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Abstract

Signals comprised of a stream of short pulses appear in many applications including bio-imaging and

radar. The recent finite rate of innovation framework, has paved the way to low rate sampling of such

pulses by noticing that only a small number of parameters perunit time are needed to fully describe

these signals. Unfortunately, for high rates of innovation, existing sampling schemes are numerically

unstable. In this paper we propose a general sampling approach which leads to stable recovery even in the

presence of many pulses. We begin by deriving a condition on the sampling kernel which allows perfect

reconstruction of periodic streams from the minimal numberof samples. We then design a compactly

supported class of filters, satisfying this condition. The periodic solution is extended to finite and infinite

streams, and is shown to be numerically stable even for a large number of pulses. High noise robustness

is also demonstrated when the delays are sufficiently separated. Finally, we process ultrasound imaging

data using our techniques, and show that substantial rate reduction with respect to traditional ultrasound

sampling schemes can be achieved.

Index Terms

Analog-to-digital conversion, annihilating filters, finite rate of innovation, compressed sensing, perfect

reconstruction, ultrasound imaging, sub-Nyquist sampling.

Copyright (c) 2010 IEEE. Personal use of this material is permitted. However, permission to use this material for any other

purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Department of Electrical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel. Phone: +972-4-8293256,

fax: +972-4-8295757, E-mail:{ronentur@techunix,yonina@ee}.technion.ac.il, zvi.friedman@med.ge.com. Y. Eldar is currently

a Visiting Professor at Stanford, CA. This work was supported in part by a Magneton grant from the Israel Ministry of Industry

and Trade.

http://arxiv.org/abs/1003.2822v4


2

I. INTRODUCTION

Sampling is the process of representing a continuous-time signal by discrete-time coefficients, while

retaining the important signal features. The well-known Shannon-Nyquist theorem states that the minimal

sampling rate required for perfect reconstruction of bandlimited signals is twice the maximal frequency.

This result has since been generalized to minimal rate sampling schemes for signals lying in arbitrary

subspaces [1], [2].

Recently, there has been growing interest in sampling of signals consisting of a stream of short pulses,

where the pulse shape is known. Such signals have a finite number of degrees of freedom per unit time,

also known as the Finite Rate of Innovation (FRI) property [3]. This interest is motivated by applications

such as digital processing of neuronal signals, bio-imaging, image processing and ultrawideband (UWB)

communications, where such signals are present in abundance. Our work is motivated by the possible

application of this model in ultrasound imaging, where echoes of the transmit pulse are reflected off

scatterers within the tissue, and form a stream of pulses signal at the receiver. The time-delays and am-

plitudes of the echoes indicate the position and strength ofthe various scatterers, respectively. Therefore,

determining these parameters from low rate samples of the received signal is an important problem.

Reducing the rate allows more efficient processing which cantranslate to power and size reduction of

the ultrasound imaging system.

Our goal is to design a minimal rate single-channel samplingand reconstruction scheme for pulse

streams that is stable even in the presence of many pulses. Since the set of FRI signals does not form

a subspace, classic subspace schemes cannot be directly used to design low-rate sampling schemes.

Mathematically, such FRI signals conform with a broader model of signals lying in a union of subspaces

[4]–[9]. Although the minimal sampling rate required for such settings has been derived, no generic

sampling scheme exists for the general problem. Nonetheless, some special cases have been treated in

previous work, including streams of pulses.

A stream of pulses can be viewed as a parametric signal, uniquely defined by the time-delays of the

pulses and their amplitudes. Efficient sampling of periodicimpulse streams, havingL impulses in each

period, was proposed in [3], [10]. The heart of the solution is to obtain a set of Fourier series coefficients,

which then converts the problem of determining the time-delays and amplitudes to that of finding the

frequencies and amplitudes of a sum of sinusoids. The latteris a standard problem in spectral analysis

[11] which can be solved using conventional methods, such asthe annihilating filter approach, as long

as the number of samples is at least2L. This result is intuitive since there are2L degrees of freedom in
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each period:L time-delays andL amplitudes.

Periodic streams of pulses are mathematically convenient to analyze, however not very practical. In

contrast, finite streams of pulses are prevalent in applications such as ultrasound imaging. The first

treatment of finite Dirac streams appears in [3], in which a Gaussian sampling kernel was proposed. The

time-delays and amplitudes are then estimated from the Gaussian tails. This method and its improvement

[12] are numerically unstable for high rates of innovation,since they rely on the Gaussian tails which take

on small values. The work in [13] introduced a general familyof polynomial and exponential reproducing

kernels, which can be used to solve FRI problems. Specifically, B-spline and E-spline sampling kernels

which satisfy the reproduction condition are proposed. This method treats streams of Diracs, differentiated

Diracs, and short pulses with compact support. However, theproposed sampling filters result in poor

reconstruction results for largeL. To the best of our knowledge, a numerically stable samplingand

reconstruction scheme for high order problems has not yet been reported.

Infinite streams of pulses arise in applications such as UWB communications, where the communicated

data changes frequently. Using spline filters [13], and under certain limitations on the signal, the infinite

stream can be divided into a sequence of separate finite problems. The individual finite cases may be

treated using methods for the finite setting, at the expense of above critical sampling rate, and suffer

from the same instability issues. In addition, the constraints that are cast on the signal become more and

more stringent as the number of pulses per unit time grows. Ina recent work [14] the authors propose

a sampling and reconstruction scheme forL = 1, however, our interest here is in high values ofL.

Another related work [7] proposes a semi-periodic model, where the pulse time-delays do not change

from period to period, but the amplitudes vary. This is a hybrid case in which the number of degrees

of freedom in the time-delays is finite, but there is an infinite number of degrees of freedom in the

amplitudes. Therefore, the proposed recovery scheme generally requires an infinite number of samples.

This differs from the periodic and finite cases we discuss in this paper which have a finite number of

degrees of freedom and, consequently, require only a finite number of samples.

In this paper we study sampling of signals consisting of a stream of pulses, covering the three different

cases: periodic, finite and infinite streams of pulses. The criteria we consider for designing such systems

are: a) Minimal sampling rate which allows perfect reconstruction, b) numerical stability (with sufficiently

separated time delays), and c) minimal restrictions on the number of pulses per sampling period.

We begin by treating periodic pulse streams. For this setting, we develop a general sampling scheme

for arbitrary pulse shapes which allows to determine the times and amplitudes of the pulses, from a

minimal number of samples. As we show, previous work [3] is a special case of our extended results.
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In contrast to the infinite time-support of the filters in [3],we develop a compactly supported class of

filters which satisfy our mathematical condition. This class of filters consists of a sum of sinc functions

in the frequency domain. We therefore refer to such functions asSum of Sincs(SoS). To the best of our

knowledge, this is the first class of finite support filters that solve the periodic case. As we discuss in

detail in Section V, these filters are related to exponentialreproducing kernels, introduced in [13].

The compact support of the SoS filters is the key to extending the periodic solution to the finite stream

case. Generalizing the SoS class, we design a sampling and reconstruction scheme which perfectly

reconstructs a finite stream of pulses from a minimal number of samples, as long as the pulse shape has

compact support. Our reconstruction is numerically stablefor both small values ofL and large number

of pulses, e.g.,L = 100. In contrast, Gaussian sampling filters [3], [12] are unstable for L > 9, and

we show in simulations that B-splines and E-splines [13] exhibit large estimation errors forL ≥ 5.

In addition, we demonstrate substantial improvement in noise robustness even for low values ofL. Our

advantage stems from the fact that we propose compactly supported filters on the one hand, while staying

within the regime of Fourier coefficients reconstruction onthe other hand. Extending our results to the

infinite setting, we consider an infinite stream consisting of pulse bursts, where each burst contains a

large number of pulses. The stability of our method allows toreconstruct even a large number of closely

spaced pulses, which cannot be treated using existing solutions [13]. In addition, the constraints cast

on the structure of the signal are independent ofL (the number of pulses in each burst), in contrast to

previous work, and therefore similar sampling schemes may be used for different values ofL. Finally,

we show that our sampling scheme requires lower sampling rate for L ≥ 3.

As an application, we demonstrate our sampling scheme on real ultrasound imaging data acquired by

GE healthcare’s ultrasound system. We obtain high accuracyestimation while reducing the number of

samples by two orders of magnitude in comparison with current imaging techniques.

The remainder of the paper is organized as follows. In Section II we present the periodic signal

model, and derive a general sampling scheme. The SoS class isthen developed and demonstrated via

simulations. The extension to the finite case is presented inSection III, followed by simulations showing

the advantages of our method in high order problems and noisysettings. In Section IV, we treat infinite

streams of pulses. Section V explores the relationship of our work to previous methods. Finally, in

Section VI, we demonstrate our algorithm on real ultrasoundimaging data.
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II. PERIODIC STREAM OF PULSES

A. Problem Formulation

Throughout the paper we denote matrices and vectors by bold font, with lowercase letters corresponding

to vectors and uppercase letters to matrices. Thenth element of a vectora is written asan, andAij

denotes theijth element of a matrixA. Superscripts(·)∗, (·)T and(·)H represent complex conjugation,

transposition and conjugate transposition, respectively. The Moore-Penrose pseudo-inverse of a matrixA

is written asA†. The continuous-time Fourier transform (CTFT) of a continuous-time signalx (t) ∈ L2

is defined byX (ω) =
∫∞
−∞ x (t) e−jωtdt, and

〈x (t) , y (t)〉 =
∫ ∞

−∞
x∗ (t) y (t) dt, (1)

denotes the inner product between twoL2 signals.

Consider aτ -periodic stream of pulses, defined as

x(t) =
∑

m∈Z

L
∑

l=1

alh(t− tl −mτ), (2)

whereh(t) is a known pulse shape,τ is the known period, and{tl, al}Ll=1, tl ∈ [0, τ), al ∈ C, l = 1 . . . L

are the unknown delays and amplitudes. Our goal is to samplex(t) and reconstruct it, from a minimal

number of samples. Since the signal has2L degrees of freedom, we expect the minimal number of

samples to be2L. We are primarily interested in pulses which have small time-support. Direct uniform

sampling of2L samples of the signal will result in many zero samples, sincethe probability for the

sample to hit a pulse is very low. Therefore, we must construct a more sophisticated sampling scheme.

Define the periodic continuation ofh(t) as f(t) =
∑

m∈Z h(t − mτ). Using Poisson’s summation

formula [15], f(t) may be written as

f(t) =
1

τ

∑

k∈Z
H

(

2πk

τ

)

ej2πkt/τ , (3)

whereH(ω) denotes the CTFT of the pulseh(t). Substituting (3) into (2) we obtain

x(t) =

L
∑

l=1

alf(t− tl)

=
∑

k∈Z

(

1

τ
H

(

2πk

τ

) L
∑

l=1

ale
−j2πktl/τ

)

ej2πkt/τ

=
∑

k∈Z
X[k]ej2πkt/τ , (4)
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where we denoted

X[k] =
1

τ
H

(

2πk

τ

) L
∑

l=1

ale
−j2πktl/τ . (5)

The expansion in (4) is the Fourier series representation ofthe τ -periodic signalx(t) with Fourier

coefficients given by (5).

Following [3], we now show that once2L or more Fourier coefficients ofx(t) are known, we may use

conventional tools from spectral analysis to determine theunknowns{tl, al}Ll=1. The method by which

the Fourier coefficients are obtained will be presented in subsequent sections.

Define a setK of M consecutive indices such thatH
(

2πk
τ

)

6= 0, ∀k ∈ K. We assume such a set

exists, which is usually the case for short time-support pulsesh(t). Denote byH theM ×M diagonal

matrix with kth entry 1
τH

(

2πk
τ

)

, and byV(t) the M × L matrix with klth elemente−j2πktl/τ , where

t = {t1, . . . , tL} is the vector of the unknown delays. In addition denote bya the length-L vector whose

lth element isal, and byx the length-M vector whosekth element isX[k]. We may then write (5) in

matrix form as

x = HV(t)a. (6)

SinceH is invertible by construction we definey = H−1x, which satisfies

y = V(t)a. (7)

The matrixV is a Vandermonde matrix and therefore has full column rank [11], [16] as long asM ≥ L

and the time-delays are distinct, i.e.,ti 6= tj for all i 6= j.

Writing the expression for thekth element of the vectory in (7) explicitly:

yk =

L
∑

l=1

ale
−j2πktl/τ . (8)

Evidently, given the vectorx, (7) is a standard problem of finding the frequencies and amplitudes of a

sum ofL complex exponentials (see [11] for a review of this topic). This problem may be solved as

long as|K| = M ≥ 2L.

The annihilating filter approach used extensively by Vetterli et al. [3], [10] is one way of recovering

the frequencies, and is thoroughly described in the literature [3], [10], [11]. This method can solve

the problem using the critical number of samplesM = 2L, as opposed to other techniques such as

MUSIC [17], [18] and ESPRIT [19] which require oversampling. Since we are interested in minimal-rate

sampling, we use the annihilating filter throughout the paper.
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B. Obtaining The Fourier Series Coefficients

As we have seen, given the vector ofM ≥ 2L Fourier series coefficientsx, we may use standard

tools from spectral analysis to determine the set{tl, al}Ll=1. In practice, however, the signal is sampled

in the time domain, and therefore we do not have direct accessto samples ofx. Our goal is to design a

single-channel sampling scheme which allows to determinex from time-domain samples. In contrast to

previous work [3], [10] which focused on a low-pass samplingfilter, in this section we derive a general

condition on the sampling kernel allowing to obtain the vector x. For the sake of clarity we confine

ourselves to uniform sampling, the results extend in a straightforward manner to nonuniform sampling

as well.

s
∗(−t)x(t) c[n]

t = nT

Fig. 1. Single channel sampling scheme.

Consider sampling the signalx(t) uniformly with sampling kernels∗(−t) and sampling periodT , as

depicted in Fig. 1. The samples are given by

c[n] =

∫ ∞

−∞
x(t)s∗(t− nT )dt = 〈s(t− nT ), x(t)〉. (9)

Substituting (4) into (9) we have

c[n] =
∑

k∈Z
X[k]

∫ ∞

−∞
ej2πkt/τs∗(t− nT )dt

=
∑

k∈Z
X[k]ej2πknT/τ

∫ ∞

−∞
ej2πkt/τs∗(t)dt

=
∑

k∈Z
X[k]ej2πknT/τS∗(2πk/τ), (10)

whereS(ω) is the CTFT ofs(t). Choosing any filters(t) which satisfies

S(ω) =



















0 ω = 2πk/τ, k /∈ K
nonzero ω = 2πk/τ, k ∈ K
arbitrary otherwise,

(11)

we can rewrite (10) as

c[n] =
∑

k∈K
X[k]ej2πknT/τS∗(2πk/τ). (12)
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In contrast to (10), the sum in (12) is finite. Note that (11) implies that any real filter meeting this

condition will satisfyk ∈ K ⇒ −k ∈ K, and in additionS(2πk/τ) = S∗(−2πk/τ), due to the conjugate

symmetry of real filters.

Defining theM×M diagonal matrixS whosekth entry isS∗(2πk/τ) for all k ∈ K, and the length-N

vectorc whosenth element isc[n], we may write (12) as

c = V(−ts)Sx (13)

wherets = {nT : n = 0 . . . N − 1}, andV is defined as in (6) with a different parameter−ts and

dimensionsN × M . The matrixS is invertible by construction. SinceV is Vandermonde, it is left

invertible as long asN ≥ M . Therefore,

x = S−1V†(−ts)c. (14)

In the special case whereN = M andT = τ/N , the recovery in (14) becomes:

x = S−1DFT{c}, (15)

i.e., the vectorx is obtained by applying the Discrete Fourier Transform (DFT) on the sample vector,

followed by a correction matrix related to the sampling filter.

The idea behind this sampling scheme is that each sample is actually a linear combination of the

elements ofx. The sampling kernels(t) is designed to pass the coefficientsX[k], k ∈ K while suppressing

all other coefficientsX[k], k /∈ K. This is exactly what the condition in (11) means. This sampling scheme

guarantees that each sample combination is linearly independent of the others. Therefore, the linear system

of equations in (13) has full column rank which allows to solve for the vectorx.

We summarize this result in the following theorem.

Theorem 1. Consider theτ -periodic stream of pulses of orderL:

x(t) =
∑

m∈Z

L
∑

l=1

alh(t− tl −mτ).

Choose a setK of consecutive indices for whichH(2πk/τ) 6= 0, ∀k ∈ K. Then the samples

c[n] = 〈s(t− nT ), x(t)〉, n = 0 . . . N − 1,

uniquely determine the signalx(t) for any s(t) satisfying condition(11), as long asN ≥ |K| ≥ 2L.

In order to extend Theorem 1 to nonuniform sampling, we only need to substitute the nonuniform

sampling times in the vectorts in (14).
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Fig. 2. The filterg(t) with all coefficientsbk = 1.

Theorem 1 presents a general single channel sampling scheme. One special case of this framework

is the one proposed by Vetterli et al. in [3] in whichs∗(−t) = B sinc(−Bt), whereB = M/τ and

N ≥ M ≥ 2L. In this cases(t) is an ideal low-pass filter of bandwidthB with

S(ω) =
1√
2π

rect
( ω

2πB

)

. (16)

Clearly, (16) satisfies the general condition in (11) withK = {−⌊M/2⌋, . . . , ⌊M/2⌋} and S
(

2πk
τ

)

=

1√
2π
, ∀k ∈ K. Note that since this filter is real valued it must satisfyk ∈ K ⇒ −k ∈ K, i.e., the indices

come in pairs except fork = 0. Sincek = 0 is part of the setK, in this case the cardinalityM = |K|
must be odd valued so thatN ≥ M ≥ 2L+ 1 samples, rather than the minimal rateN ≥ 2L.

The ideal low-pass filter is bandlimited, and therefore has infinite time-support, so that it cannot be

extended to finite and infinite streams of pulses. In the next section we propose a class of non-bandlimited

sampling kernels, which exploit the additional degrees of freedom in condition (11), and have compact

support in the time domain. The compact support allows to extend this class to finite and infinite streams,

as we show in Sections III and IV, respectively.

C. Compactly Supported Sampling Kernels

Consider the following SoS class which consists of a sum of sincs in the frequency domain:

G(ω) =
τ√
2π

∑

k∈K
bk sinc

(

ω

2π/τ
− k

)

(17)
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Fig. 3. The filterg(t) with Hamming window coefficients.

wherebk 6= 0, k ∈ K. The filter in (17) is real valued if and only ifk ∈ K ⇒ −k ∈ K andbk = b∗−k for

all k ∈ K. Since for each sinc in the sum

sinc

(

ω

2π/τ
− k

)

=







1 ω = 2πk′/τ, k′ = k

0 ω = 2πk′/τ, k′ 6= k,
(18)

the filterG(ω) satisfies (11) by construction. Switching to the time domain

g(t) = rect

(

t

τ

)

∑

k∈K
bke

j2πkt/τ , (19)

which is clearly a time compact filter with supportτ .

The SoS class in (19) may be extended to

G(ω) =
τ√
2π

∑

k∈K
bkφ

(

ω

2π/τ
− k

)

(20)

wherebk 6= 0, k ∈ K, andφ(ω) is any function satisfying:

φ (ω) =



















1 ω = 0

0 |ω| ∈ N

arbitrary otherwise.

(21)

This more general structure allows for smooth versions of the rect function, which is important when

practically implementing analog filters.

The functiong(t) represents a class of filters determined by the parameters{bk}k∈K. These degrees

of freedom offer a filter design tool where the free parameters {bk}k∈K may be optimized for different

goals, e.g., parameters which will result in a feasible analog filter. In Theorem 2 below, we show how

to choose{bk} to minimize the mean-squared error (MSE) in the presence of noise.
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Fig. 4. Compressed samples of pulse streams (a) Original periodic signal consisting of 5 Gaussians (3 periods are shown). (b)

Sampling filter. (c) Low rate samples depicted over the filtered signal.

Determining the parameters{bk}k∈K may be viewed from a more empirical point of view. The impulse

response of any analog filter having supportτ may be written in terms of a windowed Fourier series as

Φ(t) = rect

(

t

τ

)

∑

k∈Z
βke

j2πkt/τ . (22)

Confining ourselves to filters which satisfyβk 6= 0, k ∈ K, we may truncate the series and choose:

bk =







βk k ∈ K
0 k /∈ K

(23)

as the parameters ofg(t) in (19). With this choice,g(t) can be viewed as an approximation toΦ(t).

Notice that there is an inherent tradeoff here: using more coefficients will result in a better approximation

of the analog filter, but in turn will require more samples, since the number of samplesN must be greater

than the cardinality of the setK.
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Fig. 5. (a) Estimated time-delays and amplitudes depicted over the original signal. (b) Reconstructed signal vs. original one.

The reconstruction is exact to numerical precision.

To demonstrate the filterg(t) we first chooseK = {−p, . . . , p} and set all coefficients{bk} to one,

resulting in

g(t) = rect

(

t

τ

) p
∑

k=−p

ej2πkt/τ = rect

(

t

τ

)

Dp(2πt/τ), (24)

where the Dirichlet kernelDp(t) is defined by

Dp(t) =

p
∑

k=−p

ejkt =
sin
((

p+ 1
2

)

t
)

sin(t/2)
. (25)

The resulting filter forp = 10 andτ = 1 sec, is depicted in Fig. 2. This filter is also optimal in an MSE

sense for the caseh(t) = δ(t), as we show in Theorem 2. In Fig. 3 we plotg(t) for the case in which

the bk’s are chosen as a length-M symmetric Hamming window:

bk = 0.54 − 0.46 cos

(

2π
k + ⌊M/2⌋

M

)

, k ∈ K. (26)

Notice that in both cases the coefficients satisfybk = b∗−k, and therefore, the resulting filters are real

valued.

In the presence of noise, the choice of{bk}k∈K will effect the performance. Consider the case in which

digital noise is added to the samplesc, so thaty = c + w, with w denoting a white Gaussian noise

vector. Using (13),

y = V(−ts)Bx +w (27)

whereB is a diagonal matrix, having{bk} on its diagonal. To choose the optimalB we assume that

the {al} are uncorrelated with varianceσ2
a, independent of{tl}, and that{tl} are uniformly distributed
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in [0, τ). Since the noise is added to the samples after filtering, increasing the filter’s amplification will

always reduce the MSE. Therefore, the filter’s energy must benormalized, and we do so by adding the

constraint Tr(B∗B) = 1. Under these assumptions, we have the following theorem:

Theorem 2. The minimal MSE of a linear estimator ofx from the noisy samplesy in (27) is achieved

by choosing the coefficients

|bi|2 =











σ2

N

(

√

N
λσ2 − 1

|h̃i|2

)

λ ≤ |h̃i|4N/σ2

0 λ > |h̃i|4N/σ2

(28)

whereh̃k = H(2πk/τ)σa
√
L/τ and are arranged in an increasing order of|h̃k|,

√
λ =

(|K| −m)
√

N/σ2

N/σ2 +

|K|
∑

i=m+1

1/|h̃i|2
, (29)

andm is the smallest index for whichλ ≤ |h̃m+1|4N/σ2.

Proof: See the Appendix.

An important consequence of Theorem 2 is the following corollary.

Corollary 1. If |h̃k|2 = |h̃ℓ|2, ∀k, ℓ ∈ K then the optimal coefficients are|bi|2 = 1/|K|, ∀k ∈ K.

Proof: It is evident from (28) that if|h̃k| = |h̃ℓ| then |bk| = |bℓ|. To satisfy the trace constraint

Tr(B∗B) = 1, λ cannot be chosen such that allbi = 0. Therefore,|bi|2 = 1/|K| for all i ∈ K.

From Corollary 1 it follows that whenh(t) = δ(t), the optimal choice of coefficients isbk = bj for

all k andj. We therefore use this choice when simulating noisy settings in the next section.

Our sampling scheme for the periodic case consists of sampling kernels having compact support in the

time domain. In the next section we exploit the compact support of our filter, and extend the results to

the finite stream case. We will show that our sampling and reconstruction scheme offers a numerically

stable solution, with high noise robustness.

D. Simulations

1) Demonstration of Our Sampling Scheme:To demonstrate our results, we consider an inputx(t)

consisting ofL = 5 delayed and weighted versions of a Gaussian pulse

h(t) =
1√
2πσ2

exp(−t2/2σ2), (30)
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with parameterσ = 7 · 10−3, and periodτ = 1. The time-delays and amplitudes were chosen randomly.

In order to demonstrate near-critical sampling we choose the set of indicesK = {−L, . . . , L} with

cardinalityM = |K| = 11. We filter x(t) with g(t) of (26). The filter output is sampled uniformlyN

times, with sampling periodT = τ/N , whereN = M = 11. The sampling process is depicted in Fig. 4.

The vectorx is obtained using (14), and the delays and amplitudes are determined by the annihilating

filter method. Reconstruction results are depicted in Fig. 5. The estimation and reconstruction are both

exact to numerical precision.

Analog filtering operations are carried out by discrete approximations over a fine grid. The analog

signal and filters are mimicked by high rate digital signals.Since the sampling rate which constructs the

fine grid is between 2-3 orders of magnitude higher than the final sampling rateT , the simulations reflect

very well the analog results.

2) Noisy Case:We now consider the case in which the samples are corrupted bynoise. Our signal

consists ofL = 2 pulsesh(t) = δ(t). The period was set toτ = 1, K = {−2, . . . , 2}, andN = M = 5

samples were taken, sampled uniformly with sampling periodT = τ/N . We chooseg(t) given by (24).

As explained earlier, only the values of the filter at points2πk/τ, k ∈ K affect the samples (see (11)).

Since the values of the filter at the relevant points coincideand are equal to one for the low-pass filter

[3] and g∗(−t), the resulting samples for both settings are identical. Therefore, we present results for

our method only, and state that the exact same results are obtained using the approach of [3].

In our setup white Gaussian noise (AWGN) with varianceσ2
n is added to the samples, where we define

the SNR as:

SNR =
1
N ‖c‖22
σ2
n

, (31)

with c denoting the clean samples. In our experiments the noise variance is set to give the desired SNR.

The simulation consists of1000 experiments for each SNR, where in each experiment a new noise

vector is created. We chooset = τ · (1/3 2/3)T anda = τ · (1 1)T , where these vectors remain constant

throughout the experiments. We define the error in time-delay estimation as the average of‖t − t̂‖22,
wheret and t̂ denote the true and estimated time-delays, respectively, sorted in increasing order. The

error in amplitudes is similarly defined by‖a− â‖22. In Fig. 6 we show the error as a function of SNR for

both delay and amplitude estimation. Estimation of the time-delays is the main interest in FRI literature,

due to special nonlinear methods required for delay recovery. Once the delays are known, the standard

least-squares method is typically used to recover the amplitudes, therefore, we focus on delay estimation

in the sequel.
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Fig. 6. Performance as a function of SNR, using our periodic approach. Estimation error in (a) delays, and (b) amplitudes.

Finally, for the same setting we can improve reconstructionaccuracy at the expense of oversampling,

as illustrated in Fig. 7. Here we show recovery performance for oversampling factors of 1, 2, 4 and 8.

The oversampling was exploited using the total least-squares method, followed by Cadzow’s iterative

denoising (both described in detail in [10]).
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Fig. 7. The effect of oversampling on estimation error. Oversampling by a factor of 1, 2, 4 and 8.
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III. F INITE STREAM OF PULSES

A. Extension of SoS Class

Consider now a finite stream of pulses, defined as

x̃(t) =

L
∑

l=1

alh(t− tl), tl ∈ [0, τ), al ∈ R, l = 1 . . . L, (32)

where, as in Section II,h(t) is a known pulse shape, and{tl, al}Ll=1 are the unknown delays and

amplitudes. The time-delays{tl}Ll=1 are restricted to lie in a finite time interval[0, τ). Since there are

only 2L degrees of freedom, we wish to design a sampling and reconstruction method which perfectly

reconstructs̃x(t) from 2L samples. In this section we assume that the pulseh(t) has finite supportR,

i.e.,

h(t) = 0, ∀|t| ≥ R/2. (33)

This is a rather weak condition, since our primary interest is in very short pulses which have wide, or

even infinite, frequency support, and therefore cannot be sampled efficiently using classical sampling

results for bandlimited signals. We now investigate the structure of the samples taken in the periodic

case, and design a sampling kernel for the finite setting which obtains precisely the same samplesc[n],

as in the periodic case.

In the periodic setting, the resulting samples are given by (10). Usingg(t) of (19) as the sampling

kernel we have

c[n] = 〈g(t− nT ), x(t)〉

=
∑

m∈Z

L
∑

l=1

al

∫ ∞

−∞
h(t− tl −mτ)g∗(t− nT )dt

=
∑

m∈Z

L
∑

l=1

al

∫ ∞

−∞
h(t)g∗ (t− (nT − tl −mτ)) dt

=
∑

m∈Z

L
∑

l=1

alϕ(nT − tl −mτ), (34)

where we defined

ϕ(ϑ) = 〈g(t− ϑ), h(t)〉. (35)

Sinceg(t) in (19) vanishes for all|t| > τ/2 andh(t) satisfies (33), the support ofϕ(t) is (R+ τ), i.e.,

ϕ(t) = 0 for all |t| ≥ (R+ τ)/2. (36)
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Using this property, the summation in (34) will be over nonzero values for indicesm satisfying

|nT − tl −mτ | < (R+ τ)/2. (37)

Sampling within the window[0, τ), i.e.,nT ∈ [0, τ), and noting that the time-delays lie in the interval

tl ∈ [0, τ), l = 1 . . . L, (37) implies that

(R+ τ)/2 > |nT − tl −mτ | ≥ |m|τ − |nT − tl| > (|m| − 1)τ. (38)

Here we used the triangle inequality and the fact that|nT − tl| < τ in our setting. Therefore,

|m| < R/τ + 3

2
⇒ |m| ≤

⌈

R/τ + 3

2

⌉

− 1
△
= r, (39)

i.e., the elements of the sum in (34) vanish for allm but the values in (39). Consequently, the infinite

sum in (34) reduces to a finite sum overm ≤ |r| so that (34) becomes

c[n] =

r
∑

m=−r

L
∑

l=1

alϕ(nT − tl −mτ)

=

r
∑

m=−r

L
∑

l=1

al

∫ ∞

−∞
h(t− tl)g

∗(t− nT +mτ)dt

=

〈

r
∑

m=−r

g(t− nT +mτ),

L
∑

l=1

alh(t− tl)

〉

, (40)

where in the last equality we used the linearity of the inner product. Defining a function which consists

of (2r + 1) periods ofg(t):

gr(t) =

r
∑

m=−r

g(t+mτ), (41)

we conclude that

c[n] = 〈gr(t− nT ), x̃(t)〉. (42)

Therefore, the samplesc[n] can be obtained by filtering the aperiodic signalx̃(t) with the filter g∗r (−t)

prior to sampling. This filter has compact support equal to(2r + 1)τ . Since the finite setting samples

(42) are identical to those of the periodic case (34), recovery of the delays and amplitudes is performed

exactly the same as in the periodic setting.

We summarize this result in the following theorem.

Theorem 3. Consider the finite stream of pulses given by:

x̃(t) =

L
∑

l=1

alh(t− tl), tl ∈ [0, τ), al ∈ R,



18

whereh(t) has finite supportR. Choose a setK of consecutive indices for whichH(2πk/τ) 6= 0, ∀k ∈ K.

Then,N samples given by:

c[n] = 〈gr(t− nT ), x̃(t)〉, n = 0 . . . N − 1, nT ∈ [0, τ),

wherer is defined in(39), andgr(t) is compactly supported and defined by(41) (based on the filterg(t)

in (17)), uniquely determine the signalx̃(t) as long asN ≥ |K| ≥ 2L.

If, for example, the supportR of h(t) satisfiesR ≤ τ then we obtain from (39) thatr = 1. Therefore,

the filter in this case would consist of3 periods ofg(t):

g3p(t)
△
= gr(t)

∣

∣

r=1
= g(t− τ) + g(t) + g(t+ τ). (43)

Practical implementation of the filter may be carried out using delay-lines. The relation of this scheme

to previous approaches will be investigated in Section V.

B. Simulations

1) Demonstration of the Sampling Scheme:The input signalx̃(t) consists ofL = 5 delayed and

weighted versions of the pulseh(t) = δ(t). The delays and weights were chosen randomly. We choose

K = {−L, . . . , L}, so thatM = |K| = 11. Since the support ofh(t) satisfiesR ≤ τ the parameterr in

(39) equals1, and therefore we filter̃x(t) with g3p(t) defined in (43). The coefficientsbk, k ∈ K were

all set to one. The output of the filter is sampled uniformlyN times, with sampling periodT = τ/N ,

whereN = M = 11. Perfect reconstruction is achieved as can be seen in Fig. 8.The estimation is exact

to numerical precision.

2) High Order Problems:The same simulation was carried out withL = 20 diracs. The results are

shown in Fig. 9. Here again, the reconstruction is perfect even for largeL.

3) Noisy Case:We now consider the performance of our method in the presenceof noise. In addition,

we compare our performance to the B-spline and E-spline methods proposed in [13], and to the Gaussian

sampling kernel [3]. We examine 4 scenarios, in which the signal consists ofL = 2, 3, 5, 20 diracs1. In

our setup, the time-delays are equally distributed in the window [0, τ), with τ = 1, and remain constant

throughout the experiments. All amplitudes are set to one.

1Due to computational complexity of calculating the time-domain expression for high order E-splines, the functions were

simulated up to order 9, which allows forL = 5 pulses.
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Fig. 8. Application of the filterg3p(t) on a finite stream ofL = 5 diracs.
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Fig. 9. High order problems: application of the filterg3p(t) on a finite stream ofL = 20 diracs.

The index set of the SoS filter isK = {−L, . . . , L}. Both B-splines and E-splines are taken of order

2L − 1, and for E-splines we use purely imaginary exponents, equally distributed around the complex

unit circle. The sampling period for all methods isT = τ/N .

The method of noise corruption is the same as in Section II-D2. In order to maintain the same SNR

conditions throughout all methods, the noise level is chosen with respect to the resulting sequence of
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(a) L = 2
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(b) L = 3
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(c) L = 5
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(d) L = 20

Fig. 10. Performance in the presence of noise: finite stream case. Our method vs. B-spline, E-spline [13] and Gaussian [3]

sampling kernels. (a)L = 2 dirac pulses are present, (b)L = 3 pulses, (c) high value ofL = 5 pulses, and (d) the performance

for a very high value ofL = 20 (without E-spline simulation, due to computational complexity of calculating the time-domain

expression for high values ofL).

samples. In other words,σn in (31) is method-dependent, and is determined by the desired SNR and the

samples of the specific technique. Hard thresholding was implemented in order to improve the spline

methods, as suggested by the authors in [13]. The threshold was chosen to be3σn, whereσn is the

standard deviation of the AWGN. For the Gaussian sampling kernel the parameterσ was optimized and

took on the value ofσ = 0.25, 0.28, 0.32, 0.9, respectively.

The results are given in Fig. 10. ForL = 2 all methods are stable, where E-splines exhibit better

performance than B-splines, and Gaussian and SoS approaches demonstrate the lowest errors. As the

value of L grows, the advantage of the SoS filter becomes more prominent, where forL ≥ 5, the
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performance of Gaussian and both spline methods deteriorate and have errors approaching the order of

τ . In contrast, the SoS filter retains its performance nearly unchanged even up toL = 20, where the

B-spline and Gaussian methods are unstable. The improved version of the Gaussian approach presented

in [12] would not perform better in this high order case, since it fails forL > 9, as noted by the authors.

A comparison of our approach to previous methods will be detailed in Section V.

IV. I NFINITE STREAM OF PULSES

We now consider the case of an infinite stream of pulses

z(t) =
∑

l∈Z
alh(t− tl), tl, al ∈ R. (44)

We assume that the infinite signal has a bursty character, i.e., the signal has two distinct phases: a) bursts

of maximal durationτ containing at mostL pulses, and b) quiet phases between bursts. For the sake of

clarity we begin with the caseh(t) = δ(t). For this choice the filterg∗r (−t) in (41) reduces tog∗3p(−t)

of (43).

Since the filterg∗3p(−t) has compact support3τ we are assured that the current burst cannot influence

samples taken3τ/2 seconds before or after it. In the finite case we have confined ourselves to sampling

within the interval[0, τ). Similarly, here, we assume that the samples are taken during the burst duration.

Therefore, if the minimal spacing between any two consecutive bursts is3τ/2, then we are guaranteed that

each sample taken during the burst is influenced by one burst only, as depicted in Fig. 11. Consequently,

the infinite problem can be reduced to a sequential solution of local distinct finite order problems,

as in Section III. Here the compact support of our filter comesinto play, allowing us to apply local

reconstruction methods.

τ

1st burst 2nd burst

g3p(t) filter support = 3τ

t

−0.5τ 1.5τ 2.5τ 3.5τ

Fig. 11. Bursty signalz(t). Spacing of3τ/2 between bursts ensures that the influence of the current burst ends before taking

the samples of the next burst. This is due to the finite support, 3τ of the sampling kernelg∗3p(−t).
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In the above argument we assume we know the locations of the bursts, since we must acquire samples

from within the burst duration. Samples outside the burst duration are contaminated by energy from

adjacent bursts. Nonetheless, knowledge of burst locations is available in many applications such as

synchronized communication where the receiver knows when to expect the bursts, or in radar or imaging

scenarios where the transmitter is itself the receiver.

We now state this result in a theorem.

Theorem 4. Consider a signalz(t) which is a stream of bursts consisting of delayed and weighted

diracs. The maximal burst duration isτ , and the maximal number of pulses within each burst isL. Then,

the samples given by

c[n] = 〈g3p(t− nT ), z(t)〉, n ∈ Z

whereg3p(t) is defined by(43), are a sufficient characterization ofz(t) as long as the spacing between

two adjacent bursts is greater than3τ/2, and the burst locations are known.

Extending this result to a general pulseh(t) is quite straightforward, as long ash(t) is compactly

supported with supportR, and we filter withg∗r (−t) as defined in (41) with the appropriater from (39).

If we can choose a setK of consecutive indices for whichH(2πk/τ) 6= 0, ∀k ∈ K and we are guaranteed

that the minimal spacing between two adjacent bursts is greater than((2r + 1)τ +R) /2, then the above

theorem holds.

V. RELATED WORK

In this section we explore the relationship between our approach and previously developed solutions

[3], [10], [13], [14].

A. Periodic Case

The work in [3] was the first to address efficient sampling of pulse streams, e.g., diracs. Their approach

for solving the periodic case was ideal lowpass filtering, followed by uniform sampling, which allowed to

obtain the Fourier series coefficients of the signal. These coefficients are then processed by the annihilating

filter to obtain the unknown time-delays and amplitudes. In Section II, we derived a general condition on

the sampling kernel (11), under which recovery is guaranteed. The lowpass filter of [3] is a special case

of this result. The noise robustness of both the lowpass approach and our more general method is high

as long as the pulses are well separated, since reconstruction from Fourier series coefficients is stable in

this case. Both approaches achieve the minimal number of samples.
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The lowpass filter is bandlimited and consequently has infinite time-support. Therefore, this sampling

scheme is unsuitable for finite and infinite streams of pulses. The SoS class introduced in Section II

consists of compactly supported filters which is crucial to enable the extension of our results to finite

and infinite streams of pulses. A comparison between the two methods is shown in Table I.

TABLE I

PERIODIC CASE- COMPARISON WITH PREVIOUS WORK

Feature Lowpass filter

[3]

Proposed method

Degrees of freedom 2L

No. of samples 2L+ 1 2L

Time-support Infinite τ , finite support

allows extension

to finite & infinite

cases

Noise Robustness High High

Analog implementa-

tion

Approximate

lowpass filter

Approximate

finite support

filter

B. Finite Pulse Stream

The authors of [3] proposed a Gaussian sampling kernel for sampling finite streams of Diracs. The

Gaussian method is numerically unstable, as mentioned in [12], since the samples are multiplied by a

rapidly diverging or decaying exponent. Therefore, this approach is unsuitable forL ≥ 6. Modifications

proposed in [12] exhibit better performance and stability.However, these methods require substantial

oversampling, and still exhibit instability forL > 9.

In [13] the family of polynomial reproducing kernels was introduced as sampling filters for the model

(32). B-splines were proposed as a specific example. The B-spline sampling filter enables obtaining

moments of the signal, rather than Fourier coefficients. Themoments are then processed with the same

annihilating filter used in previous methods. However, as mentioned by the authors, this approach is

unstable for high values ofL. This is due to the fact that in contrast to the estimation of Fourier
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coefficients, estimating high order moments is unstable, since unstable weighting of the samples is carried

out during the process.

Another general family introduced in [13] for the finite model is the class of exponential reproducing

kernels. As a specific case, the authors propose E-spline sampling kernels. The CTFT of an E-spline of

orderN + 1 is described by

β̂α(ω) =

N
∏

n=0

1− eαn−jω

jω − αn
, (45)

whereα = (α0, α1, . . . , αN ) are free parameters. In order to use E-splines as sampling kernels for pulse

streams, the authors propose a specific structure on theα’s, αn = α0 + nλ. Choosing exponents having

a non-vanishing real part results in unstable weighting, asin the B-spline case. However, choosing the

special case of pure imaginary exponents in the E-splines, already suggested by the authors, results in

a reconstruction method based on Fourier coefficients, which demonstrates an interesting relation to our

method. The Fourier coefficients are obtained by applying a matrix consisting of the exponent spanning

coefficients{cm,n}, (see [13]), instead of our Vandermonde matrix relation (14). With this specific choice

of parameters the E-spline function satisfies (11).

Interestingly, with a proper choice of spanning coefficients, it can be shown that the SoS class can

reproduce exponentials with frequencies{2πk/τ}k∈K, and therefore satisfies the general exponential

reproduction property of [13]. However, the SoS filter proposes a new sampling scheme which has

substantial advantages over existing methods including E-splines. The first advantage is in the presence

of noise, where both methods have the following structure:

y = Ax+w, (46)

wherew is the noise vector. While the Fourier coefficients vectorx is common to both approaches,

the linear transformationA is method dependent, and therefore the sample vectory is different. In our

approach withg(t) of (24), A is the DFT matrix, which for any orderL has a condition number of

1. However, in the case of E-splines the transformation matrix A consists of the E-spline exponential

spanning coefficients, which has a much higher condition number, e.g., above 100 forL = 5. Conse-

quently, some Fourier coefficients will have much higher values of noise than others. This scenario of

high variance between noise levels of the samples is known todeteriorate the performance of spectral

analysis methods [11], the annihilating filter being one of them. This explains our simulations which

show that the SoS filter outperforms the E-spline approach inthe presence of noise.

When the E-spline coefficientsα are pure imaginary, it can be easily shown that (45) becomes a

multiplication of shifted sincs. This is in contrast to the SoS filter which consists of a sum of sincs in
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the frequency domain. Since multiplication in the frequency domain translates to convolution in the time

domain, it is clear that the support of the E-spline grows with its order, and in turn with the order of

the problemL. In contrast, the support of the SoS filter remains unchanged. This observation becomes

important when examining the infinite case. The constraint on the signal in [13] is that no more thanL

pulses be in any interval of lengthLPT , P being the support of the filter, andT the sampling period. Since

P grows linearly withL, the constraint cast on the infinite stream becomes more stringent, quadratically

with L. On the other hand, the constraint on the infinite stream using the SoS filter is independent ofL.

We showed in simulations that typically forL ≥ 5 the estimation errors, using both B-spline and E-

spline sampling kernels, become very large. In contrast, our approach leads to stable reconstruction even

for very high values ofL, e.g.,L = 100. In addition, even for low values ofL we showed in simulations

that although the E-spline method has improved performanceover B-splines, the SoS reconstruction

method outperforms both spline approaches. A comparison isdescribed in Table II.

TABLE II

FINITE CASE - COMPARISON

Feature Gaussian

filter [3]

Spline Fil-

ter [13]

Proposed

method

Degrees of free-

dom

2L

No. of samples 2L

Time-support Infinite Finite Finite

Stability Unstable

for L ≥ 6

Unstable

for L ≥ 5

Stable even

for L =

100

Noise Robustness Low Low High

C. Infinite Streams

The work in [13] addressed the infinite stream case, withh(t) = δ(t). They proposed filtering the

signal with a polynomial reproducing sampling kernel priorto sampling. If the signal has at mostL

diracs within any interval of durationLPT , whereP denotes the support of the sampling filter andT the

sampling period, then the samples are a sufficient characterization of the signal. This condition allows
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to divide the infinite stream into a sequence of finite case problems. In our approach the quiet phases of

1.5τ between the bursts of lengthτ enable the reduction to the finite case.

Since the infinite solution is based on the finite one, our method is advantageous in terms of stability

in high order problems and noise robustness. However, we do have an additional requirement of quiet

phases between the bursts.

Regarding the sampling rate, the number of degrees of freedom of the signal per unit time, also known

as the rate of innovation, isρ = 2L/2.5τ , which is the critical sampling rate. Our sampling rate is2L/τ

and therefore we oversample by a factor of2.5. In the same scenario, the method in [13] would require

a sampling rate ofLP/2.5τ , i.e., oversampling by a factor ofP/2. Properties of polynomial reproducing

kernels imply thatP ≥ 2L, therefore for anyL ≥ 3, our method exhibits more efficient sampling. A

table comparing the various features is shown in Table III.

Recent work [14] presented a low complexity method for reconstructing streams of pulses (both infinite

and finite cases) consisting of diracs. However the basic assumption of this method is that there is at

most one dirac per sampling period. This means we must have prior knowledge about a lower limit on

the spacing between two consecutive deltas, in order to guarantee correct reconstruction. In some cases

such a limit may not exist; even if it does it will usually force us to sample at a much higher rate than

the critical one.

TABLE III

INFINITE CASE - COMPARISON

Feature Spline filter [13] Proposed method

Signal model No more thanL

pulses in any inter-

val of LPT sec

Bursty character:

burst - τ , quiet

phase1.5τ

Rate of innovation ρ , 2L/2.5τ

Sampling rate P · ρ/2 2.5ρ

For L ≥ 3 ⇒

P/2 ≥ 3

Proposed sampling scheme is more efficient

Noise Robustness Low High

Stability Unstable forL ≥

5

Stable for L =

100
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VI. A PPLICATION - ULTRASOUND IMAGING

An interesting application of our framework is ultrasound imaging. In ultrasonic imaging an acoustic

pulse is transmitted into the scanned tissue. The pulse is reflected due to changes in acoustic impedance

which occur, for example, at the boundaries between two different tissues. At the receiver, the echoes are

recorded, where the time-of-arrival and power of the echo indicate the scatterer’s location and strength,

respectively. Accurate estimation of tissue boundaries and scatterer locations allows for reliable detection

of certain illnesses, and is therefore of major clinical importance. The location of the boundaries is often

more important than the power of the reflection. This stream of pulses is finite since the pulse energy

decays within the tissue. We now demonstrate our method on real 1-dimensional (1D) ultrasound data.

The multiple echo signal which is recorded at the receiver can be modeled as a finite stream of pulses,

as in (32). The unknown time-delays correspond to the locations of the various scatterers, whereas the

amplitudes correspond to their reflection coefficients. Thepulse shape in this case is a Gaussian defined

in (30), due the physical characteristics of the electro-acoustic transducer (mechanical damping). We

assume the received pulse-shape is known, either by assuming it is unchanged through propagation,

through physically modeling ultrasonic wave propagation,or by prior estimation of received pulse. Full

investigation of mismatch in the pulse shape is left for future research.

In our setting, a phantom consisting of uniformly spaced pins, mimicking point scatterers, was scanned

by GE Healthcare’s Vivid-i portable ultrasound imaging system [20], [21], using a 3S-RS probe. We use

the data recorded by a single element in the probe, which is modeled as a 1D stream of pulses. The

center frequency of the probe isfc = 1.7021 MHz, The width of the transmitted Gaussian pulse in this

case isσ = 3 · 10−7 sec, and the depth of imaging isRmax = 0.16 m corresponding to a time window

of2 τ = 2.08 · 10−4 sec.

In this experiment all filtering and sampling operations arecarried out digitally in simulation. The

analog filter required by the sampling scheme is replaced by alengthy Finite Impulse Response (FIR)

filter. Since the sampling frequency of the element in the system is fs = 20 MHz, which is more

than 5 times higher than the Nyquist rate, the recorded data represents the continuous signal reliably.

Consequently, digital filtering of the high-rate sampled data vector (4160 samples) followed by proper

decimation mimics the original analog sampling scheme withhigh accuracy. The recorded signal is

depicted in Fig. 12. The band-pass ultrasonic signal is demodulated to base-band, i.e., envelope-detection

is performed, before inserted into the process.

2The speed of sound within the tissue is1550 m/sec.
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Fig. 12. Recorded ultrasound imaging signal. The data was acquired by GE healthcare’s Vivid-i ultrasound imaging system.

We carried out our sampling and reconstruction scheme on theaforementioned data. We setL = 4,

looking for the strongest 4 echoes. Since the data is corrupted by strong noise we over-sampled the

signal, obtaining twice the minimal number of samples. In addition, hard-thresholding of the samples

was implemented, where we set the threshold to 10 percent of the maximal value. We obtainedN = 17

samples by decimating the output of the lengthy FIR digital filter imitating g∗3p(−t) from (43), where

the coefficients{bk} were all set to one. In Fig. 13a the reconstructed signal is depicted vs. the full

demodulated signal using all4160 samples. Clearly, the time-delays were estimated with highprecision.

The amplitudes were estimated as well, however the amplitude of the second pulse has a large error.

This is probably due to the large values of noise present in its vicinity. However, as mentioned earlier,

the exact locations of the scatterers is often more important than the accurate reflection coefficients. We

carried out the same experiment only now oversampling by a factor of 4, resulting inN = 33 samples.

Here no hard-thresholding is required. The results are depicted in Fig. 13b, and are very similar to our

previous results. In both simulations, the estimation error in the pulse location is around0.1 mm.

Current ultrasound imaging technology operates at the highrate sampled data, e.g.,fs = 20 MHz in

our setting. Since there are usually 100 different elementsin a single ultrasonic probe each sampled at

a very high rate, data throughput becomes very high, and imposes high computational complexity to the

system, limiting its capabilities. Therefore, there is a demand for lowering the sampling rate, which in

turn will reduce the complexity of reconstruction. Exploiting the parametric point of view, our sampling
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Fig. 13. Applying ourg3p(t) filter method on real ultrasound imaging data. Results are shown vs. full demodulated signal

which uses all4160 samples. Reconstructed signal (a) usingN = 17 samples only and hard-thresholding, and (b) usingN = 33

samples without thresholding.

scheme reduces the sampling rate by 2 orders of magnitude, from 4160 to around 30 samples in our

setting, while estimating the locations of the scatterers with high accuracy.

VII. C ONCLUSIONS

We presented efficient sampling and reconstruction schemesfor streams of pulses. For the case of

a periodic stream of pulses, we derived a general condition on the sampling kernel which allows a

single-channel uniform sampling scheme. Previous work [3]is a special case of this general result. We

then proposed a class of filters, satisfying the condition, with compact support. Exploiting the compact

support of the filters, we constructed a new sampling scheme for the case of a finite stream of pulses.

Simulations show this method exhibits better performance than previous techniques [3], [13], in terms

of stability in high order problems, and noise robustness. An extension to an infinite stream of pulses

was also presented. The compact support of the filter allows for local reconstruction, and thus lowers

the complexity of the problem. Finally, we demonstrated theadvantage of our approach in reducing the

sampling and processing rate of ultrasound imaging, by applying our techniques to real ultrasound data.
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APPENDIX

PROOF OFTHEOREM 2

The MSE of the optimal linear estimator of the vectorx from the measurement vectory is known to

be [22]

MSE= Tr {Rxx} − Tr
{

RxyR
−1
yy Ryx

}

. (47)

The covariance matrices in our case are

Rxy = RxxB
∗V∗ (48)

Ryy = VBRxxB
∗V∗ + σ2I, (49)

where we used (27), and the fact thatRww = σ2I sincew is a white Gaussian noise vector. Under our

assumptions on{tl} and{al}, denotinghk = H(2πk/τ), and using (5)

(Rxx)k,k′ = E
{

X[k]X∗[k′]
}

=
1

τ2
hkhk′

L
∑

l=1

L
∑

l′=1

E
{

ala
∗
l′e

−j 2π

τ
(ktl−k′tl′ )

}

=
σ2
a

τ2
hkhk′

L
∑

l=1

E
{

e−j 2π

τ
(k−k′)tl

}

=
σ2
a

τ2
hkhk′

L
∑

l=1

∫ τ

0

1

τ
e−j 2π

τ
(k−k′)tldt

=
σ2
a

τ2
L|hk|2δk,k′. (50)

Denoting byH̃ a diagonal matrix withkth element|h̃k|2 = |hk|2σ2
aL/τ

2 we have

Rxx = H̃. (51)

Since the first term of (47) is independent ofB, minimizing the MSE with respect toB is equivalent

to maximizing the second term in (47). Substituting (48),(49) and (51) into this term, the optimalB is

a solution to

max
B

Tr
{

H̃B∗V∗(VBH̃B∗V∗ + σ2I)−1VBH̃
}

(52)

s.t. Tr(B∗B) = 1.
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Using the matrix inversion formula [23],

(VBH̃B∗V∗ + σ2I)−1

=
1

σ2

(

I−VB
(

σ2H̃−1 +B∗V∗VB
)−1

B∗V∗
)

. (53)

It is easy to verify from the definition ofV in (13) that

(V∗V)ik =

N−1
∑

l=0

ej
2π

N
l(k−i) = Nδk,i. (54)

Therefore, the objective in (52) equals

Tr

{

N

σ2
H̃B∗

(

I−B

(

σ2

N
H̃−1 +B∗B

)−1

B∗
)

BH̃

}

=

|K|
∑

i=1

|h̃i|2
(

1− σ2/N

|bi|2|h̃i|2 + σ2/N

)

(55)

where we used the fact thatB andH̃ are diagonal.

We can now find the optimalB by maximizing (55), which is equivalent to minimizing the negative

term:

min
B

|K|
∑

i=1

|h̃i|2
1 + |bi|2|h̃i|2N/σ2

, s.t.
|K|
∑

i=1

|bi|2 = 1. (56)

Denotingβi = |bi|2, (56) becomes a convex optimization problem:

min
βi

|K|
∑

i=1

|h̃i|2
1 + βi|h̃i|2N/σ2

(57)

subject to

βi ≥ 0 (58)

|K|
∑

i=1

βi = 1. (59)

To solve (57) subject to (58) and (59), we form the Lagrangian:

L =

|K|
∑

i=1

|h̃i|2
1 + βi|h̃i|2N/σ2

+ λ





|K|
∑

i=1

βi − 1



−
|K|
∑

i=1

µiβi (60)

where from the Karush-Kuhn-Tucker (KKT) conditions [24],µi ≥ 0 andµiβi = 0. Differentiating (60)

with respect toβi and equating to0

|h̃i|4N/σ2

(1 + βi|h̃i|2N/σ2)2
+ µi = λ, (61)
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so thatλ > 0, sinceh̃i > 0 by construction ofH (see Theorem 1). Ifλ > |h̃i|4N/σ2 thenµi > 0, and

therefore,βi = 0 from KKT. If λ ≤ |h̃i|4N/σ2 then from (61)µi = 0 and

βi =
σ2

N

(
√

N

λσ2
− 1

|h̃i|2

)

. (62)

The optimalβi is therefore

βi =











σ2

N

(

√

N
λσ2 − 1

|h̃i|2

)

λ ≤ |h̃i|4N/σ2

0 λ > |h̃i|4N/σ2

(63)

whereλ > 0 is chosen to satisfy (59). Note that from (63), ifβi 6= 0 and i < j, thenβj 6= 0 as well,

since|h̃i| are in an increasing order. We now show that there is a uniqueλ that satisfies (59). Define the

function

G(λ) =
|K|
∑

i=1

βi(λ)− 1, (64)

so thatλ is a root ofG(λ). Since the|h̃i|’s are in an increasing order,|h̃|K|| = maxi |h̃i|. It is clear

from (63) thatG(λ) is monotonically decreasing for0 < λ ≤ |h̃|K||4N/σ2. In addition,G(λ) = −1 for

λ > |h̃|K||4N/σ2, andG(λ) > 0 for λ → 0. Thus, there is a uniqueλ for which (59) is satisfied.

Substituting (63) into (59), and denoting bym the smallest index for whichλ ≤ |h̃m+1|4N/σ2, we

have
√
λ =

(|K| −m)
√

N/σ2

N/σ2 +

|K|
∑

i=m+1

1/|h̃i|2
, (65)

completing the proof of the theorem.
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