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Energy-Efficient Precoding for

Multiple-Antenna Terminals
Elena Veronica Belmega,Student Member, IEEE,and Samson Lasaulce,Member, IEEE

Abstract

The problem of energy-efficient precoding is investigated when the terminals in the system are equipped

with multiple antennas. Considering static and fast-fading multiple-input multiple-output (MIMO) channels, the

energy-efficiency is defined as the transmission rate to power ratio and shown to be maximized at low transmit

power. The most interesting case is the one of slow fading MIMO channels. For this type of channels, the

optimal precoding scheme is generally not trivial. Furthermore, using all the available transmit power is not

always optimal in the sense of energy-efficiency (which, in this case, corresponds to the communication-theoretic

definition of the goodput-to-power (GPR) ratio). Finding the optimal precoding matrices is shown to be a new

open problem and is solved in several special cases: 1. when there is only one receive antenna; 2. in the low

or high signal-to-noise ratio regime; 3. when uniform powerallocation and the regime of large numbers of

antennas are assumed. A complete numerical analysis is provided to illustrate the derived results and stated

conjectures. In particular, the impact of the number of antennas on the energy-efficiency is assessed and shown

to be significant.

Index Terms

Energy-efficiency, MIMO systems, outage probability, power allocation, precoding.

I. INTRODUCTION

In many areas, like finance, economics or physics, a common way of assessing the performance of a system is

to consider the ratio of what the system delivers to what it consumes. In communication theory, transmit power
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and transmission rate are respectively two common measuresof the cost and benefit of a transmission. Therefore,

the ratio transmission rate (say in bit/s) to transmit power(in J/s) appears to be a natural energy-efficiency

measure of a communication system. An important question isthen: what is the maximum amount of information

(in bits) that can be conveyed per Joule consumed? As reported in [1], one of the first papers addressing this

issue is [2] where the author determines the capacity per unit cost for various versions of the photon counting

channel. As shown in [1], the normalized1 capacity per unit cost for the well-known additive white Gaussian

channel modelY = X + Z is maximized for Gaussian inputs and is given bylimP→0
log2(1+ P

σ2 )
P = 1

σ2 ln 2 ,

whereE|X|2 = P andZ ∼ CN (0, σ2). Here, the main message of communication theory to engineers is that

energy-efficiency is maximized by operating at low transmitpower and therefore at low transmission rates.

However, this answer holds for static and single input single output (SISO) channels and it is legitimate to

ask: what is the answer for multiple-input multiple-output(MIMO) channels? In fact, as shown in this paper,

the case of slow fading MIMO channels is especially relevantto be considered. Roughly speaking, the main

reason for this is that, in contrast to static and fast fadingchannels, in slow fading channels there are outage

events which imply the existence of an optimum tradeoff between the number of successfully transmitted bits

or blocks (called goodput in [3] and [4]) and power consumption. Intuitively, this can be explained by saying

that increasing transmit power too much may result in a marginal increase in terms of quality or effective

transmission rate.

First, let us consider SISO slow fading or quasi-static channels. The most relevant works related to the

problem under investigation essentially fall into two classes corresponding to two different approaches. The

first approach, which is the one adopted by Verdú in [1] and has already been mentioned, is an information-

theoretic approach aiming at evaluating the capacity per unit cost or the minimum energy per bit (see e.g., [5],

[6], [7], [8]). In [1], two different cases were investigated depending on whether the input alphabet contains or

not a zero cost or free symbol. In this paper, only the case where the input alphabet does not contain a zero-cost

symbol will be discussed (i.e., the silence at the transmitter side does not convey information). The second

approach, introduced in [9] is more pragmatic than the previous one. In [9] and subsequent works [4], [10],

the authors define the energy-efficiency of a SISO communication asu(p) = Rf(η)
p whereR is the effective

transmission data rate in bits,η the signal-to-noise-plus-interference ratio (SINR) andf is a benefit function

(e.g., the success probability of the transmission) which depends on the chosen coding and modulation schemes.

To the authors’ knowledge, in all works using this approach ([9], [4], [10], [11], [12], [13], etc.), the same

1In [1] the capacity per unit cost is in bit/s per Joule and not in bit/J, which amounts to normalize by a quantity in Hz.
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(pragmatic) choice is made forf : f(x) = (1−e−αx)N , whereα is a constant andN the block length in symbols.

Interestingly, the two mentioned approaches can be linked by making an appropriate choice forf . Indeed, if

f is chosen to be the complementary of the outage probability,one obtains a counterpart of the capacity per

unit cost for slow fading channels and gives an information-theoretic interpretation to the initial definition of

[9]. To our knowledge, the resulting performance metric hasnot been considered so far in the literature. This

specific metric, which we call goodput-to-power ratio (GPR), will be considered in this paper. Moreover, we

consider MIMO channels where the transmitter and receiver are informed of the channel distribution information

(CDI) and channel state information (CSI) respectively. Toconclude the discussion on the relevant literature,

we note that some authors addressed the problem of energy-efficiency in MIMO communications but they did

not consider the proposed energy-efficiency measure based on the outage probability. In this respect, the most

relevant works seem to be [15], [16] and [17]. In [15], the authors adopt a pragmatic approach consisting in

choosing a certain coding-modulation scheme in order to reach a given target data rate while minimizing the

consumed energy. In [16], the authors study the tradeoff between the minimum energy-per-bit versus spectral

efficiency for several MIMO channel models in the wide-band regime assuming a zero cost symbol in the input

alphabet and unform power allocation over all the antennas.In [17], the authors consider a similar pragmatic

approach to the one in [4], [10] and study a multi-user MIMO channel where the transmitters are constrained

to using beamforming power allocation strategies.

This paper is structured as follows. In Sec. II, assumptionson the signal model are provided. In Sec. III, the

proposed energy-efficiency measure is defined for static andfast-fading MIMO channels. As the case of slow

fading channels is non-trivial, it will be discussed separately in Sec. IV. In Sec. IV, the problem of energy-

efficient precoding is discussed for general MIMO slow fading channels and solved for the multiple input single

output (MISO) case, whereas in Sec. V asymptotic regimes (interms of the number of antennas and SNR) are

assumed. In Sec. VI, simulations illustrating the derived results and stated conjectures are provided. Sec. VII

provides concluding remarks and open issues.

II. GENERAL SYSTEM MODEL

We consider a point-to-point communication with multiple antenna terminals. The signal at the receiver is

modeled by:

y(τ) = H(τ)x(τ) + z(τ), (1)

where H is the nr × nt channel transfer matrix andnt (resp. nr) the number of transmit (resp. receive)

antennas. The entries ofH are i.i.d. zero-mean unit-variance complex Gaussian random variables. The vector
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x is the nt-dimensional column vector of transmitted symbols andz is an nr-dimensional complex white

Gaussian noise distributed asN (0, σ2I). In this paper, the problem of allocating the transmit powerbetween

the available transmit antennas is considered. We will denote by Q = E[xxH ] the input covariance matrix

(called the precoding matrix), which translates the chosenpower allocation (PA) policy. The corresponding

total power constraint is

Tr(Q) ≤ P . (2)

At last, the time indexτ will be removed for the sake of clarity. In fact, depending onthe rate at whichH

varies withτ , three dominant classes of channel models can be distinguished:

1) the class of static channels;

2) the class of fast fading channels;

3) the class of slow fading channels.

The matrixH is assumed to be perfectly known at the receiver (coherent communication assumption) whereas

only the statistics ofH are available at the transmitter. The first two classes of channels are considered in Sec.

III and the last one is treated in detail in Sec. IV and V.

III. E NERGY-EFFICIENT COMMUNICATIONS OVER STATIC AND FAST FADINGMIMO CHANNELS

A. Case of static channels

Here the frequency at which the channel matrix varies is strictly zero that is,H is a constant matrix. In this

particular context, both the transmitter and receiver are assumed to know this matrix. We are exactly in the

same framework as [18]. Thus, for a given precoding schemeQ, the transmitter can send reliably to the receiver

log2

∣∣Inr
+ ρHQHH

∣∣ bits per channel use (bpcu) withρ = 1
σ2 . Then, let us define the energy-efficiency of this

communication by:

Gstatic(Q) =
log2

∣∣Inr
+ ρHQHH

∣∣
Tr(Q)

. (3)

The energy-efficiencyGstatic(Q) corresponds to an achievable rate per unit cost for the MIMO channel as

defined in [1]. Assuming that the cost of the transmitted symbol x, denoted byb[x], is the consumed energy

b[x] = ‖x‖2 = Tr(xxH), the capacity per unit cost defined in [1] is:C̃slow , sup
x,E[b[x]]≤P

I(x; y)

E[b[x]]
. The supremum

is taken over the p.d.f. ofx such that the average transmit power is limitedE[b[x]] ≤ P .

It is easy to check that:
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C̃slow = sup
Q,Tr(Q)≤P

1

Tr(Q)
sup

x,E(xxH)=Q

I(x; y)

= sup
Q,Tr(Q)≤P

Gstatic(Q).
(4)

The second equality follows from [18] where Telatar proved that the mutual information for the MIMO static

channel is maximized using Gaussian random codes. In other words, finding the optimal precoding matrix which

maximizes the energy-efficiency function corresponds to finding the capacity per unit cost of the MIMO channel

where the cost of a symbol is the necessary power consumed to be transmitted. The question is then whether

the strategy “transmit at low power” (and therefore at a low transmission rate) to maximize energy-efficiency,

which is optimal for SISO channels, also applies to MIMO channels. The answer is given by the following

proposition, which is proved in Appendix A.

Proposition 3.1 (Static MIMO channels): The energy-efficiency of a MIMO communication over a static

channel, measured byGstatic, is maximized whenQ = 0 and this maximum is

G∗
static =

1

ln 2

Tr(HHH)

ntσ2
. (5)

Therefore, we see that, for static MIMO channels, the energy-efficiency defined in Eq. (3) is maximized by

transmitting at a very low power. This kind of scenario occurs for example, when deploying sensors in the ocean

to measure a temperature field (which varies very slowly). Insome applications however, the rate obtained by

using such a scheme can be not sufficient. In this case, considering the benefit to cost ratio can turn out to be

irrelevant, meaning that other performance metrics have tobe considered (e.g., minimize the transmit power

under a rate constraint).

B. Case of fast fading channels

In this section, the frequency with which the channel matrixvaries is the reciprocal of the symbol duration

(x(τ) being a symbol). This means that it can be different for each channel use. Therefore, the channel varies over

a transmitted codeword (or packet) and, more precisely, each codeword sees as many channel realizations as the

number of symbols per codeword. Because of the corresponding self-averaging effect, the following transmission

rate (also called EMI for ergodic mutual information) can beachieved on each transmitted codeword by using

the precoding strategyQ :

Rfast(Q) = EH

[
log2

∣∣Inr
+ ρHQHH

∣∣] . (6)
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Interestingly,Rfast(Q) can be maximized w.r.t.Q by knowing only the statistics ofH that is, E
[
HHH

]
,

under the standard assumption that the entries ofH are complex Gaussian random variables. In practice, this

means that only the knowledge of the path loss, power-delay profile, antenna correlation profile, etc is required

at the transmitter to maximize the transmission rate. At thereceiver however, the instantaneous knowledge of

H is required. In this framework, let us define energy-efficiency by:

Gfast(Q) =
EH

[
log2

∣∣Inr
+ ρHQHH

∣∣]

Tr(Q)
. (7)

By definingg
i

as thei-th column of the matrix
√

ρHU, i ∈ {1, . . . , nt}, U and{pi}nt

i=1 an eigenvector matrix

and the corresponding eigenvalues ofQ respectively, and also by rewritingGfast(Q) as

Gfast(Q) = EH




log2

∣∣∣∣∣Inr
+

nt∑

i=1

pigi
gH

i

∣∣∣∣∣
nt∑

i=1

pi



, (8)

it is possible to apply the proof of Prop. 3.1 for each realization of the channel matrix. This leads to the

following result.

Proposition 3.2 (Fast fading MIMO channels):The energy-efficiency of a MIMO communication over a fast

fading channel, measured byGfast, is maximized whenQ = 0 and this maximum is

G∗
fast =

1

ln 2

Tr(E
[
HHH

]
)

ntσ2
. (9)

We see that, for fast fading MIMO channels, maximizing energy-efficiency also amounts to transmitting at low

power. Interestingly, in slow fading MIMO channels, where outage events are unavoidable, we have found that

the answer can be different. This is precisely what is shown in the remaining of this paper.

IV. SLOW FADING MIMO CHANNELS: FROM THE GENERAL CASE TO SPECIAL CASES

A. General MIMO channels

In this section and the remaining of this paper, the frequency with which the channel matrix varies is the

reciprocal of the block/codeword/frame/packet/time-slot duration that is, the channel remains constant over a

codeword and varies from block to block. As a consequence, when the channel matrix remains constant over a

certain block duration much smaller than the channel coherence time, the averaging effect we have mentioned

for fast fading MIMO channels does not occur here. Therefore, one has to communicate at rates smaller than

the ergodic capacity (maximum of the EMI). The maximum EMI istherefore a rate upper bound for slow fading

MIMO channels and only a fraction of it can be achieved (see [27] for more information about the famous

September 29, 2010 DRAFT



7

diversity-multiplexing tradeoff). In fact, since the mutual information is a random variable, varying from block

to block, it is not possible (in general) to guarantee at100 % that it is above a certain threshold. A suited

performance metric to study slow-fading channels [14] is the probability of an outage for a given transmission

rate targetR. This metric allows one to quantify the probability that therate targetR is not reached by using

a good channel coding scheme and is defined as follows:

Pout(Q, R) = Pr
[
log2

∣∣Inr
+ ρHQHH

∣∣ < R
]
. (10)

In terms of information assumptions, here again, it can be checked that only the second-order statistics ofH are

required to optimize the precoding matrixQ (and therefore the power allocation policy over its eigenvalues).

In this framework, we propose to define the energy-efficiencyas follows:

Γ(Q, R) =
R[1 − Pout(Q, R)]

Tr(Q)
. (11)

In other words, the energy-efficiency or goodput-to-power ratio is defined as the ratio between the expected

throughput (see [3],[20] for details) and the average consumed transmit power. The expected throughput can be

seen as the average system throughput over many transmissions. In contrast with static and fast fading channels,

energy-efficiency is not necessarily maximized at low transmit powers. This is what the following proposition

indicates.

Proposition 4.1 (Slow fading MIMO channels): The goodput-to-power ratioΓ(Q, R) is maximized, in gen-

eral, for Q 6= 0.

The proof of this result is given in Appendix B. Now, a naturalissue to be considered is the determination of

the matrix (or matrices) maximizing the goodput-to-power ratio (GPR) in slow fading MIMO channels. It turns

out that the corresponding optimization problem is not trivial. Indeed, even the outage probability minimization

problem w.r.t.Q (which is a priori simpler) is still an open problem [18], [21], [22]. This is why we only

provide here a conjecture on the solution maximizing the GPR.

Conjecture 4.2 (Optimal precoding matrices): There existsa power thresholdP 0 such that:

• if P ≤ P 0 thenQ∗ ∈ arg min
Q

Pout(Q, R) ⇒ Q∗ ∈ arg max
Q

Γ(Q, R);

• if P > P 0 thenΓ(Q, R) has a unique maximum inQ∗ = p∗

nt
Int

wherep∗ ≤ P .

This conjecture has been validated for all the special casessolved in this paper. One of the main messages of

this conjecture is that, if the available transmit power is less than a threshold, maximizing the GPR is equivalent

to minimizing the outage probability. If it is above the threshold, uniform power allocation is optimal and using

all the available power is generally suboptimal in terms of energy-efficiency. Concerning the optimization
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problem associated with (11) several comments are in order.First, there is no loss of optimality by restricting

the search for optimal precoding matrices to diagonal matrices: for any eigenvalue decompositionQ = UDUH

with U unitary andD = Diag(p) with p = (p1, . . . , pnt
), both the outage and trace are invariant w.r.t. the

choice ofU and the energy-efficiency can be written as:

Γ(D, R) =
R[1 − Pout(D, R)]

nt∑

i=1

pi

. (12)

Second, the GPR is generally not concave w.r.t.D. In Sec. IV-B, which is dedicated to MISO systems, a

counter-example where it is not quasi-concave (and thus notconcave) is provided.

Uniform Power Allocation policy

An interesting special case is the one of uniform power allocation (UPA):D = p
nt

Int
wherep ∈ [0, P ] and

ΓUPA(p,R) , Γ
(

p
nt

Int
, R
)

.

One of the reasons for studying this case is that the famous conjecture of Telatar given in [18]. This conjecture

states that, depending on the channel parameters and targetrate (i.e.,σ2, R), the power allocation (PA) policy

minimizing the outage probability is to spread all the available power uniformly over a subset of`∗ ∈ {1, . . . , nt}
antennas. If this can be proved, then it is straightforward to show that the covariance matrixD∗ that maximizes

the proposed energy-efficiency function isp∗

`∗ Diag(e`∗), wheree`∗ ∈ S`∗
2. Thus,D∗ has the same structure

as the covariance matrix minimizing the outage probabilityexcept that using all the available power is not

necessarily optimal,p∗ ∈ [0, P ]. In conclusion, solving Conjecture 4.2 reduces to solving Telatar’s conjecture

and also the UPA case.

The main difficulty in studying the outage probability or/and the energy-efficiency function is the fact that

the probability distribution function of the mutual information is generally intractable. In the literature, the

outage probability is often studied by assuming a UPA policyover all the antennas and also using the Gaussian

approximation of the p.d.f. of the mutual information. Thisapproximation is valid in the asymptotic regime of

large number of antennas. However, simulations show that italso quite accurate for reasonable small MIMO

systems [23], [24].

Under the UPA policy assumption, the GPRΓUPA(p,R) is conjectured to be quasi-concave w.r.t.p. Quasi-

concavity is not only useful to study the maximum of the GPR but is also an attractive property in some scenarios

2We denote byS` =
{
v ∈ {0, 1}nt |

∑nt
i=1

vi = `
}

the set ofnt dimensional vectors containing̀ ones andnt − ` zeros, for all

` ∈ {1, . . . , nt}.
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Is D
∗ known? Is ΓUPA(p) quasi-concave? Is p∗ known?

General MIMO Conjecture Conjecture Conjecture

MISO Yes Yes Yes

1 × 1 Yes Yes Yes

Large MIMO Conjecture Yes Yes

Low SNR Yes Yes Yes

High SNR Yes Yes Conjecture

TABLE I

SUMMARY OF PROVED RESULTS AND OPEN PROBLEMS

such as the distributed multiuser channels. For example, byconsidering MIMO multiple access channels with

single-user decoding at the receiver, the corresponding distributed power allocation game where the transmitters’

utility functions are their GPR is guaranteed to have a pure Nash equilibrium after Debreu-Fan-Glicksberg

theorem [25].

Before stating the conjecture describing the behavior of the energy-efficiency function when the UPA policy

is assumed, we study the limits whenp → 0 and p → +∞. First, let us prove thatlim
p→0

ΓUPA(p,R) = 0.

Observe thatlim
p→0

Pout

(
p

nt
Int

, R

)
= 1 and thus the limit is not trivial to prove. The result can be proven

by considering the equivalent1 + ρp
nt

Tr(HHH) of the determinant
∣∣∣Inr

+ ρp
nt

HHH
∣∣∣ when σ → +∞. As the

entries of the matrixH are i.i.d. complex Gaussian random variables, the quantityTr(HHH) =

nt∑

i=1

nr∑

j=1

|hij |2

is a 2nrnt Chi-square distributed random variable. ThusΓUPA(p,R) can be approximated by:̂ΓUPA(p,R) =

R exp
(
−d

p

) nrnt−1∑

k=0

dk

k!

1

pk+1
with d = nt(2

R − 1)σ2. It is easy to see that this approximate tends to zero when

p → 0. Second, note that the limitlim
p→+∞

ΓUPA(p,R) = 0. This is easier to check sincelim
p→+∞

Pout

(
p

nt
I, R

)
= 0.

Conjecture 4.3 (UPA and quasi-concavity of the GPR): Assumethat D = p
nt

Int
. ThenΓUPA(p,R) is quasi-

concave w.r.t.p ∈
[
0, P

]
.

Table IV-A distinguishes between what has been proven in this paper and the conjectures which remain to be

proven.
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B. MISO channels

In this section, the receiver is assumed to use a single antenna that is,nr = 1, while the transmitter can have

an arbitrary number of antennas,nt ≥ 1. The channel transfer matrix becomes a row vectorh = (h1, ..., hnt
).

Without loss of optimality, the precoding matrix is assumedto be diagonal and is denoted byD = Diag(p)

with pT = (p1, ..., pnt
). Throughout this section, the rate targetR and noise levelσ2 are fixed and the auxiliary

quantityc is defined by:c = σ2(2R−1). By exploiting the existing results on the outage probability minimization

problem for MISO channels [22], the following proposition can be proved (Appendix C).

Proposition 4.4 (Optimum precoding matrices for MISO channels): For all ` ∈ {1, ..., nt − 1}, let c` be the

unique solution of the equation (inx) Pr

[
1

`+1

`+1∑

i=1

|Xi|2 ≤ x

]
− Pr

[
1
`

∑̀

i=1

|Xi|2 ≤ x

]
= 0 whereXi are i.i.d.

zero-mean Gaussian random variables with unit variance. Byconventionc0 = +∞, cnt
= 0. Let νnt

be the

unique solution of the equation (iny) ynt

(nt−1)! −
nt−1∑

i=0

yi

i!
= 0. Then the optimum precoding matrices have the

following form:

D∗ =

∣∣∣∣∣∣

P
` Diag(e`) if P ∈

[
c

c`−1
, c

c`

)

min
{

σ2(2R−1)
νnt

, P
nt

}
I if P ≥ c

cnt−1

(13)

wherec = σ2(2R − 1) and e` ∈ S`.

Similarly to the optimal precoding scheme for the outage probability minimization, the solution maximizing

the GPR consists in allocating the available transmit poweruniformly between only a subset` ≤ nt antennas.

As i.i.d entries are assumed forH, the choice of these antennas does not matter. What matters is the number

of antennas selected (denoted by`), which depends on the available transmit powerP : the higher the transmit

power, the higher the number of used antennas. The difference between the outage probability minimization

and GPR maximization problems appears when the transmit power is greater than the thresholdc
cnt−1

. In

this regime, saturating the power constraint is suboptimalfor the GPR optimization. The corresponding sub-

optimality becomes more and more severe as the noise level islow; simulations (Sec. VI) will help us to

quantify this gap.

Unless otherwise specified, we will assume from now on thatUPA is used at the transmitter. This assumption

is, in particular, useful to study the regime where the available transmit power is sufficiently high (as conjectured

in Proposition 4.1). Under this assumption, our goal is to prove that the GPR is quasi-concave w.r.t.p ∈ [0, P ]

with D = p
nt

Int
and determine the (unique) solutionp∗ which maximizes the GPR. Note that the quasi-concavity

property w.r.t.p is not always available for MISO systems (and thus is not always available for general MIMO

channels). In Appendix D, a counter-example proving that inthe case wherenr = 1 and nt = 2 (two input
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single output channel, TISO) the energy-efficiencyΓTISO
(
Diag(p), R

)
is not quasi-concave w.r.t.p = (p1, p2)

is provided.

Proposition 4.5 (UPA and quasi-concavity (MISO channels)): Assume the UPA,Q = p
nt

Int
, then Γ(p,R)

is quasi-concave w.r.t.p ∈
[
0, P

]
and has a unique maximum point inp∗ = min

{
(2R−1)ntσ2

νnt
, P
}

whereνnt
is

the solution (w.r.t.y) of:
ynt

(nt − 1)!
−

nt−1∑

i=0

yi

i!
= 0. (14)

Proof: Since the entries ofh are complex Gaussian random variables, the sum
nt∑

k=1

|hk|2 is a 2nt− Chi-

square distributed random variable, which implies that:

ΓMISO(p,R) =
R
{

1 − Pr[log2

(
1 + ρp

nt
hHh

)
< R]

}

p

=

R

{
1 − Pr

[
nt∑

i=1

|hi|2 <
d

p

]}

p

= R × e−
d

p

nt−1∑

i=0

di

pi+1

1

i!
,

(15)

with d = cnt = (2R − 1)ntσ
2. The second order derivative of the goodputR

[
e−

d

p

nt−1∑

i=0

(
d

p

)i 1

i!

]
w.r.t. p is

R
[

dnt

pnt+3
1

nt!
e−d/p(d − (nt + 1)p)

]
. Clearly, the goodput is a sigmoidal function and has a unique inflection

point in p0 = d
nt+1 . Therefore, the functionΓMISO(p,R) is quasi-concave [26] and has a unique maximum in

p∗ = min
{

d
νnt

, P
}

whereνnt
is the root of the first order derivative ofΓMISO(p,R) that is, the solution of

(14).

The SIMO case (nt = 1, nr ≥ 2) follows directly since|I + ρphhH | = 1 + ρphHh.

To conclude this section, we consider the most simple case ofMISO channels namely the SISO case (nt = 1,

nr = 1). We have readily that:

ΓSISO(p,R) =
e−

c

p

p
. (16)

To the authors’ knowledge, in all the works using the energy-efficiency definition of [4] for SISO channels,

the only choice of energy-efficiency function made is based on the empirical approximation of the block error

rate which is(1−e−x)M

x , M being the block length andx the operating SINR. Interestingly, the function given

by (16) exhibits another possible choice. It can be checked that the functione−
c

p is sigmoidal and therefore
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ΓSISO is quasi-concave w.r.t.p [26]. The first order derivative ofΓSISO is

∂ΓSISO

∂p
= R

(c − p)e−
c

p

p3
. (17)

The GPR is therefore maximized in a unique point whichp∗ = c = σ2(2R − 1). To make the bridge between

this solution and the one derived in [4] for the power controlproblem over multiple access channels, the optimal

power level can be rewritten as:

p∗ = min

{
σ2

E|h|2 (2R − 1), P

}
(18)

whereE|h|2 = 1 in our case. In [4], instantaneous CSI knowledge at the transmitters is assumed while here

only the statistics are assumed to be known at the transmitter. Therefore, the power control interpretation of

(18) in a wireless scenario is that the power is adapted to thepath loss (slow power control) and not to fast

fading (fast power control).

V. SLOW FADING MIMO CHANNELS IN ASYMPTOTIC REGIMES

In this section, we first consider the GPR for the case where the size of the MIMO system is finite assuming

the low/high SNR operating regime. Then, we consider the UPApolicy and prove that Conjecture 4.3 claiming

thatΓUPA(p,R) is quasi-concave w.r.t.p (which has been proven for MISO, SIMO, and SISO channels) is also

valid in the asymptotic regimes where either at least one dimension of the system (nt, nr) is large but the SNR

is finite. Here again, the theory of large random matrices is successfully applied since it allows one to prove

some results which are not available yet in the finite case (see e.g., [19], [28] for other successful examples).

A. Extreme SNR regimes

Here, all the channel parameters (nt, nr, andP in particular) are fixed. The low (resp. high) SNR regime

is defined byσ2 → +∞ (resp.σ2 → 0). In both cases, we will consider the GPR and the optimal power

allocation problem.

1) Low SNR regime:Let us consider the general power allocation problem whereD = Diag(p) with

p = (p1, . . . , pnt
). In [22], the authors extended the results obtained in the low and high SNR regimes for

the MISO channel to the MIMO case. In the low SNR regime, the authors of [22] proved that the outage

probability Pout(Diag(p), R) is a Schur-concave (see [29] for details) function w.r.t.p. This implies directly

that beamforming power allocation policy maximizes the outage probability. These results can be used (see

Appendix E) to prove the following proposition:
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Proposition 5.1 (Low SNR regime): Whenσ2 → +∞, the energy-efficiency functionΓ(Diag(p), R) is Schur-

concave w.r.t.p and maximized by a beamforming power allocation policyD∗ = PDiag(e1).

2) High SNR regime:Now, let us consider the high SNR regime. It turns out that theUPA policy maximizes

the energy-efficiency function. In this case also, the proofof the following proposition is based on the results

in [22] (see Appendix E).

Proposition 5.2 (High SNR regime): Whenσ2 → 0, the energy-efficiency functionΓ(Diag(p), R) is Schur-

convex w.r.t.p and maximized by an uniform power allocation policyD∗ = p∗

nt
Int

with p∗ ∈ (0, P ]. Furthermore,

the limit whenp → 0 such that p
σ2 → ξ is Γ

(
p
nt

Int
, R
)
→ +∞ which implies thatp∗ → 0.

In other words, in the high SNR regime, the optimal structureof the covariance matrix is obtained by

uniformly spreading the power over all the antennas,D∗ = p∗

nt
Int

the same structure which minimizes the

outage probability in this case. Nevertheless, in contrastto the outage probability optimization problem, in

order to be energy-efficient it is not optimal to use all the available powerP but to transmit with zero power.

B. Large MIMO channels

The results we have obtained can be summarized in the following proposition.

Proposition 5.3 (Quasi-concavity for large MIMO systems):If the system operates in one of the following

asymptotic regimes:

(a) nt < +∞ andnr → +∞;

(b) nt → +∞ andnr < +∞;

(c) nt → +∞, nr → +∞ with lim
ni→+∞,i∈{t,r}

nr

nt
= β < +∞,

thenΓUPA(p,R) is quasi-concave w.r.t.p ∈ [0, P ].

Proof: Here we prove each of the three statements made above and provide comments on each of them

at the same time.

Regime (a):nt < +∞ and nr → ∞. The idea of the proof is to consider a large system equivalentof the

function ΓUPA(p,R). This equivalent is denoted bŷΓa
UPA(p,R) and is based on the Gaussian approximation

of the mutual informationlog2

∣∣∣I + ρp
nt

HHH
∣∣∣ (see e.g., [30]). The goal is to prove that the numerator of

Γ̂a
UPA(p,R) is a sigmoidal function w.r.t.p which implies that̂Γa

UPA(p,R) is a quasi-concave function [26]. In

the considered asymptotic regime, we know from [30] that:

log2

∣∣∣∣I +
ρp

nt
HHH

∣∣∣∣→ N
(

nt log2

(
1 +

nr

nt
ρp

)
,
nt

nr
log2(e)

)
. (19)
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A large system equivalent of the numerator ofΓUPA(p,R), which is denoted bŷNa(p,R), follows:

N̂a(p,R) = RQ




R − nt log2

(
1 + nr

nt
ρp
)

√
nt

nr
log2(e)


 (20)

whereQ(x) = 1√
2π

∫ +∞
x exp

(
− t2

2

)
dt. Denote the argument ofQ in (20) by αa. The second order derivative

of N̂a(p,R) w.r.t. p

∂2N̂a(p,R)

∂p2
=

1√
2π

[
αa(p)(α′

a(p))2 − α′′
a(p)

]
exp

(
−αa(p)2

2

)
. (21)

ThereforeN̂a(p,R) has a unique inflection point

p̃a =
nt

nrρ

{
2

[
1

nt

(
R− 1

nt

(
nt log2(e)

nr

)3/2
)]

− 1

}
. (22)

Clearly, for each equivalent ofΓUPA(p,R), the numerator has a unique inflection point and is sigmoidal, which

concludes the proof. In fact, in the considered asymptotic regime we have a stronger result sincelim
nr→+∞

p̃a = 0,

which implies thatN̂a(p,R) is concave and thereforêΓa
UPA(p,R) is maximized inp∗a = 0 as in the case of

static MIMO channels. This translates the well-known channel hardening effect [30]. However, in contrast to

the static case, the energy-efficiency becomes infinite heresinceΓUPA(p,R) → 1
p with p∗a → 0.

Regime (b):nt → +∞ and nr < +∞. To prove the corresponding result the same reasoning as in (a) is

applied. From [30] we know that:

log2

∣∣∣∣I +
ρp

nt
HHH

∣∣∣∣→ N
(

nr log2(1 + ρp),

(√
nr

nt
log2(e)

ρp

1 + ρp

)2
)

. (23)

A large system equivalent of the numerator ofΓUPA(p,R) is N̂b(p,R) = RQ (αb(p)) with

αb(p) =

√
nt

nr
log2(e)

1 + ρp

ρp
[R − nr log2(1 + ρp)]. (24)

The numerator function̂Nb(p,R) can be checked to have a unique inflection point given by:

p̃b = σ2
(
2

R

nr − 1
)

(25)

and is sigmoidal, which concludes the proof. We see that the inflection point does not vanish this time (with

nt here) and therefore the function̂Nb(p,R) is quasi-concave but not concave in general. From [26], we know

that the optimal solutionp∗b represents the point where the tangent that passes through the origin intersects the

S-shaped functionRQ (αb(p)). As nt grows large, the functionQ (αb(p)) becomes a Heavyside step function

since∀p ≤ p̃b, limnt→+∞ Q (αb(p)) = 0 and∀p ≥ p̃b, limnt→+∞ Q (αb(p)) = 1. This means that the optimal
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power p∗b that maximizes the energy-efficiency approachesp̃b as nt grows large,p∗b → σ2
(
2

R

nr − 1
)

. The

optimal energy-efficiency tends toN̂b(p∗

b ,R)
p∗

b
→ 1

2σ2

(
2

R
nr −1

) whennt → +∞.

Regime (c):nt → +∞, nr → ∞. Here we always apply the same reasoning but exploit the results derived

in [31]. From [31], we have that:

log2

∣∣∣∣I +
ρp

nt
HHH

∣∣∣∣→ N
(
ntµI , σ

2
I

)
(26)

whereµI = β log2(1 + ρp(1 − γ)) − γ + log2(1 + ρp(β − γ)), σ2
I = − log2

(
1 − γ2

β

)
,

γ = 1
2

(
1 + β + 1

ρp −
√

(1 + β + 1
ρp)2 − 4β

)
. It can be checked that(α′

c(p))2αc(p)−α′′
c (p) = 0 has a unique

solution whereαc(p) = R−ntµI(p)
σI(p) . We obtainα′

c(p) =
ntµIσ′

I−ntµ′

IσI−Rσ′

I

σ2
I

and

α′′
c (p) = (ntµIσ′′

I −ntµ′′

I σI−Rσ′′

I )σ2
I−2σIσ′

I(ntµIσ′

I−ntµ′

IσI−Rσ′

I)
σ4

I
. We observe that, in the equation(α′

c(p))2αc(p) −
α′′

c (p) = 0, there are terms inn3
t , n2

t , nt and constant terms w.r.t.nt. Whennt becomes sufficiently large the

first order terms can be neglected, which implies that the solution is given byµI(p) = 0. It can be shown

that µI(0) = 0 and thatµI is an increasing function w.r.t.p which implies that the unique solution is̃pc = 0.

Similarly to regime (a) we obtain the trivial solutionp∗c = 0.

VI. N UMERICAL RESULTS

In this section, we present several simulations that illustrate our analytical results and verify the two conjec-

tures stated. Since closed-form expressions of the outage probability are not available in general, Monte Carlo

simulations will be implemented. The exception is the MISO channel for which the optimal energy-efficiency

can be computed numerically (as we have seen in Sec. IV-B) without the need of Monte Carlo simulations.

UPA, the quasi-concavity property and the large MIMO channels.

Let us consider the case of UPA. In Fig. 1, we plot the GPRΓUPA (p,R) as a function of the transmit

powerp ∈ [0, P ] W for an MIMO channel wherenr = nt = n with n ∈ {1, 2, 4, 8} andρ = 10 dB, R = 1

bpcu,P = 1 W. First, note that the energy-efficiency for UPA is a quasi-concave function w.r.t.p, illustrating

Conjecture 4.3. Second, we observe that the optimal powerp∗ maximizing the energy-efficiency function is

decreasing and approaching zero as the number of antennas increases and also thatΓUPA (p∗, R) is increasing

with n. In Fig. 2, this dependence of the optimal energy-efficiencyand the number of antennasn is depicted

explicitly for the same scenario. These observations are inaccordance with the asymptotic analysis in subsection

V-B for Regime (c).
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Similar simulation results were obtained for the case wherent is fixed andnr is increasing, thus illustrating

the asymptotic analysis in subsection V-B for Regime (a).

In Fig. 3, we plot the energy-efficiencyΓUPA (p,R) as a function of the transmit powerp ∈ [0, P ] W for

MIMO channel such thatnr = 2, nt ∈ {1, 2, 4, 8} andρ = 10 dB, R = 1 bpcu,P = 1 W. The difference w.r.t.

the previous case, is that the optimal powerp∗ does not go to zero whennt increases. This figure illustrates the

results obtained for Regime (b) in section V-B where the optimal power allocationp∗b → 2
R

nr −1
ρ = 0.0414 W

and the optimal energy-efficiencyΓ∗
UPA → ρ

2(2
R
nr −1)

= 12, 07 bit/Joule whennt → +∞.

UPA and the finite MISO channel

In Fig. 4, we illustrate Proposition 4.4 fornt = 4. We trace the cases where the transmitter uses an optimal

UPA over only a subset of̀∈ {1, 2, 3, 4} antennas forρ = 10 dB, R = 3 bpcu. We observe that: i) ifP ≤ c
c1

then the beamforming PA is the generally optimal structure with D∗ = P Diag(e1); ii) if P ∈
[

c
c1

c
c2

)
then

using UPA over three antennas is the generally optimal structure with D∗ = P/2 Diag(e2); iii) if P ∈
[

c
c2

c
c3

)

then using UPA over three antennas is generally optimal withD∗ = P/3 Diag(e3); iv) if P ≥ c
c4

then the UPA

over all the antennas is optimal withD∗ = 1
4 min

{
4∗c
ν4

, P
}

I4. The saturated regime illustrates the fact that it

is not always optimal to use all the available power after a certain threshold.

UPA and the finite MIMO channel

Fig. 5 represents the success probability,1−Pout(D, R), in function of the power constraintP for nt = nr =

2, R = 1 bpcu,ρ = 3 dB. Since the optimal PA that maximizes the success probability is unknown (unlike the

MISO case) we use Monte-Carlo simulations and exhaustive search to compare the optimal PA with the UPA

and the beamforming PA. We observe that the result is in accordance with Telatar’s conjecture. There exists a

thresholdδ = 0.16 W such that ifP ≤ δ, the beamforming PA is optimal and otherwise the UPA is optimal. Of

course, using all the available power is always optimal whenmaximizing the success probability. The objective

is to check whether Conjecture 4.2 is verified in this particular case. To this purpose, Fig. 6 represents the

energy-efficiency function for the same scenario. We observe that for the exact thresholdδ = 0.16 W, we

obtain that ifP ≤ δ the beamforming PA using all the available power is optimal.If P > δ the UPA is optimal.

Here, similarly to the MISO case, we observe a saturated regime which means that after a certain point it is

not optimal w.r.t. energy-efficiency to use up all the available transmit power. In conclusion, our conjecture has

been verified in this simulation.

Note that for the beamforming PA case we have explicit relations for both the outage probability and the

energy-efficiency (it is easy to check that the MIMO with beamforming PA reduces to the SIMO case) and

thus Monte-Carlo simulations have not been used.
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VII. C ONCLUSION

In this paper, we propose a definition of energy-efficiency metric which is the extension of the work in [1] to

static MIMO channels. Furthermore, our definition bridges the gap between the notion of capacity per unit cost

[1] and the empirical approach of [4] in the case of slow fading channels. In static and fast fading channels, the

energy-efficiency is maximized at low transmit power and thecorresponding rates are also small. On the the

other hand, the case of slow fading channel is not trivial andexhibits several open problems. It is conjectured

that solving the (still open) problem of outage minimization is sufficient to solve the problem of determining

energy-efficient precoding schemes. This conjecture is validated by several special cases such as the MISO case

and asymptotic cases. Many open problems are introduced by the proposed performance metric, here we just

mention some of them:

• First of all, the conjecture of the optimal precoding schemes for general MIMO channels needs to be

proven.

• The quasi-concavity of the goodput-to-power ratio when uniform power allocation is assumed remains to

be proven in the finite setting.

• A more general channel model should be considered. We have considered i.i.d. channel matrices but

considering non zero-mean matrices with arbitrary correlation profiles appears to be a challenging problem

for the goodput-to-power ratio.

• The connection between the proposed metric and the diversity-multiplexing tradeoff at high SNR has not

been explored.

• Only single-user channels have been considered. Clearly, multi-user MIMO channels such as multiple

access or interference channels should be considered.

• The case of distributed multi-user channels become more andmore important for applications (unlicensed

bands, decentralized cellular networks, etc.). Only one result is mentioned in this paper: the existence of a

pure Nash equilibrium in distributed MIMO multiple access channels assuming uniform power allocation

transmit policy.
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Fig. 1. Energy-efficiency (GPR) vs. transmit powerp ∈ [0, 1] W for MIMO channels wherenr = nt = n ∈ {1, 2, 4, 8}, UPA D = p

nt
Int ,

ρ = 10 dB, R = 1 bpcu. Observe that the energy-efficiency is a quasi-concavefunction w.r.t.p. The optimal pointp∗ is decreasing andΓUPA (p∗, R)

is increasing withn.
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Fig. 2. Energy-efficiency vs. the number of antennasn for MIMO nr = nt = n ∈ {1, 2, 4, 8}, UPA, D = p

nt
Int , ρ = 10 dB, R = 1 bpcu and

P = 1 W. Observe thatΓUPA (p∗, R) is increasing withn.
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Int , ρ = 10 dB, R = 1 bpcu. Observe

that the energy-efficiency is a quasi-concave function w.r.t. p. The optimal pointp∗ is not decreasing withn but almost constant.
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Fig. 4. Optimal energy-efficiency vs. constraint power for MISOnt = 4, nr = 1, UPA over a subset of̀ ∈ {1, 2, 3, 4} antennas,ρ = 10 dB,

R = 3 bpcu. We illustrate the results of Proposition 4.4. IfP ≤ c
c1

is low enough, the beamforming PA with full power is optimal.If P ≥ c
c2

is high

enough, the UPA is optimal but not with full power necessarily
(
p∗ = min{ c

ν4
, P}

)
which explains the saturated regime.
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bpcu, ρ = 3 dB. We observe that Telatar’s conjecture is validated. There is a threshold,δ = 0.16 W, below which (P ≤ δ) the beamforming PA is

optimal and above it, UPA is optimal.
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Fig. 6. Optimal energy-efficiency vs. power constraintP , comparison between beamforming PA, UPA and General PA for MIMO nt = nr = 2,

R = 1 bpcu,ρ = 3 dB. We observe that our Conjecture 4.2 is validated. For the exact sameδ = 0.16 W, we have that forP ≤ δ the beamforming

PA structure optimal and above it, UPA structure is optimal.
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APPENDIX A

PROOF OFPROPOSITION3.1

As Q is a positive semi-definite Hermitian matrix, it can always be spectrally decomposed asQ = UDUH

whereD = Diag(p1, . . . , pnt
) is a diagonal matrix representing a given PA policy andU a unitary matrix. Our

goal is to prove that, for everyU, Gstatic is maximized whenD = Diag(0, 0, ..., 0). To this end we rewrite

Gstatic as

Gstatic(U Diag(p1, . . . , pnt
) UH) =

log2

∣∣∣∣∣Inr
+

nt∑

i=1

pigi
gH

i

∣∣∣∣∣
nt∑

i=1

pi

, (27)

whereg
i

represents theith column of thenr × nt matrix G =
√

ρHU and proceed by induction onnt ≥ 1.

First, we introduce an auxiliary quantity (whose role will be made clear a little further)

E(nt)(p1, . . . , pnt
) , Tr

(
Inr

+

nt∑

i=1

pigi
gH

i

)−1( nt∑

i=1

pigi
gH

i

)

− log2

∣∣∣∣∣Inr
+

nr∑

i=1

pigi
gH

i

∣∣∣∣∣.
(28)

and prove by induction that it is negative that is,∀(p1, . . . , pnt
) ∈ R

nt

+ , E(nt)(p1, . . . , pnt
) ≤ 0.

For nt = 1, we haveE(1)(p1) = Tr
[
(Inr

+ p1g1
gH
1

)−1p1g1
gH
1

]
− log2

∣∣∣Inr
+ p1g1

gH
1

∣∣∣. The first order

derivative ofE(1)(p1) w.r.t. p1 is:

∂E(1)

∂p1
= −p1[g

H
1

(Inr
+ p1g1

gH
1

)−1g
1
]2 ≤ 0 (29)

and thusE(1)(p1) ≤ E(1)(0) = 0.

Now, we assume thatE(nt−1)(p) ≤ 0 and want to prove thatE(nt)(p, pnt
) ≤ 0, wherep = (p1, . . . , pnt−1).

It turns out that:

∂E(nt)

∂pnt

= −
nt∑

j=1

pj

∣∣∣∣∣∣
gH

j

(
Inr

+

nt∑

i=1

pigi
gH

i

)−1

g
nt

∣∣∣∣∣∣

2

≤ 0, (30)

and thereforeE(nt)(p1, . . . , pnt−1, pnt
) ≤ E(nt)(p1, . . . , pnt−1, 0) = E(nt−1)(p1, . . . , pnt−1) ≤ 0.

As a second step of the proof, we want to prove by induction onnt ≥ 1 that

arg max
p,pnt

G
(nt)
static(p, pnt

) = 0. (31)

For nt = 1 we haveG
(1)
static(p1) =

log2 |Inr+p1g
1
gH

1
|

p1
=

log2(1+p1gH

1
g
1
)

p1
which reaches its maximum inp1 = 0.
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Now, we assume thatarg max
p

G
(nt−1)
static (p) = 0 and want to prove thatarg max

(p,pnt)
G

(nt)
static(p, pnt

) = 0.

Let k = arg min
i∈{1,...,nt}

Tr




Inr

+
nt∑

j=1

pjgj
gH

j




−1

g
i
gH

i


. By calculating the first order derivative ofG(nt)

static

w.r.t. pk one obtains that:
∂G

(nt)
static

∂pk
=

N
(

nt∑

i=1

pi

)2 , (32)

with

N =

(
nt∑

i=1

pi

)
Tr




Inr

+

nt∑

j=1

pjgj
gH

j




−1

g
k
gH

k




− log2

∣∣∣∣∣Inr
+

nt∑

i=1

pigi
gH

i

∣∣∣∣∣

(33)

and thus∂G
(nt)

static

∂pk
≤ E(nt)(p1, . . . , pnt

)

(
∑nt

i=1 pi)
2 ≤ 0 andp∗k = 0 for all p1, . . . , pk−1, pk+1, . . . , pnt

. We obtain that

F (nt)(p1, . . . , pk−1, 0, pk+1, . . . , pnt
)

= F (nt−1)(p1, . . . , pk−1, pk+1, . . . , pnt
), which is maximized when(p1, . . . , pk−1, pk+1, . . . , pnt

) = 0 by

assumption. We therefore have thatQ∗ = U0UH = 0 is the solution that maximizes the functionGstatic(Q). At

last, to find the maximum reached byGstatic one just needs to consider the the equivalent of thelog2

∣∣Inr
+ ρHQHH

∣∣

aroundQ = 0

log2

∣∣Inr
+ ρHQHH

∣∣ ∼ ρ

nt
Tr(HHH) (34)

and takesQ = q
nt

Int
with q → 0.

APPENDIX B

PROOF OFPROPOSITION4.1

The proof has two parts. First, we start by proving that if theoptimal solution is different than the uniform

spatial power allocationP∗ 6= p
nt

Int
with p ∈

[
0, P

]
then the solution is not trivialP∗ 6= 0. We proceed by

reductio ad absurdum. We assume that the optimal solution istrivial P∗ = 0. This means that when fixing

(p2, . . . , pnt
) = (0, . . . , 0) the optimalp1 ∈ [0, P ] that maximizes the energy-efficiency function isp∗1 = 0. The

energy-efficiency function becomes:

Γ(Diag(p1, 0, . . . , 0), R) = R
1 − Pr

[
log2(1 + ρp1‖h1‖2) < R

]

p1
(35)
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where h1 represents the first column of the channel matrixH. Knowing that the elements inh1 are i.i.d.

h1j ∼ CN (0, 1) for all j ∈ {1, . . . , nr} we have that|h1j |2 ∼ expon(1). The random variable‖h1‖2 =

nr∑

j=1

|h1j |2

is the sum ofnr i.i.d. exponential random variables of parameterλ = 1 and thus follows an2nr chi-square

distribution (or annr Erlang distribution) whose c.d.f. is known and given byς(x) = 1− exp(−x)

nr−1∑

k=0

xk

k!
. We

can explicitly calculate the outage probability and obtainthe energy-efficiency function:

Γ(Diag(p1, 0, . . . , 0), R) = R exp

(
− c

p1

) nr−1∑

k=0

ck

k!

1

pk+1
1

(36)

wherec = 2R−1
ρ > 0. It is easy to check thatlim

p1→0
Γ(p1, R) = 0, lim

p1→∞
Γ(p1, R) = 0. By evaluating the first

derivative w.r.t.p1, it is easy to check that the maximum is achieved forp∗1 = c
νnr

≥ 0 whereνnr
is the unique

positive solution of the following equation (iny):

1

(nr − 1)!
ynr −

nr−1∑

k=0

yk

k!
= 0. (37)

Considering the power constraint the optimal transmissionpower is p∗1 = min{2R−1
νnr ρ , P}, which contradicts

the hypothesis and thus if the optimal solution is differentthan the uniform spatial power allocation then the

solution is not trivialP∗ 6= 0.

APPENDIX C

PROOF PROPOSITION4.4

Let pT = (p1, ..., pnt
) be the vector of powers allocated to the different antennasi ∈ {1, ..., nt} and thus

D = Diag(p). Define the two sets:C(x) =

{
p ≥ 0,

nt∑

i=1

pi ≤ x

}
and ∆(x) =

{
p ≥ 0,

nt∑

i=1

pi = x

}
. Using

these notations, they key observation to be made is the following:

sup
p∈C(P )

ΓMISO(D, R)
(a)
= R sup

p∈C(P )

1 − PMISO
out (D, R)

nt∑

i=1

pi

(b)
= R sup

x∈[0,P ]

sup
p∈∆(x)

1 − PMISO
out (D, R)

x

(c)
= R sup

x∈[0,P ]

g
(

c
x

)

x

(38)

wherePMISO
out = Pr

[
log

(
1 + ρ

nt∑

i=1

pi|hi|2
)

≤ R

]
: (a) translates the definition of the GPR; (b) follows from the

propertysup{A∪B} = sup{sup{A}, sup{B}} for two setsA andB, applied to our context; in (c) the function
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g(z) =
{
g`(z), ifz ∈

[
c

c`−1
, c

c`

)
is a piecewise continuous function whereg`(z) = 1−Pr

[
1
`

nt∑

i=1

|hi|2 ≤ z

]
for

z ∈
[

c
c`−1

, c
c`

)
and` ∈ {1, . . . , nt}. The functiong(z) corresponds to the solution of the minimization problem

of the outage probability [22].

Now, we study the functiong`. By calculating the first order derivative of1xg`

(
c
x

)
w.r.t. x we obtain:

d

dx

{
1

x
g`

( c

x

)}
=

e−
`c

x

x2


 1

(` − 1)!

(
`c

x

)`

−
`−1∑

j=0

1

j!

(
`c

x

)j

 . (39)

Thus the function1
xg
(

c
x

)
is increasing forx ∈ (0, x`) and decreasing onx ∈ (x`,∞). The maximum point is

reached inx` = `c
y`

wherey` is the unique positive solution of the equationφ`(y) = 0 where

φ`(y) =
1

(` − 1)!
y` −

`−1∑

i=0

1

i!
yi. (40)

We have thatφ(0) = −1 < 0 and

φ`(`) = 1
(`−1)!`

` −
`−1∑

i=0

1

i!
`i

=

`−1∑

i=0

` − i − 1

i!
`i

> 0.

(41)

This implies thaty` ≤ ` and thusx` ≥ c. Sincecnt−1 ≥ 1 we also havex` ≥ c
cnt−1

for all ` ∈ {1, . . . , nt − 1}.

Therefore, all the functions1xg`

(
c
x

)
are increasing on the intervals

(
0, c

cnt−1

)
. Moreover, on the interval

(
c

cnt−1
,∞
)

, they are increasing on
(

c
cnt−1

, x`

]
and decreasing on[x`,∞). Proposition 4.4 follows directly.

APPENDIX D

COUNTER-EXAMPLE, TISO

Consider the particular case wherent = 2 and nr = 1. From Proposition 4.4, it follows that for a

power constraintP < c
c1

the beamforming power allocation policy maximizes the energy-efficiency and

ΓTISO(Diag(P , 0), R) = ΓTISO(Diag(0, P ), R) > ΓTISO
(

Diag
(

P
2 , P

2

)
, R
)

. The functionΓTISO(Diag(p1, p2), R)

with (p1, p2) ∈ P2 , {(p1, p2) ∈ R
2
+ | p1 + p2 ≤ P} denotes the energy-efficiency function. We want to prove

that ΓTISO(Diag(p1, p2), R) is not quasi-concave w.r.t.(p1, p2) ∈ P2. This amounts to finding a levelγ ≥ 0

such that the corresponding upper-level setUγ =
{
(p1, p2) ∈ P2 | ΓTISO(Diag(p1, p2), R) ≥ γ

}
is not a convex

set (see [32] for a detailed analysis on quasi-concave functions). Consider an arbitrary0 < q < min
{
P , c

c1

}
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such thatΓTISO(Diag(q, 0), R) = ΓTISO(Diag(0, q), R) < ΓTISO
(
Diag

( q
2 , q

2

)
, R
)
. It turns out that all upper-

level setsUγq
with γq , ΓTISO(Diag(q, 0), R) are not convex sets. This follows directly from the fact that

(q, 0), (0, q) ∈ Uγq
but

( q
2 , q

2

)
/∈ Uγq

sinceΓTISO
(
Diag

( q
2 , q

2

)
, R
)

< γq.

APPENDIX E

EXTREME SNR CASES, GPR

In [22], the authors proved that in the low SNR regime the outage probabilityPout(p,R) is Schur-concave

w.r.t. p. This means that for any vectorsp, q such thatp � q thenPout(p,R) ≤ Pout(q,R). The operator�
denotes the majorization operator which will be briefly described (see [29] for details). For any two vectors

p, q ∈ R
nt

+ , p majorizesq (denoted byp � q) if
m∑

k=1

pk ≥
m∑

k=1

qk, for all m ∈ {1, . . . , nt−1} and
nt∑

k=1

pk =

nt∑

k=1

qk.

This operator induces only a partial ordering. The Schur-convexity and≺ operator can be defined in an analogous

way. Also, an important observation to be made is that the beamforming vector majorizes any other vector,

whereas the uniform vector is majorized by any other vector (provided the sum of all elements of the vectors

is equal). Otherwise stated,xe1 � p � x
nt

1 for any vectorp such that
nt∑

i=1

pi = x and 1 = (1, 1, . . . , 1) and

e1 ∈ S1.

It is straightforward to see that ifPout(Diag(p), R) is Schur-concave w.r.t.p then 1 − Pout(Diag(p), R) is

Schur-convex w.r.t.p. Since the majorization operator implies the sum of all elements of the ordered vectors

to be identical,Γ(Diag(p), R) =
1−Pout(Diag(p),R)

nt∑

i=1

pi

will also be Schur-convex w.r.t.p and thus is maximized by

a beamforming vector. Using the same notations as in Appendix C we obtain:

sup
p∈C(P )

Γ(Diag(p), R) = sup
x∈[0,P ]

1

x
sup

p∈∆(x)
[1 − Pout(Diag(p), R)]

(a)
= sup

x∈[0,P ]

1

x
[1 − Pr[log(1 + xρhH

1 h1) ≤ R],

= sup
x∈[0,P ]

1

x



1 − Pr


 1

nr

nr∑

j=1

|h1j |2 ≤ c

nrx






 ,

(b)
= sup

x∈[0,P ]

gnr

(
c

nrx

)

x
,

(42)

where (a) follows by considering beamforming power allocation policy on the first transmit antenna (with no

generality loss) and replacingp = xe1 with e1 = (1, 0, . . . , 0) andh1 denoting the first column of the channel

matrix; in (c) we make use the definition in Appendix C for the function 1
xgnr

(
c

nrx

)
which has a unique
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optimal point inmin
{

c
ynr

, P
}

, with ynr
the unique solution ofΦnr

(y) = 0. Sinceσ2 → 0 thenc → +∞ and

thus the optimal power allocation isp∗ = Pe1.

Similarly, for the high SNR case we have:

sup
p∈C(P )

Γ(Diag(p), R) = sup
x∈[0,P ]

1

x
sup

p∈∆(x)
[1 − Pout(Diag(p), R)]

= sup
x∈[0,P ]

1

x

[
1 − Pout

(
Diag

(
x

nt
(1, . . . , 1)

)
, R

)]
.

(43)

We have used the results in [22], where the UPA was proven to minimize the outage probability.

Let us now consider the limit of the energy-efficiency function whenp → 0, σ2 → 0 such that p
σ2 → ξ with

ξ a positive finite constant. We obtain that1 − Pout

(
x
nt

Int
, R
)
→ Pr

[∣∣∣Inr
+ ξ

nt
HHH

∣∣∣
]

> 0 which implies

directly thatΓ
(

x
nt

Int
, R
)
→ +∞.
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