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Abstract

A new segmented compressed sampling method for analog-to-information conversion (AIC) is pro-

posed. An analog signal measured by a number of parallel branches of mixers and integrators (BMIs), each

characterized by a specific random sampling waveform, is first segmented in time intoM segments. Then

the sub-samples collected on different segments and different BMIs are reused so that a larger number

of samples than the number of BMIs is collected. This technique is shown to be equivalent to extending

the measurement matrix, which consists of the BMI sampling waveforms, by adding new rows without

actually increasing the number of BMIs. We prove that the extended measurement matrix satisfies the

restricted isometry property with overwhelming probability if the original measurement matrix of BMI

sampling waveforms satisfies it. We also show that the signalrecovery performance can be improved

significantly if our segmented AIC is used for sampling instead of the conventional AIC. Simulation

results verify the effectiveness of the proposed segmentedcompressed sampling method and the validity

of our theoretical studies.

Index Terms

Compressed sampling, analog-to-information converter, correlated random variables,l1-norm mini-

mization, empirical risk minimization.
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I. INTRODUCTION

According to Shannon’s sampling theorem, an analog band-limited signal can be recovered from its

discrete-time samples if the sampling rate is at least twicethe maximum frequency present in the signal.

Recent theory of compressed sampling (CS), however, suggests that a signal can be recovered from

fewer samples if it is sparse or compressible [1]–[4]. CS theory also suggests that a universal sampling

matrix (for example, a random projection matrix) can be designed, and it can be used for all sparse

signals regardless of their nature [2]. CS has already founda wide range of applications such as image

acquisition [5], sensor networks [6], cognitive radios [7], communication channel estimation [8], [9], etc.

The sampling process often used in the CS literature consists of two steps. First, an analog signal is

sampled at the Nyquist rate and then a measurement matrix is applied to the time domain samples in

order to collect the compressed samples (see, for example, [7]). This sampling approach, however, defeats

one of the primary purposes of CS, which is avoiding high ratesampling. A more practical approach

for “direct” sampling and compression of analog signals hasbeen presented in [10]. The analog signal

is assumed to belong to the class of signals in shift-invariant spaces, that is, the analog signal can be

represented as a linear combination of a set ofm basis functions defined over a periodT . The analog

signal is first passed through a filter bank where each filter ismatched to one of them basis functions and

the output is sampled at time instancesnT wheren is an integer. If the signal is sparse, then onlyS < m

samples are nonzero. The set ofm output samples are then passed through a measurement matrixto create

K ≥ S compressed samples representing the analog signal in a specific period [(n−1)T, nT ]. It is worth

mentioning that this method is a generalization of another method in [11] which is devised for sub-Nyquist

sampling of multi-band signals. The limits of this method come from the underlying assumption that the

signal belongs to the class of signals in shift-invariant spaces. Although this assumption is argued to be

valid for a variety of engineering applications [10], [12] and can be generalized to the signals in a union

of subspaces [13], [14], it is still a limiting assumption. Moreover, the complexity of this method is by no

means lower than the complexity of another practical approach to CS, which avoids high rate sampling

[1], [15]. The name analog-to-information converter (AIC)has been coined for the latter method. The

AIC consists of several parallel branches of mixers and integrators (BMIs) in which the analog signal

is measured against different random sampling waveforms. Therefore, for every collected compressed

sample, there is a BMI that multiplies the signal to a sampling waveform and then integrates the result

over a periodT .

In this paper, we propose a new segmented AIC structure with the goal of reducing the hardware
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complexity.1 The contributions of this work are the following. (i) A new segmented AIC structure is

developed. In this structure, the integration periodT is divided intoM equal subperiods such that the

sampling rate of our segmented AIC scheme isM times higher than of the AIC of [1]. The sub-samples

collected over different subperiods by combining the sub-samples from different BMIs are then reused

in order to build additional samples. In this way, a number ofsamples larger than the number of BMIs

can be collected, although such samples will be correlated.We show that our segmented AIC technique

is equivalent to extending the measurement matrix which consists of the BMI sampling waveforms by

adding new rows without actually increasing the number of BMIs. In this respect, the following works

also need to be mentioned [17], [18]. In [17], Toeplitz-structured measurement matrices are considered,

while measurement matrices built on one random vector with shifts of D ≥ 1 in between the rows

appear in radar imaging application considered in [18]. (ii) We show that the restricted isometry property

(RIP), that is a sufficient condition for signal recovery based on compressed samples, is satisfied for the

extended measurement matrix resulting from the segmented AIC structure with overwhelming probability

if the original matrix of BMI sampling waveforms satisfies the RIP. Thus, our segmented AIC is a valid

candidate for CS. (iii) We also show that the signal recoveryperformance improves if our segmented

AIC is used for sampling instead of the AIC of [1] with the samenumber of BMIs. The mathematical

challenge in this part of the work is that the samples collected by our segmented AIC are correlated,

while all available results on performance analysis of the signal recovery are obtained for the case of

uncorrelated samples.

The rest of this paper is organized as follows. Necessary background on CS, CS signal recovery, and

AIC is briefly summarized in Section II. The main idea of the paper, that is, the segmented AIC structure,

is explained in Section III. We prove in Section IV that the extended measurement matrix resulting from

the proposed segmented AIC satisfies the RIP and, therefore,the segmented AIC is a legitimate CS

method. The signal recovery performance analysis for our segmented AIC is summarized in Section V.

Section VI demonstrates the simulation results and SectionVII concludes the paper.

II. BACKGROUND

CS basics and notations:CS deals with a low rate representation of sparse signals, i.e., such signals

which have few nonzero projections on the vectors of an orthogonal basis (sparsity basis). LetΨ =
(
ψT

1 ,ψ
T
2 , . . . ,ψ

T
N

)T
be anN ×N matrix of basis vectorsψi, i = 1, . . . , N , i.e., the sparsity basis, and

1Some preliminary results have been reported in [16].
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f be a discrete-time sparse signal2 represented in this basis as

f =

N∑

i=1

xiψ
H
i = ΨHx (1)

wherex = (x1, x2, . . . , xN )T is theN×1 vector of coefficients and(·)T and(·)H stand for the transpose

and Hermitian transpose, respectively. A signal isS-sparse if at mostS projections on the rows ofΨ,

i.e., coefficients ofx, are nonzero. It is known that a universal compressed sampling method can be

designed to effectively sample and recoverS-sparse signals regardless of the specific sparsity domain

[1], [2].

Among various bounds on the sufficient number of collected compressed samples3 K (S < K < N )

required for recovering anS-sparse signal, the first and most popular one is given by the following

inequality S ≤ CK/log(N/K) where C is some constant [1]. This bound is derived based on the

uniform uncertainty principle [20]. LetΦ be aK × N measurement matrix applied to a sparse signal

for collectingK compressed samples. Then the uniform uncertainty principle states thatΦ must satisfy

the following restricted isometry property (RIP) [1]. LetΦT be a sub-matrix ofΦ retaining only the

columns with their indexes in the setT ⊂ {1, . . . , N}. Then theS-restricted isometry constantδS is the

smallest number satisfying the inequality

K

N
(1− δS)‖c‖2l2 ≤ ‖ΦT c‖2l2 ≤ K

N
(1 + δS)‖c‖2l2 (2)

for all setsT of cardinality less than or equal toS and all vectorsc (here‖ · ‖l2 denotes the Euclidean

norm of a vector). As shown in [2], [21], if the entries ofΦ are, for example, independent zero mean

Gaussian variables with variance1/N , then Φ satisfies the RIP forS ≤ CK/log(N/K) with high

probability.4

Recovery methods:Using the measurement matrixΦ, the1×K vector of compressed samplesy can

be calculated asy = Φf = Φ′x whereΦ′ = ΦΨH . A signal can be recovered from its noiseless

sample vectory based on the following convex optimization problem that canbe solved by a linear

program [2], [22]

min‖x̃‖l1 subject to Φ
′

x̃ = y (3)

where‖ · ‖l1 denotes thel1-norm of a vector.

2It can be inRN or CN .

3See [19] for broader review.

4Note that in order to ensure consistency throughout the paper, the variance of the elements inΦ is taken to be1/N instead

of 1/K as, for example, in [2]. Thus, the multiplierK/N is added in the left- and right-hand sides of (2).
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If the compressed samples are noisy, the sampling process can be expressed as

y = Φf +w (4)

wherew is a zero mean noise vector with identically and independently distributed (i.i.d.) entries of

varianceσ2. Then the recovery problem is modified as [23]

min‖x̃‖l1 subject to ‖Φ′

x̃− y‖l2 ≤ γ (5)

whereγ is the bound on the square root of the noise energy.

Another technique for sparse signal recovery from noisy samples (see [4]) uses the empirical risk

minimization method that was first developed in statisticallearning theory for approximating an unknown

function based on noisy measurements [24]. Note that the empirical risk minimization-based recovery

method is of a particular interest since under some simplifications (see [4, p. 4041]) it reduces to another

well-known least absolute shrinkage and selection operator (LASSO) method [25]. Therefore, the risk

minimization-based method of [4] provides the generality which we need in this paper.

In application to CS, the unknown function is the sparse signal and the noisy compressed samples are

the collected data. Let the entries of the measurement matrix Φ be selected with equal probability as

±1/
√
N , and the energy of the signalf be bounded so that‖f‖2 ≤ NB2. The riskr(f̂) of a candidate

reconstruction̂f and its empirical risk̂r(f̂) are defined as follows [24]

r(f̂) =
‖f̂ − f‖2

N
+ σ2, r̂(f̂) =

1

K

K∑

j=1

(

yj − φjf̂
)2

. (6)

Then the candidate reconstructionf̂K obtained based onK samples can be found as [4]

f̂K = arg min
f̂∈F(B)

{

r̂(f̂) +
c(f̂ ) log 2

ǫK

}

(7)

whereF(B) = {f : ‖f‖2 ≤ NB2}, c(f̂) is a nonnegative number assigned to a candidate signalf̂ , and

ǫ = 1/
(
50(B + σ)2

)
. Moreover,f̂K given by (7) satisfies the following inequality [4]

E

{

‖f̂K − f‖2
N

}

≤ C1 min
f̂∈F(B)

{

‖f̂ − f‖2
N

+
c(f̂) log 2 + 4

ǫK

}

(8)

whereC1 = [(27 − 4e)(B/σ)2 + (50 − 4
√
2)B/σ + 26]/[(23 − 4e)(B/σ)2 + (50 − 4

√
2)B/σ + 24],

e = 2.7183 . . ., andE{·} stands for the expectation operation.

Let a compressible signalf be defined as a signal for which‖f (m) − f‖2 ≤ NCAm
−2α wheref (m)

is the bestm-term approximation off which is obtained by retaining them most significant coefficients

of vector x (x being the representation off in the sparsity basisΨ), andCA > 0 and α ≥ 0 are
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some constants. Let alsoFc(B,α,CA) = {f : ‖f‖2 ≤ NB2, ‖f (m) − f‖2 ≤ NCAm
−2α} be the set of

compressible signals. Then based on the weight assignmentc(f) = 2 log(N)Nx (hereNx is the actual

number of nonzero coefficients inx) the following inequality holds [4]

sup
f∈Fc(B,α,CA)

E

{

‖f̂K − f‖2
N

}

≤ C1C2

(
K

logN

)−2α/(2α+1)

(9)

whereC2 = C2(B,σ,CA) > 0 is a constant.

If signal f is indeed sparse and belongs toFs(B,S) = {f : ‖f‖2 ≤ NB2, ‖f‖l0 ≤ S}, then there

exists a constantC ′
2 = C ′

2(B,σ) > 0 such that [4]

sup
f∈Fs(B,S)

E

{

‖f̂K − f‖2
N

}

≤ C1C
′
2

(
K

S logN

)−1

. (10)

AIC: The random modulation preintegration (RMPI) structure is proposed for AIC in [1]. The RMPI

multiplies the signal and the sampling waveforms in the analog domain and then integrates the product

over the signal period to produce samples. It implies that the sampling device has a number of parallel

BMIs in order to process the analog signal in real-time. The RMPI structure is shown in Fig. 1, where

f(t) is the analog signal being sampled,φi(t), i = 1, . . . ,K are the sampling waveforms (rows of the

measurement matrixΦ), andyi, i = 1, . . . ,K are the compressed samples.

∫ T

0

f(t)
Φ1(t)

Φ2(t)

ΦK(t)

∫ T

0

∫ T

0

y2

yK

y1

Fig. 1. The structure of the AIC based on RMPI.

III. SEGMENTED COMPRESSEDSAMPLING METHOD

AIC removes the need for high speed sampling, but it may stillbe necessary in many practical

applications to collect a larger number of compressed samples than the AIC hardware (the number

of parallel BMIs) may allow. Indeed, a smaller number of samples may have a negative effect on the

signal recovery accuracy which can be an issue in a number of applications. In order to collect a larger

number of compressed samples using AIC, we need to increase the hardware complexity by adding more
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BMIs. The latter makes the AIC device complex and expensive although its sampling rate is much lower

than that of analog-to-digital converter (ADC). Therefore, it is desirable to reduce the number of parallel

BMIs in AIC without sacrificing the signal recovery accuracy. It can be achieved by adding to AIC the

capability of sampling at a higher rate, which is, however, significantly lower than the sampling rate

required by ADC. The latter can be achieved by splitting the integration periodT in every BMI of the

AIC in Fig. 1 into shorter subperiods. It is equivalent to generating a number of incomplete samples of a

signal. Note that since the original integration period is divided into a number of smaller subperiods, the

samples collected over all parallel BMIs during one subperiod do not have complete information about

the signal. Therefore, they are called incomplete samples.Hereafter, the complete samples obtained over

the whole periodT are referred to as just samples, while the incomplete samples are referred to as

sub-samples.

A. The Basic Idea and the Model

The basic idea is to collect the sub-samples as described above and then reuse them in order to build

additional samples. In this manner, a larger number of samples than the number of BMIs can be collected.

It allows for a tradeoff between AIC and ADC since as in AIC thesignal is measured at a low rate by

correlating it to a number of sampling waveforms, while the integration period is split into shorter sub-

intervals which is similar to the requirement of a higher sampling rate as in ADC. However, the required

sampling rate in the proposed scheme is still significantly lower than that required by ADC.

Let the integration period be split intoM sub-intervals, and letyk =(yk,1, . . . , yk,M)T , k = 1, . . . ,K

be the vectors of sub-samples collected against the sampling waveformsφk, k = 1, . . . ,K, whereK is

the original number of sampling waveforms, i.e., the numberof BMIs. The sub-sampleyk,j is given by

yk,j =

∫ jT/M

(j−1)T/M
x(t)φk(t)dt. (11)

Then the total number of sub-samples collected in all BMIs over all subperiods isMK. These sub-samples

can be gathered in the followingK ×M matrix

Y =











y1,1 y1,2 . . . y1,M

y2,1 y2,2 . . . y2,M
...

...
...

...

yK,1 yK,2 . . . yK,M











(12)

where thek-th row contains the sub-samples obtained by correlating the measured signal with the

waveformφk overM subperiods each of lengthT/M .
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The originalK samples, i.e., the samples collected at BMIs over the whole time periodT , are

yk =

M∑

m=1

[Y ]k,m, k = 1, . . . ,K (13)

where[Y ]k,m denotes the(k,m)-th element ofY , that is,[Y ]k,m = yk,m.

In order to construct additional samples to the samples obtained using (13), we consider columnwise

permuted versions ofY . The following definitions are then in order.

The permutationπ is a one-to-one mapping of the elements of a setD to itself by simply changing

the order of the elements. Thenπ(k) stands for the index of thek-th element in the permuted set.

For example, letD consists of the elements of aK × 1 vector z, and the order of the elements in

D is the same as inz. After applying the permutation functionπ to z, the permuted vector iszπ =
(
zπ(1), . . . , zπ(k), . . . , zπ(K)

)T
. If vector z is itself the vector of indexes, i.e.,z = (1, . . . ,K)T , then

obviouslyzπ(k) = π(k).

The permuted versions of the sub-sample matrixY can be obtained by applying different permu-

tations to different columns ofY . Specifically, letP(i) = {π(i)
1 , . . . , π

(i)
j , . . . , π

(i)
M } be the i-th set

of column permutations withπ(i)
j being the permutation function applied to thej-th column ofY ,

and let I stand for the number of such permutation sets. Then according to the above notations, the

matrix resulting from applying the set of permutationsP(i) to the columns ofY can be expressed as

Y P(i)

=

(

y
π(i)
1

1 , . . . ,y
π(i)
j

j , . . . ,y
π

(i)
M

M

)

whereyj is the j-th column ofY .

Permutation setsP(i), i = 1, . . . , I are chosen in such a way that all sub-samples in a specific row

of Y P(i)

come from different rows of the original sub-sample matrixY as well as from different rows

of other permuted matricesY P(1)

, . . . ,Y P(i−1)

. For example, all sub-samples in a specific row ofY P(1)

must come from different rows of the original matrixY only, while the sub-samples in a specific row

of Y P(2)

come from different rows ofY andY P(1)

and so on. This requirement is forced to make sure

that any additional sample has the least possible correlation with the original samples of (13). Then the

additionalK I samples can be obtained based on the permuted matricesY P(i)

, i = 1, . . . , I as

yP
(i)

k =

M∑

m=1

[Y P(i)

]k,m, k = 1, . . . ,K i = 1, . . . , I. (14)

It is worth noting that in terms of the hardware structure, the sub-samples used to generate additional

samples must be chosen from different BMIs as well as different integration subperiods. This is equivalent

to collecting additional samples by correlating the signalwith additional sampling waveforms which are

not present among the actual BMI sampling waveforms. Each ofthese additional sampling waveforms

comprises the non-overlapping subperiods ofM different original waveforms.
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Now the question is how many permuted matrices, which satisfy the above summarized conditions,

can be generated based onY . Consider the followingK ×M matrix

Z , (z,z, . . . ,z)
︸ ︷︷ ︸

M times

(15)

wherez is the vector of indexes. Applying the column permutation set P(i) to the columns ofZ, we

obtain a permuted matrixZP(i)

=
(

zπ
(i)
1 , . . . ,zπ

(i)
j , . . . ,zπ

(i)
M

)

. Then the set of all permuted versions of

Z can be denoted asSZ = {ZP(1)

, . . . ,ZP(I)}. With these notations, the following theorem is in order.

Theorem 1. The size ofSZ , i.e., the numberI of permutation setsP(i), i = 1, . . . , I which satisfy the

conditions

[ZP(i)

]k,j 6= [ZP(i)

]k,r, ∀ZP(i) ∈ SZ , j 6= r, k ∈ {1, . . . ,K}, j, r ∈ {1, . . . ,M} (16)

∃!j or ∄j such that[ZP(i)

]k,j = [ZP(l)

]h,j, ∀ZP(i)

,ZP(l) ∈ SZ , Z
P(i) 6= ZP(l)

,∀j ∈ {1, . . . ,M}

∀k, h ∈ {1, . . . ,K} (17)

is at mostK − 1. Here [ZP(i)

]k,j stands for the(k, j)-th element of the permuted matrixZP(i)

.

Remark 1. Using the property thatzπ(k) = π(k) for the vector of indexesz, the conditions(16) and

(17) can also be expressed in terms of permutations as

π
(i)
j (k) 6= π(i)

r (k) ∀i ∈ {1, . . . , I}, j 6= r, k ∈ {1, . . . ,K}, j, r ∈ {1, . . . ,M} (18)

∃!j or ∄j such thatπ(i)
j (k)=π

(l)
j (h) ∀i, l∈{1, . . . , I}, i 6= l, ∀j∈{1, . . . ,M},∀k, h∈{1, . . . ,K}. (19)

Proof: See Appendix A.

Example 1: Let the specific choice of index permutations beπs(k) = ((s+ k − 2) modK)+1, s, k =

1, . . . ,K with π1 being the identity permutation and ’mod’ standing for the modulo operation. For this

specific choice,π(i)
j = π[i(j−1) modK]+1, i = 1, . . . ,K− 1, j = 1, . . . ,M . Consider the following matrix

notation for the setP where the elements along thei-th row are the permutationsP(i), i = 1, . . . , I

June 6, 2018 DRAFT
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P ,

















P(1)

P(2)

P(3)

...

P(K−2)

P(K−1)

















=

















π
(1)
1 π

(1)
2 π

(1)
3 . . . π

(1)
M

π
(2)
1 π

(2)
2 π

(2)
3 . . . π

(2)
M

π
(3)
1 π

(3)
2 π

(3)
3 . . . π

(3)
M

...
...

...
...

...

π
(K−2)
1 π

(K−2)
2 π

(K−2)
3 . . . π

(K−2)
M

π
(K−1)
1 π

(K−1)
2 π

(K−1)
3 . . . π

(K−1)
M

















=

















π1 π2 π3 . . . πM

π1 π3 π5 . . . π[2(M−1) modK]+1

π1 π4 π7 . . . π[3(M−1) modK]+1

...
...

...
...

...

π1 πK−1 πK−3 . . . π[(K−2)(M−1) modK]+1

π1 πK πK−1 . . . π[(K−1)(M−1) modK]+1

















. (20)

Note that not all permutationsP(i), i = 1, . . . , I used in (20) may be permissible. In fact, the set of

permutationsP(i) with K/gcd(i,K) < M has at least one repeated permutation that contradicts the

condition (18). Heregcd(·, ·) stands for the greatest common devisor of two numbers. For example, for

K = 8 andM = 4, K/gcd(4,K) = 2 < M andP(4) is impermissible. Therefore, instead ofK− 1 = 7,

only the following6 sets of permutations are allowed

P =

















π
(1)
1 π

(1)
2 π

(1)
3 π

(1)
4

π
(2)
1 π

(2)
2 π

(2)
3 π

(2)
4

π
(3)
1 π

(3)
2 π

(3)
3 π

(3)
4

π
(4)
1 π

(4)
2 π

(4)
3 π

(4)
4

π
(5)
1 π

(5)
2 π

(5)
3 π

(5)
4

π
(6)
1 π

(6)
2 π

(6)
3 π

(6)
4

















=

















π1 π2 π3 π4

π1 π3 π5 π7

π1 π4 π7 π2

π1 π6 π3 π8

π1 π7 π5 π3

π1 π8 π7 π6

















. (21)

Theorem 1 shows how many different permuted versions of the original sub-sample matrixY can

be obtained such that the correlation between the original and additional samples would be minimal.

Indeed, since the set of sub-samples that are used to build additional samples is chosen in a way that

additional samples have at most one sub-sample in common with the previous samples, i.e., conditions

(18) and (19) are satisfied, the set of permutations (20) is a valid candidate. Thei-th element ofP, i.e.,

the elementP(i) =
(

π
(i)
1 , . . . , π

(i)
M

)

, is the set of permutations applied toY to obtainY P(i)

. Adding up

the entries along the rows ofY P(i)

, a set ofK additional samples can be obtained.
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Example 2: Let the number of new samplesKa be at mostK. This means that all permutations are

given by onlyP(1) in (20). In this special case, the sub-sample selection method can be summarized as

follows. For constructing the(K+1)-st sample,M sub-samples on the main diagonal ofY are summed

up together. Then theM sub-samples on the second diagonal are used to construct the(K + 2)-nd

sample, and so on up to theKa-th sample. Mathematically, the so constructed additionalsamples can be

expressed in terms of the elements ofY as

yK+k =

M∑

m=1

yl,m, k = 1 . . . ,Ka (22)

wherel = [(k +m− 2) modK] + 1 andKa ≤ K. Fig. 2 shows schematically how the sub-samples are

selected in this example.

y2K−1

y1,1

y2,1

y3,1

yK−1,1

yK,1

...
...

y1,2

y2,2

y3,2

yK−1,2

yK,2

...

y1,3

y2,3

y3,3

yK−1,3

yK,3

...
...

· · ·

· · ·

· · ·

· · ·

· · ·

y1,M

y2,M

y3,M

yK−1,M

yK,M

yK+1

yK+2

y2K

Fig. 2. Sub-sample selection principle for building additional samples in Example 2.

Our segmented sampling process can be equivalently expressed in terms of the measurement matrix. Let

Φ be the originalK×N measurement matrix. Let thek-th row of the matrixΦ beφk =
(
φk,1, . . . ,φk,M

)

whereφk,j, j = 1, . . . ,M are some vectors. Let for simplicity, the length ofφk,j be N/M andN/M

be an integer number. The set of permutations applied toY in order to obtainY P(i)

is P(i). Then

the operationΦP(i)

can be expressed as follows. The firstN/M columns ofΦ, which are the vectors

φk,1, k ∈ {1, ...,K}, are permuted withπ(i)
1 . The secondN/M columns ofΦ are permuted withπ(i)

2 and

so on until the lastN/M columns ofΦ which are permuted withπ(i)
M . Then the extended measurement

matrix which combines all possible permutationsP(i), i = 1, . . . , I can be expressed as

Φe =
(

ΦT , (ΦP(1)

)T , . . . , (ΦP(I)

)T
)T

(23)

whereKe , K +Ka = K +KI.
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Example 3: Continuing with the set up used in Example 2, letKa ≤ K. Then the extended measure-

ment matrix is

Φe =




Φ

Φ1



 =

















φ1,1 φ1,2 . . . φ1,M

...
...

...
...

φK,1 φK,2 . . . φK,M

φ1,1 φ2,2 . . . φM,M

...
...

...
...

φKa,1 φπ2(Ka),M . . . φπM(Ka),M

















(24)

whereΦ1 contains onlyKa rows ofΦP(1)

andΦ1 = ΦP(1)

if Ka = K.

B. Implementation Issues and Discussion

Due to the special structure of the extended measurement matrix Φe, the sampling hardware needs only

K parallel BMIs for collectingKI samples. These BMIs are essentially the same as those in Fig.1. The

only difference is that the integration periodT is divided intoM equal subperiods. After every subperiod,

each integrator’s output is sampled and the integrator is reset. In addition, a multiplexer which selects

the sub-samples for constructing additional samples is needed. Note that partial sums can be kept for

constructing the samples (original and additional), that is, the results of the integration are updated and

accumulated for each sample iteratively after each subperiod. In this way, there is no need of designing

the circuitry to memorize the matrix of sub-samplesY , but only the partial sums for each sample are

memorized at any current subperiod.

Since the proposed segmented AIC scheme collects the sub-samples at theM times higher rate than

the AIC in Fig. 1, an improved signal recovery performance isexpected. It agrees with the convention that

the recovery performance cannot be improved only due to the post processing. Moreover, note that since

the original random sampling waveforms are linearly independent with high probability, the additional

sampling waveforms of our segmented compressed sampling method are also linearly independent with

overwhelming probability. However, a sufficient conditionthat guarantees that the extended measurement

matrix of the proposed segmented AIC scheme is an eligible choice is the RIP. Therefore, the RIP for

the proposed segmented compressed sampling scheme is analyzed in the next section.

IV. RIP FOR THE SEGMENTED COMPRESSED SAMPLING METHOD

The purpose of this section is to show that the extended measurement matrixΦe in (23) satisfies the

RIP if the original measurement matrixΦ satisfies it. The latter will also imply thatΦe can be used
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as a valid CS measurement matrix. In our set up it is only assumed that the elements of the original

measurement matrix are i.i.d. zero mean Gaussian variablesand the measurement matrix is extended by

adding its permuted versions as described in the previous section.

Let us first consider the special case of Example 3. In this case, Φ, Φ1, andΦe are the original

measurement matrix, the matrix of additional sampling waveforms, and the extended measurement matrix

given by (24), respectively. Let the matrixΦ satisfy the RIP with sufficiently high probability. For

example, let the elements ofΦ be i.i.d. zero mean Gaussian random variables with variance1/N . Let

T be any subset of sizeS of the set{1, . . . , N}. Then for any0 < δS < 1, the matrixΦT , which is a

sub-matrix ofΦ which consists of only the columns with their indexes in the set T satisfies (2) with the

following probability [21]

Pr{ΦT satisfies (2)} ≥ 1− 2 (12/δS)
S e−C0(δS/2)K (25)

whereC0 (δS/2) = δ2S/16− δ3S/48. Hereafter, the notationC0 is used instead ofC0 (δS/2) for brevity.

First, the following auxiliary result on the extended measurement matrixΦe is of interest.

Lemma 1. Let the elements of the measurement matrixΦ be i.i.d. zero mean Gaussian variables with

variance1/N , Φe be formed as shown in(24), and T ⊂ {1, . . . , N} of sizeS. If Ka is chosen such

that min{K,Ka +M − 1} ≤ ⌈(K +Ka) /2⌉, then for any0 < δS < 1, the following inequality holds

Pr{(Φe)T satisfies(2)} ≥ 1− 4 (12/δS)
S e−C0⌊

K+Ka
2

⌋ (26)

where⌈x⌉ and ⌊x⌋ are the smallest integer larger than or equal tox and the largest integer smaller

than or equal tox, respectively, andC0 is a constant given after(25).

Proof: See Appendix B.

Using the above lemma, the following main result, which states that the extended measurement matrix

Φe in (24) satisfies the RIP, can be also proved.

Theorem 2. LetΦe be formed as in(24) and let the elements ofΦ be i.i.d. zero mean Gaussian variables

with variance1/N . If min{K,Ka + M − 1} ≤ ⌈(K + Ka)/2⌉, then for any0 < δS < 1, there exist

constantsC3 and C4, which depend only onδS , such that forS ≤ C3⌊(K + Ka)/2⌋/ log(N/S) the

inequality (2) holds for all S-sparse vectors with probability that satisfies the following inequality

Pr{Φe satisfies RIP} ≥ 1− 4e−C4⌊(K+Ka)/2⌋ (27)

whereC4 = C0 − C3 [1 + (1 + log (12/δS)) / log (N/S)] and C3 is small enough that guarantees that

C4 is positive.
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Proof: See Appendix C.

Let us consider now the general case when the number of additional samplesKa is larger than the

number of BMIsK, i.e., Ka > K, Ke > 2K, and the extended measurement matrix is given by (23).

Note that while proving Lemma 1 for the special case of Example 3, we were able to split the rows

of Φe into two sets each consisting of independent entries. In thegeneral case, some of the entries of

the original measurement matrix appear more than twice in the extended measurement matrixΦe, and

it is no longer possible to split the rows ofΦe into only two sets with independent entries. Due to the

way that the additional samples are built, the samplesylK+1, ylK+2, . . . , y(l+1)K obtained based on the

permuted matrixY P(l)

, i.e., thel-th set of additional samples, are uncorrelated with each other, but they

are correlated with every other set of samples based on the original matrixY and the permuted matrices

Y P(i)

, ∀i, i 6= l. Thus, the following principle can be used while partitioning the rows ofΦe into the

sets with independent entries. First, the rows corresponding to the original samples form a single set

with independent entries, then the rows corresponding to the first set of additional samples based on the

matrix Y P(1)

form another set and so on. Then the number of such sets isnp = ⌈Ke/K⌉, while the size

of each set is

Ki =







K, 1 ≤ i < ⌈Ke

K ⌉ − 1

Ke − (⌈Ke

K ⌉ − 1)K, i = ⌈Ke

K ⌉
(28)

The extended measurement matrix (23) can be rewritten as

Φe =
(

(Φe)
T
1 , (Φe)

T
2 , . . . , (Φe)

T
np

)T
(29)

where(Φe)i is the i-th partition ofΦe of size given by (28). Then the general form of Lemma 1 is as

follows.

Lemma 2. Let the elements of the measurement matrixΦ be i.i.d. zero mean Gaussian variables with

variance1/N , Φe be the extended measurement matrix(23), and T ⊂ {1, . . . , N} of sizeS. Let also

Ka > K andnp = ⌈Ke/K⌉. Then, for any0 < δS < 1, the following inequality holds

Pr{(Φe)T satisfies(2)} ≥ 1− 2(np − 1) (12/δS)
S (e−C0K

)
− 2 (12/δS)

S (e−C0Knp

)
(30)

whereKnp
= Ke −

(
⌈Ke

K ⌉ − 1
)
K andC0 is a constant given after(25).

Proof: See Appendix D.

Lemma 2 is needed to prove that the extended measurement matrix (29) satisfies the RIP. Therefore,

the general version of Theorem 2 is as follows.
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Theorem 3. Let the elements ofΦ be i.i.d. zero mean Gaussian variables with variance1/N and Φe

be formed as in(23). If Ka > K, then for any0 < δS < 1, there exist constantsC3, C4 and C ′
4, such

that for S ≤ C3Knp
/ log(N/S) the inequality(2) holds for all S-sparse vectors with probability that

satisfies the following inequality

Pr{Φe satisfies RIP} ≥ 1− 2(np − 1)e−C′

4K − 2e−C4Knp (31)

whereC ′
4 = C0 − (C3Knp

/K) × [1 + (1 + log (12/δS)) / log (N/S)], C4 is given after(27), andC3 is

small enough to guarantee thatC4 andC ′
4 are both positive.

Proof: See Appendix E.

When splitting the rows ofΦe in a number of sets as described before Lemma 2 it may happen that the

last subset(Φe)np
has the smallest sizeKnp

. As a result, the dominant term in (31) will likely be the term

2e−C4Knp . Moreover, it may lead to a more stringent sparsity condition, that is,S ≤ C3Knp
/ log(N/S).

To improve the lower bound in (31), we can move some of the rowsfrom (Φe)np−1 to (Φe)np
in order

to make the last two partitions of almost the same size. Then the requirement on the sparsity level

will becomeS ≤ C3K
′/ log(N/S) whereK ′ = ⌊(K + Knp

)/2⌋. Therefore, the lower bound on the

probability calculated in (31) improves.

V. PERFORMANCEANALYSIS OF THE RECOVERY

In this section, we aim at answering the question whether signal recovery also improves if the proposed

segmented AIC method, i.e., the extended measurement matrix Φe (23), is used instead of the original

matrix Φ. The study is performed based on the empirical risk minimization method for signal recovery

from noisy random projections [4]. As mentioned in Section II, the LASSO method can be viewed as

one of the possible implementations of the empirical risk minimization method.

We first consider the special case of Example 3 when the extended measurement matrix is given by

(24). Let the entries of the measurement matrixΦ be selected with equal probability as±1/
√
N , i.e.,

be i.i.d. Bernoulli distributed with variance1/N . This assumption is the same as in [4] and it is used

here in order to shorten our derivations by only emphasizingthe differences caused by our construction

of matrix Φe, where some rows are correlated to each other, as compared tothe case analyzed in [4],

where the measurement matrix consists of all i.i.d. entries. Note that our results can be easily applied to

the case of Gaussian distributed entries ofΦ by only changing the moments of Bernoulli distribution to

the moments of Gaussian distribution.
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Let r(f̂ ,f) , r(f̂)− r(f) be the “excess risk” between the candidate reconstructionf̂ of the signal

sampled using the extended measurement matrixΦe and the actual signalf , andr̂(f̂ ,f) , r̂(f̂)− r̂(f)

be the “empirical excess risk” between the candidate signalreconstruction and the actual signal, where

r(f̂) andr̂(f̂) are defined in (6). Then the difference between the “excess risk” and the “empirical excess

risk” can be found as

r(f̂ ,f)− r̂(f̂ ,f ) =
1

Ke

Ke∑

j=1

(Uj −E[Uj ]) (32)

whereUj , (yj − φjf)
2 − (yj − φjf̂)

2.

The mean-square error (MSE) between the candidate reconstruction and the actual signal can be

expressed as [24]

MSE , E
{
‖g‖2

}
= Nr(f̂ ,f) (33)

whereg , f̂−f . Therefore, if we know an upper bound on the right-hand side of (32), denoted hereafter

asU , we can immediately find an upper bound on the MSE in the formMSE ≤ Nr̂(f̂ ,f) + NU . In

other words, to find the candidate reconstructionf̂ one can minimizêr(f̂ ,f) + U , that will also result

in a bound on the MSE as in (8).

The Craig-Bernstein inequality [4], [26] can be used in order to find an upper boundU on the right-

hand side of (32). In the notations of our paper, this inequality states that the probability of the following

event

1

Ke

Ke∑

j=1

(Uj − E{Uj}) ≤
log
(
1
δ

)

Keǫ
+

ǫ var
{
∑Ke

j=1 Uj

}

2Ke(1− ζ)
(34)

is greater than or equal to1 − δ for 0 < ǫh ≤ ζ < 1, if the random variablesUj satisfy the following

moment condition for someh > 0 and allk ≥ 2

E
{

|Uj − E{Uj}|k
}

≤ k! var{Uj}hk−2

2
. (35)

The second term in the right-hand side of (34) contains the variance var
{
∑Ke

j=1 Uj

}

, which we need to

calculate or at least find an upper bound on it.

In the case of the extended measurement matrix, the random variablesUj, j = 1, . . . ,Ke all satisfy the

moment condition for the Craig-Bernstein inequality [26] with the same coefficienth = 16B2e+8
√
2Bσ,

whereσ2 is the variance of the Gaussian noise.5 Moreover, it is easy to show that the following bound

5The derivation of the coefficienth coincides with a similar derivation in [4], and therefore, is omitted.
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on the variance ofUj is valid for the extended measurement matrix6

var{Uj} ≤
(

2
‖g‖2
N

+ 4σ2

) ‖g‖2
N

≤
(
8B2 + 4σ2

)
r(f̂ ,f). (36)

However, unlike [4], in the case of the extended measurementmatrix, the variablesUj are not

independent from each other. Thus, we can not simply replacethe term var
{
∑Ke

j=1 Uj

}

with the sum of

the variances forUj, j = 1, . . . ,Ke. Using the definition of the variance, we can write that

var







Ke∑

j=1

Uj






, E











Ke∑

j=1

Uj





2



−



E







Ke∑

j=1

Uj











2

=

Ke∑

j=1

E{U2
j }+ 2

Ke−1∑

i=1

Ke∑

j=i+1

E{UiUj} −K2
e

(‖g‖2
N

)2

=

Ke∑

j=1

(

E{U2
j } −

(‖g‖2
N

)2
)

+ 2

Ke−1∑

i=1

Ke∑

j=i+1

(

E{UiUj} −
(‖g‖2

N

)2
)

=

Ke∑

j=1

var{Uj}+ 2

Ke−1∑

i=1

Ke∑

j=i+1

(

E{UiUj} −
(‖g‖2

N

)2
)

(37)

where the upper bound on var{Uj} is given by (36). Using the fact that the random noise components

wi andwj are independent fromφig andφjg (see the noisy model (4)), respectively,E{UiUj} can be

expressed as

E{UiUj}=E
{
[2wiφig−(φig)

2][2wjφjg−(φjg)
2]
}

= 4E
{
wiwj

}
E
{
φigφjg

}
− 2E

{
wi

}
E
{
φig(φjg)

2
}

− 2E
{
wj

}
E
{
φjg(φig)

2
}
+ E

{
(φig)

2(φjg)
2
}
. (38)

The latter expression can be further simplified using the fact thatE{wi} = E{wj} = 0. Thus, we obtain

that

E{UiUj} = 4E
{
wiwj

}
E
{
(φig)(φjg)

}
+ E

{
(φig)

2(φjg)
2
}
. (39)

It is easy to verify that ifφi and φj are independent, thenE(UiUj) = E
{
(φig)

2
}
E
{
(φjg)

2
}

=
(
‖g‖2/ N

)2
which indeed coincides with [4]. However, in our case,φi andφj may depend on each

other. If they indeed depend on each other, they haveL = N/M common entries, while the rest of

the entries are independent. In addition, the additive noise termswi andwj are no longer independent

6This bound also coincides with a similar one in [4]
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random variables as well and, thus,E
{
wiwj

}
= σ2/M . Without loss of generality, let the firstL entries

of φi andφj be the same, that is,

φig =

A
︷ ︸︸ ︷

g1a1 + . . .+ gLaL+

Pi
︷ ︸︸ ︷

gL+1φi,L+1 + . . .+ gNφi,N (40)

φjg =

A
︷ ︸︸ ︷

g1a1 + . . .+ gLaL+

Pj

︷ ︸︸ ︷

gL+1φj,L+1 + . . . + gNφj,N (41)

with a1, ..., aL being the common part betweenφi andφj .

Let gA be a sub-vector ofg containing theL elements ofg corresponding to the common part between

φi andφj , andgA′ be the sub-vector comprising the rest of the elements. Then using the fact thatA,

Pi, andPj are all zero mean independent random variables, we can expressE{(φig)(φjg)} from the

first term on the right-hand side of (39) as

E{(φig)(φjg)} = E{(A + Pi)(A + Pj)} = E{A2}+ E{APi}+ E{APj}+ E{PiPj}

= E{A2} =

(
∑L

k=1 g
2
k

)2

N
=

‖gA‖2
N

. (42)

Similar, the second term on the right-hand side of (39) can beexpressed as

E
{
(φig)

2(φjg)
2
}
= E

{
(A2 + P 2

i + 2APi)(A
2 + P 2

j + 2APj)
}
. (43)

Using the facts that4E
{
wiwj

}
= 4σ2/M , E{A2} = ‖gA‖2/N , andE{P 2

i } = ‖gA′‖2/N , the expression

(43) can be further rewritten as

E
{
(φig)

2(φjg)
2
}
= E

{
A4 +A2P 2

i +A2P 2
j + P 2

i P
2
j

}
= E{A4}+ 2

‖gA‖2
N

· ‖gA′‖2
N

+

(‖gA′‖2
N

)2

= E{A4}+
(‖g‖2

N

)2

−
(‖gA‖2

N

)2

. (44)

Substituting (42) and (44) into (39), we obtain that

E{UiUj} =
4σ2

M
· ‖gA‖

2

N
+ E{A4}+

(‖g‖2
N

)2

−
(‖gA‖2

N

)2

. (45)

Moreover, substituting (45) into (37), we find that

var







Ke∑

j=1

Uj






=

Ke∑

j=1

var{Uj}+ 2
∑

φi,φjdependent

(

E{A4} −
(‖gA‖2

N

)2

+
4σ2

M
· ‖gA‖

2

N

)

. (46)

Using the fact that the extended measurement matrix is constructed such that the waveformsφi,

i = K+1, . . . ,Ke are built uponM rows of the original matrix and also using the inequality7 E{A4}−

7We skip the derivation of this inequality since it is relatively well known and can be found, for example, in [4, p. 4039].
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(
‖gA‖2/N

)2 ≤ 2
(
‖gA‖2/N

)2
for all theseM rows, we obtain for everyφi, i = K + 1, . . . ,Ke that

M∑

k=1

(

E{A4} −
(‖gA‖2

N

)2

+
4σ2

M
· ‖gA‖

2

N

)

≤
M∑

k=1

(

2

(‖gA‖2
N

)2

+
4σ2

M
· ‖gA‖

2

N

)

(47)

wheregA corresponds to the firstL entries ofg for k = 1, to the entries fromL+ 1 to 2L for k = 2

and so on. Applying also the triangle inequality, we find that

M∑

k=1

(

2

(‖gA‖2
N

)2

+
4σ2

M
· ‖gA‖

2

N

)

≤ 2

(‖g‖2
N

)2

+
4σ2

M
· ‖g‖

2

N
. (48)

Combining (47) and (48) and using the fact that there areKa additional rows in the extended

measurement matrix, we obtain that

2
∑

φi,φjdependent

(

E{A4} −
(‖gA‖2

N

)2

+
4σ2

M
· ‖gA‖

2

N

)

≤ 4Ka

(‖g‖2
N

)2

+
8σ2Ka

M
· ‖g‖

2

N
. (49)

Noticing that‖g‖2/N = r(f̂ ,f) and ‖g‖2 ≤ 4NB2, the right-hand side of the inequality (49) can be

further upper bounded as

4Ka

(‖g‖2
N

)2

+
8σ2Ka

M
· ‖g‖

2

N
≤ 16KaB

2 r(f̂ ,f) +
8σ2Ka

M
r(f̂ ,f). (50)

Using the upper bound (50) for the second term in (46) and the upper bound (36) for the first term in

(46), we finally can upper bound the var
{
∑Ke

j=1 Uj

}

as

var







Ke∑

j=1

Uj






≤ Ke

(

8B2

(

1 +
2Ka

Ke

)

+ 4σ2

(

1 +
2Ka

MKe

))

r(f̂ ,f ). (51)

Therefore, based on the Craig-Bernstein inequality, the probability that for a given candidate signalf̂

the following inequality holds

r(f̂ ,f)− r̂(f̂ ,f) ≤ log(1δ )

Keǫ
+

(

8B2
(

1 + 2Ka

Ke

)

+ 4σ2
(

1 + 2Ka

MKe

))

r(f̂ ,f) ǫ

2(1− ζ)
(52)

is greater than or equal to1− δ.

Let c(f̂) be chosen such that the Kraft inequality
∑

f̂∈F(B) 2
c(f̂) ≤ 1 is satisfied (see also [4]), and

let δ(f̂ ) = 2−c(f̂) δ. Applying the union bound to (52), it can be shown that for allf̂ ∈ F(B) and for

all δ > 0, the following inequality holds with probability of at least 1− δ

r(f̂ ,f )− r̂(f̂ ,f) ≤ c(f̂ ) log 2 + log(1δ )

Ke ǫ
+

(

8B2
(

1 + 2Ka

Ke

)

+ 4σ2
(

1 + 2Ka

MKe

))

r(f̂ ,f) ǫ

2(1 − ζ)
. (53)
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Finally, settingζ = ǫ h and

a =

(

8B2
(

1 + 2Ka

Ke

)

+ 4σ2
(

1 + 2Ka

MKe

))

ǫ

2(1− ζ)
(54)

ǫ <
1

(

4
(

1 + 2Ka

Ke

)

+ 16e
)

B2 + 8
√
Bσ + 2σ2

(

1 + 2Ka

MKe

) (55)

where0 < ǫh ≤ ζ < 1 as required by the Craig-Bernstein inequality, the following inequality holds with

probability of at least1− δ for all f̂ ∈ F(B)

(1− a)r(f̂ ,f) ≤ r̂(f̂ ,f) +
c(f̂) log 2 + log(1δ )

Ke ǫ
. (56)

The following result on the recovery performance of the empirical risk minimization method is in

order.

Theorem 4. Let ǫ be chosen as

ǫ =
1

(

60 (B + σ)2
) (57)

which satisfies the inequality(55), then the signal reconstruction̂fKe
given by

f̂Ke
= arg min

f̂∈F(B)

{

r̂(f̂) +
c(f̂) log 2

ǫKe

}

(58)

satisfies the following inequality

E

{

‖f̂Ke
− f‖2
N

}

≤ C1e min
f̂∈F(B)

{

‖f̂ − f‖2
N

+
c(f̂) log 2 + 4

ǫKe

}

(59)

whereC1e is the constant given as

C1e =
1 + a

1− a
, a =

2
(

1 + 2Ka

Ke

) (
B
σ

)2
+
(

1 + 2Ka

MKe

)

(30− 8e)
(
B
σ

)2
+
(
60− 4

√
2
) (

B
σ

)
+ 30

(60)

with a obtained from(54) for the specific choice ofǫ in (57).

Proof: The proof follows the exact steps of the proof of the related result for the uncorrelated case

[4, p. 4039–4040] with the exception of using, in our correlated case, the above calculated values forǫ

(57) anda (60).

Example 4: Let one set of samples be obtained based on the measurement matrix Φe with Ka = K,

Ke = 2K, and M = 8, and let another set of samples be obtained using a2K × N measurement

matrix with all i.i.d. (Bernoulli) elements. Let alsoǫ be selected as (57). Then the MSE error bounds

for these two cases differ from each other only by a constant factor given for the former case byC1e in

(60) and in the latter case byC1 (see (8) and the row after). Considering the two limiting cases when
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B/σ → 0 andB/σ → ∞, the intervals of change for the corresponding coefficientscan be obtained as

1.08 ≤ C1e ≤ 2.88 and1.06 ≤ C1 ≤ 1.63, respectively.

The following result on the achievable recovery performance for a sparse or compressible signal

sampled based on the extended measurement matrixΦe is also of great interest.

Theorem 5. For a sparse signalf ∈ Fs(B,S) = {f : ‖f‖2 ≤ NB2, ‖f‖l0 ≤ S} and corresponding

reconstructed signal̂fKe
obtained according to(58), there exists a constantC ′

2e = C ′
2e(B,σ) > 0, such

that

sup
f∈Fs(B,S)

E

{

‖f̂Ke
− f‖2
N

}

≤ C1eC
′
2e

(
Ke

S logN

)−1

. (61)

Similar, for a compressible signalf ∈ Fc(B,α,CA) = {f : ‖f‖2 ≤ NB2, ‖f (m)−f‖2 ≤ NCAm
−2α}

and corresponding reconstructed signalf̂Ke
obtained according to(58), there exists a constantC2e =

C2e(B,σ,CA) > 0, such that

sup
f∈Fc(B,α,CA)

E

{

‖f̂Ke
− f‖2
N

}

≤ C1eC2e

(
Ke

logN

)−2α/(2α+1)

. (62)

Proof: The proof follows the exact steps of the proofs of the relatedresults for the uncorrelated case

[4, p. 4040–4041] with the exception of using, in our correlated case, the above calculated values forǫ

(57) anda (60).

Example 5: Let one set of samples be obtained based on the extended measurement matrixΦe with

Ka = K, Ke = 2K, andM = 8 and let another set of samples be obtained using theK×N measurement

matrix with all i.i.d. (Bernoulli) elements. The error bounds corresponding to the case ofK uncorrelated

samples of [4] and our case ofKe correlated samples are (10) and (61), respectively. The comparison

between these two error bounds boils down in this example to comparing2C1C
′
2 andC1eC

′
2e. Assuming

the sameǫ as (57) for both methods, the following holds trueC ′
2e = C ′

2. Fig. 3 comparesC1e and2C1

versus the signal-to-noise ratio (SNR)B2/σ2. SinceC1e < 2C1 for all values of SNR, the quality of the

signal recovery, i.e., the corresponding MSE, for the case of 2K ×N extended measurement matrix is

expected to be better than the quality of the signal recoveryfor the case ofK ×N measurement matrix

of all i.i.d. entries.

The above results can be easily generalized for the case whenKa > K. Indeed, we only need to

recalculate var
{
∑Ke

j=1 Uj

}

for Ka > 2K. The only difference with the previous case ofKa ≤ K is

the increased number of pairs of dependent rows in the extended measurement matrixΦe, which has a

larger size now. The latter affects only the second term in (46). In particular, every row inΦP(1)

depends

on M rows of the original measurement matrixΦ. Moreover, the term
∑2K−1

i=1

∑2K
j=i+1E{UiUj} over

June 6, 2018 DRAFT



22

−20 0 20 40 60 80 100
1

1.5

2

2.5

3

3.5

SNR (dB)

 

 

C
1e

2C
1

Fig. 3. C1e and2C1 versus SNR.

all theseM rows is bounded as in (48). Then considering allKM pairs of dependent rows fromΦ and

ΦP(1)

, we have

2
∑

φi,φjdependent

(

E{A4} −
(‖gA‖2

N

)2

+
4σ2

M
· ‖gA‖

2

N

)

≤ 4K

(‖g‖2
N

)2

+
8σ2K

M
· ‖g‖

2

N
. (63)

Similar, every row ofΦP(2)

depends onM rows of ΦP(1)

andM rows of Φ. Considering all these

2KM pairs of dependent rows, we have

2
∑

φi,φjdependent

(

E{A4} −
(‖gA‖2

N

)2

+
4σ2

M
· ‖gA‖

2

N

)

≤ 4(2K)

(‖g‖2
N

)2

+
8σ2(2K)

M
· ‖g‖

2

N
. (64)

Finally, the number of rows in the last matrix(Φe)np
is Knp

(see (28) and (29)). Every row of(Φe)np

depends onM rows of each of the previousnp − 1 matricesΦP(i)

, i = 1, . . . , np − 1. Considering all

(np − 1)Knp
M pairs of dependent rows, we have

2
∑

φi,φjdependent

(

E{A4}−
(‖gA‖2

N

)2

+
4σ2

M
· ‖gA‖

2

N

)

≤ 4(np−1)Knp

(‖g‖2
N

)2

+
8σ2(np−1)Knp

M
· ‖g‖

2

N
.

(65)

Based on the equations (37) and (63)–(65) we can find the following bound

var







Ke∑

j=1

Uj






≤ Ke

(

8B2

(

1 +
D

Ke

)

+ 4σ2

(

1 +
D

MKe

))

r(f̂ ,f) (66)

whereD = 2K
∑np−2

i=1 i+2Knp
(np−1). Note that in the case thatKe = npK, we haveD/Ke = np−1.
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Therefore, it can be shown for the general extended matrix (23) that the inequality (56) holds with the

following values ofa andǫ:

a =

(

8B2
(

1 + D
Ke

)

+ 4σ2
(

1 + D
MKe

))

ǫ

2(1− ζ)
(67)

ǫ <
1

(

4
(

1 + D
Ke

)

+ 16e
)

B2 + 8
√
Bσ + 2σ2

(

1 + D
MKe

) (68)

Moreover, the theorems similar to Theorems 4 and 5 follow straightforwardly with the corrections toa

andǫ which are given now by (67) and (68), respectively.

We finally make some remarks onnon-RIPconditions forl1-norm-based recovery. Since the extended

measurement matrix of the proposed segmented compressed sampling method satisfies the RIP, the results

of [23] on recoverability and stability of thel1-norm minimization straightforwardly apply. A different

non-RIP-based approach for studying the recoverability and stability of thel1-norm minimization, which

uses some properties of the null space of the measurement matrix, is used in [27]. Then the non-RIP

sufficient condition for recoverability of a sparse signal from its noiseless compressed samples with the

algorithm (3) is [27]
√
S < min

{

0.5
‖v‖l1
‖v‖l2

: v ∈ {N (Φ) \ {0}}
}

(69)

whereN (Φ) denotes the null space of the measurement matrixΦ.

Let us show that the condition (69) is also satisfied for the extended measurement matrixΦe. Let d be

any vector in the null space ofΦe, i.e.,d ∈ N (Φe). Therefore,[Φe]id = 0, i = 1, . . . ,Ke where[Φe]i is

thei-th 1×N row-vector ofΦe. Since the firstK rows ofΦe are exactly the same as theK rows ofΦ, we

have[Φ]id = 0, i = 1, . . . ,K. Therefore,d ∈ N (Φ), and we can conclude thatN (Φe) ⊂ N (Φ). Due

to this property, we havemin {0.5‖v‖l1/‖v‖l2 : v ∈ N (Φ)} ≤ min {0.5‖v‖l1/‖v‖l2 : v ∈ N (Φe)}.

Therefore, if the original measurement matrixΦ satisfies (69), so does the extended measurement matrix

Φe, and the signal is recoverable from the samples taken byΦe.

Moreover, the necessary and sufficient condition for all signals with‖x‖l0 < S to be recoverable from

noiseless compressed samples using thel1-norm minimization (3) is that [27]

‖v‖l1 > 2‖vT ‖l1 , ∀v ∈ {N (Φ) \ {0}} (70)

whereT is the set of indexes corresponding to the nonzero coefficients of x. It is easy to see that since

N (Φe) ⊂ N (Φ), the condition (70) also holds for the extended measurementmatrix if the original

measurement matrix satisfies it.
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VI. SIMULATION RESULTS

Throughout our simulations we use the sparse signal of dimension 128 with only 3 nonzero entries,

which are set to±1 with equal probabilities. Since the signal is sparse in the time domain,Ψ = I. The

collected samples are assumed to be noisy, i.e., the model (4) is applied. In all our simulation examples,

three different measurement matrices (sampling schemes) are used: (i) theK×N measurement matrixΦ

with i.i.d. entries referred to as the original measurementmatrix; (ii) the extendedKe×N measurement

matrix Φe obtained using the proposed segmented compressed samplingmethod and referred to as the

extended measurement matrix; and (iii) theKe ×N measurement matrix with all i.i.d entries referred to

as the enlarged measurement matrix. This last measurement matrix corresponds to the sampling scheme

with Ke independent BMIs in the AIC in Fig. 1. The number of segments in the proposed segmented

compressed sampling methodM is set to8. To make sure that the measurement noise for additional

samples obtained based on the extended measurement matrix is correlated with the measurement noise

of the original samples, theK ×M matrix of noisy sub-samples with the noise varianceσ2/M is first

generated. Then the permutations are applied to this matrixand the sub-samples along each row of the

original and permuted matrices are added up together to build the noisy samples.

The recovery performance for three aforementioned sampling schemes is measured using the MSE

between the recovered and original signals. In all examples, MSE values are computed based on 5000

independent simulation runs for all sampling schemes tested. The SNR is defined as‖Φf‖2l2/‖w‖2l2 .

Approximating‖Φf‖2l2 by (K ′/N)‖f‖2l2 , which is valid because of (2), the corresponding noise variance

σ2 can be calculated if SNR is given, and vise versa. HereK ′ = K for the sampling scheme based on the

original measurement matrix, whileK ′ = Ke in the other two schemes. For example, the approximate

SNR in dBs can be calculated as10 log10 (3/Nσ2).

Recovery based on thel1-norm minimization algorithm:In our first simulation example, thel1-norm

minimization algorithm (5) is used to recover a signal sampled using the three aforementioned sampling

schemes. SinceΨ = I, thenΦ′ = Φ in (5). The number of BMIs in the sampling device is taken to

beK = 16, while γ in (5), which is the bound on the root square of the noise energy, is set to
√
K ′σ.

The entries of the original and enlarged measurement matrices are generated as i.i.d. Gaussian distributed

random variables with zero mean and variance1/N .

Fig. 4 shows the MSEs corresponding to all three aforementioned measurement matrices versus the

ratio of the number of additional samples to the number of original samplesKa/K. The results are shown

for three different SNR values of 5, 15 and 25 dB. It can be seenfrom the figure that better recovery
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Fig. 4. Recovery based on thel1-norm minimization algorithm: MSEs versusKa/K.

quality is achieved by using the extended measurement matrix as compared to the original measurement

matrix. The improvements are more significant for high SNRs since the recovery error is proportional to

the noise power [23]. As expected, the recovery performancein the case of the extended measurement

matrix is not as good as in the case of the enlarged measurement matrix. This difference, however, is

small as compared to the performance improvement over the original measurement matrix. Note also that

in the case of the enlarged measurement matrix, the AIC in Fig. 1 consists ofKe BMIs, while only K

BMIs are required in the case of the extended measurement matrix. Thus, the segmented AIC requires

Ke −K less BMIs. For example, the number of such BMIs halves ifKa/K = 1. Additionally, it can

be seen that the rate of MSE improvement decreases as the number of collected samples increases. The

latter can be observed for both the extended and enlarged measurement matrices and for all three values

of SNR.

Recovery based on the empirical risk minimization method:In our second simulation example, the

empirical risk minimization method is used to recover a signal sampled using the three aforementioned

sampling schemes tested withK = 24. The minimization problem (7) is solved to obtain a candidate

reconstruction̂fK ′ of the original sparse signalf . Consideringf̂K ′ = ΨH x̂K ′ , the problem (7) can be

rewritten in terms of̂xK ′ as

x̂K ′ = argmin
x̂∈X

{

r̂(ΨH x̂) +
c(x̂) log 2

ǫK ′

}

= argmin
x̂∈X

{

‖(y)−ΦΨH x̂‖2l2 +
2 log 2 logN

ǫ
‖x̂‖l0

}

(71)

and solved using the iterative bound optimization procedure [4]. This procedure uses the threshold
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(a) Measurement matrix with Gaussian distributed entries
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(b) Measurement matrix with Bernoulli distributed entries

Fig. 5. Recovery based on the empirical risk minimization method: MSEs versusKa/K.

√

2 log 2 logN/λǫ, whereλ is the largest eigenvalue of the matrixΦTΦ. In our simulations, this threshold

is set to 0.035 for the case of the extended measurement matrix and 0.05 for the cases of the original

and enlarged measurement matrices. These threshold valuesare optimized as recommended in [4]. The

stopping criterion for the iterative bound optimization procedure is‖x̂(i+1) − x̂(i)‖l∞ ≤ θ, where‖.‖l∞
is the l∞ norm andx̂(i) denotes the value of̂x obtained in thei-th iteration. The valueθ = 0.001 is

selected.

Fig. 5 shows the MSEs obtained based on the empirical risk minimization method for all three

measurement matrices versus the ratioKa/K. The results are shown for three different SNR values of

5, 15 and 25 dB. Two cases are considered: (a) the entries of the original and the enlarged measurement

matrices are generated as i.i.d. zero mean Gaussian distributed random variables with variance1/N

and (b) the entries of the original and enlarged measurementmatrices are generated as i.i.d. zero

mean Bernoulli distributed random variables with varianceas in case (a). The same conclusions as

in the first example can be drawn in this example. Moreover, the results for cases (a) and (b) are also

similar. Therefore, the proposed segmented AIC indeed leads to significantly improved signal recovery

performance without increasing the number of BMIs.

VII. C ONCLUSION

A new segmented compressed sampling method for AIC has been proposed. According to this method,

signal is segmented intoM segments and passed throughK BMIs of AIC to generate aK ×M matrix

of sub-samples. Then, a number of correlated samples largerthan the number of BMIs is constructed by
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adding up different subsets of sub-samples selected in a specific manner. Due to the inherent structure

of the method, the complexity of the sampling device is almost unchanged, while the signal recovery

performance is shown to be significantly improved. The complexity increase is only due to theM times

higher sampling rate and the necessity to solve a larger sizeoptimization problem at the recovery stage,

while the number of BMIs remains the same at the sampling stage. The validity and superiority of the

proposed segmented AIC method over the conventional AIC is justified through theoretical analysis of

the RIP and the quality of signal recovery. Simulation results also verify the effectiveness and superiority

of the proposed segmented AIC method and approve our theoretical studies.

APPENDIX A: PROOF OFTHEOREM 1

The total number of possible permutations ofz is K!. Let A be the set of permutationsπs, s =

1, . . . , |A| that satisfy the following condition

πs(k) 6= πt(k), s 6= t, ∀s, t ∈ {1, . . . , |A|}, ∀k ∈ {1, . . . ,K}. (72)

It is easy to see that the number of distinct permutations satisfying the condition (72) isK, so |A| = K.

It is also straightforward to see that the choice of suchK distinct permutations is not unique. As a

specific choice, let the elements ofA, i.e., the permutationsπs, s = 1, . . . ,K, be

πs(k) = ((s+ k − 2) modK) + 1, s, k = 1, . . . ,K (73)

with π1 being the identity permutation, i.e., the permutations that does not changez.

Consider now the matrixZ which consists ofM columnsz. The i-th set of column permutations of

matrixZ is P(i) = {π(i)
1 , . . . , π

(i)
M } and the corresponding permuted matrix isZP(i)

. Let {π(i)
1 , . . . , π

(i)
M }

be any combination of theK permutations in (73). Then there areKM possible choices forP(i). However,

not all of these possible choices are permissible by the conditions of the theorem.

Indeed, let the setP(1) be a combination of permutations fromA that satisfies (18). There are

I − 1 other setsP(i), i = 2, . . . , I which satisfy both (18) and (19). Gathering all such sets in one

set, we obtain the setP = {P(1), . . . ,P(I)}. Now let P(I+1) = [π
(I+1)
1 , . . . , π

(I+1)
M ] be one more

set of permutations where∃π(I+1)
m , m = 1, . . . ,M such thatπ(I+1)

m /∈ A. An arbitrary k-th row of

ZP(I+1)

is
(

[ZP(I+1)

]k,1, . . . , [Z
P(I+1)

]k,M

)

where [ZP(I+1)

]k,1, . . . , [Z
P(I+1)

]k,M ∈ {1, . . . ,K}. This

exact same row can be found as the first row of one of the permuted matricesZP(i)

, P(i) ∈ P.

Specifically, this is the permuted matrixZP(i)

that is obtained by applying the permutationsP(i) =
{

π
[ZP(I+1)

]k,1
, . . . , π

[ZP(I+1)
]k,M

}

. The permutationsP(i) either has to belong toP or being crossed out
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from P because of conflicting with some other elementP(l) ∈ P, l 6= i. In both cases,P(I+1) can not

be added toP because it will contradict the conditions (18) and (19).

Therefore, the setP can be built using only the permutations from the setA, i.e., theK permutations

in (73). Rearranging the rows ofZP(i)

in a certain way, one can force the elements in the first columnof

ZP(i)

to appear in the original increasing order, i.e., enforce the first column be equivalent to the vector

of indexesz. It can be done by applying to each permutation in the setP(i) the inverse permutation
(

π
(i)
1

)−1
, which itself is one of the permutations in (73). Therefore,the setP(i) = {π(i)

1 , . . . , π
(i)
M } can

be replaced by the equivalent set

{(

π
(i)
1

)−1
π
(i)
1 , . . . ,

(

π
(i)
1

)−1
π
(i)
M

}

=

{

π1, . . . ,
(

π
(i)
1

)−1
π
(i)
M

}

, where

π1 is the identity permutation and
(

π
(i)
1

)−1
π
(i)
j ∈ A. Hence, we can consider only the permutations of

the formP(i) = {π1, . . . , π(i)
j , . . . , π

(i)
M }. Since the condition (18) requires thatπ

(i)
2 should be different

from π1, the only available options for the permutations on the second column ofZ are theK − 1

permutationsπ2, . . . , πK in (73). Therefore,I at most equalsK − 1. Note thatI can be smaller than

K−1 if for somei ∈ {1, . . . ,K−1}, K/gcd(i,K) < M (also see Example 1 after Theorem 1). Thus,

in generalI ≤ K − 1.

APPENDIX B: PROOF OFLEMMA 1

Let all the rows of(Φe)T be partitioned into two sets of sizes (cardinality) as closeas possible to each

other, where all elements in each set are guaranteed to be statistically independent. In particular, note

that the elements of the newKa rows ofΦe are chosen either from the firstKa +M − 1 rows ofΦ if

Ka+M −1 < K or from the whole matrixΦ. Therefore, ifKa+M−1 < K, the lastK−Ka−M +1

rows of Φ play no role whatsoever in the process of extending the measurement matrix and they are

independent on the rows ofΦ1 in (24). These rows are called unused rows. Thus, one can freely add

any number of such unused rows to the set of rows inΦ1 without disrupting its status of being formed

by independent Gaussian variables. Since min{K,Ka +M − 1} ≤ ⌈(K +Ka) /2⌉, there exist at least

⌊(K +Ka) /2⌋ −Ka unused rows which can be added to the set of rows inΦ1. Such process describes

how the rows of(Φe)T are split into the desired sets(Φe)
1
T and (Φe)

2
T of statistically independent

elements. As a result, the first matrix(Φe)
1
T includes the first⌈(K +Ka) /2⌉ rows of (Φe)T , while the

rest of the rows are included in(Φe)
2
T .

Since the elements of the matrices(Φe)
1
T and (Φe)

2
T are i.i.d. Gaussian, they will satisfy (2) with

probabilities equal or larger than1− 2 (12/δS)
S e−C0⌈Ke/2⌉ and1− 2 (12/δS)

S e−C0⌊Ke/2⌋, respectively.
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Therefore, both matrices(Φe)
1
T and (Φe)

2
T satisfy (2) simultaneously with the common probability

Pr{(Φe)
i
T satisfies (2)} ≥ 1− 2(12/δS)

Se−C0⌊Ke/2⌋, i = 1, 2. (74)

Let K ′
1 , ⌈Ke/2⌉ andK ′

2 , ⌊Ke/2⌋. Consider the event when both(Φe)
1
T and (Φe)

2
T satisfy (2).

Then the following inequality hold for any vectorc ∈ RS :

2∑

i=1

K ′
i

N
(1− δS)‖c‖2l2 ≤

2∑

i=1

‖(Φe)
i
T c‖2l2 ≤

2∑

i=1

K ′
i

N
(1 + δS)‖c‖2l2 (75)

or, equivalently,

Ke

N
(1− δS)‖c‖2l2 ≤ ‖(Φe)T c‖2l2 ≤

Ke

N
(1 + δS)‖c‖2l2 . (76)

Therefore, if both matrices(Φe)
1
T and (Φe)

2
T satisfy (2), then the matrix(Φe)T also satisfies (2).

Moreover, the probability that(Φe)T does not satisfy (2) can be found as

Pr{(Φe)T does not satisfy (2)} ≤ Pr{(Φe)
1
T or (Φe)

2
T does not satisfy (2)}

(a)

≤
2∑

i=1

Pr{(Φe)
i
T does not satisfy (2)}

(b)

≤ 4 (12/δS)
S e−C0⌊Ke/2⌋ (77)

where the inequality (a) follows from the union bounding andthe inequality (b) follows from (74). Thus,

the inequality (26) holds.

APPENDIX C: PROOF OFTHEOREM 2

According to (26), the matrix(Φe)T does not satisfy (2) with probability less than or equal to

4 (12/δS)
S e−C0⌊Ke/2⌋ for any subsetT ⊂ {1, . . . , N} of cardinalityS. Since there are

(
N
S

)
≤ (Ne/S)S

different subsetsT of cardinalityS, Φe does not satisfy the RIP with probability

Pr{Φe does not satisfy RIP} ≤ 4

(
N

S

)

(12/δS)
S e−C0⌊Ke/2⌋

≤ 4 (Ne/S)S (12/δS)
S e−C0⌊Ke/2⌋ = 4e−(C0⌊Ke/2⌋−S[log(Ne/S)+log(12/δS)])

≤ 4e−{C0⌊Ke/2⌋−C3[log(Ne/S)+log(12/δS)]⌊Ke/2⌋/ log(N/S)}

= 4e−{C0−C3[1+(1+log(12/δS))/ log(N/S)]}⌊Ke/2⌋. (78)

SettingC4 = C0−C3 [1 + (1 + log (12/δS)) / log (N/S)] and choosingC3 small enough that guarantees

thatC4 is positive, we obtain (27).
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APPENDIX D: PROOF OFLEMMA 2

The method of the proof is the same as the one used to prove Lemma 1 and is based on splitting the

rows ofΦe into a number of sets with independent entries. Here, the splitting is carried out as shown in

(29).

Let (Φe)
i
T , i = 1, . . . , np − 1 be the matrix containing the(i − 1)K + 1-th to the iK-th rows

of (Φe)T . The lastKe − (np − 1)K rows of (Φe)T form the matrix (Φe)
np

T . Since the matrices

(Φe)
i
T , i = 1, . . . , np − 1 consist of independent entries, they satisfy (2) each with probability of at

least1− 2 (12/δS)
S e−C0K . For the same reason, the matrix(Φe)

np

T satisfies (2) with probability greater

than or equal to1 − 2 (12/δS)
S e−C0Knp . In the event that all the matrices(Φe)

i
T , i = 1, .., np satisfy

(2) simultaneously, forc ∈ RS we have
np∑

i=1

Ki

N
(1− δS)‖c‖2l2 ≤

np∑

i=1

‖(Φe)
i
T c‖2l2 ≤

np∑

i=1

Ki

N
(1 + δS)‖c‖2l2

⇒ Ke

N
(1− δS)‖c‖2l2 ≤ ‖(Φe)T c‖2l2 ≤ Ke

N
(1 + δS)‖c‖2l2 . (79)

Therefore, using the union bound and (79), we can conclude that

Pr{(Φe)T does not satisfy (2)} ≤
np∑

i=1

Pr{(Φe)
i
T does not satisfy (2)}

≤ 2(np − 1) (12/δS)
S (e−C0K

)
+ 2 (12/δS)

S (e−C0Knp

)
(80)

which proves the lemma.

APPENDIX E: PROOF OFTHEOREM 3

According to Lemma 2, for any subsetT ⊂ {1, . . . , N} of cardinalityS, the probability that(Φe)T

does not satisfy (2) is less than or equal to2(np − 1) (12/δS)
S (e−C0K

)
+2 (12/δS)

S (e−C0Knp

)
. Using

the fact that there are
(N
S

)
≤ (Ne/S)S different subsetsT , the probability that the extended measurement
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matrix Φe does not satisfy the RIP can be computed as

Pr{Φe does not satisfy the RIP} ≤ 2(np − 1)

(
N

S

)

(12/δS)
S e−C0K + 2

(
N

S

)

(12/δS)
S e−C0Knp

≤ 2(np − 1) (Ne/S)S (12/δS)
S e−C0K + 2 (Ne/S)S (12/δS)

S e−C0Knp

= 2(np − 1)e−(C0K−S[log(Ne/S)+log(12/δS)]) + 2e−(C0Knp−S[log(Ne/S)+log(12/δS)])

≤ 2(np − 1)e
−
{

C0K−
C3Knp

K
[log(Ne/S)+log(12/δS)]K/ log(N/S)

}

+ 2e−{C0Knp−C3Knp [log(Ne/S)+log(12/δS)]Knp/ log(N/S)}

= 2(np−1)e
−
{

C0−
C3Knp

K
[1+(1+log(12/δS))/ log(N/S)]

}

K
+ 2e−{C0−C3[1+(1+log(12/δS))/ log(N/S)]}Knp .

(81)

Denoting the constant terms asC4 = C0 − C3 [1 + (1 + log (12/δS)) / log (N/S)] and C ′
4 = C0 −

(C3Knp
/K) × [1 + (1 + log (12/δS)) / log (N/S)], and choosingC3 small enough in order to guarantee

thatC4 andC ′
4 are positive, we obtain (31).
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