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ONLINE SPARSE SYSTEM IDENTIFICATION AND SIGNAL

RECONSTRUCTION USING PROJECTIONS ONTO WEIGHTED ℓ1 BALLS

YANNIS KOPSINIS, KONSTANTINOS SLAVAKIS, AND SERGIOS THEODORIDIS

Abstract. This paper presents a novel projection-based adaptive algorithm for sparse signal and sys-

tem identification. The sequentially observed data are used to generate an equivalent sequence of closed

convex sets, namely hyperslabs. Each hyperslab is the geometric equivalent of a cost criterion, that

quantifies “data mismatch”. Sparsity is imposed by the introduction of appropriately designed weighted

ℓ1 balls. The algorithm develops around projections onto the sequence of the generated hyperslabs as

well as the weighted ℓ1 balls. The resulting scheme exhibits linear dependence, with respect to the

unknown system’s order, on the number of multiplications/additions and an O(L log
2
L) dependence on

sorting operations, where L is the length of the system/signal to be estimated. Numerical results are

also given to validate the performance of the proposed method against the LASSO algorithm and two

very recently developed adaptive sparse LMS and LS-type of adaptive algorithms, which are considered

to belong to the same algorithmic family.

1. Introduction

Sparsity is the key characteristic of systems whose impulse response consists of only a few nonzero

coefficients, while the majority of them retain values of negligible size. Similarly, any signal comprising

a small number of nonzero samples is also characterized as being a sparse one. The exploitation of

sparsity has been attracting recently an interest of exponential growth under the Compressed Sens-

ing (CS) framework [1–3]. In principle, CS allows the estimation of sparse signals and systems using

fewer measurements than those previously thought to be necessary. More importantly, identifica-

tion/reconstruction is realized with efficient constrained minimization schemes. Indeed, it has been

shown that sparsity is favored by ℓ1 constrained solutions [4, 5].

With only a few recent exceptions, i.e., [6–10], the majority of the proposed, so far, CS techniques

are appropriate for batch mode operation. In other words, one has to wait until a fixed and predefined

number of measurements is available prior to application of CS processing methods, in order to recover

the corresponding signal/system estimate. Dynamic online operation for updating and improving

estimates, as new measurements become available is not feasible by batch processing methods. The
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development of efficient, online adaptive CS techniques is of great importance, especially for cases where

the signal or system under consideration is time-varying and/or if the available storage resources are

limited.

The basic idea in [6, 7] is to use ℓ1 regularization, i.e., to add to a standard linear or quadratic

loss function an extra penalty term expressed by means of the well-known ℓ1 norm of the unknown

system/signal coefficients. Such an approach has been adopted for the classical LMS [6], and for the LS

type [7] minimization problems. The resulting recursions for the time update use the current estimate

and the information residing in the subgradient of the cost function (due to the non-differentiability

of the ℓ1 norm) to provide the next estimate.

This paper evolves along a different rationale compared to [6, 7], and introduces a projection-based

algorithm for sparse system identification and sparse signal reconstruction. The kick-off point is the set

theoretic estimation approach, e.g., [11]. Instead of a single optimum, we search for a set of points that

are in agreement with the available information, which resides in the training data set (measurements)

as well as in the available constraints (the ℓ1 ball, in this case). To this end, as each new set of

measurements is received, a closed convex set is constructed, which defines the region in the solution

space that is in “agreement” with the current measurement. In context of the current paper, the shape

of these convex sets is chosen to be a hyperslab. The resulting problem is a convex feasibility task, with

an infinite number of convex constraints. The fundamental tool of projections onto closed convex sets

is used to tackle the problem, following the recent advances on adaptive projection algorithms [12–14].

Instead of using the information associated with the subgradient of the ℓ1 norm, the ℓ1 constraint

is imposed on our solution via the exact projection mapping onto a weighted ℓ1 ball. The algorithm

consists of a sequence of projections onto the generated hyperslabs as well as the weighted ℓ1 balls. The

associated complexity is of order O(qL) multiplications/additions and O(L log2 L) sorting operations,

where L is the length of the system/signal to be identified and q is a user-defined parameter, that

controls convergence speed and it defines the number of measurements that are processed, concurrently,

at each time instant. The resulting algorithm enjoys a clear geometric interpretation.

The paper is organized as follows. In Section 2 the problem under consideration is described and

in Section 3 some definitions and related background are provided. Section 4 presents the proposed

algorithm. The derivation and discussion of the projection mapping onto the weighted ℓ1 ball are

treated in Section 5. The adopted mechanism for weighting the ℓ1 ball is discussed in Section 6. In

Section 7, the convergence properties of the algorithm are derived and discussed. It must be pointed

out that this section comprises one of the main contributions of the paper, since the existing, so far,

theory cannot cover the problem at hand and has to be extended. In Section 8, the performance

of the proposed algorithmic scheme is evaluated for both, time-invariant and time-varying scenarios.

Section 9 addresses issues related to the sensitivity of the methods, used in the simulations, to non-ideal

parametrization and, finally, the conclusions are provided in Section 10. The Appendices offer a more

detailed tour to the necessary, for the associated theory, proofs.
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2. Problem description

We will denote the set of all integers, non-negative integers, positive integers, and real numbers

by Z, Z≥0, Z>0, and R, respectively. Given two integers j1, j2 ∈ Z, such that j1 ≤ j2, let j1, j2 :=

{j1, j1 + 1, . . . , j2}.

The stage of discussion will be the Euclidean space R
L, of dimension L ∈ Z>0. Its norm will be

denoted by ‖·‖. The superscript symbol (·)T will stand for vector transposition. The ℓ1 norm of a

vector h = [h1, . . . , hL]
T ∈ R

L is defined as the quantity ‖h‖ℓ1 :=
∑L

i=1 |hi|. The support of a vector

h is defined as supp(h) := {i ∈ 1, L : hi 6= 0}. The ℓ0-norm of h is defined as the cardinality of its

support, i.e., ‖h‖ℓ0 := # supp(h).

Put in general terms, the problem to solve is to estimate a vector h∗, based on measurements that

are sequentially generated by the (unknown) linear regression model:

yn = xT
nh∗ + vn, ∀n ∈ Z≥0, (1)

where the model outputs (yn)n∈Z≥0
⊂ R and the model input vectors (xn)n∈Z≥0

⊂ R
L comprise the

measurements and (vn)n∈Z≥0
is the noise process. Furthermore, the unknown vector h∗ is S-sparse,

meaning that it has S non-zero terms only, with S being small compared to L, i.e., S := ‖h∗‖ℓ0 ≪ L.

For a finite number of measurements N , the previous data generation model can be written compactly

in the following matrix-vector form,

y = Xh∗ + v, (2)

where the input matrixX ∈ R
N×L has as its rows the input measurement vectors, y := [y1, y2, . . . , yN ]

T ,

and v := [v1, v2, . . . , vN ]
T .

Depending on the physical quantity that h∗ represents, the model in (2) suits to both sparse signal

reconstruction and linear sparse system identification:

(1) Sparse signal reconstruction problem: The aim is to estimate an unknown sparse signal,

h∗, based on a set of measurements (training data), that are obtained as inner products of the

unknown signal with appropriately selected input vectors, xn, according to (1). The elements

of the input vectors are often selected to be independent and identically distributed (i.i.d.)

random variables following, usually, a zero-mean normal or a Bernoulli distribution [5].

(2) System identification problem: The unknown sparse system with impulse response h∗

is probed with an input signal xn, n ∈ Z≥0 yielding the output values yn as the result of

convolution of the input signal with the (unknown) impulse response of the system. In agree-

ment to the model of (1), the measurement (input) vector, at time n, is given by xn :=

[xn, xn−1, . . . , xn−L+1]
T . In the matrix-vector formulation, and for a finite number of measure-

ments, the corresponding measurement matrix X is a (partial) Toeplitz one having as entries

the elements Ti,j = xi+L−j, where i ∈ 1, N and j ∈ 1, L. The input signal vector, x, usually

consists of i.i.d. normally distributed samples. The study of Toeplitz matrices, with respect to
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their potential to serve as CS measurement matrices, has been recently intensified, e.g., [15,16],

partially due to their importance in sparse channel estimation applications [17].

A batch approach to estimating a sparse h∗ based on a limited number of measurements N < L, is

provided by the Least-Absolute Shrinkage and Selection Operator (LASSO):

h∗ = argminh: ‖h‖ℓ1≤δ ‖Xh− y‖2. (3)

In this case, h∗ is assumed to be stationary and the total number of measurements, N , needs to be

available prior to solution of the LASSO task.

In the current study, we will assume that h∗ is not only sparse but it is also allowed to be time-

varying. This poses certain distinct differences with regard to the standard compressive sampling

scenario. The major objective is no longer the estimate of the sparse signal or system, based on

a limited number of measurements. The additional requirement, which is often more hard to cope

with, is the capability of the estimator to track possible variations of the unknown signal or system.

Moreover, this has to take place at an affordable computational complexity, as required by most real

time applications, where online adaptive estimation is of interest. Consequently, the batch sparsity

aware techniques developed under the CS framework, solving LASSO or one of its variants, become

unsuitable under time-varying scenarios. The focus now becomes to develop techniques that a) exploit

the sparsity b) exhibit fast convergence to error floors that are as close as possible to those obtained by

their batch counterparts c) offer good tracking performance and d) have low computational demands

in order to meet the stringent time constraints that are imposed by most real time operation scenarios.

3. Online estimation under the sparsity constraint

The objective of online techniques is the generation of a sequence of estimates, (hn)n∈Z≥0
, as time,

n, evolves, which converge to a value that “best approximates”, in some sense, the unknown sparse

vector h∗. The classical approach to this end is to adopt a loss function and then try to minimize it

in a time recursive manner. A more recent approach is to achieve the goal via set theoretic arguments

by exploiting the powerful tool of projections.

3.1. Loss function minimization approach. A well-known approach to quantify the “best approx-

imation” term is the minimization of a user-defined loss function

∀n ∈ Z≥0, ∀h ∈ R
L, Θn(h) := L(n)

r (h) + γnL
(n)
s (h), (4)

where L
(n)
r is computed over the training (observed) data set and accounts for the data mismatch,

between measured and desired responses, and L
(n)
s accounts for the “size” of the solution, and in the

current context is the term that imposes sparsity. The sequence of user-defined parameters (γn)n∈Z≥0

accounts for the relative contribution of L
(n)
r ,L

(n)
s to the cost in (4). Usually, both functions L

(n)
r ,L

(n)
s

are chosen to be convex, due to the powerful tools offered by the convex analysis theory.
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For example, the study in [6] chooses L
(n)
r (h) := 1

2
|yn − hTxn|

2, where L
(n)
s (h) := ‖h‖ℓ1, h ∈ R

L,

in order to obtain the ZA-LMS algorithm. The RZA-LMS scheme is obtained in [6] when setting

L
(n)
s (h) :=

∑L
i=1 log(1+

|hi|
η
), h ∈ R

L, while keeping the same L
(n)
r . In [7], the sum Least Squares with

a forgetting factor β is used in place of L
(n)
r and the ℓ1 norm in L

(n)
s .

3.2. Set theoretic approach. In this paper, a different path is followed. Instead of attempting to

minimize, recursively, a cost function that is defined over the entire observations’ set, our goal becomes

to find a set of solutions that is in agreement with the available observations as well as the constraints.

To this end, at each time instant, n, we require our estimate hn to lie within an appropriately defined

closed convex set, which is a subset of our solutions space and it is also known as property set. Any

point that lies within this set is said to be in agreement with the current measurement pair (xn, yn).

The “shape” of the property set is dictated by a “local” loss function, which is assumed to be convex.

In the context of the current paper, we have adopted property sets that are defined by the following

criterion

Sn[ǫ] := {h ∈ R
L : |hTxn − yn| ≤ ǫ}, n ∈ Z≥0, (5)

for some user-defined tolerance ǫ ≥ 0. Such criteria have extensively been used in the context of robust

statistics cost functions. Eq. (5) defines a hyperslab, which is indeed a closed convex set. Any point

that lies in the hyperslab generated at time n is in agreement with the corresponding measurement at

the specific time instance. The parameter ǫ determines the width of the hyperslabs. Fig. 1 shows two

hyperslabs defined at two successive instants, namely, n and n− 1.

Having associated each measurement pair with a hyperslab, our goal, now, becomes to find a point

in R
L that lies in the intersection of these hyperslabs, provided that this is nonempty. We will come

back to this point when discussing the convergence issues of our algorithm. For a recent review of this

algorithmic family the reader may consult [18].

To exploit sparsity, we adopt the notion of the weighted ℓ1 norm. Given a vector wn ∈ R
L with

positive components, i.e., wn,i > 0, ∀i ∈ 1, L, the weighted ℓ1 ball of radius δ > 0 is defined as [19]

Bℓ1[wn, δ] := {h ∈ R
L :

L
∑

i=1

wn,i|hi| ≤ δ}. (6)

For more flexibility, we let the weight vector depend on the time instant n, hence the notation wn

has been adopted. We will see later on that such a strategy speeds up convergence and decreases

the misadjustment error of the algorithm. The well-known unweighted ℓ1 ball is nothing but Bℓ1 [1, δ],

where 1 ∈ R
L is a vector with 1s in all of its components. Note that all the points that lie inside a

weighted ℓ1 norm form a closed convex set.

Having defined the weighted ℓ1 ball, which is the sparsity related constraint, our task now is to

search for a point h in R
L that lies in the intersection of the hyperslabs as well as the weighted ℓ1
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balls, i.e., for some z0 ∈ Z≥0,

find an h ∈
⋂

n≥z0

(Sn[ǫ] ∩ Bℓ1 [wn, δ]) . (7)

As it will become clear later on, when discussing the convergence issues of the algorithm, the existence

of z0 in (7) allows for a finite number of property sets not to share intersection with the rest.

4. Proposed algorithmic framework

The solution to the problem of finding a point lying in the intersection of a number of closed convex

sets has been developed in the context of the classical POCS theory [20–23], in the case where there is

a finite number of sets, and its recent extension, that deals with an infinite number of sets, originally

proposed in [12]. The basic idea is very elegant: Keep projecting, according to an appropriate rule,

on the involved convex sets; then this sequence of projections will, finally, take you to a point in their

intersection. Hence, for our problem, metric projection mapping operators for, both, the hyperslabs as

well as the weighted ℓ1 balls have to be used. Projection operators for hyperslabs are already known

and widely used, e.g., [18,24]. The metric projection mapping onto a weighted ℓ1 norm will be derived

here, and it was presented for a first time, to the best of our knowledge, in [10].

Each time instant, n, a new pair of training data (xn, yn) becomes available, and a corresponding

hyperslab is formed according to (5). This is used to update the currently available estimate hn.

However, in order to speed up convergence, the update mechanism can also involve previously defined

hyperslabs; for example, the hyperslabs formed at time instants n− q + 1, n, for some q ∈ Z>0. Then,

in order to obtain hn+1, an iteration scheme consisting of three basic steps, is adopted: a) the current

estimate hn is projected onto each one of the q hyperslabs, b) these projections are in turn combined

as a weighted sum and c) the result of the previous step is subsequently projected onto the weighted

ℓ1 ball. This is according to the concepts introduced in [12] and followed in [13,14,24]. Schematically,

the previous procedure is illustrated in Fig. 1, for the case of q = 2.

In detail, the algorithm is mathematically described as follows:

Algorithm. Let q ∈ Z>0, and define the following sliding window on the time axis, of size at most q

(to account for the initial period where n < q−1), in order to indicate the hyperslabs to be considered

at each time instant:

Jn := max{0, n− q + 1}, n, ∀n ∈ Z≥0.

For each n, define the set of weights {ω
(n)
j }j∈Jn

⊂ (0, 1] such that
∑

j∈Jn
ω
(n)
j = 1. Each ω

(n)
j quantifies

the contribution of the j-th hyperslab into the weighted combination of all the hyperslabs that are

represented indicated in Jn.

6



Figure 1. The ℓ1 ball is shown with dotted lines. At time n, the estimate hn is available.

For q = 2, two hyperslabs are involved in the update recursion, those associated with

time instants n and n − 1. The new update, hn+1, results by first projecting hn onto

the hyperslabs, then combining the resulting projections and finally projecting onto the

weighted ℓ1 norm, that is defined at time n and which is drawn using the full line.

Given an arbitrary initial point h0 ∈ R
L, the following recursion generates the sequence of estimates

(hn)n∈Z≥0
; ∀n ∈ Z≥0,

hn+1 := PBℓ1
[wn,δ]

(

hn + µn

(

∑

j∈Jn

ω
(n)
j PSj [ǫ](hn)− hn

))

, (8)

where PSj [ǫ] and PBℓ1
[wn,δ] denote the metric projection mappings onto the hyperslab, defined by the

j-th data pair, and onto the, (currently available) weighted ℓ1 ball, respectively. As it will be shown

in the analysis of the algorithm in Appendix B, in order to guarantee convergence, the extrapolation

parameter µn takes values within the interval (0, 2Mn), where Mn is computed by

Mn :=











∑
j∈Jn

ω
(n)
j ‖PSj [ǫ]

(hn)−hn‖2

‖∑j∈Jn
ω
(n)
j

PSj [ǫ]
(hn)−hn‖2

, if
∑

j∈Jn
ω
(n)
j PSj [ǫ](hn) 6= hn,

1, otherwise.

(9)

Notice that the convexity of the function ‖·‖2 implies that Mn ≥ 1, ∀n ∈ Z≥0.

It is interesting to point out that the algorithm is compactly encoded into a single equation! Also,

note that projection onto the q hyperslabs can take place concurrently and this can be exploited if

computations are carried our in a parallel processing environment. Moreover, q can be left to vary

from iteration to iteration. The dependence of the performance of the algorithm on q will be discussed

in Section 8.
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It turns out that the projection mappings involved in (8) and (9) have computationally simple forms

and are given in (10) and Section 5.2. The algorithm amounts to a computational load of order O(qL)

multiplications/additions and O(L log2 L) sorting operations. The dependence on q is relaxed in a

parallel processing environment.

Having disclosed the algorithmic scheme for the update of our estimate at each iteration step, as

measurements are received sequentially, there are a number of issues, yet, to be resolved. First,

the involved projection mappings have to be explicitly provided/derived. Second, a strategy for the

selection of the weights in the weighted ℓ1 norm need to be decided. Third, the convergence of

the algorithm has to be established. Although the algorithm stands on the shoulders of the theory

developed in previously published papers, e.g., [12,13,25], the developed, so far, theory is not enough to

cover the current algorithm. Since we do not use the ℓ1 norm, but its weighted version, the projection

mapping PBℓ1
[wn,δ] in (8) is time-varying and it also depends on the obtained estimates. Convergence

has to be proved for such a scenario and this is established in Appendix B.

5. Projections onto Closed Convex Sets

A subset C of RL will be called convex if every line segment {λh + (1 − λ)h′ : λ ∈ [0, 1]}, with

endpoints any h,h′ ∈ C, lies in C.

Given any set C ⊂ R
L, define the (metric) distance function d(·, C) : RL → R to C as follows:

∀x ∈ R
L, d(x, C) := inf{‖x− f‖ : f ∈ C}. If we assume now that C is closed and convex, then

the (metric) projection onto C is defined as the mapping PC : RL → C which maps to an x ∈ R
L the

unique PC(x) ∈ C such that ‖x− PC(x)‖ = d(x, C).

5.1. Projecting onto a hyperslab. The metric projection operator PSn[ǫ] onto the hyperslab (5)

takes the following simple analytic form [22, 23]:

∀h ∈ R
L, PSn[ǫ](h) = h+



















yn−ǫ−hTxn

‖xn‖2 xn, if yn − ǫ > hTxn,

0, if |hTxn − yn| ≤ ǫ,

yn+ǫ−hTxn

‖xn‖2 xn, if yn + ǫ < hTxn.

(10)

5.2. Projecting onto the weighted ℓ1 ball. The following theorem computes, in a finite number

of steps, the exact projection of a point onto a weighted ℓ1 ball. The result generalizes the projection

mapping computed for the case of the classical unweighted ℓ1 ball in [26]. In words, the projection

mapping exploits the part of the weighted ℓ1 ball that lies in the non-negative hyperoctant of the

associated space. This is because the projection of a point onto the weighted ℓ1 ball lies always in

the same hyperoctant as the point itself. Hence, one may always choose to map the problem on the

non-negative hyperoctant, work there, and then return to the original hyperoctant of the space, where

the point lies. The part of the weighted ℓ1 norm, that lies in the non-negative hyperoctant, can be

seen as the intersection of a closed halfspace and the non-negative hyperoctant, see Fig. 2. It turns out

that if the projection of a point on this specific halfspace has all its components positive, e.g., point x1

8



Ql

H−
l

Hl

R
l

x1

PQl
(x1)

δ
wi

x2

PH−
l
(x2)

Figure 2. This figure illustrates the geometry of the weighted ℓ1 ball Bℓ1 [w, δ], and

more specifically its intersection with the non-negative hyperoctant of Rl. The reason

for studying only the non-negative hyperoctant is justified by Lemma 1. Two points

x1,x2 of R
l are taken to demonstrate the concepts introduced in the manuscript. Notice

that PH−
l
(x1) > 0, which implies by Lemma 2.1 that PQl

(x1) = PH−
l
(x1). Notice also

the case of x2 where some components of PH−
l
(x2) obtain negative values. Such a case

mobilizes Lemma 2.2.

in Fig. 2, then the projection on the halfspace and the projection of the point on the weighted ℓ1 ball

coincide. If, however, some of the components of the projection onto the halfspace are non-positive,

e.g., point x2 in Fig. 2, the corresponding dimensions are ignored and the projection takes place in

the resulting lower dimensional space. It turns out that this projection coincides with the projection

of the point on the weighted ℓ1 ball. The previous procedure is formally summarized next.

Theorem 1. Given an h ∈ R
L\Bℓ1[wn, δ], the following recursion computes, in a finite number of steps

(at most L), the projection of h onto the ball Bℓ1 [wn, δ], i.e., the (unique) vector PBℓ1
[wn,δ](h) ∈ R

L.

The case of h ∈ Bℓ1 [wn, δ] is trivial, since PBℓ1
[wn,δ](h) = h.

(1) Form the vector [|h1|/wn,1, . . . , |hL|/wn,L]
T ∈ R

L.

(2) Sort the previous vector in a non-ascending order (this takes O(L log2 L) computations), so

that [|hτ(1)|/wn,τ(1), . . . , |hτ(L)|/wn,τ(L)]
T , with |hτ(1)|/wn,τ(1) ≥ · · · ≥ |hτ(L)|/wn,τ(L), is obtained.

The notation τ stands for the permutation, which is implicitly defined by the sorting algorithm.

Keep in memory the inverse τ−1 which moves the sorted elements back to the original positions.

(3) Let r1 := L.

(4) Let l = 1. While l ≤ L, do the following.

(a) Let λ∗ := l.

(b) Find the maximum j∗ among those j ∈ 1, rl such that
|hτ(j)|
wn,τ(j)

>
∑rl

i=1 wn,τ(i)|hτ(i)|−δ
∑rl

i=1 w
2
n,τ(i)

.

(c) If j∗ = rl then break the loop.

(d) Otherwise, set rl+1 := j∗.

(e) Increase l by 1, and go back to Step 4a.

9



(5) Form the vector p̂ ∈ R
rλ∗ whose j-th component is given by p̂j := |hτ(j)|−

∑rλ∗
i=1 wn,τ(i)|hτ(i)|−δ
∑rλ∗

i=1 w2
n,τ(i)

wn,τ(j).

(6) Use the inverse mapping τ−1, met in step 2, to insert the number p̂j into the τ−1(j) position

of the L-dimensional vector p, i.e., pτ−1(j) := p̂j, ∀j ∈ 1, rλ∗
, and fill in the remaining L − rλ∗

positions of p with zeros.

(7) The desired projection is PBℓ1
[wn,δ](h) = [sgn(h1)p1, . . . , sgn(hL)pL]

T ∈ R
L, where the symbol

sgn(·) stands for the sign of a real number.

�

Proof. The proof is given in Appendix A. It follows a geometric approach, instead of the Lagrange

multipliers methodology, which was followed in [26] for the case of the unweighted ℓ1 norm. �

6. Weighting the ℓ1 Ball

Motivated by the strategy adopted in [19], the sequence of weights (wn)n∈Z≥0
is designed as follows;

let the i-th component of the vector wn be given by

wn,i :=
1

|hn,i|+ ǫ′n
, ∀i ∈ 1, L, ∀n ∈ Z≥0, (11)

where (ǫ′n)n∈Z≥0
is a sequence of small positive parameters, which are used in order to avoid division by

zero. An illustration of the induced geometry can be seen in Fig. 1. A way to design the parameters

(ǫ′n)n∈Z≥0
will be given in the next section. The corresponding algorithm will be referred to as the

Adaptive Projection Algorithm onto Weighted ℓ1 balls (APWL1). The unweighted case, i.e., when

wn := 1, ∀n ∈ Z≥0, will be also considered and is denoted as APL1.

Remark 1. The radius δ of the ℓ1 norm, on which we project, depends on whether the unweighted or

the weighted version is adopted. In the unweighted ℓ1 norm case, the optimum value of the radius is

apparently δ := ‖h∗‖ℓ1. However, in the weighted case, δ is set equal to S = ‖h∗‖ℓ0. The reason for

this is the following.

Consider the desirable situation where our sequence of estimates (hn)n∈Z≥0
converges to h∗, i.e.,

limn→∞ hn = h∗. Moreover, let ǫ′n ≥ ǫ′ > 0, ∀n ∈ Z≥0, where ǫ′ is a user-defined parameter. Then,
∑L

i=1wn,i|hn,i| ≤
∑L

i=1
|hn,i|

|hn,i|+ǫ′
, ∀n ∈ Z≥0, and thus,

lim sup
n→∞

L
∑

i=1

wn,i|hn,i| ≤ lim sup
n→∞

L
∑

i=1

|hn,i|

|hn,i|+ ǫ′
= lim

n→∞

L
∑

i=1

|hn,i|

|hn,i|+ ǫ′

=
∑

i∈supp(h∗)

|h∗,i|

|h∗,i|+ ǫ′
+

∑

i/∈supp(h∗)

|h∗,i|

|h∗,i|+ ǫ′
<

∑

i∈supp(h∗)

|h∗,i|

|h∗,i|
= ‖h∗‖ℓ0 .

The previous strict inequality and the definition of lim sup suggest that there exists an m1 ∈ Z≥0

such that ∀n ≥ m1 we have
∑L

i=1wn,i|hn,i| ≤ ‖h∗‖ℓ0. In other words, we obtain that ∀n ≥ m1,

hn ∈ Bℓ1 [wn, ‖h∗‖ℓ0 ]. Hence, a natural choice for δ in the design of the constraint set Bℓ1 [wn, δ] is

10



‖h∗‖ℓ0 . At least, such a choice is justified ∀n ≥ m1, since it becomes a necessary condition for having

(hn)n∈Z≥0
converge to the desirable h∗. �

7. Convergence Properties of the Algorithm

It can be shown that, under certain assumptions, the previous algorithm produces a sequence of

estimates (hn)n∈Z≥0
, which converges to a point located arbitrarily close to an intersection as in (7).

The convergence of the algorithm is guaranteed even if a finite number of closed convex sets do not

share any nonempty intersection with the rest of the convex constraints in (7). This is important, since

it allows for a finite number of data outliers not to disturb the convergence of the algorithm.

Assumptions.

(1) Define ∀n ∈ Z≥0, Ωn := Bℓ1 [wn, δ]∩
(

⋂

j∈Jn
Sj [ǫ]

)

, i.e., the set Ωn is defined as the intersection

of the weighted ℓ1 ball and the hyperslabs that are considered at time n. Assume that there

exists a z0 ∈ Z≥0 such that Ω :=
⋂

n≥z0
Ωn 6= ∅. That is, with the exception of a finite number

of Ωns, the rest of them have a nonempty intersection.

(2) Choose a sufficiently small ǫ′′ > 0, and let ∀n ∈ Z≥0,
µn

Mn
∈ [ǫ′′, 2− ǫ′′].

(3) The interior of Ω is nonempty, i.e., int(Ω) 6= ∅. For the definition of int(·) see Fact 2 in Appendix

B.

(4) Assume that ω̌ := inf{ω
(n)
j : j ∈ Jn, n ∈ Z≥0} > 0. In words, none of the weights, used to

combine the projections onto the hyperslabs, will fade away as time n advances.

�

Theorem 2 (Convergence analysis of the Algorithm). Under the previously adopted assumptions, the

following properties can be established.

(1) Every update takes us closer to the intersection Ω. In other words, the convergence is monotonic,

that is, ∀n ≥ z0, d(hn+1,Ω) ≤ d(hn,Ω).

(2) Asymptotically, the distance of the obtained estimates from the respective hyperslabs tends to

zero. That is, limn→∞max{d(hn, Sj[ǫ]) : j ∈ Jn} = 0.

(3) Similarly, the distance of the obtained estimates from the respective weighted ℓ1 balls tends

asymptotically to zero. That is, limn→∞ d(hn, Bℓ1[wn, δ]) = 0.

(4) Finally, there exists an h̃∗ ∈ R
L such that the sequence of estimates (hn)n∈Z≥0

converges to,

i.e., limn→∞ hn = h̃∗, and that

h̃∗ ∈
(

lim inf
n→∞

Bℓ1 [wn, δ]
)

∩

(

lim inf
n→∞

⋂

j∈Jn

Sj[ǫ]

)

.

Here, lim infn→∞Cn :=
⋃

n≥0

⋂

m≥n Cm, for any sequence (Cn)n∈Z≥0
⊂ R

L, and the overline

denotes the closure of a set. In other words, the algorithm converges to a point that lies

arbitrarily close to an intersection of all the involved property sets.

�
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Figure 3. Sparse system identification example with L = 100 and S = 5. (a) and

(b) shows the performance comparison of the proposed techniques with the LMS-based

methods for high and low noise respectively. (c) shows the effect of different q values in

comparison to the LASSO performance.

Proof. The proof of these results, several auxiliary concepts, as well as details on which assumptions

are activated, in order to prove each result, can be found in Appendix B. �

Remark 2. Regarding Assumption 3, the condition int
⋂

n∈Z≥0
Bℓ1 [wn, δ] 6= ∅ can be easily satisfied.

To see this, choose arbitrarily a sufficiently small ǫ′ > 0, and let in (11): ǫ′n ≥ ǫ′, ∀n ∈ Z≥0. Then, notice

by Fig. 2 that ∀n ∈ Z≥0, ∀i ∈ 1, L, δ
wn,i

= δ(|hn,i|+ ǫ′n) ≥ δǫ′n ≥ δǫ′. This clearly implies that ∀n ∈ Z≥0,

Bℓ1 [1, δǫ
′] ⊂ Bℓ1 [wn, δ], ∀n ∈ Z≥0. It is easy now to verify that B(0, δǫ′√

L
) := {h ∈ R

L : ‖h‖ < δǫ′√
L
} ⊂

Bℓ1 [1, δǫ
′] ⊂

⋂

n∈Z≥0
Bℓ1 [wn, δ], which implies, of course, that 0 ∈ int

⋂

n∈Z≥0
Bℓ1 [wn, δ] 6= ∅. �

8. Performance evaluation

In this section, the performance of the proposed algorithms is evaluated against both time-invariant

and time-varying signals and systems. It is also compared to a number of other online algorithms such

as the Zero-Attracting LMS (ZA-LMS) [6], the Reweighted ZA-LMS (RZA-LMS) [6], and the Recursive

LASSO (RLASSO) [7]. Moreover, the LASSO performance, when solved with batch methods [27, 28]

is also given, since it serves as a benchmark for the best achievable performance with ℓ1-regularized LS

solvers. All the performance curves are the result from ensemble averaging of 100 independent runs.

Moreover, for all the projection based algorithms tested, in all simulation examples, µn was set equal

to Mn/2 and the hyperslabs parameter ǫ was set equal to 1.3 × σ, with σ being the noise standard

deviation. Even though such a choice may not be necessarily optimal, the proposed algorithms turn

out to be relatively insensitive to the values of these parameters. Finally, ω
(n)
j of (8) are set equal to

1/q, ∀j ∈ Jn, ∀n ∈ Z≥0.

8.1. Time-invariant case. In this simulation example, a time-invariant system having L = 100

coefficients is used. The system is sparse with S = 5, i.e., it has only five nonzero coefficients, which
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are placed in arbitrary positions. The input signal x is formed with entries drawn from a zero-mean

normal distribution with variance 1.

In Figs. 3(a) and 3(b) the performance of the new algorithm is compared with that obtained by

the LMS-based methods, in different noise levels. The noise variance was set equal to two different

values, i.e., σ2
n = 0.1 and σ2

n = 0.001 corresponding to SNR values of approximately −3dB and

17dB, respectively. Two different values of the parameter q have been considered, namely 5 an 25.

Moreover, with respect to the ZA-LMS and the RZA-LMS, the “optimized” tag indicates that the free

parameters µ and ρ were optimized, in order to give the best performance at the 450th iteration. A

different parameter setup could lead to faster convergence of both LMS-based methods, albeit at the

expense of higher error-floors. In Fig. 3(a) we observe that APWL1 exhibits the best performance

both with respect to convergence speed as well as steady-state error floor. In fact, the larger the value

of q is the faster the convergence becomes. However, when the unweighted ℓ1 ball is used (APL1), the

method assumes relatively high error-floors, worse than both the LMS-based methods.

In all the cases, unless the contrary is explicitly stated, the adopted values for δ were: δ := ‖h∗‖ℓ1
and δ := S for the APL1 and the APWL1 respectively. The sensitivity of these methods, on using

different values of δ, will be discussed in section 9.1. Moreover, the adaptation strategy of ǫ′n in (11)

was decided upon the following observation. A very small ǫ′n, in the range of [0.001, 0.01], leads to low

error-floors but the convergence speed is compromised. On the other hand, when ǫ′n is relatively large,

e.g., ǫ′n ≥ 0.1, then fast convergence speed is favored at the expense of a higher steady state error

floor. In order to tackle this issue efficiently, ǫ′n can start with a high value and then getting gradually

smaller. Although other scenarios may be possible, in all the time invariant examples, we have chosen:

ǫ′n := ǫ′ + 1
n+1

, ∀n ∈ Z≥0, where ǫ′ is a user-defined small positive constant.

Fig. 3(b) corresponds to a low noise level, where the improved performance of the proposed algorithm,

compared to that of LMS-based algorithms, is even more enhanced.

It suffices to say, that this enhanced performance is achieved at the expense of higher complexity.

The LMS-based algorithms require O(L) multiply/add operations, while the APWL1 demands q times

more multiply/add operations. However, in a parallel processing environment, the dependence on q

can be relaxed.

In Fig. 3(c) the performance improvement of APWL1, as the q value is increasing, is examined

and compared to performance of the RLASSO algorithm. In this system identification case, the

L × K regression matrices, HT
τ , in [7] are built using the input vectors (xn)n∈Z≥0

according to

[xL+τK−K , . . . ,xL+τK−1], for τ ∈ Z≥0, and K ∈ Z>0. Parameter K was set equal to 5. As a ref-

erence, the batch LASSO solution is also given, using the true delta value, i.e., δ := ‖h∗‖ℓ1. The test is

performed for two different noise levels with the solid and the dotted performance curves corresponding

to σ2
n = 0.1 and σ2

n = 0.001. Clearly, the convergence speed rapidly improves as q increases, and the

rate of improvement is more noticeable in the range of small values of q.
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Figure 4. Sparse signal reconstruction example with L = 2000 and S = 20, for high

and low noise levels.

Observe that for large values of q, the performance gets “closer” to the one obtained by the LASSO

and RLASSO methods. Of course, the larger the q the “heavier” the method becomes from a com-

putationally point of view. However, even for the value of q = 60 the complexity remains much lower

than that of RLASSO. The complexity of the latter algorithm rises up to the order of O (rL2), where

r is the number of iterations for the cost function minimization in [7, (7)]. Indicatively, in the specific

example r needed to be larger than L in order the method to converge for all the realizations that were

involved.

In the sequel, we turn our attention to the estimation of a large vector. We will realize it in the

context of a signal reconstruction task. We assume a sparse signal vector of 2000 components with

S = 20 arbitrarily positioned nonzero components having values drawn from a zero-mean normal

distribution of unit variance. In this case, the observations are obtained from inner products of the

unknown signal with independent random measurement vectors, having values distributed according

to zero-mean normal distribution of unit variance. The results, are depicted in Fig. 4 for σ2
n = 0.1

(SNR=−10dB), and σ2
n = 0.001 (SNR=10dB), drawn with solid and dashed lines, respectively. It is

readily observed that the same trend, which was discussed in the previous experiments, holds true

for this example. It must be pointed out that in the signal reconstruction task, the input signal may

not necessarily have the shift invariance property [29, 30]. Hence, techniques that build around this

property and have extensively been used in order to reduce complexity in the context of LS algorithms,

are not applicable for such a problem. Both, LMS and the proposed algorithmic scheme do not utilize

this property.

8.2. Time-varying case. It is by now well established in the adaptive filtering community, e.g., [29],

that convergence speed and tracking ability of an algorithm do not, necessarily, follow the same trend.

An algorithm may have good converging properties, yet its tracking ability to time variations may not

be good, or vice versa. There are many cases where LMS tracks better than the RLS. Although the
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Figure 5. Time-varying sparse system identification example. The system impulse

response changes abruptly at iteration #501.

theoretical analysis of the tracking performance is much more difficult, due to the non-stationarity of

the environment, related simulated examples are always needed to demonstrate the performance of an

adaptive algorithm in such environments. To this end, in this section, the performance of the proposed

method to track time-varying sparse systems is investigated. Both, the number of nonzero elements of

h∗ as well as the values of the system’s coefficients are allowed to undergo sudden changes. This is a

typical scenario used in adaptive filtering in order to study the tracking performance of an algorithm

in practice. The system used in the experiments is 100 coefficients long. The system change is realized

as follows: For the first 500 time instances, the first 5 coefficients are set equal to 1. Then, at time

instance n = 501 the second and the fourth coefficients are changed to zero, and all the odd coefficients

from #7 to #15 are set equal to 1. Note that the sparsity level, S, also changes at time instance

n = 501, and it becomes 8 instead of 5. The results are shown in Fig. 5 with the noise variance being

set equal to 0.1.

The curve indicated with squares corresponds to the proposed, APWL1 method with q = 15. The

performance of the RLASSO scheme with forgetting factor β = 1 is denoted by circles. The latter

clearly outperforms the rest of the methods up to time instance 500. This is expected, since LS-type

of algorithms are known to have fast converging properties. Note that up to this time instant, the

example coincides with that shown with solid curves in Fig. 3(c). However, the algorithm lucks the

“agility” of fast tracking the changes that take place after convergence, due to its long memory. In

order to make it track faster, the forgetting factor β has to be decreased, in order to “forget” the remote

past. However, this affects its (initial) converging properties and in particular the corresponding error

floor.

When β = 0.8 (curve denoted by diamonds), the tracking speed of the RLASSO is significantly

improved, albeit at the expense of significantly increased error floor. The significant increase in the

error floor is also noticed in the first period, where it converges fast, yet to a steady state of increased
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Figure 6. Sensitivity of APWL1 and LASSO to the δ parameter.

misadjustment error. Adjusting the β parameter to lead to lower error floors, one has to sacrifice

tracking speed. For the value of β = 0.9, the RLASSO (curve denoted by stars) achieves the same

tracking speed as our proposed method, however its error floor remains notably higher. In fact, the

steady state performance of RLASSO in this case, reaches the levels of RZA-LMS (curve denoted by

dots).

There are two issues related to the proposed method that have to be discussed for the time-varying

case. The first concerns the value of δ and the other the adaptation strategy of ǫ′n. Physical reasoning

suggests that δ, for the weighted ℓ1 ball, should be set equal to 5 for the first 500 iterations and then

take the value 8. However, the actual sparsity levels can not be known in advance. As a result, in the

example of Fig. 5, δ was fixed to 9. As it will be discussed soon, the method is rather insensitive against

overestimated δ values. Concerning ǫ′n, the adaptation strategy discussed in the previous section, needs

a slight modification. Due to the fact that the system undergoes changes, the algorithm has to be alert

to track changes. In order to achieve this, the algorithm has the ability to monitor abrupt changes

of the orbit (hn)n∈Z≥0
. Whenever the estimated impulse response changes considerably, and such a

change also appears in the orbit (hn)n∈Z≥0
, ǫ′n in (11) is reset to ǫ′ + 1 and it is gradually reduced

similarly to the previous example.

9. Sensitivity of APWL1 to Non ideal Parameter Setting

The robustness of any technique is affected by its sensitivity to non “optimized” configurations. In

this section, the sensitivity of APWL1 on δ and ǫ is examined. The sensitivity of APWL1 is compared to

the sensitivity that LASSO and LMS-based algorithms have with respect to their associated parameters.

9.1. Comparing to LASSO. In Fig. 6, the solid lines indicated by diamonds, crosses and circles

correspond to the performance of the APWL1, with q = 30, when the true δ parameter is overes-

timated by 50%, 100% or underestimated by 10%, respectively. The system h∗ under consideration

has L = 100, S = 5 and σ2
n = 0.1. The best performance, drawn with the solid curve indicated with
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Figure 7. Sensitivity of the LMS-based methods on the µ and ρ parameters compared

to the sensitivity of APWL1 to δ and ǫ.

squares, is achieved when the APWL1 method is supplied with the true δ value, i.e., when δ = S. We

observe that the tolerance in δ underestimation is very limited, since even an underestimation by 10%

leads to a significant performance degradation. On the other hand, APWL1 is rather insensitive to

overestimation. Indeed, overestimation even by 100%, compared to the true value, leads to acceptable

results. For comparison, the sensitivity of the standard LASSO is presented with dashed lines. In this

case, the optimized δ value equals to ‖h∗‖ℓ1 . The sensitivity of LASSO is clearly higher, particularly to

the steady-state region. Observe, that only a 25% deviation from the optimum value (dashed line with

diamonds) causes enough performance degradation to bring LASSO at a higher MSE regime, compared

APWL1. Moreover, LASSO, similarly to APWL1, exhibits limited tolerance in δ underestimated δ

values.

9.2. Comparing to LMS-based techniques. Besides the δ parameter, APWL1 also needs specifi-

cation of the hyperslabs width, i.e., the parameter ǫ. On the other hand, LMS-based methods need the

specification of µ and ρ. Fig. 7 shows the performance degradation of APWL1 (curves with x-crosses),

ZA-LMS (curves with circles) and RZA-LMS (curves with rectangles), when they are configured with

parameter values which deviate from the “optimum” ones. The x-axis indicates deviation, from the

“optimal” values, in percentage. The problem setting is the one shown in Fig. 3(b) and the reported

MSE is always evaluated at time instance 450, where convergence is assumed to have been achieved.

The 0% discrepancy point, coincides with the best achieved performance of each method. For the LMS-

based methods, the solid and dashed curves correspond to µ and ρ, respectively. For the APWL1, the

dashed and the solid curves correspond to ǫ and δ, respectively. Starting with the latter parameter, as

expected from the discussion in section 9.1, even a slight underestimation, i.e., negative deviation from

the optimum, leads to a sudden performance degradation. On the positive side, the method exhibits a

very low sensitivity. With respect to ǫ, the sensitivity of APWL1 is similar to the sensitivity exhibited

by the LMS-based methods on the ρ parameter. However, LMS-based methods show an increased
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sensitivity on the µ parameter for both negative and positive deviation. In addition, the optimum µ

value depends on the length of h∗, as it is the case with the standard non-regularized LMS [30].

10. Conclusions

A novel efficient algorithm, of linear complexity, for sparse system adaptive identification was pre-

sented, based on set theoretic estimation arguments. Sparsity was exploited by the introduction of a

sequence of weighted ℓ1 balls. The algorithm consists of a sequence of projections on hyperslabs, that

measure data mismatch with respect to the training data, and on weighted ℓ1 balls. The projection

mapping on a weighted ℓ1 ball has been derived and a full convergence proof of the algorithm has been

established. A comparative performance analysis, using simulated data, was performed against the

recently developed online sparse LMS and sparse LS-type of algorithms.

Appendix A. The metric projection mapping onto the weighted ℓ1 ball Bℓ1[w, δ]

The results in this section are stated for any Euclidean space R
l, where l ∈ 1, L. Moreover, given

two vectors x := [x1, . . . , xl]
T ,y := [y1, . . . , yl]

T ∈ R
l, then the notation x ≤ (<)y means that ∀i ∈ 1, l,

xi ≤ (<)yi.

A well-known property of the metric projection mapping PC onto a closed convex set C, which will

be used in the sequel, is the following [22, 23]:

∀x ∈ R
l, ∀f ∈ C, ‖x− PC(x)‖

2 ≤ ‖x− f‖2 − ‖PC(x)− f‖2. (12)

Define Ql := Bℓ1 [w, δ] ∩R
l
≥0, where R

l
≥0 stands for the non-negative hyperoctant of Rl (see Fig. 2).

Define also the following closed halfspace: H−
l := {u ∈ R

l :
∑l

i=1wiui = wTu ≤ δ}. Clearly the

boundary of H−
l is the hyperplane: Hl := {u ∈ R

l :
∑l

i=1wiui = wTu = δ}. It is easy to verify that

Ql = H−
l ∩ R

l
≥0. Clearly, the boundary of Ql is Hl ∩ R

l
≥0.

Lemma 1. (1) For any x ∈ R
l, the projection PBℓ1

[w,δ](x) belongs to the same hyperoctant as x

does, i.e., if x∗ := PBℓ1
[w,δ](x), then sgn(x∗,i) = sgn(xi), ∀i ∈ 1, l.

(2) Define the mapping abs : x = [x1, . . . , xl]
T 7→ [|x1|, . . . , |xl|]

T , ∀x ∈ R
l. It can be easily verified

that abs is an one-to-one mapping of any hyperoctant of Rl onto R
l
≥0, i.e., it is a bijection. Fix

arbitrarily an x ∈ R
l. Consider the mapping abs which bijectively maps the hyperoctant, in

which x is located, to R
l
≥0. Then, PBℓ1

[w,δ](x) = abs−1
(

PBℓ1
[w,δ](abs(x))

)

, where abs−1 stands

for the inverse mapping of abs. In other words, in order to calculate the projection mapping

onto Bℓ1[w, δ], it is sufficient to study only the case of Rl
≥0.

�

Proof. (1) Without any loss of generality, assume that x belongs to the non-negative hyperoctant

of Rl. We will show that also every component of x∗ is, also, non-negative. In order to derive

a contradiction, assume that there exist some negative components of x∗. To make the proof

short, and with no loss of generality, assume that the only negative component of x∗ is x∗,1.
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Define the vector u∗ such that u∗,1 := 0 and u∗,i := x∗,i, ∀i ∈ 2, l. Since x∗ ∈ Bℓ1 [w, δ], we have

that
∑l

i=1wi|x∗,i| ≤ δ, which easily leads to
∑l

i=1wi|u∗,i| =
∑l

i=2wi|x∗,i| ≤
∑l

i=1wi|x∗,i| ≤ δ,

i.e., u∗ ∈ Bℓ1 [w, δ]. Moreover, notice that since x∗,1 < 0 = u∗,1, then x1 − x∗,1 > x1 − u∗,1 =

x1 ≥ 0. Hence, ‖x− u∗‖
2 < (x1 − x∗,1)

2 +
∑l

i=2(xi − x∗,i)
2 = ‖x− x∗‖

2. This contradicts the

fact that x∗ = PBℓ1
[w,δ](x), and establishes Lemma 1.1.

(2) Fix arbitrarily an x ∈ R
l. As we have seen before, PBℓ1

[w,δ](x) will be located in the same

hyperoctant as x. Let any u ∈ Sl, where Sl stands for the intersection of Bℓ1 [w, δ] with the

same hyperoctant where x belongs to. As a result, we have that sgn(xi) = sgn(ui), ∀i ∈ 1, l,

and

‖x− u‖2 =
l
∑

i=1

(xi − ui)
2 =

l
∑

i=1

(sgn(xi)|xi| − sgn(ui)|ui|)
2

=
l
∑

i=1

(sgn(xi)|xi| − sgn(xi)|ui|)
2 =

l
∑

i=1

(|xi| − |ui|)
2

= ‖abs(x)− abs(u)‖2.

Notice here that abs is a bijection from Sl to Ql, so that the previous equality results into the

following:

‖abs(x)− PBℓ1
[w,δ](abs(x))‖ = min

u′∈Ql

‖abs(x)− u′‖ = min
u∈Sl

‖abs(x)− abs(u)‖

= min
u∈Sl

‖x− u‖ = ‖x− PBℓ1
[w,δ](x)‖ = ‖abs(x)− abs

(

PBℓ1
[w,δ](x)

)

‖.

Therefore, by the uniqueness of the projection, abs
(

PBℓ1
[w,δ](x)

)

= PBℓ1
[w,δ](abs(x)), and

Lemma 1.2 is established.

�

Lemma 2. Let an x ∈ R
l
≥0 \Ql, and

x∗ := PH−
l
(x) = x−

max{0,xTw − δ}

‖w‖2
w. (13)

(1) Assume that x∗ > 0. Then, PQl
(x) = PH−

l
(x).

(2) Make the following partitions x = [ x̂x̃ ], x∗ =
[

x̂∗

x̃∗

]

, where l̂, l̃ ∈ 1, l, l̂ + l̃ = l, and x̂, x̂∗ ∈ R
l̂,

x̃, x̃∗ ∈ R
l̃. Assume, now, that there exists an l̃ ∈ 1, l such that x̃∗ ≤ 0. Then,

PQl
(x)T = [PQ

l̂
(x̂)T , 0T ]T

�

Proof. (1) Since x∗ := PH−
l
(x) > 0, it is clear that x∗ ∈ H−

l ∩ R
l
≥0 = Ql. Hence,

min
u∈Ql

‖x− u‖ ≤ ‖x− x∗‖ = ‖x− PH−
l
(x)‖ = min

u∈H−
l

‖x− u‖ ≤ min
u∈Ql

‖x− u‖,
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where the last inequality comes from Ql ⊂ H−
l . Thus, ‖x− PH−

l
(x)‖ = minu∈Ql

‖x− u‖.

Hence, by the uniqueness of the projection, PQl
(x) = PH−

l
(x), and Lemma 2.1 is established.

(2) Since Hl is a hyperplane, ∀u ∈ Hl, (u − x∗)
T (x − x∗) = 0, which implies, of course, that

∀u ∈ Hl ∩ R
l
≥0, (u− x∗)

T (x− x∗) = 0. Thus, ∀u ∈ Hl ∩ R
l
≥0,

‖u− x‖2
Rl = ‖u− x∗‖

2
Rl + ‖x∗ − x‖2

Rl = ‖û− x̂∗‖
2
Rl̂ + ‖ũ− x̃∗‖

2
Rl̃ + ‖x∗ − x‖2

Rl. (14)

This in turn implies that

PQl
(x) = argmin{‖u− x‖2

Rl : u ∈ Hl ∩ R
l
≥0}

= argmin{‖u− x‖2
Rl : û ∈ R

l̂
≥0, ũ ∈ R

l̃
≥0, û

T ŵ + ũT ŵ = δ}

= argmin{‖û− x̂∗‖
2
Rl̂
+ ‖ũ− x̃∗‖

2
Rl̃ : û ∈ R

l̂
≥0, ũ ∈ R

l̃
≥0, û

T ŵ + ũT ŵ = δ}. (15)

By our initial assumption x̃∗ ≤ 0. Hence, it is easy to verify that ∀û ∈ R
l̂
≥0, ∀ũ ∈ R

l̃
≥0 \ {0},

‖û− x̂∗‖
2
Rl̂
+ ‖0− x̃∗‖

2
Rl̃

< ‖û− x̂∗‖
2
Rl̂
+ ‖ũ− x̃∗‖

2
Rl̃
, which evidently suggests that

argmin{‖û− x̂∗‖
2
Rl̂ + ‖ũ− x̃∗‖

2
Rl̃ : û ∈ R

l̂
≥0, ũ ∈ R

l̃
≥0, û

T ŵ + ũT ŵ = δ}

= argmin{‖û− x̂∗‖
2
Rl̂
+ ‖ũ− x̃∗‖

2
Rl̃ : û ∈ R

l̂
≥0, û

T ŵ = δ, ũ = 0} (16)

Now, since x ∈ R
l
≥0 \Ql, it is clear by the geometry of the Ql that PQl

(x) will be located on

Hl ∩ R
l
≥0. Hence, by (14), (15), and (16), one can verify the following:

PQl
(x) = argmin{‖u− x‖2

Rl : u ∈ Hl ∩ R
l
≥0}

= argmin{‖û− x̂∗‖
2
Rl̂ + ‖ũ− x̃∗‖

2
Rl̃ : û ∈ R

l̂
≥0, ũ ∈ R

l̃
≥0, û

T ŵ + ũT ŵ = δ}

= argmin{‖û− x̂∗‖
2
Rl̂ + ‖ũ− x̃∗‖

2
Rl̃ : û ∈ R

l̂
≥0, û

T ŵ = δ, ũ = 0}

= argmin{‖u− x‖2
Rl : û ∈ R

l̂
≥0, û

T ŵ = δ, ũ = 0}

= argmin{‖û− x̂‖2
Rl̂ + ‖ũ− x̃‖2

Rl̃ : û ∈ R
l̂
≥0, û

T ŵ = δ, ũ = 0}

= argmin{‖û− x̂‖2
Rl̂ : û ∈ R

l̂
≥0, û

T ŵ = δ, ũ = 0}

= argmin{‖û− x̂‖2
Rl̂

: û ∈ Hl̂ ∩ R
l̂
≥0, ũ = 0}

=

[

PQ
l̂
(x̂)

0

]

.

This establishes Lemma 2.2.

�

Lemma 3. Assume an x ∈ R
l
≥0 such that ∀i ∈ 1, l − 1, xi

wi
≥ xi+1

wi+1
. Moreover, let x∗ := PH−

l
(x).

Assume that there exists an i0 ∈ 1, l such that x∗,i0 ≤ 0. Then, ∀i ≥ i0, x∗,i ≤ 0. �
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Proof. Here we consider only the case where x ∈ R
l
≥0 \Ql, i.e., x

Tw − δ > 0. Notice by (13) that

x∗,i ≤ 0 ⇔
xi

wi
≤

xTw − δ

‖w‖2
. (17)

Now, notice also that by the construction of x and by our initial assumption, we have that

∀i ≥ i0,
xi

wi
≤

xi0

wi0

≤
xTw − δ

‖w‖2
.

However, by (17), this is equivalent to x∗,i ≤ 0, ∀i ≥ i0, which establishes Lemma 3. �

A.1. The proof of Theorem 1. Notice that Step 1 is due to Lemma 1. Step 4b refers to the attempt

of the algorithm to locate the negative components of a vector, according to Lemma 3. Step 4c refers

to Lemma 2.1, while Step 4d corresponds to Lemma 2.2.

Appendix B. The proof of Theorem 2

B.1. Preliminaries.

Definition 1 (Subgradient and subdifferential [31]). Given a convex function Θ : R
L → R, a

subgradient Θ′(x) of Θ at x ∈ R
L is an element of R

L, which satisfies the following property:

Θ′(x)T (y − x) + Θ(x) ≤ Θ(y), ∀y ∈ R
L. The set of all the subgradients of Θ at the point x will

be called the subdifferential of Θ at x, and will be denoted by ∂Θ(x). Notice that if Θ is (Gâteaux)

differentiable at x, then the only subgradient of Θ at x is its differential. �

Fact 1. The subdifferential of the metric distance function d(·, C) to a closed convex set C ⊂ R
L is

given as follows [31]:

∂d(x, C) =







NC(x) ∩B[0, 1], x ∈ C,

x−PC(x)
d(x,C)

, x /∈ C,

where NC(x) := {y ∈ R
L : yT (f −x) ≤ 0, ∀f ∈ C}, and B[0, 1] := {y ∈ R

L : ‖y‖ ≤ 1}. Notice that

∀x ∈ R
L, ‖d′(x, C)‖ ≤ 1, where d′(x, C) stands for any subgradient in ∂d(x, C). �

We will give, now, an equivalent description of the Algorithm in (8), which will help us in proving

several properties of the algorithm.

Lemma 4 (Equivalent description of the Algorithm in (8)). Define the following non-negative func-

tions:

∀n ∈ Z≥0, ∀x ∈ R
L, Θn(x) :=







∑

j∈Jn

ω
(n)
j d(hn,Sj [ǫ])

Ln
d(x, Sj[ǫ]), if In 6= ∅,

0, if In = ∅,
(18)

where In := {j ∈ Jn : hn /∈ Sj [ǫ]}, and Ln :=
∑

j∈Jn
ω
(n)
j d(hn, Sj[ǫ]). Then, (8) can be equivalently

written as follows:

∀n ∈ Z≥0, hn+1 :=







PBℓ1
[wn,δ]

(

hn − λn
Θn(hn)

‖Θ′
n(hn)‖2Θ

′
n(hn)

)

, if Θ′
n(hn) 6= 0,

PBℓ1
[wn,δ](hn), if Θ′

n(hn) = 0,
(19)
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where λn ∈ (0, 2), ∀n ∈ Z≥0, and Θ′
n(hn) is any subgradient of Θn at hn. �

Proof. First, a few comments regarding Ln in (18) are in order. It can be easily verified by the

definition of In that ∃j0 ∈ Jn : hn /∈ Sj0[ǫ], which is in turn equivalent to d(hn, Sj0[ǫ]) > 0. Hence,

Ln ≥ ω
(n)
j0

d(hn, Sj0[ǫ]) > 0, and (18) is well-defined. The reason for introducing Ln in the design is to

give the freedom to the extrapolation parameter µn in (8) to be able to take values greater than or

equal to 2; recall that µn ∈ (0, 2Mn) and Mn ≥ 1, ∀n ∈ Z≥0, in (9).

Basic calculus on subdifferentials [31] and the definition of In suggest that

∂Θn(x) :=







∑

j∈In
ω
(n)
j d(hn,Sj [ǫ])

Ln
∂d(x, Sj [ǫ]), if In 6= ∅,

{0}, if In = ∅.

Hence, in the case where In 6= ∅, Fact 1 implies that

Θ′
n(hn) =

∑

j∈In

ω
(n)
j d(hn, Sj [ǫ])

Ln

hn − PSj [ǫ](hn)

d(hn, Sj[ǫ])

=
1

Ln

∑

j∈In

ω
(n)
j (hn − PSj [ǫ](hn))

=
1

Ln

∑

j∈Jn

ω
(n)
j (hn − PSj [ǫ](hn)). (20)

Clearly, if In 6= ∅, then Θ′
n(hn) = 0 ⇔

∑

j∈Jn
ω
(n)
j PSj [ǫ](hn) = hn. Notice that the same equivalence

holds true also in the case where In = ∅, since in such a case hn ∈
⋂

j∈Jn
Sj [ǫ] ⇔ hn = PSj [ǫ](hn), ∀j ∈

Jn. In other words, we have derived the following: ∀n ∈ Z≥0,Θ
′
n(hn) = 0 ⇔

∑

j∈Jn
ω
(n)
j PSj [ǫ](hn) =

hn. By this result, if we substitute (20) in (19), and if we define µn := λnMn, ∀n ∈ Z≥0, where Mn

is given in (9), then we obtain the recursion given in (8). �

Next are a few observations on the function Θn, which will help us to establish several convergence

properties of the Algorithm in (8). First, notice that

In = ∅ ⇔ hn ∈
⋂

j∈Jn

Sj[ǫ] ⇔
(

ω
(n)
j hn = ω

(n)
j PSj [ǫ](hn), ∀j ∈ Jn

)

⇒ hn =
∑

j∈Jn

ω
(n)
j PSj [ǫ](hn) ⇔ Θ′

n(hn) = 0.

In the previous relation, the symbol ⇒ becomes ⇔, if we assume that
⋂

j∈Jn
Sj [ǫ] 6= ∅ [22, Proposition

2.12]. Hence, if
⋂

j∈Jn
Sj[ǫ] 6= ∅, then, In = ∅ ⇔ hn =

∑

j∈Jn
ω
(n)
j PSj [ǫ](hn) ⇔ Θ′

n(hn) = 0. Moreover,

in the case where
⋂

j∈Jn
Sj [ǫ] 6= ∅, one can verify also by the definition of Θn that

lev≤0 Θn =







⋂

j∈In Sj [ǫ], In 6= ∅,

R
L, In = ∅,

where lev≤0 Θn := {y ∈ R
L : Θn(y) ≤ 0}.
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Additionally, in the case where
⋂

j∈Jn
Sj[ǫ] 6= ∅, then we can establish the following equivalency:

hn ∈ lev≤0Θn ⇔ In = ∅. This can be proved as follows. For the “⇐” direction, we have that

In = ∅ ⇔ hn ∈
⋂

j∈Jn
Sj [ǫ] ⊂ R

L = lev≤0 Θn. As for the “⇒” direction, assume for a contradiction

that In 6= ∅. Then, by the preceding discussion, we have hn ∈
⋂

j∈In Sj [ǫ], which is an absurd result if

we recall the definition of In. Thus, necessarily, In = ∅, and the claim is proved. In other words, in

the case where
⋂

j∈Jn
Sj [ǫ] 6= ∅, then, In = ∅ ⇔ Θ′

n(hn) = 0, and thus

hn ∈ lev≤0 Θn ⇔ Θ′
n(hn) = 0. (21)

Definition 2 (Subgradient projection mapping [32]). Given a convex function Θ : RL → R, such that

lev≤0 Θ 6= ∅, define the subgradient projection mapping TΘ : RL → R
L with respect to Θ as follows:

TΘ(x) :=







x− Θ(x)
‖Θ′(x)‖2Θ

′(x), if x /∈ lev≤0 Θ,

x, if x ∈ lev≤0 Θ,

where Θ′(x) stands for an arbitrarily fixed subgradient of Θ at x. If I stands for the identity mapping

in R
L, the mapping T

(λ)
Θ := I + λ(TΘ − I), λ ∈ (0, 2), will be called the relaxed subgradient projection

mapping. Moreover, similarly to (12), an important property of T
(λ)
Θ is the following [32]:

∀x ∈ R
L, ∀f ∈ lev≤0 Θ,

2− λ

λ
‖x− T

(λ)
Θ (x)‖2 ≤ ‖x− f‖2 − ‖T

(λ)
Θ (x)− f‖2. (22)

�

Now, (12) and (22) can be combined as follows.

Lemma 5. Let a closed convex set C ⊂ R
L, and a convex function Θ : RL → R such that C∩lev≤0 Θ 6=

∅. Then,

∀x ∈ R
L, ∀f ∈ C ∩ lev≤0 Θ,

2− λ

2
‖x− PCT

(λ)
Θ (x)‖2 ≤ ‖x− f‖2 − ‖PCT

(λ)
Θ (x)− f‖2.

�

Proof. This is a direct consequence of [12, Proposition 1]. �

Fact 2 ( [12]). Let a sequence (xn)n∈Z≥0
⊂ R

L, and a closed convex set C ⊂ R
L. Assume that

∃κ > 0 : ∀f ∈ C, ∀n ∈ Z≥0, κ‖xn+1 − xn‖
2 ≤ ‖xn − f‖2 − ‖xn+1 − f‖2.

Assume, also, that there exists a hyperplane Π such that the relative interior of the set C with respect

to Π is nonempty, i.e., riΠ C 6= ∅. Then, ∃x∗ ∈ R
L : x∗ = limn→∞ xn.

Here, given any Υ ⊂ R
L, riΥC := {y ∈ R

L : ∃ρ > 0, B(y, ρ) ∩ Υ ⊂ C}. As a byproduct of this

definition, the interior of C is defined as intC := riRL C. Hence, it becomes clear that if intC 6= ∅,

then we can always find a hyperplane Π ⊂ R
L such that riΠC 6= ∅. This fact will be used in the proof

of Theorem 2.4. �
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Fact 3 ( [12]). Let C ⊂ R
L be a nonempty closed convex set. Assume also an f̊ ∈ intC, i.e., ∃ρ > 0

such that B(f̊ , ρ) ⊂ C. Assume, now, an x ∈ R
L \ C, and a t ∈ (0, 1) such that f̊ + t(x − f̊ ) /∈ C.

Then, d(x, C) > ρ1−t
t
. �

Lemma 6. The set of all subgradients of the collection of convex functions (Θn)n∈Z≥0
, defined in (18),

is bounded, i.e., ∀n ∈ Z≥0, ∀x ∈ R
L, ‖Θ′

n(x)‖ ≤ 1. �

Proof. Fix arbitrarily an n ∈ Z≥0. Here we deal only with the case In 6= ∅, since otherwise, the function

Θn becomes everywhere zero, and for such a function, Lemma 6 holds trivially.

By (18), Fact 1, and some calculus on subdifferentials [31], we obtain that ∀x ∈ R
L, the norm of

any subgradient Θ′
n(x) satisfies the following:

‖Θ′
n(x)‖ = ‖

∑

j∈In

ω
(n)
j d(hn, Sj[ǫ])

Ln
d′(x, Sj[ǫ])‖

= ‖
∑

j∈Jn

ω
(n)
j d(hn, Sj[ǫ])

Ln
d′(x, Sj[ǫ])‖

≤
∑

j∈Jn: x/∈Sj [ǫ]

ω
(n)
j d(hn, Sj [ǫ])

Ln
‖d′(x, Sj[ǫ])‖

+
∑

j∈Jn: x∈Sj [ǫ]

ω
(n)
j d(hn, Sj[ǫ])

Ln
‖d′(x, Sj[ǫ])‖

≤
∑

j∈Jn: x/∈Sj [ǫ]

ω
(n)
j d(hn, Sj [ǫ])

Ln

‖x− PSj [ǫ](x)‖

d(x, Sj[ǫ])
+

∑

j∈Jn: x∈Sj [ǫ]

ω
(n)
j d(hn, Sj[ǫ])

Ln

=
∑

j∈Jn: x/∈Sj [ǫ]

ω
(n)
j d(hn, Sj[ǫ])

Ln
+

∑

j∈Jn: x∈Sj [ǫ]

ω
(n)
j d(hn, Sj[ǫ])

Ln
= 1.

This establishes Lemma 6. �

B.2. The proof of Theorem 2.

(1) Assumption 1, Definition 2, and (21) suggest that (19) can be equivalently written as follows:

∀n ≥ z0, hn+1 = PBℓ1
[wn,δ]T

(λn)
Θn

(hn), where T
(λn)
Θn

stands for the relaxed subgradient projection

mapping with respect to Θn. Notice here that ∀n ≥ z0, lev≤0 Θn =
⋂

j∈In Sj [ǫ] ⊃
⋂

j∈Jn
Sj [ǫ].

Thus, by Assumption 1 and Lemma 5, we have that ∀n ≥ z0, ∀f ∈ Ω,

0 ≤
2− λn

2
‖hn − hn+1‖

2 =
2− λn

2
‖hn − PBℓ1

[wn,δ]T
(λn)
Θn

(hn)‖
2

≤ ‖hn − f‖2 − ‖PBℓ1
[wn,δ]T

(λn)
Θn

(hn)− f‖2 = ‖hn − f‖2 − ‖hn+1 − f‖2 (23)

⇒ ‖hn+1 − f‖ ≤ ‖hn − f‖. (24)

If we apply inff∈Ω on both sides of (24), we establish our original claim.
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(2) The next claim is to show that under Assumption 1, the sequence (‖hn − f‖)n∈Z≥0
converges

∀f ∈ Ω. To this end, fix arbitrarily f ∈ Ω. By (24), the sequence (‖hn − f‖)n≥z0 is non-

increasing, and bounded below. Hence, it is convergent. This establishes the claim.

Next we will show that under Assumption 1, the set of all cluster points of the sequence

(hn)n∈Z≥0
is nonempty, i.e., C((hn)n∈Z≥0

) 6= ∅.

We will first show that the sequence (hn)n∈Z≥0
is bounded. This can be easily verified as

follows; fix arbitrarily an f ∈ Ω and notice that ∀n ≥ z0, ‖hn‖ ≤ ‖hn − f‖+‖f‖ ≤ ‖hz0 − f‖+

‖f‖. Define now D := max{‖hz0 − f‖ + ‖f‖, ‖h0‖, . . . , ‖hz0−1‖}, which clearly implies that

∀n ∈ Z≥0, ‖hn‖ ≤ D. Since (hn)n∈Z≥0
is bounded, there exists a subsequence of (hn)n∈Z≥0

which

converges to an h̃∗ ∈ R
L (Bolzano-Weierstrass Theorem). Hence, h̃∗ ∈ C((hn)n∈Z≥0

) 6= ∅. This

establishes the claim.

Let Assumptions 1 and 2 hold true. Then, we will show that limn→∞Θn(hn) = 0. First, we

will prove that

lim
n→∞

Θn(hn)

‖Θ′
n(hn)‖

= 0. (25)

We will show this by deriving a contradiction. To this end, assume that there exists a δ > 0

and a subsequence (nk)k∈Z≥0
such that ∀k ∈ Z≥0,

Θnk
(hnk

)

‖Θ′
nk

(hnk
)‖ ≥ δ. We can always choose a

sufficiently large k0 such that ∀k ≥ k0, nk ≥ z0.

Let, now, any f ∈ Ω, and recall that Ω ⊂ Bℓ1[wnk
, δ], ∀k ≥ k0. Then, verify that the

following holds true ∀k ≥ k0:

‖hnk+1 − f‖2 = ‖PBℓ1
[wnk

,δ]

(

hnk
− λnk

Θnk
(hnk

)

‖Θ′
nk
(hnk

)‖2
Θ′

nk
(hnk

)

)

− f‖2

≤ ‖hnk
− λnk

Θnk
(hnk

)

‖Θ′
nk
(hnk

)‖2
Θ′

nk
(hnk

)− f‖2

= ‖hnk
− f‖2 + λ2

nk

Θ2
nk
(hnk

)

‖Θ′
nk
(hnk

)‖2
− 2λnk

Θnk
(hnk

)

‖Θ′
nk
(hnk

)‖2
Θ′

nk
(hnk

)
T
(hnk

− f ), (26)

where (12) was used for PBℓ1
[wnk

,δ] in order to derive the previous inequality. By the definition

of the subgradient, we have that Θ′
nk
(hnk

)T (f − hnk
) + Θnk

(hnk
) ≤ Θnk

(f ) = 0. If we merge

this into (26), we obtain the following:

‖hnk+1 − f‖2 ≤ ‖hnk
− f‖2 + λ2

nk

Θ2
nk
(hnk

)

‖Θ′
nk
(hnk

)‖2
− 2λnk

Θ2
nk
(hnk

)

‖Θ′
nk
(hnk

)‖2

= ‖hnk
− f‖2 − λnk

(2− λnk
)

Θ2
nk
(hnk

)

‖Θ′
nk
(hnk

)‖2
.

This, in turn, implies that

∀k ≥ k0, 0 < (ǫ′′δ)2 ≤ λnk
(2− λnk

)
Θ2

nk
(hnk

)

‖Θ′
nk
(hnk

)‖2
≤ ‖hnk

− f‖2 − ‖hnk+1 − f‖2. (27)

25



However, as we have already shown before, (‖hn − f‖)n∈Z≥0
is convergent, and hence it is a

Cauchy sequence. This implies that limk→∞(‖hnk
− f‖2−‖hnk+1 − f‖2) = 0, which apparently

contradicts (27). In other words, (25) holds true.

Notice, now, that for all those n ∈ Z≥0 such that Θ′
n(hn) 6= 0, we have by Lemma 6 that

Θn(hn) = ‖Θ′
n(hn)‖

Θn(hn)

‖Θ′
n(hn)‖

≤
Θn(hn)

‖Θ′
n(hn)‖

. (28)

Notice, also, here that for all those n ∈ Z≥0 such that Θ′
n(hn) = 0, it is clear by the well-known

fact 0 ∈ ∂Θn(hn) ⇔ hn ∈ argmin{Θn(x) : x ∈ R
L} that Θn(hn) = 0. Take limn→∞ on both

sides of (28), and use (25) to establish our original claim.

Let now Assumption 1 holds true. Then we show that there exists a D > 0 such that

∀n ∈ Z≥0, Ln ≤ D. Notice, that ∀n ≥ z0, ∀j ∈ Jn, ∀f ∈ Ω,

d(hn, Sj [ǫ]) = ‖hn − PSj [ǫ](hn)‖ ≤ ‖hn − f‖+ ‖f − PSj [ǫ](hn)‖

≤ 2‖hn − f‖ ≤ 2‖hz0 − f‖,

where we have used (12) and the monotonicity of the sequence (‖hn − f‖)n≥z0. Then, by the

definition of Ln,

∀n ≥ z0, Ln =
∑

j∈Jn

ω
(n)
j d(hn, Sj[ǫ]) ≤ 2

∑

j∈Jn

ω
(n)
j ‖hz0 − f‖ = 2‖hz0 − f‖.

Choose, now, any D > max{2‖hz0 − f‖, L0, . . . , Lz0−1} ≥ 0, and notice that for such a D the

claim holds true.

Let Assumptions 1, 2, and 4 hold true. By (18), we observe that

D

ω̌
Θn(hn) =

D

ω̌

∑

j∈Jn

ω
(n)
j d2(hn, Sj [ǫ])

Ln

≥
D

ω̌

∑

j∈Jn

ω
(n)
j d2(hn, Sj[ǫ])

D

≥
D

ω̌

ω̌

D

∑

j∈Jn

d2(hn, Sj[ǫ]) ≥ max{d2(hn, Sj[ǫ]) : j ∈ Jn}.

Hence, if we take limn→∞ on both sides of the previous inequality, we establish Theorem 2.2.

(3) Here we establish Theorem 2.3. Let Assumptions 1 and 2 hold true. We utilize first (12) and

then (22) in order to obtain the following: ∀f ∈ Ω,

‖(I − PBℓ1
[wn,δ])(T

(λn)
Θn

(hn))‖
2 ≤ ‖T

(λn)
Θn

(hn)− f‖2 − ‖PBℓ1
[wn,δ]T

(λn)
Θn

(hn)− f‖2

= ‖T (λn)
Θn

(hn)− f‖2 − ‖hn+1 − f‖2

≤ ‖hn − f‖2 −
2− λn

λn
‖hn − T

(λn)
Θn

(hn)‖
2 − ‖hn+1 − f‖2 ≤ ‖hn − f‖2 − ‖hn+1 − f‖2.

Take limn→∞ on both sides of this inequality and recall that the sequence (‖hn − f‖)n∈Z≥0
is

convergent, and thus Cauchy, in order to obtain

lim
n→∞

‖(I − PBℓ1
[wn,δ])(T

(λn)
Θn

(hn))‖ = lim
n→∞

d(T
(λn)
Θn

(hn), Bℓ1 [wn, δ]) = 0. (29)
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Moreover, notice that for all n ≥ z0 such that hn /∈ lev≤0 Θn, by (21) we obtain that

‖hn − T
(λn)
Θn

(hn)‖ = ‖hn − hn + λn
Θn(hn)

‖Θ′
n(hn)‖2

Θ′
n(hn)‖ = λn

Θn(hn)

‖Θ′
n(hn)‖

≤ 2
Θn(hn)

‖Θ′
n(hn)‖

.

Take limn→∞ on both sides of this inequality, and recall (25) to easily verify that

lim
n→∞

‖hn − T
(λn)
Θn

(hn)‖ = 0. (30)

Notice, now, that ∀f ∈ Bℓ1 [wn, δ], the triangle inequality implies that

‖hn − f‖ ≤ ‖hn − T
(λn)
Θn

(hn)‖+ ‖T
(λn)
Θn

(hn)− f‖.

If we take inff∈Bℓ1
[wn,δ] on both sides of the previous inequality, then

∀n ∈ Z≥0, d(hn, Bℓ1 [wn, δ]) ≤ ‖hn − T
(λn)
Θn

(hn)‖+ d(T
(λn)
Θn

(hn), Bℓ1 [wn, δ]).

Take, now, limn→∞ on both sides of this inequality, and use (29) and (30) to establish Theo-

rem 2.3.

(4) Next, let Assumptions 1, 2, and 3 hold true. By (23) notice that ∀n ≥ z0, ∀f ∈ Ω,

ǫ′′

2
‖hn − hn+1‖

2 ≤
2− λn

2
‖hn − hn+1‖

2 ≤ ‖hn − f‖2 − ‖hn+1 − f‖2.

This and Fact 2 suggest that ∃h̃∗ ∈ R
L : limn→∞ hn = h̃∗, i.e., {h̃∗} = C((hn)n∈Z≥0

).

Now, in order to establish Theorem 2.4, let Assumptions 1, 2, 3, and 4 hold true. No-

tice that the existence of the unique cluster point h̃∗ is guaranteed by the previously proved

claim. To prove Theorem 2.4, we will use contradiction. In other words, assume that h̃∗ /∈

lim infn→∞
⋂

j∈Jn
Sj [ǫ]. This clearly implies that h̃∗ /∈ lim infn→∞

⋂

j∈Jn
Sj [ǫ]. For the sake of

compact notations, we define here ∀n ∈ Z≥0, Ψn :=
⋂

j∈Jn
Sj [ǫ].

Note that the set lim infn→∞Ψn is convex. This comes from the fact that Ψn and
⋂

m≥n Ψm

are convex, ∀n ∈ Z≥0, and that ∀n ∈ Z≥0,
⋂

m≥n Ψm ⊂
⋂

m≥n+1Ψm.

Since by our initial assumption int
⋂

n≥z0
Ψn 6= ∅, we can always find an f̊ and a ρ > 0 such

that B(f̊ , ρ) ⊂
⋂

n≥z0
Ψn. Hence,

∀n ≥ z0, B(f̊ , ρ) ⊂ Ψn. (31)

Notice, here, that f̊ ∈
⋂

n≥z0
Ψn ⊂

⋃

n∈Z≥0

⋂

m≥n Ψm =: lim infn→∞Ψn ⊂ lim infn→∞Ψn.

Using this, our initial assumption on h̃∗, and the fact that lim infn→∞Ψn is closed and convex,

then we can always find a t ∈ (0, 1) such that ft := f̊+t(h̃∗− f̊ ) /∈ lim infn→∞Ψn. This implies,

by the definition of lim infn→∞Ψn, that

∀n ≥ z0, ft /∈
⋂

m≥n

Ψm. (32)

Now, since limn→∞hn = h̃∗, there exists a z1 ∈ Z≥0 such that ∀n ≥ z1, ‖h̃∗ − hn‖ < ρ(1−t)
2t

.

If we set n equal to max{z0, z1} in (31) and (32), then we readily verify that ∃n0 ∈ Z≥0 such

that n0 ≥ max{z0, z1}, B(f̊ , ρ) ⊂ Ψn0 =
⋂

j∈Jn0
Sj [ǫ] and ft /∈ Ψn0. The result ft /∈ Ψn0 is
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obviously equivalent to: ∃j0 ∈ Jn0 such that ft /∈ Sj0[ǫ]. Also, notice that B(f̊ , ρ) ⊂ Sj0[ǫ].

Hence, Fact 3 suggests that d(h̃∗, Sj0[ǫ]) >
ρ(1−t)

t
.

Using the triangle inequality ‖h̃∗ − f‖ ≤ ‖h̃∗ − hn0‖ + ‖hn0 − f‖, ∀f ∈ Sj0[ǫ], we obtain

the following: d(hn0, Sj0[ǫ]) ≥ d(h̃∗, Sj0[ǫ]) − ‖h̃∗ − hn0‖ > ρ(1−t)
t

− ρ(1−t)
2t

= ρ(1−t)
2t

=: γ > 0.

This clearly implies that max{d(hn0, Sj [ǫ]) : j ∈ Jn0} ≥ γ > 0. Set, now, n equal to n0 + 1

in (31) and (32), and verify, as we did before, that ∃n1 ∈ Z≥0 such that max{d(hn1, Sj[ǫ]) :

j ∈ Jn1} ≥ γ > 0. Going on this way, we can construct a sequence (hnk
)k∈Z≥0

such that

∀k ∈ Z≥0, max{d(hnk
, Sj[ǫ]) : j ∈ Jnk

} ≥ γ > 0. However, this contradicts Theorem 2.2.

Since we have reached a contradiction, this means that our initial assumption is wrong, and

that h̃∗ ∈ lim infn→∞
⋂

j∈Jn
Sj [ǫ].

If we follow exactly the same procedure, as we did before, for the case of the sequence of sets

(Bℓ1 [wn, δ])n∈Z≥0
, then we obtain also h̃∗ ∈ lim infn→∞Bℓ1[wn, δ].
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