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Abstract

1 Cooperative beamforming in relay networks is considered, in which a source transmits to its

destination with the help of a set of cooperating nodes. The source first transmits locally. The cooperating

nodes that receive the source signal retransmit a weighted version of it in an amplify-and-forward (AF)

fashion. Assuming knowledge of the second-order statistics of the channel state information, beamforming

weights are determined so that the signal-to-noise ratio (SNR) at the destination is maximized subject

to two different power constraints, i.e., a total (source and relay) power constraint, and individual relay

power constraints. For the former constraint, the originalproblem is transformed into a problem of one

variable, which can be solved via Newton’s method. For the latter constraint, the original problem is

transformed into a homogeneous quadratically constrainedquadratic programming (QCQP) problem. In

this case, it is shown that when the number of relays does not exceed three the global solution can always

be constructed via semidefinite programming (SDP) relaxation and the matrix rank-one decomposition

technique. For the cases in which the SDP relaxation does notgenerate a rank one solution, two methods

are proposed to solve the problem: the first one is based on thecoordinate descent method, and the second

one transforms the QCQP problem into an infinity norm maximization problem in which a smooth finite

norm approximation can lead to the solution using the augmented Lagrangian method.
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Cooperative beamforming, channel uncertainty, relay networks, fractional programming, semidefinite

programming.

1This research was supported in part by the Office of Naval Research under Grants ONR-N-00010710500, N-00014-09-1-0342

and in part by the National Science Foundation under Grants CNS-0905425, CNS-09-05398.

November 2, 2018 DRAFT

http://arxiv.org/abs/1005.5412v1


1

I. INTRODUCTION

Cooperative beamforming (CB), also called distributed beamforming has attracted considerable research

interest recently, due to its potential for improving communication reliability. One form of distributed

beamforming, the so-called distributed transmit beamforming, is a form of cooperative communications

in which a network of multiple transmitters cooperate to transmit a common message coherently to a

Base Station (BS). The distributed transmit beamforming can provide energy efficiency and reasonable

directional gain for ad hoc sensor networks [1], [2]. The challenges and recent progress of distributed

transmit beamforming are discussed in [3]. Another form of distributed beamforming is the distributed

relay beamforming, in which a set of cooperating nodes act asa virtual antenna array and adjust their

transmission weights to form a beam to the destination. Thiscan result in diversity gains similar to those

of multiple-antenna systems [7], [10]. Various effective cooperation schemes have been proposed in the

literature, such as amplify-and-forward (AF), decode-and-forward (DF) [4], coded-cooperation [5], and

compress-and-forward [6]. The AF protocol, due to its simplicity, is of particular interest [10].

In distributed relay beamforming, the objective is to determine source power and beamforming weights

according to some optimality criterion. Existing results for this problem can be classified into those that

rely on channel state information (CSI) availability at therelays [7], [8], [9], and those that allow for

channel uncertainly, i.e., that rely on statistics of CSI, such as the covariance of channel coefficients,

or imperfect CSI feedback [10], [11], [12], as opposed to explicit CSI. The latter class of techniques

is particularly important because CSI is never perfectly known at the transmitter. This work picks up

on some important results presented in [10], in which a source transmits a signal to a destination with

the assistance of a set of AF relay nodes In [10], the problem of obtaining the beamforming weights so

that the signal-to-noise ratio (SNR) at the destination is maximized subject to certain power constraints

is considered, i.e., individual relay power constraints and a total power relay constraint. For the case of

individual relay power constraints, a semidefinite programming (SDP) relaxation plus bisection search

technique was proposed in [10]. When the SDP relaxation generates a rank-one solution, then this is

the exact solution of the original problem; otherwise, the exact solution cannot be guaranteed, and the

authors of [10] proposed a Gaussian random procedure (GRP) to search for an approximate solution

based on the SDP relaxation solution. However, GRP is time-consuming and sometimes ineffective.

In this paper, we investigate the same scenario as in [10], i.e., cooperative beamforming under the

assumption that the second-order statistics of the channelstate information (CSI) are available. The

beamforming weights are determined so that the SNR at the destination is maximized subject to two
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different power constraints: (i) a total (source plus relay) power constraint, and (ii) individual relay

constraints. The differences of this work as compared to [10], are the following.

• Our first kind of power constraint includes the source power as well as the power of the relays. In

a wireless network all nodes have power constraints, therefore, placing a constraint on the source is

more realistic. However, this results in a more difficult optimization problem. A similar constraint

was also used in [13]. For this case, we transform the original problem into a problem of one

variable, which can then be solved via Newton’s method.

• The second kind of power constraint is exactly the same as that of [10], but our work contributes

new results and more efficient algorithms to reach the solution. In particular,

– We show that when the number of relays does not exceed three, the global solution can always

be constructed via SDP relaxation and the matrix rank-one decomposition technique.

– For the case in which the SDP relaxation solution has rank greater than one, we propose two

methods to obtain an approximate solution that is more effective than the Gaussian random

procedure employed in [10]. The first method is based on the coordinate descent method. The

second method transforms the original problem into an infinity norm maximization problem, for

which a smooth finite norm approximation results in a solution using the augmented Lagrangian

method.

• For both types of constraints, we obtain exact solutions forthe special cases in which the channel

coefficients between different node pairs are uncorrelatedand follow a Rayleigh fading model. These

cases were not discussed in [10].

The remainder of the paper is organized as follows. The mathematical model is introduced in§II.
In §III, the SNR maximization subject to a total power constraint is presented. The SNR maximization

subject to individual relay power constraints is developedin Section§IV. Numerical results are presented

in §V to illustrate the proposed algorithms. Finally,§VI provides concluding remarks.

A. Notation

Upper case and lower case bold symbols denote matrices and vectors, respectively. Superscripts∗, T
and† denote respectively conjugate, transposition and conjugate transposition.|·| denotes the amplitude of

a complex number.det(A) andTr(A) denote determinant and trace of matrixA, respectively.λmin(A)

andλmax(A) denote the smallest and largest eigenvalues ofA, respectively.A � 0 andA ≻ 0 mean

that matrixA is Hermitian positive semidefinite, and positive definite, respectively.A � B denotes
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that A − B is a positive semidefinite matrix.rank(A) denotes the rank of matrixA. diag(v) denotes

a diagonal matrix with diagonal entries consisting of the elements ofv. ‖a‖ denotes Euclidean norm

of vectora. In denotes the identity matrix of ordern (the subscript is dropped when the dimension is

obvious).E(·) denotes expectation.

1
f
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N
f

1
g

2
g

N
g...

Fig. 1. System model.

II. SYSTEM MODEL AND PROBLEM STATEMENT

The system model is the same as in [10] and is depicted in Fig. 1. It consists of a source node, a

destination node andN relay nodes, each node equipped with a single antenna. The source transmits

signals to the destination with the help of relay nodes. We assume that the direct link between the source

and destination is very weak and thus ignored. The channel gains from the source to theith relay, and

from the ith relay to the destination, are denoted respectively byfi andgi.

Communication between source and destination occurs in twostages (slots). During the first stage,

the source broadcasts its signal to the relays. During the second stage, the relays working in AF fashion

transmit a weighted version of the signal that they receivedduring the first stage. Let
√
Ps s be the source

signal, wherePs is the source transmit power ands is the information symbol withE(|s|2) = 1. The

received signal at theith relay is given by

xi =
√
Ps fis+ vi (1)

wherevi represents the noise at theith relay having zero mean and varianceσ2. The ith relay weights

the received signal and transmitszi = wixi wherewi is the weight. The received signal at the destination

equals

y =

N∑

i=1

gizi + ν =
√
Ps

N∑

i=1

wifigis+

N∑

i=1

wigivi + ν (2)
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whereν is the noise at the destination having zero mean and varianceσ2.

Let us assume that the second-order statistics of the channel gainsfi’s andgi’s are known. We also

assume thatfi andgj , ∀i, j are statistically independent. Define

w = [w1, · · · , wN ]T ,

h = [f1g1, · · · , fNgN ]T ,

g = [g1, · · · , gN ]T ,

R = E{hh†},

Q = E{gg†},

and D = diag(E{|f1|2}, · · · ,E{|fN |2}). (3)

In general,Q andR are full matrices. In case of uncorrelated Rayleigh fading,in holds thatE(f∗i fj) = 0,

andE(g∗i gj) = 0, ∀i 6= j, in which caseR andQ both are diagonal.

From (2), the signal component power is given by

Pd = E

{∣∣∣∣
√
Ps

N∑

i=1

wifigis

∣∣∣∣
2
}

= Psw
†Rw (4)

and the total noise powerPn equals

Pn = E

{∣∣∣∣
N∑

i=1

wigivi + ν

∣∣∣∣
2
}

= σ2 + σ2w†Qw. (5)

The SNR at the destination is given by

Γd =
Pd

Pn
=
Ps

σ2
w†Rw

1 +w†Qw
. (6)

The total relay transmit power and transmit power at theith relay are respectively given by

Pr =

N∑

i=1

E{|zi|2} = Psw
†Dw + σ2w†w (7)

Pr,i = E{|zi|2} = (PsDii + σ2)|wi|2 (8)

whereDii is the (i, i)th entry ofD.

Our goal in this paper is to determine the beamforming weightswi’s such thatΓd is maximized subject

to certain power constraints. In this paper, we consider twokinds of power constraints. The first kind

corresponds to the case in which the total power of the sourceand all relays is constrained, i.e.,

Ps + Pr ≤ P0. (9)
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whereP0 is the maximum allowable total transmit power of the source and all relays. The second kind

is the individual relay power constraints in which each relay node is restricted in its transmit power, i.e,

Pr,i ≤ Pi (10)

wherePi is the maximum allowable transmit power of theith relay.

III. SNR MAXIMIZATION UNDER TOTAL POWER CONSTRAINT

From (6) and (9), the SNR maximization problem subject to a total power constraint is expressed as

max
Ps,w

Ps

σ2
w†Rw

1 +w†Qw
(11)

s.t. Ps + Psw
†Dw + σ2w†w ≤ P0.

We give the following lemma, the proof of which can be found inAppendix A.

Lemma 1: Let P ◦
s be the solution of the following

max
Ps

Ps

σ2
P0 − Ps

λmin(PsS1 + (P0 − Ps)S2)
(12)

s.t. 0 ≤ Ps ≤ P0

where

S1 = R−1/2DR−1/2 + (σ2/P0)R
−1, (13)

and S2 = R−1/2QR−1/2 + (σ2/P0)R
−1. (14)

Letw◦ be the eigenvector associated with the smallest eigenvalueof P ◦
s S1+(P0−P ◦

s )S2. Then(P ◦
s ,w

◦)

is the solution to the problem of (11).

Remarks: Here we assume thatR ≻ 0. If R ⊁ 0, the methodology is similar. In fact, from Appendix A,

the problem of (11) is also equivalent to

max
Ps

Ps(P0 − Ps)λmax

(
[PsD+ σ2I+ (P0 − Ps)Q]−

1

2R[PsD+ σ2I+ (P0 − Ps)Q]−
1

2

)
(15)

s.t. 0 ≤ Ps ≤ P0.

A similar procedure can be used to solve the above problem.

Let us normalizePs by letting x = Ps/P0, 0 ≤ x ≤ 1. With this, the problem of (12) is equivalent to

max
x

P0

σ2
x(1− x)

λmin(xS1 + (1− x)S2)
(16)

s.t. 0 ≤ x ≤ 1.
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A. S1 andS2 are both diagonal

In case of uncorrelated Rayleigh fading,R andQ are diagonal matrices. Then,S1 andS2 are both

diagonal, and as it will be shown next the exact solution can be obtained analytically.

By denoting the(k, k)-th entry ofS1 andS2 asak andbk, respectively, the problem of (16) becomes

min
0<x<1

λmin

(
1

1− xS1 +
1

x
S2

)

= min
0<x<1

min
k=1,··· ,N

{
ak

1− x +
bk
x

}

= min
k=1,··· ,N

min
0<x<1

{
ak

1− x +
bk
x

}

= min
k=1,··· ,N

(
√
ak +

√
bk)

2

= (
√
ak0

+
√
bk0

)2. (17)

The above minimum is attained for

x =

√
bk0√

ak0
+
√
bk0

(18)

where

k0 = arg min
k=1,··· ,N

(
√
ak +

√
bk)

2. (19)

B. S1 or S2 is not diagonal

Lemma 2: The optimalx of (16) lies in[xl, xu] where

xl =

√
c

1 +
√
c
, (20)

and xu =

√
d

1 +
√
d

(21)

wherec = λmin(S
−1/2
1 S2S

−1/2
1 ), andd = λmax(S

−1/2
1 S2S

−1/2
1 ).

The proof is given in Appendix B.

From Lemma 2, to solve the problem of (16) is equivalent to solving the problem of

min
x

λmin

(
1

1− xS1 +
1

x
S2

)
(22)

s.t. xl ≤ x ≤ xu.

The objective in (22) is in general not a convex function over[xl, xu]. We will use Newton’s method

to search for the stationary points. Let us start by denoting

G(x) =
1

1− xS1 +
1

x
S2, x ∈ [xl, xu]. (23)
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Note thatG(x) depends smoothly onx ∈ [xl, xu] as any order derivative ofG(x) exists. We assume that

G(x) has a simple spectrum forx ∈ [xl, xu]. This is a reasonable assumption for generalS1 andS2 (see

[14], [15, §4]). Under this assumption,λmin(G(x)) also depends smoothly onx ∈ [xl, xu] [14]. First-

and second- order necessary conditions forx to be a local minimizer are respectively [31, Theorem 2.2,

2.3]

d

dx
λmin(G(x)) = 0, (24)

and
d2

dx2
λmin(G(x)) ≥ 0. (25)

If (25) holds with strict inequality, thenx is a strict local minimizer [31, Theorem 2.4]. In Newton’s

method, the(k + 1)th iteration is given by [31, Ch. 3]

xk+1 = xk − αk

d
dxλmin(G(x))
d2

dx2λmin(G(x))
, k = 0, 1, · · · (26)

whereαk > 0 is chosen such thatxk+1 does not exceed[xl, xu], and otherwise,αk ← αk/2.

In the iteration expression (26), we need to calculate the first- and second- order derivatives of

λmin(G(x)). Let u0(x) be the eigenvector associated withλmin(G(x)). Let uk(x), k = 1, · · · , N − 1 be

the eigenvectors associated with the other eigenvaluesλk(x) of G(x), respectively, whereλ1(x) > · · · >
λN−1(x) > λmin(G(x)). The first- and second- order derivatives ofλmin(G(x)) (the so-calledHadamard

first variation formulaandHadamard second variation formula[15, §4]) are respectively given by [16],

[17]

d

dx
λmin(G(x)) = u0(x)

†dG(x)

dx
u0(x), (27)

and
d2

dx2
λmin(G(x)) = u0(x)

†d
2G(x)

dx2
u0(x)−

N−1∑

j=1

2
∣∣uj(x)

† dG(x)
dx u0(x)

∣∣2

λj(x)− λmin(G(x))
(28)

where

dG(x)

dx
=

1

(1 − x)2S1 −
1

x2
S2, (29)

and
d2G(x)

dx2
=

2

(1 − x)3S1 +
2

x3
S2. (30)

IV. SNR MAXIMIZATION UNDER INDIVIDUAL RELAY POWER CONSTRAINTS

From (6) and (10), the SNR maximization problem subject to individual relay power constraints is

expressed as

max
w

Ps

σ2
w†Rw

1 +w†Qw
(31)

s.t. (PsDkk + σ2)|wk|2 ≤ Pk, k ∈ I
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whereI = {1, 2, · · · , N}. The problem of (31) belongs to the class of quadratically constrained fractional

programs. In [10], this problem was analyzed and an SDP relaxation plus bisection search technique was

proposed. Here, we first consider the case of uncorrelated Rayleigh fading, and show that an exact solution

can be obtained. Then, for the general fading case, we propose two methods that are more efficient than

the search method of [10]. As it will be shown in the simulations section, the random search approach,

in addition to being time consuming, can result in a noticeable performance gap as compared to the

proposed approaches.

A. R andQ are both diagonal

By using the Dinkelbach-type method [18], we introduce the following function:

F (t) =max
w

[
f(t,w) =

Ps

σ2
w†Rw − t(1 +w†Qw)

]
(32)

s.t. (PsDkk + σ2)|wk|2 ≤ Pk, k ∈ I.

The relation betweenF (t) and the problem of (31) is given in the following property [18].

Property 1:

(i) F (t) is strictly decreasing, andF (t) = 0 has a unique root, sayt⋆;

(ii) Let w⋆ be the solution of (32) corresponding tot⋆. Thenw⋆ is also the solution of (31) with the

largest objective valuet⋆ exactly.

According to Property 1, we aim to findt⋆ and the associatedw⋆, which is also the solution of (31).

To this end, by denoting the(k, k)th entry ofR, Q asrk, qk, respectively, we rewrite

f(t,w) = −t+
N∑

k=1

(
Ps

σ2
rk − tqk

)
|wk|2 (33)

to get that

F (t) = −t+
N∑

k=1

Pk

PsDkk + σ2
ϕ

(
Ps

σ2
rk − tqk

)
(34)

associated with the optimal

|wk|2 =





Pk

PsDkk+σ2

Ps

σ2 rk − tqk > 0

0 otherwise
(35)

where

ϕ(x) ,





x x > 0

0 otherwise.
(36)
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To find the root ofF (t) = 0, let us denote

tk =
Psrk
σ2qk

, k = 1, · · · , N (37)

and their rearrangement̃t1 < t̃2 < · · · < t̃N corresponding tõrk, q̃k, P̃k, and D̃kk, respectively. With

these, we rewrite (34) as

F (t) = −t+
N∑

k=1

P̃k

PsD̃kk + σ2
ϕ

(
Ps

σ2
r̃k − tq̃k

)
. (38)

Note thatF (0) > 0 andF (t̃N ) = −t̃N < 0. Thus, it follows from Property 1 that0 < t⋆ < t̃N . The root

t⋆ is determined based on the following theorem, the proof of which is given in Appendix C.

Theorem 1: If F (t̃k0
) = 0 for an integerk0, thent⋆ = tk0

. Otherwise, letk0 be the smallest integer

such thatF (t̃k0
) < 0. Then

t⋆ =

(
1 +

N∑

k=k0

P̃k q̃k

PsD̃kk + σ2

)−1 N∑

k=k0

P̃kPsr̃k

(PsD̃kk + σ2)σ2
. (39)

Oncet⋆ is obtained, we can obtainw⋆ from (35).

B. R or Q is not diagonal

1) Equivalent QCQP and SDP relaxation:The problem of (31) is equivalent (up to scaling) to a

QCQP, as stated in the following lemma. The proof of the lemmais given in Appendix D.

Lemma 3: Let w◦ be the solution of the following homogeneous QCQP problem:

max
w

w†Rw (40)

s.t. w†Akw ≤ 1, k ∈ I

where

Ak =
PsDkk + σ2

Pk
Jk +Q (41)

andJk is a matrix with all zero entries except for the(k, k)th entry one. Let

η = max
k∈I

PsDkk + σ2

Pk
w◦†Jkw

◦. (42)

Then 1√
ηw

◦ is the solution to the problem of (31).

Remarks: In fact, Lemma 3 states that the QCQP of (40) and the problem of (31) are equivalentup to

scaling.
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Note that the constraint in (40) is convex but the objective is concave. Thus, the problem of (40) is

not a convex problem. In fact, this problem belongs to the class of problems involving maximization of

convex functions over a convex set [19].

The SDP relaxation is a popular method for QCQP problems. LetX = ww†, and we can write

w†Rw = Tr(RX), w†Akw = Tr(AkX). With this, we can rewrite the problem of (40) as

min
X

−Tr(RX) (43)

s.t. Tr(AkX) ≤ 1, k ∈ I

X � 0,

rank(X) = 1.

Dropping the non-convex constraintrank(X) = 1, we obtain the SDP relaxation [30]

min
X

−Tr(RX) (44)

s.t. Tr(AkX) ≤ 1, k ∈ I

X � 0.

The SDP of (44) a convex problem which can be effectively solved by CVX software [32]. LetX⋆ be

such a solution. Obviously, ifX⋆ has rank one, then it is the solution to the problem of (43) andhence

generates the solution to the problem of (40). Otherwise, a search technique may be used to obtain the

suboptimal solution of the original problem, e.g., the Gaussian random procedure (GRP) [10]. For general

R andQ, the solutionX⋆ from CVX software does not necessarily have rank one (in fact, for general

R andQ matrices, the SDP of (44) does not necessarily have a rank onesolution). Some examples on

the above claim will be given in the simulation section below.

The SDP relaxation problem of (44) has several advantages ascompared to the SDP relaxation of

[10]. First, it obtains the same objective value while avoiding the bisection search. Second, forN = 2, 3,

it attains the global optimal solution in polynomial time. In other words, forN = 2, 3, one can ensure

that the problem of (44) has a rank one solution. Moreover, one can construct a rank one solution from

any non rank oneX⋆ in polynomial time. In fact, forN = 2, 3, the problem has been solved using the

complex matrix rank-one decomposition [20, Theorem 2.1], as stated in the following theorem.

Theorem 2: For N = 2, 3, the problem of (44) has a rank one solution. LetX⋆ be any one of the

solutions. IfX⋆ has a rank greater than one, one can construct a rank one solution fromX⋆ in polynomial

time by using the complex matrix rank one decomposition.
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For the case in which the solutionX⋆ from the CVX software has a rank greater than one, the GRP

can used, although it is in general time-consuming and sometimes ineffective. In the following, we give

two more effective methods for that case.

2) Coordinate descent method:If the solutionX⋆ from CVX software has rank greater than one we

can use the coordinate descent method [21,§8.9], [22,§2.7], [23], [24] to directly deal with the original

problem of (31). Note that the constraints of the problem of (31) are some bounds for the elements of

w, i.e., a Cartesian product of some closed convex sets (see [22, §2.7]). The idea behind the coordinate

descent method is the following. At each iteration, the objective is minimized with respect to one element

of w while keeping the other elements fixed. The method is particularly attractive when the subproblem

is easy to solve (e.g., there is a closed form solution) and also satisfies certain condition for convergence

[22, Proposition 2.7.1], [23, Theorem 4.1], [24,§6]. The coordinate descent algorithm applied to our

problem is as follows.

Algorithm 1:

1) Setε = 10−3; Choose an initial pointw0; Setk = 0.

2) For p = 1 : N , determine the optimalpth element while keeping the other elements fixed. This

results inwk
p ;

3) wk+1 = wk
N ;

4) If ‖wk+1−wk‖
‖wk‖ < ε, stop;

5) k = k + 1; Go to 2).

In the following, we show that the subproblem stated in Step 2has a closed form solution (see Theorem

3) and also study its convergence to a stationary point (see Theorem 4).

It is easy to verify that minimizing the objective with respect to thekth element ofw while keeping

the other elements fixed leads to the following optimizationproblem:

max
y

a1|y|2 + b1y + b∗1y
∗ + c1

a2|y|2 + b2y + b∗2y
∗ + c2

(45)

s.t. |y| ≤ β

whereβ =
√
Pk/(PsDkk + σ2), a1 = Rkk, a2 = Qkk and b1, b2, c1, c2 can be inferred from (31). For

example, whenk = 1, let w = [y, w̃T ]T and

Q =


 Q11 l

†
1

l1 Q1


 , and R =


 R11 l

†
2

l2 R1


 . (46)
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Thenb1 = w̃†l1, c1 = w̃†Q1w̃, b2 = w̃†l2 andc2 = 1 + w̃†R1w̃.

For the solution of (45) we give the following theorem, the proof of which can be found in Appendix

F.

Theorem 3: If a1/a2 = b1/b2 = c1/c2, the objective in (45) is a constant, and the optimumy, i.e.,

y⋆, is any value satisfying|y| ≤ β. Otherwise: If the equation(a1− ta2)β2+2|b1− tb2|β+ c1− tc2 = 0

has a real root, i.e.,t1, such that|b1 − t1b2| ≥ (t1a2 − a1)β, then the optimaly is given by

y⋆ = βe−iθ1 (47)

whereθ1 ∈ (−π, π] is the argument ofb1−t1b2; Else, lett2 be the root of|b1−tb2|2 = (a1−ta2)(c1−tc2)
such that|b1 − t2b2| < (t2a2 − a1)β, then the optimaly is given by

y⋆ =
|b1 − t2b2|
t2a2 − a1

e−iθ2 (48)

whereθ2 is the argument ofb1 − t2b2.
Remarks: The rootst1 and t2 in Theorem 3 can both be obtained in closed form.

For the coordinate descent method, obviously the function value sequence converges. However, in

general additional conditions for convergence to a stationary point (or fixed point used in [24,§6]) are

needed.

Theorem 4: The sequence{wk} generated by Algorithm 1 converges globally to a stationarypoint.

Proof: Our proof is based on [22, Proposition 2.7.1] and its proof. Let us denote the objective in

(31) asf(w). Let w̄ = (w̄1, · · · , w̄N ) be the limit point of the sequence{wk}. We first show

f(w̄) ≥ f(w1, w̄2, · · · , w̄N ), ∀w1. (49)

If f(w1, w̄2, · · · , w̄N ) is a constant, then obviously (49) holds. Iff(w1, w̄2, · · · , w̄N ) is not a constant,

to see why, let us assume that (49) does not hold. A verbatim repetition of the proof for [22, Proposition

2.7.1] results in

f(w̄) = f(w̄1 + ǫv1, w̄2, · · · , w̄N ), ∀ǫ ∈ [0, ǫ0] (50)

for some v1 6= 0, ǫ0 > 0. But from Theorem 3, (50) does not hold for anyv1 6= 0, ǫ0 > 0 if

f(w1, w̄2, · · · , w̄N ) is not a constant. Thus, (49) holds. Similarly, we show

f(w̄) ≥ f(w̄1, · · · , w̄j−1, wj , w̄j+1, · · · , w̄N ), ∀wj (51)

for j = 1, · · · , N . This completes the proof.
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3) p-norm approximation:If the solutionX⋆ from the CVX software has rank greater than one, we

can also usep-norm approximation plus an augmented Lagrangian method tosolve the problem of (40).

The convergence of the augmented Lagrangian method can be found in [31]. First, we can show that the

problem of (40) is equivalent (up to scaling) to

min
w

[
max
k∈I

w†Akw

]
(52)

s.t. w†Rw = 1.

To see why this is the case, letw⋆ be the solution to the problem of (52) associated with the optimal

objective valuemaxk∈I w⋆†Akw
⋆ = C. Then, 1√

C
w⋆ is the solution to the problem of (40) associated

with optimal objective value( 1√
C
w⋆)†R( 1√

C
w⋆) = 1

C . Otherwise, let us assume that the solution to

the problem of (40) isw′ with w′†Rw′ = C1 >
1
C . Thus,w′′ = 1√

C1

w′ satisfiesw′†Rw′ = 1 and

maxk∈I w′′†Akw
′′ = 1

C1
< C. This contradicts the optimality ofw⋆ for the problem of (52). In fact,

the two problems are equivalentup to scaling.

On denotingD1 = diag(
√

PsD11+σ2

P1
, · · · ,

√
PsDNN+σ2

PN

), u = D1w, R1 = D−1
1 RD−1

1 and Q1 =

D−1
1 QD−1

1 , we rewrite the problem of (52) as

min
u

u†Q1u+ ‖u‖2∞ (53)

s.t. u†R1u = 1

where‖u‖∞ = maxk∈I |uk| is the infinity norm. Note that‖u‖∞ is not smooth [26]. However, we can

approximate‖u‖∞ by (smooth)p-norm, i.e.,‖u‖p = (
∑

k∈I |uk|p)1/p, so that [27], [28]

‖u‖∞ = lim
p→∞

‖u‖p, (54)

and ‖u‖∞ ≤ ‖u‖p ≤ N1/p‖u‖∞. (55)

Whenp is sufficiently large, the approximation is good. In fact, from (55), it is easy to show that given

a toleranceε, the relative error does not exceedε as long asp ≥ logN/ log(1 + ε). For example, for

N = 10, ε = 1%, we getp ≥ 232; for N = 40, ε = 0.5%, we getp ≥ 740.

Now, using‖u‖22p, p ≥ 1 as a smooth approximation to‖u‖2∞, we turn to solve the following

min
u

u†Q1u+ ‖u‖22p (56)

s.t. u†R1u = 1.

We use the augmented Lagrangian method [31,§17] to solve the problem of (56). Since the augmented

Lagrangian method was originally proposed for real variables, we first modify our problem as follows.
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Define [25]

z =


 Re(u)

Im(u)


 , (57)

F =


 Re(Q1) −Im(Q1)

Im(Q1) Re(Q1)


 , (58)

K =


 Re(R1) −Im(R1)

Im(R1) Re(R1)


 , (59)

and J̃k =


 Jk 0

0 Jk


 (60)

whereJk is defined in Lemma 3, andRe(·), Im(·) denote the real and imaginary part respectively, then

u†Q1u = zTFz, (61)

u†R1u = zTKz, (62)

and ‖u‖22p =

(∑

k∈I
(zT J̃kz)

p

)1/p

. (63)

With these, we rewrite the problem of (56) as

min
z

zTFz+ φp(z) (64)

s.t. zTKz− 1 = 0

whereφp(z) is defined as the right hand side of (63).

Now we can apply the augmented Lagrangian method, given by

L(z;λ;µ) = zTFz+ φp(z)− λ(zTKz− 1) +
1

2µ
(zTKz− 1)2 (65)

whereλ is the Lagrangian multiplier, and the fourth term in the right hand side of (65) is the penalty

function. The algorithm is described as follows:

1) Choose an initial estimateλ(0) of λ⋆ andµ = 0.001. Setk = 1.

2) Determinezk to be a minimizer ofL(z;λ(k−1);µ);

3) Computeλ(k) = λ(k−1) − (zTkKzk − 1)/µ;

4) If a convergence test is satisfied, stop;

5) k = k + 1; Go to 2).
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For Step 2, we use the backtracking line search Newton’s method with Hessian modification [31,

Algorithm 3.2]. The iteration expression is

z(i+1) = z(i) + αpi (66)

with pi = −(∇2L+ βI)−1∇L (67)

whereβ is chosen such that∇2L + βI is positive definite, e.g.,β = λmin(∇2L) + 10−6, andα is the

step size determined by the backtracking line search described as follows [31, Algorithm 3.1]:

a) Setα = 1, c1 = 10−4, ρ = 0.5;

b) Repeat: ifL(z(i) + αpi; ·; ·) > L(z(i); ·; ·) + c1αp
T
i ∇L, thenα← ρα.

In the algorithm, we need to calculate∇L and∇2L given by

∇L = 2Fz+∇φp − 2λKz +
2

µ
(zTKz− 1)Kz (68)

and ∇2L = 2F+∇2φp − 2λK+
2

µ
(zTKz− 1)K+

4

µ
KzzTK. (69)

The calculation of∇φp and∇2φp is given in Appendix E.

Remarks: For the initial estimateλ(0) of λ⋆, note that whenp = 1, thenφp(z) = zT z andλ⋆ can be

expressed in closed form asλmin(K
−1/2FK−1/2 +K−1). We choose this asλ(0).

V. NUMERICAL RESULTS

In this section, we provide some examples illustrating the proposed algorithms. For more simulation

results on beamforming itself the reader can refer to [10]. We consider a channel model as follows:

fi = f̄i +
√
ψi f̃i (70)

and gj = ḡj +
√
ϕj g̃j (71)

where f̄i and ḡj are means,ψi andϕj are variances,̃fi and g̃j both are zero-mean random variables

with unit variance. We assume thatf̃i, f̃j, g̃i and g̃j , ∀i 6= j are independent.̄fi = 0 corresponds to the

scenario in which there is no line-of-sight (LOS) path (Rayleigh fading), whilef̄i 6= 0 corresponds the

scenario in which there is an LOS path (Rician fading). Thus,the matricesD, R andQ are given by

D = diag(|f̄1|2 + ψ1, · · · , |f̄N |2 + ψN ),

Qij = ḡiḡ
∗
j +
√
ϕiϕj δij ,

and Rij = (f̄if̄
∗
j +

√
ψiψj δij)(ḡiḡ

∗
j +
√
ϕiϕj δij)

whereδij is the Kronecker function.
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A. SNR maximization under total power constraint

Please refer to§III for details. First, we consider a network consisting ofN = 6 relays with channel

parameters given by

f̄1 = 0.2202 + 0.8130i, f̄2 = −0.4075 − 0.7644i,

f̄3 = −2.0107 + 0.4016i, f̄4 = −0.4503 + 0.0678i,

f̄5 = 0.8588 − 0.1130i, f̄6 = −0.1219 + 0.4260i;

ψ1 = 3.8042, ψ2 = 2.6326, ψ3 = 4.7590,

ψ4 = 0.4989, ψ5 = 1.2576, ψ6 = 1.2484;

ḡ1 = −0.3726 + 0.8007i, ḡ2 = 0.4592 − 0.2045i,

ḡ3 = −0.8769 + 0.4671i, ḡ4 = −0.9270 + 0.5430i,

ḡ5 = −0.0063 − 0.4977i, ḡ6 = −0.7783 − 0.7712i;

ϕ1 = 0.3913, ϕ2 = 0.4791, ϕ3 = 0.0865,

ϕ4 = 2.7813, ϕ5 = 4.8960, ϕ6 = 4.6789.

Fig. 2 plotsλmin(G(x)) for x in [xl, xu] = [0.1711, 0.7077] with 100 uniform points. Using Newton’s

method for starting pointsx0 = xl, x0 = xu, the convergent points(0.2156, 1.2191), (0.5844, 1.2694)

are also plotted in Fig. 2. Fig. 3 plots the iteration processunder the stopping test:|xk+1−xk

xk

| < 10−3

and | ddxλmin(G(x))| < 10−3. It can be seen from Fig. 3 that Newton’s method converges rapidly.

Second, we consider a network consisting ofN = 6 relays with channel parameters given by

f̄1 = −0.4751 + 0.7340i, f̄2 = −0.0449 − 0.4609i,

f̄3 = 0.0239 − 1.5154i, f̄4 = 0.5130 − 0.1755i,

f̄5 = −0.2017 + 0.6717i, f̄6 = 1.0134 − 0.1985i;

ψ1 = 2.4707, ψ2 = 3.9193, ψ3 = 2.4121,

ψ4 = 3.8879, ψ5 = 1.2050, ψ6 = 3.0901;

ḡ1 = 0.5360 − 1.2932i, ḡ2 = 1.7471 − 0.8914i,

ḡ3 = 0.0955 − 0.1577i, ḡ4 = −0.6795 + 0.2479i,

ḡ5 = 0.5815 + 0.5039i, ḡ6 = −0.3090 + 0.8413i;

ϕ1 = 3.9655, ϕ2 = 0.2693, ϕ3 = 0.9205,

ϕ4 = 0.5567, ϕ5 = 3.3901, ϕ6 = 2.9367.

Fig. 4 plotsλmin(G(x)) for x in [xl, xu] = [0.2754, 0.6392] with 100 uniform points. Using Newton’s
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method for starting pointsx0 = xl, x0 = xu, the same convergent point(0.4087, 0.6060) is also plotted in

Fig. 4. Fig. 5 plots the iteration process under the stoppingtest:|xk+1−xk

xk

| < 10−3 and| ddxλmin(G(x))| <
10−3. It can be seen from Fig. 5 that Newton’s method converges rapidly.

B. SNR maximization under individual relay power constraints

Please refer to§IV for details. In [10], the authors stated that, based on their simulations, the SDP

relaxation always has a rank one solution. However, no analytic proof was provided for that claim.

However, although a rank one solution often occurs, for general R andQ the SDP relaxation does not

necessarily have a rank one solution. This can be seen in the following examples, for which the SDP

relaxation has a rank greater than one.

First, we consider a network consisting ofN = 4 relays with

Q =




2.1 .73 + .75i .43 + 1.1i .70− .33i
.73− .75i 1.6 −.20 + .18i .57− .71i
.43− 1.1i −.20− .18i 2 −.52− .45i
.70 + .33i .57 + .71i −.52 + .45i .98




(72)

and R =




1.6 −.74− .16i .084− .57i −.19 + .67i

−.74 + .16i 1.1 −.88 + .31i −.44− .24i
.084 + .57i −.88− .31i 2 .20− .14i
−.19− .67i −.44 + .24i .20 + .14i 1.5



. (73)

For simplicity, we letD1 = I (defined in§IV-B3) and denote the SDP relaxation solution from CVX

software byX⋆. The eigenvalues ofX⋆ are

0.0000, 0.0000, 0.2064, 1.8148.

Thus,X⋆ has rank two rather than rank one and can be eigen-decomposedas0.2064u1u
†
1+1.8148u2u

†
2

whereu1 andu2 are eigenvectors associated with the eigenvalues0.2064 and 1.8148 respectively. We

obtain the objective values of the problem of (40) for SDP relaxation, GRP from [10], coordinate descent

method from§IV-B2, and p-norm approximation from§IV-B3 (starting points:
√
1.8148 u2 or some

samples fromCN (0,X⋆)) as, respectively:

SDP relaxation: 3.74112

GRP (106 samples fromCN (0,X⋆)): 3.6970

Coordinate descent method:3.7076

p-norm approximation: 3.7069 (p = 1024)
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It can be seen that the objective values from GRP, coordinatedescent method andp-norm approximation

are close to each other (with a difference< 0.3%) and close to the SDP relaxation solution (with a

difference< 2%). It can be seen that: although the GRP attains a close performance compared with

the other two methods, it is time consuming in the sense that it needs much more time (processes106

samples fromCN (0,X⋆)). The augmented LagrangianL(z;λ;µ) (defined in (65)) during the iteration

is plotted in Fig. 6. The objective value during the iteration for the coordinate descent method is plotted

in Fig. 7. It can be seen that for these two algorithms the iteration converges rapidly.

Second, we consider a network consisting ofN = 6 relays with

Q =




.778 −.658− .646i .135 + .269i −.273 + .005i .088− .261i −.021− .013i
−.658 + .646i 2.20 −.379− 1.14i .253− .872i −.337 + 1.02i .444− .035i
.135− .269i −.379 + 1.14i 2. .689 + .298i −.547− .160i .373 + .693i

−.273− .005i .253 + .872i .689− .298i 1. −.655 + .192i .132− .107i
.088 + .261i −.337− 1.02i −.547 + .160i −.655− .192i 2.40 −.721− .276i
−.021 + .013i .444 + .035i .373− .693i .132 + .107i −.721 + .276i 1.09




(74)

and

R =




3.44 −.263 + .054i .572 + 1.73i .490− .276i −.613− 1.62i −.014 + .375i

−.263− .054i 3.09 −.342− 1.49i .926 + 1.13i −.282− .713i −.211 + .911i

.572− 1.73i −.342 + 1.49i 2.70 −.493 + .865i −.396 + .826i .149− .836i

.490 + .276i .926− 1.13i −.493− .865i 3.09 .541 + .330i −.552− .221i
−.613 + 1.62i −.282 + .713i −.396− .826i .541− .330i 2.75 −.442− .352i
−.014− .375i −.211− .911i .149 + .836i −.552 + .221i −.442 + .352i 2.08




.

(75)

The eigenvalues ofX⋆ are

0.0000, 0.0000, 0.0000, 0.0000, 0.8369, 2.3774.

Thus,X⋆ has rank two rather than rank one and can be eigen-decomposedas0.8369u1u
†
1+2.3774u2u

†
2

whereu1 andu2 are eigenvectors associated with the eigenvalues0.8369 and 2.3774 respectively. We

obtain the objective values of the problem of (40) for SDP relaxation, GRP, coordinate descent method, and

p-norm approximation (starting points:
√
2.3774 u2 or some samples fromCN (0,X⋆)) as, respectively:

SDP relaxation: 9.33816

GRP (106 samples fromCN (0,X⋆)): 8.1472
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Coordinate descent method:8.9428

p-norm approximation: 8.9409 (p = 1024)

It can be seen that: the objective value from GRP has a significant (> 10%) difference from the

SDP relaxation solution;p-norm approximation and coordinate descent method attain objective values

close to each other; the improvement of objective value fromcoordinate descent method is(8.9428 −
8.1472)/8.1472 = 9.77% compared with GRP. It can be seen that for this example, GRP istime

consuming and ineffective in the sense that it needs more time (processes106 samples fromCN (0,X⋆))

but attains worse performance compared with the other two algorithms. The augmented Lagrangian

L(z;λ;µ) (defined in (65)) during the iteration is plotted in Fig. 8. The objective value during the

iteration for the coordinate descent method is plotted in Fig. 9. We can see that for these two algorithms

the iteration converges rapidly.

VI. CONCLUSION

We have investigated the problem of cooperative beamforming under the assumption that the second-

order statistics of the channel state information (CSI) areavailable. Beamforming weights are determined

so that the SNR at the destination is maximized subject to twokinds of power constraints. The first

kind of power constraint is a constraint on the total power, i.e., source plus relay power. The second

kind of power constraint is a constraint on each relay’s transmit power. For uncorrelated Rayleigh fading

scenario, we attained the exact solution. For generic fading scenario, we focused on the case in which

the SDP relaxation does not produce a rank-one solution and proposed two methods to solve it. The

numerical simulations suggest that the proposed methods are more effective than the method of [10].

APPENDIX A

PROOF OFLEMMA 1

Let (P ◦
s ,w

◦) be the solution to the problem of (11). We can show thatP ◦
s +P

◦
sw

◦†Dw◦+σ2w◦†w◦ =

P0. Otherwise, let us assume thatP ◦
s +P

◦
s w

◦†Dw◦+σ2w◦†w◦ < P0. Let β = (P0−P ◦
s )/(P

◦
s w

◦†Dw◦+

σ2w◦†w◦), and henceβ > 1. It is easy to verify that(P ◦
s ,
√
βw◦) satisfies the constraint but results

in a larger objective value. This violates the optimality of(P ◦
s ,w

◦). With this, the problem of (11) is

equivalent to

max
Ps,w

Ps

σ2
w†Rw

1 +w†Qw
(76)

s.t. Ps + Psw
†Dw + σ2w†w = P0.
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It follows from the constraint in (76) that

1 =
w†(PsD+ σ2I)w

P0 − Ps
. (77)

By using (77), we rewrite the problem of (76) as

max
Ps,w

Ps

σ2
(P0 − Ps)w

†Rw

w†[PsD+ σ2I+ (P0 − Ps)Q]w
(78)

s.t. Ps + Psw
†Dw + σ2w†w = P0.

Note that the objective in (78) has the same value atw andβ1w, ∀β1 6= 0, w 6= 0. Thus, the problem

of (78) is equivalent to

max
Ps,w

Ps

σ2
(P0 − Ps)w

†Rw

w†[PsD+ σ2I+ (P0 − Ps)Q]w
(79)

s.t. 0 ≤ Ps ≤ P0, w 6= 0.

Further, we rewrite

σ2I = Ps
σ2

P0
I+ (P0 − Ps)

σ2

P0
I, (80)

which enables us to write

PsD+ σ2I+ (P0 − Ps)Q = Ps

(
D+

σ2

P0

)
+ (P0 − Ps)

(
Q+

σ2

P0

)
. (81)

With this, by using the fact that forC1 ≻ 0 andC2 ≻ 0 [29, p. 549]

1

λmin(C
−1/2
1 C2C

−1/2
1 )

= max
x 6=0

x†C1x

x†C2x
, (82)

the problem of (79) is equivalent to the problem of (12).

APPENDIX B

PROOF OFLEMMA 2

Obviously, neitherx = 0 nor x = 1 is the solution to the problem of (16). Define the function

K(x) =
xS1 + (1− x)S2

x(1− x) =
S1

1− x +
S2

x
, x ∈ (0, 1). (83)

Let x ∈ (0, 1) and∆x 6= 0 be an increment such thatx+ ∆x ∈ (0, 1). Using Taylor series expansion,

we approximate

1

1− (x+∆x)
=

1

1− x +
∆x

(1− x)2 +
(∆x)2

(1− ξ1)3
, (84)

and
1

x+∆x
=

1

x
− ∆x

x2
+

(∆x)2

ξ32
(85)
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whereξ1 andξ2 both lie betweenx andx+∆x. From (83), (84) and (85), we get

K(x+∆x) = K(x) + ∆x

(
1

(1− x)2S1 −
1

x2
S2

)
+ (∆x)2

(
1

(1− ξ1)3
S1 +

1

ξ32
S2

)
. (86)

Note that the third term in the right hand side of (86) is positive definite. By using the facts that [29, p.

549]

cS1 � S2, and dS1 � S2 (87)

it is not difficult to prove that

1

(1− x)2S1 −
1

x2
S2





� 0 x ∈ (0, xl]

� 0 x ∈ [xu, 1).
(88)

With these, we know that: ifx ∈ (0, xl] and∆x < 0, thenK(x + ∆x) ≻ K(x) and it follows from

Weyl’s inequality [33, p. 181] thatλmin(K(x+∆x)) > λmin(K(x)); if x ∈ [xu, 1) and∆x > 0, similarly,

λmin(K(x+∆x)) > λmin(K(x)). This completes the proof.

APPENDIX C

PROOF OFTHEOREM 1

If k0 = 1, then0 < t⋆ < t̃1, and

Ps

σ2
r̃k − t⋆q̃k > 0, k = 1, · · · , N. (89)

Thus,F (t) = 0 in (38) leads to

− t⋆ +
N∑

k=1

P̃k

PsD̃kk + σ2

(
Ps

σ2
r̃k − t⋆q̃k

)
= 0. (90)

The desired result can be obtained from the above equation.

If k0 > 1, then t̃k0−1 < t⋆ < t̃k0
, and

Ps

σ2
r̃k − t⋆q̃k





> 0 k = k0, · · · , N
< 0 k = 1, · · · , k0 − 1.

(91)

Thus,F (t) = 0 in (38) leads to

− t⋆ +
N∑

k=k0

P̃k

PsD̃kk + σ2

(
Ps

σ2
r̃k − t⋆q̃k

)
= 0. (92)

The desired result can be obtained from the above equation.
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APPENDIX D

PROOF OFLEMMA 3

Note that the constraints in (31) can be rewritten as

PsDkk + σ2

Pk
w†Jkw ≤ 1, k ∈ I. (93)

Note that the objective in (31) has a greater value atαw than that atw, ∀α > 1, w 6= 0. Thus, there

existsj ∈ I such that((PsDjj + σ2)/Pj)w
†Jjw = 1, i.e., at least one constraint is active. With this,

the constraints in (31) can be rewritten as

max
k∈I

PsDkk + σ2

Pk
w†Jkw = 1. (94)

By using (94), we rewrite the problem of (31) as

max
w

Ps

σ2
w†Rw

maxk∈I w†Akw
(95)

s.t. max
k∈I

PsDkk + σ2

Pk
w†Jkw = 1.

Note that the objective in (95) has the same value atw andβ1w, ∀β1 6= 0, w 6= 0. Thus, the problem

of (95) is equivalent to

max
w

Ps

σ2
w†Rw

maxk∈I w†Akw
(96)

s.t. w 6= 0.

Similarly, the problem of (96) is equivalent to

max
w

Ps

σ2
w†Rw (97)

s.t. max
k∈I

w†Akw = 1.

Obviously, the problem of (97) is equivalent to the problem of (40). This completes the proof.

APPENDIX E

CALCULATION OF ∇φp AND ∇2φp

We have

∇φp =
∂φp
∂z

= 2
∑

k∈I

(
zT J̃kz

φp(z)

)p−1

J̃kz (98)
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and

∇2φp =
∂

∂zT

(
∂φp
∂z

)

= 2
∑

k∈I

(
zT J̃kz

φp(z)

)p−1

J̃k +
1− p
φp(z)

(
∂φp
∂z

)(
∂φp
∂z

)T

+
4(p − 1)

φp(z)

∑

k∈I

(
zT J̃kz

φp(z)

)p−2

J̃kzz
T J̃k.

(99)

APPENDIX F

PROOF OFTHEOREM 3

By using the Dinkelbach-type method [18] (cf.§IV-A), we introduce the function

F (t) =max
y

f(t, y) (100)

s.t. |y| ≤ β

where

f(t, y) = a1|y|2 + b1y + b∗1y
∗ + c1 − t(a2|y|2 + b2y + b∗2y

∗ + c2). (101)

Similarly to Property 1 in§IV-A, F (t) is a strictly decreasing function and the equationF (t) = 0 has a

unique roott⋆. The optimaly⋆ associated withF (t⋆) is also the solution for the problem of (45) with

the optimal objective valuet⋆.

To obtain the expression ofF (t), we denotey = |y|eiθ and write

f(t, y) = (a1 − ta2)|y|2 +
[
(b1 − tb2)eiθ + (b1 − tb2)∗e−iθ

]
|y|+ c1 − tc2

≤ (a1 − ta2)|y|2 + 2|b1 − tb2||y|+ c1 − tc2. (102)

The equality in (102) occurs when the argument ofb1−tb2 equals−θ (if b1−tb2 = 0, thenθ is arbitrary).

With this, we letr = |y| and write

F (t) =c1 − tc2 +max
r

(a1 − ta2)r2 + 2|b1 − tb2|r (103)

s.t. 0 ≤ r ≤ β.

Further, it is easy to get:

1) Whena1 − ta2 > 0, i.e., t < a1/a2, the optimalr is β (unique), and we wirte

F (t) = (a1 − ta2)β2 + 2|b1 − tb2|β + c1 − tc2. (104)
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2) Whena1 − ta2 < 0, i.e., t > a1/a2, the optimalr is given by (unique)

r⋆ = min

{ |b1 − tb2|
ta2 − a1

, β

}
, (105)

and we write: Ift > a1/a2 and |b1 − tb2| ≥ (ta2 − a1)β, then

F (t) = (a1 − ta2)β2 + 2|b1 − tb2|β + c1 − tc2; (106)

If t > a1/a2 and |b1 − tb2| < (ta2 − a1)β, then

F (t) =
|b1 − tb2|2
ta2 − a1

+ c1 − tc2. (107)

3) Whena1 − ta2 = 0, i.e., t = a1/a2, we know: If b1 − tb2 6= 0 (i.e., b1/b2 6= a1/a2), the optimalr is

β (unique), and

F (a1/a2) = 2|b1 − (a1/a2)b2|β + c1 − (a1/a2)c2; (108)

If b1 − tb2 = 0 (i.e., b1/b2 = a1/a2), the optimalr is arbitrary in[0, β], and

F (a1/a2) = c1 − (a1/a2)c2. (109)

Recall thatF (t) is a strictly decreasing function and the equationF (t) = 0 has a unique roott⋆. Thus,

one and only one of the equations (104), (106), (107), (108),(109) satisfiesF (t⋆) = 0.

Based on the analysis above, it is not difficult to obtain the desired result.
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Fig. 2. λmin(G(x)) for x in [xl, xu] = [0.2754, 0.6392] with 100 uniform points; The left point is for starting pointx0 = xl

and the right point is for the starting pointx0 = xu; SNR = 10 dB; A total power constraint.
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Fig. 3. The iteration process; The upper line is for startingpoint x0 = xl and the lower line is for the starting pointx0 = xu;

SNR = 10 dB; A total power constraint.
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Fig. 4. λmin(G(x)) for x in [xl, xu] = [0.2754, 0.6392] with 100 uniform points; The same convergent point is for starting

point x0 = xl andx0 = xu; SNR = 10 dB; A total power constraint.
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Fig. 5. The iteration process; The upper and lower lines converge to the same point for starting pointx0 = xl andx0 = xu;

SNR = 10 dB; A total power constraint.

November 2, 2018 DRAFT



28

0 5 10 15 20 25 30 35 40

0

0.5

1

1.5

2

2.5

3

k

A
ug

m
en

te
d 

La
gr

an
gi

an
 d

ur
in

g 
ite

ra
tio

n

Fig. 6. The augmented LagrangianL(z;λ;µ) (defined in (65)) during the iteration process of the proposed algorithm; Individual

relay power constraints;p-norm approximation.
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Fig. 7. The objective value during the iteration process of the proposed algorithm; Individual relay power constraints; Coordinate

descent method.
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Fig. 8. The augmented LagrangianL(z;λ;µ) (defined in (65)) during the iteration process of the proposed algorithm; Individual

relay power constraints;p-norm approximation.
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Fig. 9. The objective value during the iteration process of the proposed algorithm; Individual relay power constraints; Coordinate

descent method.
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