMHﬂ~§HMWﬂ (34)
t

and takesQ = LI, with ¢ — 0.

APPENDIX B

PROOF OFPROPOSITION4.1

The proof has two parts. First, we start by proving that if tptimal solution is different than the uniform
spatial power allocatiolP* # L1, with p € [0, P] then the solution is not triviaP* # 0. We proceed by
reductio ad absurdum. We assume that the optimal solutidrivial P* = 0. This means that when fixing
(p2y---,pn,) = (0,...,0) the optimalp; € [0, P] that maximizes the energy-efficiency functiorpis= 0. The
energy-efficiency function becomes:

1 — Pr[logy(1 h?) < R
I'(Diag(p1,0, ...,0),R) = R rb&(;WMJH ] (35)
1
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Where@1 represents the first column of the channel ma¥x Knowing that the elements in; are i.i.d.

. ~CN(0,1) forallj € {1,...,n,} we have thath;;|* ~ expon(1). The random variablgh, ||* = Z]hlj
is the sum ofn,. i.i.d. exponential random variables of parametee 1 and thus follows argn,. Chl square
n,.—1 k
distribution (or amn,. Erlang distribution) whose c.d.f. is known and givendfy)) = 1 — exp(— Z R We

can explicitly calculate the outage probability and obtidie energy-efficiency function:
e\ ko1
I'(Diag(p1,0,...,0),R) = Rexp <——> > =T (36)
m/) = k! py

wherec = Lp‘l > 0. It is easy to check thalim F(pl,R) =0, lim F(pl,R) =0. By evaluating the first

derivative w.r.t.p, i

positive solution of the following equation (if):

1 n.—1 r

sy Z % —0. (37)

Considering the power constraint the optimal transmisgiower isp] = mm{2

the hypothesis and thus if the optimal solution is differdr@n the uniform spatlal power allocation then the

solution is not trivialP* # 0.

APPENDIXC

PROOF PROPOSITION4.4
Let QT = (p1,...,pn,) be the vector of powers allocated to the different anterinas{1,...,n;} and thus

D = Diag(p). Define the two setsC(xz) = {p >0, Zpi < w} and A(z) = {g >0, Zp,- = x} Using

=1
these notations, they key observation to be made is thewfioitp

o 1— PMISO D
SU.B FMISO(D,R) (:) R Sulii Out ( ,R)
peC(P) peC(P) sz.
PMISO D R

(i) R sup sup out ( ) (38)
z€[0,P) pEA(z) X

© R sup e
x€[0,P] €T

wherePMISO — Py |log [ 1 + pri]h,-\z < R|: (a) translates the definition of the GPR; (b) follows frore th

out

i=1
propertysup{ AU B} = sup{sup{A}, sup{B}} for two setsA and B, applied to our context; in (c) the function
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g(z) = {gg(z), ifz € [cil, é) is a piecewise continuous function wheygz) =1 — Pr [%th,ﬁ < z] for
i=1

z € [ < i) and/ € {1,...,n:}. The functiong(z) corresponds to the solution of the minimization problem

Co—1 Ce

of the outage probability [22].

Now, we study the functiom,. By calculating the first order derivative écfgg (C) w.r.t. z we obtain:

z
-1

e ORI

J=0

Thus the function}cg (£) is increasing forr € (0,z;) and decreasing om € (z, 00). The maximum point is

xT

reached inz, = i—j wherey, is the unique positive solution of the equatiofy) = 0 where

1 —1,
be(y) = myg - ZZ{; ﬁyl (40)
We have thatp(0) = —1 < 0 and -
oll) = ol - Zz‘_l!ei
_ g@; (41)
i=0 v
> 0.
This implies thaty, < ¢ and thusz, > ¢. Sincec,,,—1 > 1 we also haver, > —<— forall ¢ € {1,...,n, — 1}.

Cny—1

Therefore, all the function%ge (C) are increasing on the interva(s) %) Moreover, on the interval

x ? Cny—

( ‘ ,oo), they are increasing 06 cil,:L'g] and decreasing ofxy, co). Proposition 4.4 follows directly.

Cny—1 Cny

APPENDIXD

COUNTER-EXAMPLE, TISO

Consider the particular case wheng = 2 and n, = 1. From Proposition 4.4, it follows that for a
power constraintP < + the beamforming power allocation policy maximizes the gpefficiency and
'S0 (Diag(P, 0), R) = IT'TS9(Diag(0, P), R) > I'T1S0 (Diag (%, g) ,R) . The functionl' TS (Diag(py, p2), R)
with (p1,p2) € P2 2 {(p1,p2) € IR{%F | p1 +p2 < P} denotes the energy-efficiency function. We want to prove
that T'715C (Diag(py, p2), R) is not quasi-concave W.r.tp1, p2) € P». This amounts to finding a level > 0
such that the corresponding upper-leveliget= { (p1,p2) € P> | IO (Diag(ps, p2), R) >~} is not a convex

set (see [32] for a detailed analysis on quasi-concave img)t Consider an arbitrary < ¢ < min {F, é}
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such thatl'5°(Diag(q, 0), R) = I'™59(Diag(0, ¢), R) < I'"5° (Diag (£, ), R). It turns out that all upper-
level setsit,, with ~, = I'"SO(Diag(q,0), R) are not convex sets. This follows directly from the fact that
(¢,0),(0,q) €Uy, but (£,4) ¢ U, sincel'™SO (Diag (,2),R) < .

APPENDIX E

EXTREME SNRcASEs GPR

In [22], the authors proved that in the low SNR regime the getprobability P, (p, ) is Schur-concave
w.r.t. p. This means that for any vectogs ¢ such thatp = g then Pou¢(p, R) < Pou(g, R). The operator-

denotes the majorization operator which WI|| be brlefly dimd (see [29] for details). For any two vectors

p.q € R, p majorizesg (denoted by > ) if Zpk > qu, forallm e {1,...,n,—1} andek = qu
This operator induces only a partial ordering. The Schunvemty and-< operator can be deflned inan analogous
way. Also, an important observation to be made is that thenliganing vector majorizes any other vector,
whereas the uniform vector is majorized by any other vegqiorvided tge sum of all elements of the vectors
is equal). Otherwise statedg; = p >~ w1 for any vectorp such thatf:p,- =zandl = (1,1,...,1) and
e €81 =

It is straightforward to see that P, (Diag(p), R) is Schur-concave w.r.p then1 — P, (Diag(p), R) is
Schur-convex w.r.tp. Since the majorization operator implies the sum of all @ets of the ordered vectors

to be identicall(Diag(p), R) = 1= Fou (Diag(p). )

Ty
Z Di

=1
a beamforming vector. Using the same notations as in AppeQdie obtain:

will also be Schur-convex w.r.p and thus is maximized by

sup ['(Diag(p), R) sup 1 sup [1 — Pou(Diag(p), R)]

peC(P) z€[0,P] T pe(z)
a 1
@ sup —[1 — Prllog(1 + xzphth,) < R],
x€[0,P)
1 1 & (42)
= sup — 1— Pr _Z|hlj|2§L ,
z€l0,P] ¥ nr i n,x
In,. 75
© sup 7< > ,
x€[0,P) €

where (a) follows by considering beamforming power allaapolicy on the first transmit antenna (with no
generality loss) and replacing= ze; with ¢; = (1,0,...,0) andh; denoting the first column of the channel

matrix; in (c) we make use the definition in Appendix C for theadtion %gm (n—cx) which has a unique
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optimal point inmin {y%,?}, with y,, the unique solution of,, (y) = 0. Sinces? — 0 thenc — +oco and
thus the optimal power allocation j§ = Pe;.

Similarly, for the high SNR case we have:

. 1 .
sup I'(Diag(p),R) = sup — sup [l — Poy(Diag(p), R)]
peC(P) z€[0,P] T peA(x) 43
1 . x (43)
= sup —|1— Py (Diag( —(1,...,1)),R)]|.
x€[0,P] r U

We have used the results in [22], where the UPA was proven mnmige the outage probability.

Let us now consider the limit of the energy-efficiency fuantiwhenp — 0, o2 — 0 such thatl; — ¢ with
¢ a positive finite constant. We obtain that- P, (%Im,R> — Pr [
directly thatT’ (%Int, R> — +00.

I, + n%HHHH > 0 which implies
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