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Innovation Rate Sampling of Pulse Streams

with Application to Ultrasound Imaging
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Abstract

Signals comprised of a stream of short pulses appear in n@slications including bio-imaging and
radar. The recent finite rate of innovation framework, hagedahe way to low rate sampling of such
pulses by noticing that only a small number of parametersupdértime are needed to fully describe
these signals. Unfortunately, for high rates of innovatieristing sampling schemes are numerically
unstable. In this paper we propose a general sampling agpraaich leads to stable recovery even in the
presence of many pulses. We begin by deriving a conditiorhersampling kernel which allows perfect
reconstruction of periodic streams from the minimal numilesamples. We then design a compactly
supported class of filters, satisfying this condition. Tleeiqdic solution is extended to finite and infinite
streams, and is shown to be numerically stable even for & lamgnber of pulses. High noise robustness
is also demonstrated when the delays are sufficiently stgghrginally, we process ultrasound imaging
data using our techniques, and show that substantial rdtetion with respect to traditional ultrasound

sampling schemes can be achieved.
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. INTRODUCTION

Sampling is the process of representing a continuous-tigrekby discrete-time coefficients, while
retaining the important signal features. The well-knowi8ton-Nyquist theorem states that the minimal
sampling rate required for perfect reconstruction of bamtitd signals is twice the maximal frequency.
This result has since been generalized to minimal rate saghpthemes for signals lying in arbitrary
subspaces [1]/]2].

Recently, there has been growing interest in sampling ofadggconsisting of a stream of short pulses,
where the pulse shape is known. Such signals have a finite enuofildegrees of freedom per unit time,
also known as the Finite Rate of Innovation (FRI) propdrly Tis interest is motivated by applications
such as digital processing of neuronal signals, bio-inggimage processing and ultrawideband (UWB)
communications, where such signals are present in abuad&ha work is motivated by the possible
application of this model in ultrasound imaging, where ashof the transmit pulse are reflected off
scatterers within the tissue, and form a stream of pulsewmbk#f the receiver. The time-delays and am-
plitudes of the echoes indicate the position and strengthef/arious scatterers, respectively. Therefore,
determining these parameters from low rate samples of tbeived signal is an important problem.
Reducing the rate allows more efficient processing which tcamslate to power and size reduction of
the ultrasound imaging system.

Our goal is to design a minimal rate single-channel sampding reconstruction scheme for pulse
streams that is stable even in the presence of many pulses 8ie set of FRI signals does not form
a subspace, classic subspace schemes cannot be diredlytousiesign low-rate sampling schemes.
Mathematically, such FRI signals conform with a broader elad signals lying in a union of subspaces
[4]-[Q]. Although the minimal sampling rate required forcbusettings has been derived, no generic
sampling scheme exists for the general problem. Nonethedesne special cases have been treated in
previous work, including streams of pulses.

A stream of pulses can be viewed as a parametric signal, elyigiefined by the time-delays of the
pulses and their amplitudes. Efficient sampling of periddipulse streams, having impulses in each
period, was proposed ihl[3], [1L0]. The heart of the solut®toi obtain a set of Fourier series coefficients,
which then converts the problem of determining the timexgeland amplitudes to that of finding the
frequencies and amplitudes of a sum of sinusoids. The lettarstandard problem in spectral analysis
which can be solved using conventional methods, sucth@snnihilating filter approach, as long

as the number of samples is at least This result is intuitive since there a?d. degrees of freedom in



each periodL time-delays and. amplitudes.

Periodic streams of pulses are mathematically convenceainalyze, however not very practical. In
contrast, finite streams of pulses are prevalent in apphiecatsuch as ultrasound imaging. The first
treatment of finite Dirac streams appears_in [3], in which aisd&n sampling kernel was proposed. The
time-delays and amplitudes are then estimated from the S&auails. This method and its improvement
[12] are numerically unstable for high rates of innovatisince they rely on the Gaussian tails which take
on small values. The work in [13] introduced a general faroflpolynomial and exponential reproducing
kernels, which can be used to solve FRI problems. Specifi®ispline and E-spline sampling kernels
which satisfy the reproduction condition are proposedsTiethod treats streams of Diracs, differentiated
Diracs, and short pulses with compact support. However ptioposed sampling filters result in poor
reconstruction results for largé. To the best of our knowledge, a numerically stable sampéing
reconstruction scheme for high order problems has not yet beported.

Infinite streams of pulses arise in applications such as UWBrounications, where the communicated
data changes frequently. Using spline filtérs! [13], and ueeetain limitations on the signal, the infinite
stream can be divided into a sequence of separate finitegmablThe individual finite cases may be
treated using methods for the finite setting, at the expehstave critical sampling rate, and suffer
from the same instability issues. In addition, the constsaihat are cast on the signal become more and
more stringent as the number of pulses per unit time grows. lecent work[[14] the authors propose
a sampling and reconstruction scheme fo& 1, however, our interest here is in high valueslof

Another related work 7] proposes a semi-periodic modelemstthe pulse time-delays do not change
from period to period, but the amplitudes vary. This is a ylwase in which the number of degrees
of freedom in the time-delays is finite, but there is an inéinitumber of degrees of freedom in the
amplitudes. Therefore, the proposed recovery scheme g@nezquires an infinite number of samples.
This differs from the periodic and finite cases we discusshia paper which have a finite number of
degrees of freedom and, consequently, require only a finiteber of samples.

In this paper we study sampling of signals consisting of @astr of pulses, covering the three different
cases: periodic, finite and infinite streams of pulses. Theri@ we consider for designing such systems
are: a) Minimal sampling rate which allows perfect recamsion, b) numerical stability (with sufficiently
separated time delays), and c¢) minimal restrictions on threber of pulses per sampling period.

We begin by treating periodic pulse streams. For this ggtiive develop a general sampling scheme
for arbitrary pulse shapes which allows to determine theesimnd amplitudes of the pulses, from a

minimal number of samples. As we show, previous wark [3] igpacsal case of our extended results.



In contrast to the infinite time-support of the filters i [8}e develop a compactly supported class of
filters which satisfy our mathematical condition. This elas filters consists of a sum of sinc functions
in the frequency domain. We therefore refer to such funsti@eSum of Sinc§SoS). To the best of our
knowledge, this is the first class of finite support filterstthalve the periodic case. As we discuss in
detail in Sectiol V, these filters are related to exponemgiptoducing kernels, introduced in [13].

The compact support of the SoS filters is the key to extendiageriodic solution to the finite stream
case. Generalizing the SoS class, we design a sampling aodsteuction scheme which perfectly
reconstructs a finite stream of pulses from a minimal numbsamples, as long as the pulse shape has
compact support. Our reconstruction is numerically stédeboth small values of. and large number
of pulses, e.g.L = 100. In contrast, Gaussian sampling filters [3],[[12] are unstdbr . > 9, and
we show in simulations that B-splines and E-splines [13]ileikHarge estimation errors fol, > 5.

In addition, we demonstrate substantial improvement is@éodbustness even for low valueslof Our
advantage stems from the fact that we propose compacthosiggifilters on the one hand, while staying
within the regime of Fourier coefficients reconstructiontbe other hand. Extending our results to the
infinite setting, we consider an infinite stream consistifigpolse bursts, where each burst contains a
large number of pulses. The stability of our method allowseimonstruct even a large number of closely
spaced pulses, which cannot be treated using existingimadu{13]. In addition, the constraints cast
on the structure of the signal are independenf.athe number of pulses in each burst), in contrast to
previous work, and therefore similar sampling schemes neayded for different values df. Finally,

we show that our sampling scheme requires lower sampliregfoatl > 3.

As an application, we demonstrate our sampling scheme drulteasound imaging data acquired by
GE healthcare’s ultrasound system. We obtain high accueatiynation while reducing the number of
samples by two orders of magnitude in comparison with carireaging techniques.

The remainder of the paper is organized as follows. In Sedlilove present the periodic signal
model, and derive a general sampling scheme. The SoS cldéissnsdeveloped and demonstrated via
simulations. The extension to the finite case is present&katior1ll, followed by simulations showing
the advantages of our method in high order problems and meitings. In Sectiop IV, we treat infinite
streams of pulses. Sectid V explores the relationship ofveark to previous methods. Finally, in

Section V], we demonstrate our algorithm on real ultrasommaging data.



Il. PERIODIC STREAM OF PULSES
A. Problem Formulation

Throughout the paper we denote matrices and vectors by botdvith lowercase letters corresponding
to vectors and uppercase letters to matrices. 7itheelement of a vectoa is written asa,,, and A;;
denotes thejth element of a matrixA. Superscriptg-)*, (.)T and(')H represent complex conjugation,
transposition and conjugate transposition, respectivélg Moore-Penrose pseudo-inverse of a mairix
is written asAf. The continuous-time Fourier transform (CTFT) of a contins-time signalr () € Ly
is defined byX (w) = [z (t) e /“!d¢, and

[ee]
@)= [ o @y @

—00
denotes the inner product between tWe signals.
Consider ar-periodic stream of pulses, defined as
L
2(t) = > > ah(t —t —mr), )
mez I=1
whereh(t) is a known pulse shape,is the known period, andlt;, a;}~ |, t, € [0,7),q; € C, I =1...L
are the unknown delays and amplitudes. Our goal is to sampleand reconstruct it, from a minimal
number of samples. Since the signal t¥ds degrees of freedom, we expect the minimal number of
samples to be L. We are primarily interested in pulses which have small {support. Direct uniform
sampling of2L. samples of the signal will result in many zero samples, siheeprobability for the
sample to hit a pulse is very low. Therefore, we must constumore sophisticated sampling scheme.

Define the periodic continuation df(t) as f(t) = > h(t — mT). Using Poisson’s summation

meZ
formula [15], f(¢t) may be written as

ft) = % > H (ﬁ) eS2THIT, (3)

-
keZ
where H(w) denotes the CTFT of the pulgdt). Substituting [(B) into[(2) we obtain

L
x(t) = > af(t—t)
=1

L
1 21k —jomkt; )T\ _j2mkt/T
> (?H () )¢

keZ

= D XK, (4)

keZ



where we denoted

127k o
X[k]=~H <—> > age 2T (5)
T

T =1
The expansion in[{4) is the Fourier series representatioth@fr-periodic signalz(t) with Fourier
coefficients given by[{5).

Following [3], we now show that onc&L. or more Fourier coefficients af(¢) are known, we may use
conventional tools from spectral analysis to determinetthkenowns{t;, a;}* ;. The method by which
the Fourier coefficients are obtained will be presented lmseguent sections.

Define a setC of M consecutive indices such that (22£) + 0, vk € K. We assume such a set
exists, which is usually the case for short time-supporsgsit(¢). Denote byH the M x M diagonal
matrix with kth entry L (22£) and by V(t) the M x L matrix with kith elemente=/27*%/7 where
t = {t1,...,tr} is the vector of the unknown delays. In addition denotelifie lengthf vector whose
Ith element isq;, and byx the lengthAZ vector whosekth element isX [k]. We may then write[{5) in
matrix form as

x = HV (t)a. (6)
SinceH is invertible by construction we definge= H~'x, which satisfies
y = V(t)a. (7)

The matrixV is a Vandermonde matrix and therefore has full column radj, [[IL6] as long as\f > L
and the time-delays are distinct, i.&;.# t; for all ¢ # j.
Writing the expression for théth element of the vectay in (@) explicitly:

L
Vi = Zale_jzﬂktl/T- (8)
=1

Evidently, given the vectoxk, (@) is a standard problem of finding the frequencies and iamagls of a
sum of L complex exponentials (seg J11] for a review of this topichisTproblem may be solved as
long as|K| = M > 2L.

The annihilating filter approach used extensively by Vétetral. [3], [10] is one way of recovering
the frequencies, and is thoroughly described in the liteea{3], [10], [11]. This method can solve
the problem using the critical number of samples = 21, as opposed to other techniques such as
MUSIC [17], [18] and ESPRITL[19] which require oversamplif@ince we are interested in minimal-rate

sampling, we use the annihilating filter throughout the pape



B. Obtaining The Fourier Series Coefficients

As we have seen, given the vector df > 2L Fourier series coefficients, we may use standard
tools from spectral analysis to determine the «‘gf@;al}le. In practice, however, the signal is sampled
in the time domain, and therefore we do not have direct adoesamples ok. Our goal is to design a
single-channel sampling scheme which allows to determifiom time-domain samples. In contrast to
previous work [[3], [[10] which focused on a low-pass sampliftgr, in this section we derive a general
condition on the sampling kernel allowing to obtain the wect. For the sake of clarity we confine
ourselves to uniform sampling, the results extend in agttforward manner to nonuniform sampling

as well.

x(t) —  s*(—t) — c[n]
t=nT

Fig. 1. Single channel sampling scheme.

Consider sampling the signal¢) uniformly with sampling kernek*(—t) and sampling period’, as

depicted in Fig[lL. The samples are given by

eln] = /_ " 2(t)s*(t — nT)dt = (s(t — nT), (1)), )
Substituting [(#) into[(9) we have
cn] = ZX[k] /OO eI 2RYT ¢ (t — ) dt
kez >
_ ZX[k]€j27rknT/T /oo ej27rkt/7—8*(t)dt
kez >
= > X[k TITS* 27k /1), (10)
keZ

where S(w) is the CTFT ofs(t). Choosing any filtes(¢) which satisfies
0 w=2nk/T,k ¢ K
S(w) =14 nonzero w = 2rk/T,k €K (11)
arbitrary otherwise

we can rewrite[(TI0) as

cln] =Y X[k]e??™ T/ 5% (2mk /7). (12)
kel



In contrast to [(I0), the sum in_(112) is finite. Note thlaf]l(11)plies that any real filter meeting this
condition will satisfyk € K = —k € K, and in additionS(27k/7) = S*(—2nk/7), due to the conjugate
symmetry of real filters.

Defining theM x M diagonal matrixS whosekth entry isS*(27k/7) for all k € K, and the lengthV

vector c whosenth element isc[n], we may write [(IR) as
c=V(—ts)Sx (13)

wheret; = {nT : n =0...N — 1}, andV is defined as in[{6) with a different parametet, and
dimensionsN x M. The matrixS is invertible by construction. Sinc® is Vandermonde, it is left

invertible as long asv > M. Therefore,

x = S7IVT(—t,)c. (14)
In the special case whe® = M andT = 7/N, the recovery in[(14) becomes:

x = ST'DFT{c}, (15)

i.e., the vectorx is obtained by applying the Discrete Fourier Transform (DBM the sample vector,
followed by a correction matrix related to the sampling filte

The idea behind this sampling scheme is that each sampletuallgca linear combination of the
elements ok. The sampling kernel(t) is designed to pass the coefficieAt§t], k£ € K while suppressing
all other coefficients([k|, k ¢ K. This is exactly what the condition ih(fL1) means. This samgpcheme
guarantees that each sample combination is linearly indbgo# of the others. Therefore, the linear system
of equations in[{113) has full column rank which allows to sofer the vectorx.

We summarize this result in the following theorem.

Theorem 1. Consider ther-periodic stream of pulses of ordér.

L
x(t) = Z Zalh(t —t; —mT).
meZ =1
Choose a sek of consecutive indices for whicH (27k/7) # 0, Yk € K. Then the samples
cn] = (s(t —nT),z(t)), n=0...N—1,

uniquely determine the signal(t) for any s(¢) satisfying condition11), as long asN > |K| > 2L.

In order to extend Theoref 1 to nonuniform sampling, we ordgchto substitute the nonuniform

sampling times in the vectar, in (14).
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Fig. 2. The filterg(¢) with all coefficientsb, = 1.

Theorem L presents a general single channel sampling scl@meespecial case of this framework
is the one proposed by Vetterli et al. inl [3] in whieh(—t) = Bsinc(—Bt), where B = M /7 and

N > M > 2L. In this cases(t) is an ideal low-pass filter of bandwidtB with

(16)

S(w) = \/12_7Trect <2:B> .

Clearly, [16) satisfies the general condition [nl(11) with= {—|7/2],...,|M/2]} and S (%) =
\/%_W, vk € K. Note that since this filter is real valued it must satisf¢ K = —k € £, i.e., the indices
come in pairs except fok = 0. Sincek = 0 is part of the sef’, in this case the cardinality/ = |K|
must be odd valued so thaf > M > 2L + 1 samples, rather than the minimal rate> 2L.

The ideal low-pass filter is bandlimited, and therefore hdiite time-support, so that it cannot be
extended to finite and infinite streams of pulses. In the nestian we propose a class of non-bandlimited
sampling kernels, which exploit the additional degreesreédlom in condition[(11), and have compact
support in the time domain. The compact support allows terexthis class to finite and infinite streams,

as we show in Sectioris]Il and1V, respectively.

C. Compactly Supported Sampling Kernels

Consider the following SoS class which consists of a summdssin the frequency domain:

Gw) = ﬁ 3 by sine <# - k) 17)

kel
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Fig. 3. The filterg(¢) with Hamming window coefficients.

whereb;, # 0, k € K. The filter in [IT) is real valued if and only if € K = —k € K andb;, = b* , for

all k € K. Since for each sinc in the sum

sinc <

the filter G(w) satisfies[(1ll) by construction. Switching to the time domain

g(t) = rect G) > byed 2T, (19)

ke

1 w=2nk'/T, k' =k
- ) - (18)
2 /T 0 w=2rk' /7, K #F,

which is clearly a time compact filter with support

The SoS class il _(19) may be extended to

G(w) = \/% ];Cbm <# = k:) (20)
whereb, # 0, k € K, and¢(w) is any function satisfying:
1 w=20
p(w)=4 0 lw| €N (21)
arbitrary otherwise
This more general structure allows for smooth versions efréct function, which is important when
practically implementing analog filters.
The functiong(t) represents a class of filters determined by the paramétgiscic. These degrees
of freedom offer a filter design tool where the free paranse{ér}.cx may be optimized for different
goals, e.g., parameters which will result in a feasible @gdilter. In Theoreni 2 below, we show how

to choose{b } to minimize the mean-squared error (MSE) in the presencedisen
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Sampling filter. (c) Low rate samples depicted over the Bliesignal.

Determining the paramete{$y } .cx may be viewed from a more empirical point of view. The impulse
response of any analog filter having supponinay be written in terms of a windowed Fourier series as

®(t) = rect (;) > Brel?mktT (22)

kezZ
Confining ourselves to filters which satisfi, # 0, £ € K, we may truncate the series and choose:

by — Br keK 23)
0 k¢K
as the parameters gf(¢) in (19). With this choiceg(t) can be viewed as an approximation &gt).
Notice that there is an inherent tradeoff here: using mosedficients will result in a better approximation
of the analog filter, but in turn will require more samplesicgl the number of sampléé must be greater

than the cardinality of the ség.
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Fig. 5. (a) Estimated time-delays and amplitudes depicteat the original signal. (b) Reconstructed signal vs. o@gione.

The reconstruction is exact to numerical precision.

To demonstrate the filtegi(t) we first chooseC = {—p,...,p} and set all coefficient$b,} to one,

resulting in

P
g(t) = rect <;> Z eI 2R T — rect <;> D, (2nt/T), (24)

k=—p
where the Dirichlet kerneD,,(¢) is defined by

P . 1
_ N gm0 9)t)
Dy (t) k;pe sin(t/2) . (25)
The resulting filter forp = 10 andT = 1 sec, is depicted in Fidl 2. This filter is also optimal in an MSE
sense for the cask(t) = (t), as we show in Theorefd 2. In Figl 3 we plgit) for the case in which

the b;'s are chosen as a lengfl- symmetric Hamming window:

b = 0.54 — 0.46 cos <2w%> , kek. (26)

Notice that in both cases the coefficients satisfy= b* ., and therefore, the resulting filters are real
valued.

In the presence of noise, the choice{6f } ., will effect the performance. Consider the case in which
digital noise is added to the samplesso thaty = ¢ + w, with w denoting a white Gaussian noise
vector. Using [(IB),

y =V(—ts )Bx +w (27)

whereB is a diagonal matrix, havingb,} on its diagonal. To choose the optimBl we assume that

the {a;} are uncorrelated with variane€’, independent oft;}, and that{t;} are uniformly distributed
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in [0, 7). Since the noise is added to the samples after filteringeasing the filter's amplification will
always reduce the MSE. Therefore, the filter's energy mustdrenalized, and we do so by adding the

constraint T(B*B) = 1. Under these assumptions, we have the following theorem:

Theorem 2. The minimal MSE of a linear estimator &f from the noisy sampleg in (27) is achieved

by choosing the coefficients

2 N 1 714 2
Vier — ) ASIhlTN/o
Ibi]? = ( ATt kil ) (28)

A > |}~li|4N/O'2

(an) 2|Q

whereh;, = H(2rk/7)o,\/L/7 and are arranged in an increasing order gf;|,

VA= (IICI—mI)CV Njo" (29)
N/o?+ Y 1|k
i=m-+1

andm is the smallest index for which < |, 1[*N/o2.

Proof: See the Appendix. |

An important consequence of Theorem 2 is the following dargl
Corollary 1. If |hg|?> = |he|?, VE, £ € K then the optimal coefficients af&|? = 1/|K|, Yk € K.

Proof: It is evident from [2B) that ifih;,| = |he| then |b,| = |b|. To satisfy the trace constraint
Tr(B*B) = 1, A cannot be chosen such that &l= 0. Therefore,|b;|?> = 1/|K| for all i € K. [ |
From Corollaryl1 it follows that wherk(t) = (¢), the optimal choice of coefficients ig, = b; for
all £ andj. We therefore use this choice when simulating noisy sedtinghe next section.
Our sampling scheme for the periodic case consists of saggérnels having compact support in the
time domain. In the next section we exploit the compact supgoour filter, and extend the results to
the finite stream case. We will show that our sampling andnstroction scheme offers a numerically

stable solution, with high noise robustness.

D. Simulations

1) Demonstration of Our Sampling ScheniBo demonstrate our results, we consider an inp)

consisting of L = 5 delayed and weighted versions of a Gaussian pulse

1 <o —12 /952
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with parameter = 7- 1073, and periodr = 1. The time-delays and amplitudes were chosen randomly.
In order to demonstrate near-critical sampling we choosestt of indicesC = {—L,...,L} with
cardinality M = |K| = 11. We filter 2:(¢) with g(¢) of (26). The filter output is sampled uniformly
times, with sampling period” = /N, where N = M = 11. The sampling process is depicted in Fij. 4.
The vectorx is obtained using (14), and the delays and amplitudes aerndigted by the annihilating
filter method. Reconstruction results are depicted in Bigltte estimation and reconstruction are both
exact to numerical precision.

Analog filtering operations are carried out by discrete apipnations over a fine grid. The analog
signal and filters are mimicked by high rate digital sign&imce the sampling rate which constructs the
fine grid is between 2-3 orders of magnitude higher than tred §ampling ratel’, the simulations reflect
very well the analog results.

2) Noisy Case:We now consider the case in which the samples are corruptatbisg. Our signal
consists ofL = 2 pulsesh(t) = 4(t). The period was setto =1, K ={-2,...,2},andN =M =5
samples were taken, sampled uniformly with sampling pefiod 7/N. We choose(t) given by [24).
As explained earlier, only the values of the filter at poitid:/7, k € K affect the samples (see_{11)).
Since the values of the filter at the relevant points coineidd are equal to one for the low-pass filter
[3] and g*(—t), the resulting samples for both settings are identical.rdfloee, we present results for
our method only, and state that the exact same results aaeebtusing the approach of [3].

In our setup white Gaussian noise (AWGN) with varianéeis added to the samples, where we define
the SNR as:

1
SNR = &

lell3

2
On

; (31)

with ¢ denoting the clean samples. In our experiments the noisangar is set to give the desired SNR.
The simulation consists of000 experiments for each SNR, where in each experiment a neve nois
vector is created. We choose= 7-(1/3 2/3)” anda = 7- (1 1)T, where these vectors remain constant
throughout the experiments. We define the error in timeydektimation as the average tf — t||2,
wheret andt denote the true and estimated time-delays, respectivefiedsin increasing order. The
error in amplitudes is similarly defined b — a||3. In Fig.[8 we show the error as a function of SNR for
both delay and amplitude estimation. Estimation of the tde&ays is the main interest in FRI literature,
due to special nonlinear methods required for delay rego¥@nce the delays are known, the standard
least-squares method is typically used to recover the &undpls, therefore, we focus on delay estimation

in the sequel.



15

10° 10°

-2 | -2

10

10

107

10°

Time—-delay estimation error [units of 1]

Amplitude estimation error [relative to orig. ampl.]

10 20 30 40 50 10 20 30 40 50
SNR [dB] SNR [dB]

(a) (b)

Fig. 6. Performance as a function of SNR, using our periogfmr@ach. Estimation error in (a) delays, and (b) amplitudes

Finally, for the same setting we can improve reconstrucéiocuracy at the expense of oversampling,
as illustrated in Figld7. Here we show recovery performameceofersampling factors of 1, 2, 4 and 8.
The oversampling was exploited using the total least-sgpuanethod, followed by Cadzow’s iterative

denoising (both described in detail in_[10]).

No oversampling

Time—delay estimation error [units of T]

10 20 30 40 50
SNR [dB]

Fig. 7. The effect of oversampling on estimation error. @aenpling by a factor of 1, 2, 4 and 8.
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I1l. FINITE STREAM OF PULSES
A. Extension of SoS Class

Consider now a finite stream of pulses, defined as
L
Bt) =Y aht—t), tel0,7), qeR I=1..1L (32)
=1

where, as in Sectiofdlli(¢) is a known pulse shape, and;,a;}~ , are the unknown delays and
amplitudes. The time-delay§; }-_, are restricted to lie in a finite time intervi, 7). Since there are
only 2L degrees of freedom, we wish to design a sampling and recmtisin method which perfectly
reconstructsi(t) from 2L samples. In this section we assume that the pilge has finite supporiz,
ie.,

h(t) = 0, V|t| > R/2. (33)

This is a rather weak condition, since our primary intergsinivery short pulses which have wide, or
even infinite, frequency support, and therefore cannot Inepkad efficiently using classical sampling
results for bandlimited signals. We now investigate thecitre of the samples taken in the periodic
case, and design a sampling kernel for the finite setting wbltains precisely the same sampies,
as in the periodic case.

In the periodic setting, the resulting samples are given[If).(Usingg(¢) of (I9) as the sampling

kernel we have
cn] = (g(t —nT),z(t))

L o0
= Z Z ay / h(t —t; — m7)g* (t — nT)dt

meZ l=1 -

L 00
_ Zzal/ h(t)g* (t — (nT — t; — mr)) dt

meZ l=1 -

L
= Z Z agp(nT —t; — mT), (34)

meZ =1
where we defined

p(0) = (g(t = 0), h(t)). (35)

Sinceg(t) in (I9) vanishes for allt| > 7/2 and h(t) satisfies[(3B), the support ¢f(t) is (R + 7), i.e.,

e(t)=0 forall|t|>(R+T1)/2. (36)
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Using this property, the summation in_{34) will be over nawzealues for indicesn satisfying
|InT —t; —m7| < (R+7)/2. (37)

Sampling within the windowo, 7), i.e.,nT" € [0, 7), and noting that the time-delays lie in the interval

t;el0,7),l=1...L, (37) implies that
(R+7)/2 > |nT —t;, —mr| > |m|t — |nT —t;| > (|m| — 1)T. (38)
Here we used the triangle inequality and the fact that — ¢;| < 7 in our setting. Therefore,

\m!<R/T2+3 R/T;rﬂ—lér,

i.e., the elements of the sum i {34) vanish forsallbut the values in((39). Consequently, the infinite

= m| < [ (39)

sum in [34) reduces to a finite sum owver< |r| so that [[34) becomes

r L
cln] = Z Z ayp(nT —t; — mT)

m=—r [=1

r L 00
= Y Zal/_ h(t —t)g*(t — nT + m7)dt

m=—r [=1

r L
= < Z g(t—nT+mT),Zalh(t—tl)>, (40)

m=-—r =1

where in the last equality we used the linearity of the inn@dpct. Defining a function which consists

of (2r + 1) periods ofg(t):

T

gr(t) = Y glt+mr), (41)
we conclude that
cn] = (g:(t —nT),Z(t)). (42)

Therefore, the samples$n] can be obtained by filtering the aperiodic sigmét) with the filter g (—t¢)
prior to sampling. This filter has compact support equa(2o+ 1)7. Since the finite setting samples
(42) are identical to those of the periodic cdsd (34), regowéthe delays and amplitudes is performed
exactly the same as in the periodic setting.

We summarize this result in the following theorem.

Theorem 3. Consider the finite stream of pulses given by:

L

3~j(t) = Zalh(t - tl)> t € [077_)7 a; € Rv
=1
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whereh(t) has finite supporRR. Choose a se of consecutive indices for whidt (27k/7) # 0, Yk € K.

Then, N samples given by:
cn] = (g, (t = nT),z(t)), n=0...N—1,nT €[0,7),

wherer is defined in(39), and g, (¢) is compactly supported and defined @) (based on the filtey(¢)
in (@2)), uniquely determine the signal¢) as long asN > |K| > 2L.

If, for example, the suppoi® of h(t) satisfiesR < 7 then we obtain from[(39) that= 1. Therefore,

the filter in this case would consist 8fperiods ofg(¢):

3p(1) 2 g, (0)| _, = gt —7) + g(t) + g(t + 7). (43)

Practical implementation of the filter may be carried oungsilelay-lines. The relation of this scheme

to previous approaches will be investigated in Sedfidn V.

B. Simulations

1) Demonstration of the Sampling Schenikhe input signalz(¢) consists of L = 5 delayed and
weighted versions of the pulggt) = §(¢). The delays and weights were chosen randomly. We choose
K={-L,...,L}, so thatM = |K| = 11. Since the support of(¢) satisfiesR < 7 the parameter in
(39) equalsl, and therefore we filte(¢) with gs,(¢) defined in [(4B). The coefficients,, k € K were
all set to one. The output of the filter is sampled uniformytimes, with sampling period” = 7/N,
where N = M = 11. Perfect reconstruction is achieved as can be seen inJFitheSestimation is exact
to numerical precision.

2) High Order Problems:The same simulation was carried out with= 20 diracs. The results are
shown in Fig[®. Here again, the reconstruction is perfeendor largeL.

3) Noisy Case:We now consider the performance of our method in the presefceise. In addition,
we compare our performance to the B-spline and E-spline adstproposed iri [13], and to the Gaussian
sampling kernel[[3]. We examine 4 scenarios, in which thedigonsists ofl = 2, 3,5, 20 diracEl. In
our setup, the time-delays are equally distributed in thedav [0, 7), with — = 1, and remain constant

throughout the experiments. All amplitudes are set to one.

'Due to computational complexity of calculating the timevdin expression for high order E-splines, the functionsewer

simulated up to order 9, which allows fdr = 5 pulses.
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Fig. 8. Application of the filtetgs,(¢) on a finite stream ofL = 5 diracs.
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Fig. 9. High order problems: application of the filtgs,(¢) on a finite stream of. = 20 diracs.

The index set of the SoS filter iIs = {—L,..., L}. Both B-splines and E-splines are taken of order
2L — 1, and for E-splines we use purely imaginary exponents, &gdatributed around the complex
unit circle. The sampling period for all methods7s= 7/N.

The method of noise corruption is the same as in Se€fionIl{Bdrder to maintain the same SNR

conditions throughout all methods, the noise level is chosih respect to the resulting sequence of
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Fig. 10. Performance in the presence of noise: finite strease.cOur method vs. B-spline, E-spline][13] and Gaussian [3]
sampling kernels. (aJ. = 2 dirac pulses are present, (b)= 3 pulses, (c) high value of. = 5 pulses, and (d) the performance
for a very high value ofL. = 20 (without E-spline simulation, due to computational comileof calculating the time-domain

expression for high values df).

samples. In other words,, in (31) is method-dependent, and is determined by the deSINR and the
samples of the specific technique. Hard thresholding wadeimgnted in order to improve the spline
methods, as suggested by the authors in [13]. The threshatdchosen to b&c,,, whereo,, is the
standard deviation of the AWGN. For the Gaussian samplimgete¢he parameter was optimized and
took on the value oftr = 0.25,0.28,0.32,0.9, respectively.

The results are given in Fig. 10. Fdr = 2 all methods are stable, where E-splines exhibit better
performance than B-splines, and Gaussian and SoS appsodeheonstrate the lowest errors. As the

value of I grows, the advantage of the SoS filter becomes more promimdrdre for L > 5, the
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performance of Gaussian and both spline methods deteziarad have errors approaching the order of
7. In contrast, the SoS filter retains its performance neamnghanged even up té = 20, where the
B-spline and Gaussian methods are unstable. The improvsireof the Gaussian approach presented
in [12] would not perform better in this high order case, siiitcfails for L > 9, as noted by the authors.

A comparison of our approach to previous methods will beitbetan Sectior V.

IV. INFINITE STREAM OF PULSES

We now consider the case of an infinite stream of pulses

Z(t) = Zalh(t - tl), t;,a; € R. (44)
€7

We assume that the infinite signal has a bursty charactenhigsignal has two distinct phases: a) bursts
of maximal durationr containing at mosL pulses, and b) quiet phases between bursts. For the sake of
clarity we begin with the cask(t) = 4(t). For this choice the filtey;(—¢) in (1) reduces tg;,(—t)

of (43).

Since the filterg3,(—t) has compact suppostr we are assured that the current burst cannot influence
samples takeBT/2 seconds before or after it. In the finite case we have confinesktves to sampling
within the intervall0, 7). Similarly, here, we assume that the samples are takengitifeburst duration.
Therefore, if the minimal spacing between any two conseeutirsts is37/2, then we are guaranteed that
each sample taken during the burst is influenced by one bohgtas depicted in Fig. 11. Consequently,
the infinite problem can be reduced to a sequential solutiotoeal distinct finite order problems,
as in Sectiori Ill. Here the compact support of our filter conms play, allowing us to apply local

reconstruction methods.

A
g3p(t) filter support = 37
s ’ \‘
= = 7 - 0 777777777‘ ‘
‘ [
P NP PO EEP
: T { | } o o o
‘ t | 11t !
—0.57 T 157 2.57 3.57
\K_/
1st burst 2nd burst

Fig. 11. Bursty signak(t). Spacing of37/2 between bursts ensures that the influence of the current éods before taking
the samples of the next burst. This is due to the finite supperbf the sampling kerneys, (—t).
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In the above argument we assume we know the locations of tietshbgince we must acquire samples
from within the burst duration. Samples outside the burgttion are contaminated by energy from
adjacent bursts. Nonetheless, knowledge of burst locatisravailable in many applications such as
synchronized communication where the receiver knows wheaxpect the bursts, or in radar or imaging
scenarios where the transmitter is itself the receiver.

We now state this result in a theorem.

Theorem 4. Consider a signalz(¢) which is a stream of bursts consisting of delayed and weighte
diracs. The maximal burst duration i and the maximal number of pulses within each burdi.ighen,
the samples given by

c[n] = (gsp(t = nT),2(t)), nei

wheregs,(t) is defined by@3), are a sufficient characterization eft) as long as the spacing between

two adjacent bursts is greater thair /2, and the burst locations are known.

Extending this result to a general pulgét) is quite straightforward, as long dgt) is compactly
supported with suppor®, and we filter withg(—¢) as defined in[{41) with the appropriatérom (39).
If we can choose a sét of consecutive indices for whicH (27k/7) # 0, Vk € K and we are guaranteed
that the minimal spacing between two adjacent bursts istgréaan((2r + 1) + R) /2, then the above

theorem holds.

V. RELATED WORK

In this section we explore the relationship between our @ggr and previously developed solutions

[B], [10], [13], [14].

A. Periodic Case

The work in [3] was the first to address efficient sampling dépistreams, e.g., diracs. Their approach
for solving the periodic case was ideal lowpass filteringjpfeed by uniform sampling, which allowed to
obtain the Fourier series coefficients of the signal. Thesdficients are then processed by the annihilating
filter to obtain the unknown time-delays and amplitudes. éat®n[Il, we derived a general condition on
the sampling kerne[[(11), under which recovery is guaraht&be lowpass filter of [3] is a special case
of this result. The noise robustness of both the lowpassoagprand our more general method is high
as long as the pulses are well separated, since reconstrdicdim Fourier series coefficients is stable in

this case. Both approaches achieve the minimal number oplsam
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The lowpass filter is bandlimited and consequently has tefitime-support. Therefore, this sampling

scheme is unsuitable for finite and infinite streams of puldé& SoS class introduced in Sectioh I

consists of compactly supported filters which is crucial tatde the extension of our results to finite

and infinite streams of pulses. A comparison between the tethads is shown in Tablé I.

TABLE |

PERIODIC CASE- COMPARISON WITH PREVIOUS WORK

Feature

Lowpass filter

[

Proposed method

Degrees of freedom 2L

No. of samples 2L+ 1 2L

Time-support Infinite 7, finite support
allows extension
to finite & infinite
cases

Noise Robustness High High

Analog implementa-

tion

Approximate

lowpass filter

Approximate
finite support

filter

B. Finite Pulse Stream

The authors of[[3] proposed a Gaussian sampling kernel fawpbag finite streams of Diracs. The

Gaussian method is numerically unstable, as mentioned2h gince the samples are multiplied by a

rapidly diverging or decaying exponent. Therefore, thiprapch is unsuitable fof. > 6. Modifications

proposed in[[12] exhibit better performance and stabiltpwever, these methods require substantial

oversampling, and still exhibit instability fak > 9.

In [13] the family of polynomial reproducing kernels wasroduced as sampling filters for the model

(32). B-splines were proposed as a specific example. TheliBespampling filter enables obtaining

moments of the signal, rather than Fourier coefficients. Mloenents are then processed with the same
annihilating filter used in previous methods. However, aswtinaeed by the authors, this approach is

unstable for high values of.. This is due to the fact that in contrast to the estimation otrier
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coefficients, estimating high order moments is unstabfeesunstable weighting of the samples is carried
out during the process.

Another general family introduced i [13] for the finite mbdethe class of exponential reproducing
kernels. As a specific case, the authors propose E-splinplisankernels. The CTFT of an E-spline of

order N + 1 is described by

N .
R 1— ean_]w
Baw) =[] ——. (45)
Jw — Qp
n=0
wherea = (ag, aq, ..., ay) are free parameters. In order to use E-splines as samplmeglkefor pulse

streams, the authors propose a specific structure on’thev,, = o + nA. Choosing exponents having
a non-vanishing real part results in unstable weightinginage B-spline case. However, choosing the
special case of pure imaginary exponents in the E-splinesady suggested by the authors, results in
a reconstruction method based on Fourier coefficients, wti@nonstrates an interesting relation to our
method. The Fourier coefficients are obtained by applyingasrirnconsisting of the exponent spanning
coefficients{c,, ,,}, (seel[13]), instead of our Vandermonde matrix relatior).(With this specific choice
of parameters the E-spline function satisfles (11).

Interestingly, with a proper choice of spanning coefficierit can be shown that the SoS class can
reproduce exponentials with frequenci€&rk/7}icic, and therefore satisfies the general exponential
reproduction property of_ [13]. However, the SoS filter preg® a new sampling scheme which has
substantial advantages over existing methods includispliees. The first advantage is in the presence

of noise, where both methods have the following structure:
y = Ax+w, (46)

where w is the noise vector. While the Fourier coefficients vectois common to both approaches,
the linear transformatioA is method dependent, and therefore the sample vgcterdifferent. In our
approach withg(¢) of (24), A is the DFT matrix, which for any ordef has a condition number of
1. However, in the case of E-splines the transformation mafriconsists of the E-spline exponential
spanning coefficients, which has a much higher condition benre.g., above 100 fof = 5. Conse-
quently, some Fourier coefficients will have much higheweal of noise than others. This scenario of
high variance between noise levels of the samples is knowdeteriorate the performance of spectral
analysis methods [11], the annihilating filter being one lednh. This explains our simulations which
show that the SoS filter outperforms the E-spline approadhempresence of noise.

When the E-spline coefficients are pure imaginary, it can be easily shown thafl (45) becomes a

multiplication of shifted sincs. This is in contrast to theSSfilter which consists of a sum of sincs in
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the frequency domain. Since multiplication in the frequedomain translates to convolution in the time
domain, it is clear that the support of the E-spline growshwvii¢ order, and in turn with the order of
the problemL. In contrast, the support of the SoS filter remains unchang@keid observation becomes
important when examining the infinite case. The constramthe signal in[[13] is that no more than
pulses be in any interval of lengthP7’, P being the support of the filter, aildthe sampling period. Since
P grows linearly withL, the constraint cast on the infinite stream becomes morggstt, quadratically
with L. On the other hand, the constraint on the infinite streamgutsia SoS filter is independent &f

We showed in simulations that typically fdr > 5 the estimation errors, using both B-spline and E-
spline sampling kernels, become very large. In contrastapproach leads to stable reconstruction even
for very high values of’, e.g.,L = 100. In addition, even for low values df we showed in simulations
that although the E-spline method has improved performaves B-splines, the SoS reconstruction

method outperforms both spline approaches. A comparisdessribed in Tablglll.

TABLE I
FINITE CASE - COMPARISON

Feature Gaussian Spline Fil- | Proposed
filter [3] ter [13] method

Degrees of free- 2L

dom

No. of samples 2L

Time-support Infinite Finite Finite

Stability Unstable Unstable Stable even
for L>6 for L>5 for L =

100
Noise Robustness| Low Low High

C. Infinite Streams

The work in [13] addressed the infinite stream case, with) = §(¢). They proposed filtering the
signal with a polynomial reproducing sampling kernel priorsampling. If the signal has at most
diracs within any interval of duratioh P7', where P denotes the support of the sampling filter anthe

sampling period, then the samples are a sufficient chaizatien of the signal. This condition allows
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to divide the infinite stream into a sequence of finite casélpros. In our approach the quiet phases of
1.57 between the bursts of lengthenable the reduction to the finite case.

Since the infinite solution is based on the finite one, our wektls advantageous in terms of stability
in high order problems and noise robustness. However, weatle hn additional requirement of quiet
phases between the bursts.

Regarding the sampling rate, the number of degrees of freaddhe signal per unit time, also known
as the rate of innovation, jg = 2L/2.57, which is the critical sampling rate. Our sampling rate s/~
and therefore we oversample by a factor2df. In the same scenario, the method|[in![13] would require
a sampling rate of. P/2.57, i.e., oversampling by a factor d?/2. Properties of polynomial reproducing
kernels imply thatP > 2L, therefore for anyl. > 3, our method exhibits more efficient sampling. A
table comparing the various features is shown in Table III.

Recent work[[14] presented a low complexity method for retarcting streams of pulses (both infinite
and finite cases) consisting of diracs. However the basignagtion of this method is that there is at
most one dirac per sampling period. This means we must hawe lprowledge about a lower limit on
the spacing between two consecutive deltas, in order toagtes correct reconstruction. In some cases
such a limit may not exist; even if it does it will usually ferais to sample at a much higher rate than
the critical one.

TABLE 11l
INFINITE CASE - COMPARISON

Feature

Spline filter [13]

Proposed method

Signal model

No more thanL

pulses in any inter-

Bursty character:

burst - 7, quiet

val of LPT sec phasel.5r
Rate of innovation p=2L/2.57
Sampling rate P-p/2 2.5p

For L > 3 = || Proposed sampling scheme is more efficient
P/2>3
Noise Robustness|| Low High
Stability Unstable for > | Stable for L =
5 100
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VI. APPLICATION - ULTRASOUND IMAGING

An interesting application of our framework is ultrasounthging. In ultrasonic imaging an acoustic
pulse is transmitted into the scanned tissue. The pulsdlécted due to changes in acoustic impedance
which occur, for example, at the boundaries between twemifft tissues. At the receiver, the echoes are
recorded, where the time-of-arrival and power of the echilicate the scatterer’s location and strength,
respectively. Accurate estimation of tissue boundarigssmatterer locations allows for reliable detection
of certain illnesses, and is therefore of major clinical artpnce. The location of the boundaries is often
more important than the power of the reflection. This stredirpuises is finite since the pulse energy
decays within the tissue. We now demonstrate our method arlrdimensional (1D) ultrasound data.

The multiple echo signal which is recorded at the receivarlmamodeled as a finite stream of pulses,
as in [32). The unknown time-delays correspond to the lonatof the various scatterers, whereas the
amplitudes correspond to their reflection coefficients. phkse shape in this case is a Gaussian defined
in 30), due the physical characteristics of the electrmdatic transducer (mechanical damping). We
assume the received pulse-shape is known, either by asgumis unchanged through propagation,
through physically modeling ultrasonic wave propagatimnby prior estimation of received pulse. Full
investigation of mismatch in the pulse shape is left for fettesearch.

In our setting, a phantom consisting of uniformly spaced pmimicking point scatterers, was scanned
by GE Healthcare’s Vivid-i portable ultrasound imagingtsys [20], [21], using a 3S-RS probe. We use
the data recorded by a single element in the probe, which defed as a 1D stream of pulses. The
center frequency of the probe f = 1.7021 MHz, The width of the transmitted Gaussian pulse in this
case isc = 3- 1077 sec, and the depth of imaging Bnax = 0.16 m corresponding to a time window
ofd 7 =2.08-10~* sec.

In this experiment all filtering and sampling operations eagried out digitally in simulation. The
analog filter required by the sampling scheme is replaced lengthy Finite Impulse Response (FIR)
filter. Since the sampling frequency of the element in thetesysis f; = 20 MHz, which is more
than5 times higher than the Nyquist rate, the recorded data repteghe continuous signal reliably.
Consequently, digital filtering of the high-rate sampledad@ector {160 samples) followed by proper
decimation mimics the original analog sampling scheme \hitgh accuracy. The recorded signal is
depicted in Figl”I2. The band-pass ultrasonic signal is dieihated to base-band, i.e., envelope-detection

is performed, before inserted into the process.

>The speed of sound within the tissuel&50 m/sec.
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Fig. 12. Recorded ultrasound imaging signal. The data wasieed by GE healthcare’s Vivid-i ultrasound imaging syste

We carried out our sampling and reconstruction scheme omfihiementioned data. We sét= 4,
looking for the strongest 4 echoes. Since the data is cadupy strong noise we over-sampled the
signal, obtaining twice the minimal number of samples. lditon, hard-thresholding of the samples
was implemented, where we set the threshold to 10 percehieofeximal value. We obtained = 17
samples by decimating the output of the lengthy FIR digitégrfiimitating g3,(—¢) from (43), where
the coefficients{b,} were all set to one. In Fig._13a the reconstructed signal pctied vs. the full
demodulated signal using all60 samples. Clearly, the time-delays were estimated with pigizision.
The amplitudes were estimated as well, however the amplitfdthe second pulse has a large error.
This is probably due to the large values of noise presentsiwidinity. However, as mentioned earlier,
the exact locations of the scatterers is often more impbtten the accurate reflection coefficients. We
carried out the same experiment only now oversampling byceffaof 4, resulting inV = 33 samples.
Here no hard-thresholding is required. The results arectigin Fig.[IBb, and are very similar to our
previous results. In both simulations, the estimation reimahe pulse location is aroun@1 mm.

Current ultrasound imaging technology operates at the tagdh sampled data, e.gf, = 20 MHz in
our setting. Since there are usually 100 different elements single ultrasonic probe each sampled at
a very high rate, data throughput becomes very high, and segpbigh computational complexity to the
system, limiting its capabilities. Therefore, there is andad for lowering the sampling rate, which in

turn will reduce the complexity of reconstruction. Expieg the parametric point of view, our sampling
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Fig. 13. Applying ourgs,(¢) filter method on real ultrasound imaging data. Results aosvshvs. full demodulated signal
which uses allt160 samples. Reconstructed signal (a) usiig= 17 samples only and hard-thresholding, and (b) usi\hg- 33

samples without thresholding.

scheme reduces the sampling rate by 2 orders of magnituale, 4160 to around 30 samples in our

setting, while estimating the locations of the scattereith Wigh accuracy.

VIlI. CONCLUSIONS

We presented efficient sampling and reconstruction schdarestreams of pulses. For the case of
a periodic stream of pulses, we derived a general conditiorthe sampling kernel which allows a
single-channel uniform sampling scheme. Previous workid3] special case of this general result. We
then proposed a class of filters, satisfying the conditioith wompact support. Exploiting the compact
support of the filters, we constructed a new sampling schaméhe case of a finite stream of pulses.
Simulations show this method exhibits better performamaa tprevious techniques![3],_[13], in terms
of stability in high order problems, and noise robustness.eXtension to an infinite stream of pulses
was also presented. The compact support of the filter all@wvdotal reconstruction, and thus lowers
the complexity of the problem. Finally, we demonstrated ddgantage of our approach in reducing the

sampling and processing rate of ultrasound imaging, byyapgplour techniques to real ultrasound data.
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APPENDIX
PROOF OFTHEOREM[Z

The MSE of the optimal linear estimator of the vectofrom the measurement vectgris known to

be [22]
MSE = Tr{Rq.} — Tr {Ry R, Ry } - (47)

The covariance matrices in our case are
R,, =R, B*V” (48)
R,, = VBR,,B*V* + 5’1, (49)

where we used (27), and the fact tiy,,, = oI sincew is a white Gaussian noise vector. Under our

assumptions oft;} and{q,}, denotingh, = H(2rk/7), and using[(b)

(Raa )y = B {XRIX K]}

L L
1 * _j2m k't
= Sl Y Y B{aapedF Eoko L

I=110=1

L
= :—ghkhk’ Z K {e‘j%ﬂ(k_k/)tl}
= —hkhk/Z/ —e_]_(k Kt

O'
= —;L|hk|25k,k/- (50)
Denoting byH a diagonal matrix wittkth elementih;|> = |hi|202L /72 we have
R,, = H. (51)

Since the first term of(47) is independentBf minimizing the MSE with respect t8 is equivalent
to maximizing the second term ifi_(47). Substitutibg] (48)(4nd [51) into this term, the optim® is

a solution to
max Tr{HB*V*(VBHB*V* + ¢°I)"'VBH} (52)

st T(B*B) = 1
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Using the matrix inversion formula [23],

(VBHB*V* + ¢2I)~!
1
T2

~ -1
(1 VB (U2H—1 n B*V*VB) B*V*>. (53)
It is easy to verify from the definition oV in (I13) that
(V'V)y, = > 50 = N ;. (54)
1=0
Therefore, the objective in (52) equals
N -~ 2 ! -~
Tr{—zHB* (I -B (U—H‘l + B*B> B*) BH}
o N
K|

=ZW<1— /N ) (55)
— |bi|?|h;i|? + 02 /N

where we used the fact th&® andH are diagonal.

We can now find the optimdB by maximizing [5b), which is equivalent to minimizing thegadive

term:
K| K|

. || 2
min = , S.t. bi|“ = 1. 56
B Zl—i—\b,-]?\hi]?]\f/az ;| | o

i=1

Denoting3; = |b;|?, (58) becomes a convex optimization problem:
K]

- |
= 57
I%in; 1+ Bi|hi|2N/o? 57)
subject to
Bi >0 (58)
IK|
Zﬁi =1 (59)
=1
To solve [57) subject td (58) and (59), we form the Lagrangian
K K] K
L= = + A =1 =) B 60
iDL+ Bilhi*N/o? ;B ;Mﬁ 0

where from the Karush-Kuhn-Tucker (KKT) conditions [244, > 0 and u;8; = 0. Differentiating [60)
with respect to3; and equating td®
|hi|*N/o®
(1 + Bi|hi|>2N/a?)?
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so that\ > 0, sinceh; > 0 by construction off (see Theorerfll1). I\ > |h;|*N/o? thenp; > 0, and
therefore,3; = 0 from KKT. If X < |h;|*N/o? then from [61)u; = 0 and

o? | N 1
o2 N 1 7.
g=4 " <V A W) > <INy (63)
0

A > |}~li|4N/O'2
where X > 0 is chosen to satisfyi ($9). Note that from ¥63),4f # 0 andi < j, thenj; # 0 as well,

since|h;| are in an increasing order. We now show that there is a unigiat satisfies (39). Define the

The optimals; is therefore

function
K]

G =D BN -1, (64)
=1

so that)\ is a root of G(\). Since the|h;
from (63) thatG(\) is monotonically decreasing far < A < ]E|K|\4N/a2. In addition,G(\) = —1 for
A > \EWHN/J?, andG(\) > 0 for A — 0. Thus, there is a uniqug for which (89) is satisfied.

's are in an increasing ordefx|| = max; |h;|. It is clear

Substituting [[(6B) into[{39), and denoting by the smallest index for which < |h,,41|*N/o?, we

have
— 2
Vi =K ml)CV Njo® (65)
N/o?+ Y 1|l
i=m-+1

completing the proof of the theorem.
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