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Abstract

We consider a two-way relay network, where two source nodes,S1 and S2, exchange information through

a cluster of relay nodes. The relay nodes receive the sum signal from S1 and S2 in the first time slot. In the

second time slot, each relay node multiplies its received signal by a complex coefficient and retransmits the signal

to the two source nodes, which leads to a collaborative two-way beamforming system. By applying the principle

of analog network coding, each receiver at S1 and S2 cancels the “self-interference” in the received signal from

the relay cluster and decodes the message. This paper studies the 2-dimensional achievable rate region for such a

two-way relay network with collaborative beamforming. With different assumptions of channel reciprocity between

the source-relay and relay-source channels, the achievable rate region is characterized under two setups. First, with

reciprocal channels, we investigate the achievable rate regions when the relay cluster is subject to a sum-power

constraint or individual-power constraints. We show that the optimal beamforming vectors obtained from solving

the weighted sum inverse-SNR minimization (WSISMin) problems are sufficient to characterize the corresponding

achievable rate region. Furthermore, we derive the closed form solutions for those optimal beamforming vectors and

consequently propose the partially distributed algorithms to implement the optimal beamforming, where each relay

node only needs the local channel information and one globalparameter. Second, with the non-reciprocal channels,

the achievable rate regions are also characterized for boththe sum-power constraint case and the individual-power

constraint case. Although no closed-form solutions are available under this setup, we present efficient numerical

algorithms by solving a sequence of semi-definite programming (SDP) problems after semi-definite relaxation (SDR),

where the optimal beamformer can be obtained under the sum-power constraint and approximate optimal solutions

can be obtained under the individual power constraints.
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I. INTRODUCTION

Cooperative communication has been extensively studied inpast years, where various cooperative relaying

schemes have been proposed, such as amplify-and-forward (AF) [1], decode-and-forward (DF) [2], compress-and-

forward (CF) [3], and coded-cooperation [4]. Among these schemes, due to its simplicity, the AF-based relaying

is of the most practical interest, where multi-antenna relay beamforming has also been explored to achieve higher

spatial diversity [5]. In certain resource constrained networks, such as sensor networks, the node size is limited

such that each node could only mount a single antenna [6]. In order to exploit the multi-antenna gain in such size-

limited cases, collaborative relay beamforming strategies have been developed where the relaying nodes cooperate

to generate a beam towards the receiver under sum or individual power constraints [7][8].

As an extension to the AF-based one-way relaying scheme, theAF-based two-way relaying scheme [9] is based

on the principle of analog network coding (ANC) [10] to support communications in two directions. Traditionally,

two-way relaying avoids the simultaneous transmissions oftwo source terminals, and requires four time-slots to

finish one round of information exchange between them. On thecontrary, the two-way relaying scheme proposed

in [10] allows the relay to mix the data and amplify-and-forward it, where the two terminals exploit the underlying

self-interference structure. By doing so, the amount of required transmission time-slots is reduced from four to two

and the overall network throughput is thus improved. There are several other works discussing such two-way relay

systems. In particular, the authors in [9] characterized the maximum achievable rate region for the two-way relay

beamforming scheme by assuming a single relay node equippedwith multiple antennas and two source nodes each

equipped with a single antenna. As a counterpart of the work in [9], the decode-and-forward two-way relaying

has been studied in [11] and the performance bounds are givenin [12]. The authors in [13] studied the AF-based

two-way relay with collaborative beamforming, where the focus is to minimize the total transmit power of the

source nodes and the relay cluster under a given pair of signal-to-noise ratio (SNR) constraints.

The works on characterizing the rate region of two-way relaying has also been done in [14], where authors

considered the collaborative beamforming case. However, all of existing works only obtained numerical solutions.

The missing of closed-form solutions leads to difficulties in designing efficient algorithms due to the lack of insight

into the structure of the optimal beamforming vectors. Thereby, in this paper, we try to seek the closed-form solutions

for the optimal beamforming vectors to characterize the maximum achievable rate region and correspondingly

propose efficient distributed algorithms. Our work differsfrom the work in [9] from two main aspects. First, we

assume a cluster of single-antenna relay nodes and considercollaborativetwo-way relay beamforming rather than

the multiple-antenna single-relay beamforming. Due to thedistributed feature, we will study the case where each

relay node has an individual power constraint in addition tothe case where all relay nodes are subject to a sum-

power constraint. Second, we present closed-form solutions for the optimal beamforming vectors when we have



3

1,ih
2,ih

1,1h

1,2h

1,Kh

2,2h

2,1h

2,Kh

1,1

r
h

1,2

r
h

1,

r

i
h

1,

r

K
h

2,

r

K
h

2,

r

i
h

2,2

r
h

2,1

r
h

Source 1 Source 2

Relay 1

Relay 2

Relay i

Relay K-1

Relay K

Fig. 1: System model

reciprocal channels. For the non-reciprocal channels, theachievable rate regions are also characterized. Although

no closed-form solutions are available under this setup, wepresent efficient numerical algorithms by solving a

sequence of semi-definite programming (SDP) problems aftersemi-definite relaxation (SDR), where the optimal

beamformer can be obtained under the sum-power constraint and approximate optimal solutions can be obtained

under the individual power constraints.

The rest of the paper is organized as follows. In Section II, we introduce the system model and define the

achievable rate region. In Sections III and IV, we characterize the achievable rate regions with two different

assumptions on the channel reciprocity. Sub-optimal schemes with lower complexity are discussed in Section V.

Numerical results are presented in Section VI with conclusions in Section VII.

Notations: We use uppercase bold letters to denote matrices and lowercase bold letters to denote vectors. The

conjugate, transpose, and Hermitian transpose are denotedby (·)∗, (·)T , and (·)H , respectively. The phase of a

complex variablea is denoted as∠a. We use tr(·) and rank(·) to represent the trace and the rank of a matrix,

respectively. A diagonal matrix with the elements of vectora as diagonal entries is denoted as diag(a). A � 0 means

A is positive semi-definite,a � b meansai ≥ bi component-wise, and⊙ stands for the Hadamard (elementwise)

multiplication.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a collaborative two-way relaysystem consisting of two source nodes S1 and

S2, each with a single antenna, and a relay cluster withK single-antenna relay nodesRi’s, i = 1, · · · ,K. No

direct links between S1 and S2 exist. The forward channels from S1 and S2 to relay nodei are denoted ash1,i and

h2,i, respectively, whilehr1,i andhr2,i denote the backward channels from relay nodei to S1 and S2, respectively.

All the involved channels are assumed to take complex valuesand remain constant during one operation period. In

addition, all channel state information is revealed to S1, S2, and the design/control center where the beamforming

solution is solved.



4

The two-way relaying takes two consecutive equal-length time-slots to finish one round of communication between

S1 and S2 via the relay cluster with perfect synchronizationassumed among S1, S2, andRi, i = 1, · · · ,K. In the

first time-slot, S1 and S2 transmit their signals simultaneously to the relay cluster; thei-th relay node receives the

mixed signalti(n), which is expressed as

ti(n) = h1,is1(n) + h2,is2(n) + vi(n), (1)

wheres1(n) ands2(n) are the transmitted symbols at time indexn; andvi(n) is the receiver noise at relay node

i, which is assumed to be circularly symmetric complex Gaussian (CSCG) with zero mean and varianceσ2i . In the

second time-slot, upon receiving the mixed signal, relay node i multiplies a complex coefficientwi and forwards

the signal, which is given asui(n) = witi(n). At the source node terminals, S1 and S2 receive the sum signals

from all the relay nodes, which are respectively given as

y1(n) =

K∑

i=1

hr1,iui(n) + z1(n), (2)

y2(n) =

K∑

i=1

hr2,iui(n) + z2(n), (3)

wherez1(n) andz2(n) are the noises at S1 and S2, respectively, which are assumed to be CSCG with zero mean

and variancesσ2S1 andσ2S2, respectively. Since S1 and S2 know their own transmitted signals,s1(n) and s2(n),

respectively, they could subtract the resulting self-interference terms
∑K

i=1 h
r
1,iwih1,is1(n) and

∑K
i=1 h

r
2,iwih2,is2(n)

from the received signals, respectively. Accordingly, theremaining signals for S1 and S2 are

ỹ1(n) =

K∑

i=1

[
hr1,iwih2,is2(n) + hr1,iwivi(n)

]
+ z1(n), (4)

ỹ2(n) =

K∑

i=1

[
hr2,iwih1,is1(n) + hr2,iwivi(n)

]
+ z2(n). (5)

Therefore, for a givenw = [w1, · · · , wK ]T the maximum achievable rates for the end-to-end link from S2to S1

and from S1 to S2 are respectively given as

R1 =
1

2
log2

(
1 +

PS2|fT2 w|2
σ2S1 +wHA1w

)
, (6)

R2 =
1

2
log2

(
1 +

PS1|fT1 w|2
σ2S2 +wHA2w

)
, (7)

wheref1 = h1⊙hr2, f2 = h2⊙hr1 with hi = [hi,1, · · · , hi,K ]T andhri = [hri,1, · · · , hri,K ]T , i = 1, 2. In addition,A1 =

diag[|hr1,1|2σ21 , · · · , |hr1,K |2σ2K ], A2 = diag[|hr2,1|2σ21 , · · · , |hr2,K |2σ2K ], PS1 and PS2 are the maximum transmit

powers at S1 and S2, respectively, and the factor1/2 is due to the use of two orthogonal time-slots for relaying.
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Accordingly, we can define the set of rate pairs achievable byall feasible beamforming vectorw’s as

R =
⋃

w∈Ωw

{(r1, r2) : r1 ≤ R1, r2 ≤ R2}, (8)

where the feasible setΩw can be defined by either a sum-power constraint or individual-power constraints.

Specifically, when the sum-power constraint is considered,we haveΩw = {w : pR(w) ≤ PR}, wherePR is

a scalar power limit andpR(w) is the sum-power of the relay cluster given the beamforming vectorw. When

individual-power constraints are considered, we haveΩw = {w : pR(w) � PR}, wherepR(w) is a vector of

individual transmit powers,PR is a vector with its elements denoting the power constraintsfor individual relay

nodes, and� is element-wise.

When time-sharing between different achievable rate pairsis considered, the achievable rate region is then defined

as the convex hull over the set ofR.

Definition 1: The achievable rate regionO is the convex hull over the set of achievable rate pairsR, i.e.,

O = Hcvx(R), (9)

whereHcvx(·) is the convex hull operation.

The goal of this paper is to efficiently characterize the achievable rate regionO. According to different assump-

tions on the channel reciprocity between the forward and backward channels, we first study the reciprocal case,

and then study the non-reciprocal case.

III. R ECIPROCAL CHANNEL CASE

In this section, we assume that the forward channels from each source node to the relay nodes are reciprocal to

the backward channels from the relay nodes to each corresponding source node, i.e.,h1,i = hr1,i andh2,i = hr2,i,

for i = 1, · · · ,K, which usually holds for a time-division-duplex (TDD) relaying system. In this case, it is obvious

that when∠wi = −(∠h1,i + ∠h2,i), for i = 1, · · · ,K, both rates given by (6) and (7) are maximized for a given

set of |wi|’s. Thus, we only need to further find the optimal amplitudes for the elements inw. Let xi = |wi| and

f̂i = |h1,i||h2,i|; we rewrite (6) and (7), respectively, as

R1 =
1

2
log2

(
1 +

PS2(f̂
T
x)2

σ2S1 + xTA1x

)
, (10)

R2 =
1

2
log2

(
1 +

PS1(f̂
T
x)2

σ2S2 + xTA2x

)
, (11)

wherex = [|w1|, · · · , |wK |]T andf̂ = [|h1,1||h2,1|, · · · , |h1,K ||h2,K |]T . In order to obtainO, we need to characterize

the Pareto boundary ofR. A common method is via solving a sequence of weighted sum-rate maximization
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(WSRMax) problems [15], each for a different non-negative weight vector(λ, 1− λ), 0 ≤ λ ≤ 1, as follows

max
x

λ

2
log2

(
1 +

PS2(f̂
T
x)2

σ2S1 + xTA1x

)

+
1− λ
2

log2

(
1 +

PS1(f̂
T
x)2

σ2S2 + xTA2x

)
(12)

s.t. x ∈ Ωw. (13)

Unfortunately, we cannot derive the closed-form solution for the WSRMax problem. However, from (10) and (11),

we see that the received SNRs at S1 and S2 are

SNR1 =
PS2(f̂

T
x)2

σ2S1 + xTA1x
, (14)

SNR2 =
PS1(f̂

T
x)2

σ2S2 + xTA2x
, (15)

respectively, where their numerators differ by only a scalar constant. As shown later, for each given weight vector

(µ, 1 − µ), 0 ≤ µ ≤ 1, we could easily find a closed-form solution for the following weighted sum inverse-SNRs

minimization(WSISMin) problem

min
x

µ
σ2S1 + xTA1x

PS2(f̂Tx)2
+ (1− µ)σ

2
S2 + xTA2x

PS1(f̂Tx)2
(16)

s.t. x ∈ Ωw. (17)

Hence, we could quantify the Pareto boundary for the inverse-SNR region. Based on this observation, together with

the fact that there exists a bijective mapping between an inverse-SNR pair and a rate pair, we are inspired to probe

the question on whether we could construct the achievable rate regionO from the easily obtainable inverse-SNR

region1. In the following, we first introduce some definitions related to the inverse-SNR region and then show that

we indeed can construct the achievable rate regionO from the inverse-SNR region, based on the set of closed-form

solutions for a sequence of the WSISMin problems.

A. Characterizing the Achievable Rate Region

At first, we introduce some definitions.

Definition 2: Consider a bijective mappingU : (x, y) 7→
(
1
2 log2(1 + 1/x), 12 log2(1 + 1/y)

)
with (x, y) ∈ R2

++;

1 In an independent work of [16], the authors also applied the approach of inverse-SNR. However, their motivation and objective are
completely different from ours, where they use the sum-MSE as the objective and use the approximationMSE ≈ 1/SNR to transform
the sum-MSE into the sum of inverse-SNR. Hence, their results only hold for high SNR cases. In addition, they apply the beamformer that
corresponds to the minimum sum-MSE directly to maximize thesum-rate. The optimality is suspicious since the beamformer that minimizes
the sum-MSE is not necessary the beamformer that maximizes the sum-rate.
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then the set of achievable inverse-SNR pairsI is defined as

I = {(t1, t2) : U(t1, t2) ∈ R} .

For regionsR andI, we are particularly interested in their Pareto boundaries, which are defined as follows.

Definition 3: The Pareto boundary ofR is defined asP = {(r1, r2) : (r1, r2) ∈ R, [(r1, r2) +K]
⋂R =

(r1, r2)}, and the Pareto boundary ofI is defined asB = {(t1, t2) : (t1, t2) ∈ I, [(t1, t2)−K]
⋂ I = (t1, t2)},

whereK = R2
+ is a non-negative cone [15].

Definition 4: Define the points obtained by solving the WSISMin problem with a given weight vector (µ, µ̄) as

S(µ,I) = {(t1, t2) : min
(t1,t2)∈I

µt1 + µ̄t2}, (18)

whereµ̄ = 1− µ.

Definition 5: The set of points that can be obtained from a sequence of WSISMin problems is given as

S(I) =
⋃

0≤µ≤1

S(µ,I). (19)

In order to show that we can constructO from S(I), whereO can be obtained by convex hulling overP, we

need to prove two things: (1) A point inB could be mapped to a point inP and vice versa, which meansU(B) = P;

(2) The points inB that cannot be obtained by WSISMin are mapped to the points inP that are unnecessary for

constructingO by convex hulling overP, i.e., U(B \ S(I)) ⊆ Pnon, wherePnon denotes the set of points inP

that are unnecessary for constructingO by convex hulling overP. With the above two statements hold, it is easy

to see thatP \ Pnon ⊆ U(S(I)), i.e., the points obtained by WSISMin suffice to constructO.

Proposition 1: The Pareto boundary of the inverse-SNR region can be mapped to the Pareto boundary of the

rate regionR by mappingU as given in Definition 2, and vice versa, i.e.,

P = U(B). (20)

Proof: See Appendix in VIII-A.

Proposition 2: The image ofB \ S(I) is not necessary for constructing the achievable rate region O.

Proof: See Appendix in VIII-B.

Theorem 1:The points inS(I) are sufficient to construct the achievable rate regionO.

Proof: SinceP = U(B) andU(B \S(I)) in P is not necessary for constructing the achievable rate region O,

it is easy to see thatU(S(I)) suffices to construct the achievable rate regionO given thatO is obtained by convex

hulling overP.
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Since we have shown thatS(I) suffices to construct the achievable rate regionO, instead of studying the problem

in (12) and (13), we now study the solutions of the WSISMin problems in the following.

B. Collaborative Beamforming under Sum-power Constraint

In this subsection, we consider the case where the relay cluster has a sum-power constraint. The total transmit

power of the relay cluster is

pR =

K∑

i=1

(
|xih1,i|2PS1 + |xih2,i|2PS2 + |xi|2σ2i

)
(21)

= xHDx, (22)

where we haveD = diag[|h1,1|2PS1 + |h2,1|2PS2 + σ21 , · · · , |h1,K |2PS1 + |h2,K |2PS2 + σ2K ]. According to the

discussion in the last subsection, to quantify the rate region is equivalent to seeking the optimal solutions for the

WSISMin problems given the sum-power constraint as follows:

min
x

µ/SNR1 + µ̄/SNR2 (23)

s.t. xTDx ≤ PR, (24)

where0 < µ < 1 is the weight. First of all, the optimalx∗ must satisfyx∗TDx∗ = PR; otherwise, we can always

scale upx such that the objective function is decreased. Whenµ = 0 or 1, this problem degrades to find the optimal

beamforming vector for collaborativeone-wayrelay, which has been extensively studied in [5], [7], and [16].

Given the SNRs from (14) and (15) and the fact ofx∗TDx∗ = PR, the optimalx for (23) should be the solution

of the following problem:

min
x

xT [νD/PR + µ/PS2A1 + µ̄/PS1A2]x

xT f̂ f̂Tx
, (25)

whereν = µσ2S1/PS2 + µ̄σ2S2/PS1. The above problem is equivalent to

max
x

xT f̂ f̂Tx

xT [νD/PR + µ/PS2A1 + µ̄/PS1A2]x
, (26)

which can be written in the form of Rayleigh-Ritz ratio [17] and the optimal solution is thus given as

x∗ = ξΓ−1f̂/‖Γ−1f̂‖, (27)
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SNR1 =
PS2

(∑K
i=1 |h1,i||h2,i|

√
pi

σ2
i+PS1|h1,i|2+PS2|h2,i|2

αi

)2

σ2S1 +
∑K

i=1
σ2
i |h1,i|2α2

i pi
σ2
i+PS1|h1,i|2+PS2|h2,i|2

, (33)

SNR2 =
PS1

(∑K
i=1 |h2,i||h1,i|

√
pi

σ2
i+PS1|h1,i|2+PS2|h2,i|2

αi

)2

σ2S2 +
∑K

i=1
σ2
i |h2,i|2α2

i pi
σ2
i+PS1|h1,i|2+PS2|h2,i|2

. (34)

where

Γ = diag

[
ν
β1
PR

+ η1, · · · , ν
βK
PR

+ ηK

]
, (28)

βi = σ2i + PS1 |h1,i|2 + PS2 |h2,i|2, (29)

ηi = σ2i

(
|h1,i|2 µ/PS1 + |h2,i|2 µ̄/PS2

)
, (30)

andξ is a scalar such thatx∗TDx∗ = PR. By searching over allµ’s, we derived a set ofx∗’s and hence we could

compute a set of rate pairs by injecting (27) into (10) and (11). The achievable rate regionO is then obtained by

convex-hulling over such a set of rate pairs.

Partially distributed implementation: After exhausting allµ’s, we set up a lookup table for rate-pairs indexed

by µ. During normal operations, the control center first looks upthe table to decides the appropriateµ such that

S1 and S2 achieve a desirable rate pair; and it broadcastsµ and the global constantξ/‖Γ−1f̂‖, while PS1, PS2,

σS1, σS2 are constant and assumed to be known at all the relays. Upon receiving the broadcast message from the

control center, each relay node determines the optimalwi from its local informationh1,i andh2,i, which is given

as

wi =
ξ

‖Γ−1f̂‖
|h1,i||h2,i|
νβi/PR + ηi

e−j(∠h1,i+∠h2,i). (31)

C. Collaborative Beamforming under Individual-Power Constraints

In the previous subsection, we assume that the relay clusterhas a sum-power constraint. In practice, each relay

may have its own power constraint due to the individual powersupplies. The transmit power at relayi is given as

pR,i = |xi|2(|h1,i|2PS1 + |h2,i|2PS2 + σ2i ), (32)

wherepR,i ≤ pi, with pi is the maximum allowable power for relay nodei. Equivalently, we could setpR,i = α2
i pi

with 0 ≤ αi ≤ 1 as a new design variable. Correspondingly, the received SNRs can be rewritten as (33) and (34)
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Let

H1 = diag[σ21p1|h1,1|2, · · · , σ2KpK |h1,K |2], (35)

H2 = diag[σ21p1|h2,1|2, · · · , σ2KpK |h2,K |2], (36)

gi =
√
pi|h1,i||h2,i|/

√
Di,i. (37)

We can recast (33) and (34) as

SNR1 =
PS2α

T ggTα

σ2S1 +α
TH1D−1

α

, (38)

SNR2 =
PS1α

T ggTα

σ2S2 +α
TH2D−1

α

, (39)

respectively, where0 � α � 1. The WSISMin problem for the individual-power constraint case is now given as:

min
0�α�1

ν +α
T (H1D

−1µ/PS2 +H2D
−1µ̄/PS1)α

α
TggTα

, (40)

which is equivalent to solve

max
0�α�1

α
TggTα

ν +α
T (H1D−1µ/PS2 +H2D−1µ̄/PS1)α

. (41)

For notation simplicity, let

Ψ =
[
(H1µ/PS2 +H2µ̄/PS1)D

−1/ν
]1/2

, (42)

g̃ = g/
√
ν, (43)

whereΨ is diagonal with its diagonal elements denoted asψi, i = 1, · · · ,K. Then the above problem becomes

max
0�α�1

〈g̃,α〉2
1 + ‖Ψα‖2 . (44)

For each givenµ, (44) can be solved analytically by following the results in[8]. Before we present the solution,

we first defineφi = g̃i/ψ
2
i for i = 1, · · · ,K andφK+1 = 0. Then we sortφi asφτ1 ≥ φτ2 ≥ · · · ≥ φτK ≥ φτK+1

.

Moreover, letλk =
1+

∑
k

m=1
ψ2

τm∑
k

m=1
g̃τm

and define thej-th element of the vectorα(k) as

α
(k)
j =





1, j = τ1, · · · τk
λkφj , j = τk+1, · · · τK

. (45)

Then the solution for (44) is given by following theorem.

Theorem 2:The solution of (44) isα(k∗) given by (45), wherek∗ is the smallestk such thatλk < φ−1
τk+1

.

Proof: This result directly follows the results in [8].
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Partially distributed implementation:Besides the value ofµ, the control center only needs to broadcastλk∗ at

each operation period. Each relay node then determinesφi with its local information. Ifφ−1
i ≤ λk∗, the relay

node transmits at its maximum power. Otherwise, it transmits with power (λk∗φi)
2pi, i.e., the optimalwi =

α
(k∗)
i

√
pie

−j(∠h1,i+∠h2,i), whereα(k∗)
i is given in (45). From the solutions, we see that in general some relay nodes

may not transmit with maximum transmit power.

IV. N ON-RECIPROCAL CHANNEL CASE

In the last section, we have discussed the case where the uplink and downlink channels are reciprocal. In this

section, we discuss the case where the uplink and downlink channels are non-reciprocal, which may be the result

of deploying frequency-division-duplex (FDD) system.

Due to the lack of channel reciprocity, the approach taken inthe last section does not apply here. In order

to characterize the boundary of the regionR, as we discussed before a commonly used method is to solve the

following

max
w

λ

2
log2

(
1 +

PS2|fT2 w|2
σ2S1 +wHA1w

)

+
1− λ
2

log2

(
1 +

PS1|fT1 w|2
σ2S2 +wHA2w

)
(46)

s.t. w ∈ Ωw, (47)

for each given weight vector(λ, 1− λ). However, the above problem is non-convex since the objective function is

not a concave function. To efficiently quantify the rate region, here we resort to an alternative method called the

rate-profilemethod [9], formulated as

max
w,Rsum

Rsum (48)

s.t.
1

2
log2

(
1 +

PS2|fT2 w|2
σ2S1 +wHA1w

)
≥ κRsum, (49)

1

2
log2

(
1 +

PS1|fT1 w|2
σ2S2 +wHA2w

)
≥ κ̄Rsum, (50)

w ∈ Ωw, (51)

whereRsum is the sum rate given a rate profile vector[κ, κ̄] with 0 ≤ κ ≤ 1 and κ̄ = 1 − κ. Let F1 = f∗1 f
T
1 ,
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F2 = f∗2 f
T
2 , andX = wwH . The above problem is equivalent to

max
X,Rsum

Rsum (52)

s.t.
1

2
log2

(
1 +

PS2tr(F2X)

σ2S1 + tr(A1X)

)
≥ κRsum, (53)

1

2
log2

(
1 +

PS1tr(F1X)

σ2S2 + tr(A2X)

)
≥ κ̄Rsum, (54)

X ∈ ΩX , (55)

X � 0, (56)

rank(X) = 1, (57)

where the last constraint rank(X) = 1 comes from the factX = wwH , andΩX = {X : X = wwH ,w ∈ Ωw}

andΩw is defined after (8). According to different assumptions on the power constraint, the above problem can be

further converted into different semi-definite programming (SDP) problems after semi-definite relaxation (SDR).

A. Sum-power Constrained Case

In this subsection, we assume that the relay cluster operates under a sum-power constraintPR. Given the sum-

power constraint, the power constraint in (55) can be replaced by tr(DX) ≤ PR, whereD = diag[|h1,1|2PS1 +

|h2,1|2PS2 + σ21, · · · , |h1,K |2PS1 + |h2,K |2PS2 + σ2K ]. Since the rank-one constraint is not convex, the problem is

still not a convex problem and hence may not be efficiently solvable. To address this issue, let us first remove the

rank-one constraint and consider the following relay powerminimization problem for given set ofκ andRsum = r:

min
X

tr(DX) (58)

s.t.
1

2
log2

(
1 +

PS2tr(F2X)

σ2S1 + tr(A1X)

)
≥ κr, (59)

1

2
log2

(
1 +

PS1tr(F1X)

σ2S2 + tr(A2X)

)
≥ κ̄r, (60)

X � 0, (61)

which is equivalent to

min
X

tr(DX) (62)

s.t.
PS2tr(F2X)

σ2S1 + tr(A1X)
≥ γ1, (63)

PS1tr(F1X)

σ2S2 + tr(A2X)
≥ γ2, (64)

X � 0, (65)
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whereγ1 = 22κr−1, γ2 = 22κ̄r−1, and they can be considered as the SNR constraints for S1 and S2, respectively.

Sinceσ2S1+ tr(A1X) ≥ 0 andσ2S2+ tr(A2X) ≥ 0, we could rewrite the above problem as following SDP problem:

min
X

tr(DX) (66)

s.t. tr[(PS2F2 − γ1A1)X] ≥ γ1σ2S1, (67)

tr[(PS1F1 − γ2A2)X] ≥ γ2σ2S2, (68)

X � 0. (69)

Denote the optimal value of the above problem asp∗R, which is the minimum sum-power required by the relay

cluster to support the target SNRsγ1 and γ2 for S1 and S2, respectively. Ifp∗R ≤ PR, then (γ1, γ2) must be an

achievable SNR pair. Otherwise,γ1 andγ2 are not achievable. Based on this observation, we propose the following

bi-section algorithm such that the problem (52) without rank-one constraint can be solved by solving a sequence of

convex power feasibility problems, with the assumption that we know an upper bound forRsum, denoted asrmax.

Algorithm 1:

• Initialize rlow = 0, rup = rmax.

• Repeat

1) Setr ← 1
2 (rlow + rup).

2) Solve problem (66)-(69) with the givenr.

3) Updater with the bi-section method [15]: Ifp∗R ≤ PR, setrlow = r; otherwise,rup = r.

• Until rup − rlow < ǫ, whereǫ is a small positive accuracy parameter.

The rate upper boundrmax can be derived as follows. We first decouple the two-way relaychannel into two

one-way relay channels and obtain a rate for each one-way relay channel. Denote the larger rate asr̃. Thenrmax

can be set as2r̃. The one-way collaborative relay beamforming with sum-power constraint is well-studied, and the

rate can be derived from the results in [7].

1) Rank-one solution:The resulting optimal solutionXopt obtained from Algorithm 1 may not be of rank-one

due to the SDP relaxation, which means thatXopt may not lead to an optimal beamforming vectorw. However,

since there are only two linear constraints (67) and (68), ithas been shown in [9] and [18] that an exact rank-one

optimal solution can always be constructed from a non-rank-one optimal solution. The transformation techniques

developed in [9] and [18] can be used to obtain the rank-one solution. Note that the beamforming solution for the

non-reciprocal channel case is fully centralized, which cannot be implemented in a partially distributed fashion.
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B. Individual-Power Constrained Case

In the previous subsection, we have discussed the sum-powerconstrained case where the non-convex rate

maximization problem is converted into a sequence of convexsum-power minimization problems. In this subsection,

we put a stricter limitation on the relay power by assuming that each node has its individual power constraint.

In this case, following a similar SDR technique to that in theprevious subsection, the optimization problem with

individual power constraints can be cast as

max
X,Rsum

Rsum (70)

s.t.
PS2tr(F2X)

σ2S1 + tr(A1X)
≥ γ1, (71)

PS1tr(F1X)

σ2S2 + tr(A2X)
≥ γ2, (72)

Di,iXi,i ≤ P iR, i = 1, · · · ,K, (73)

X � 0, (74)

whereDi,i andXi,i are thei-th diagonal elements ofD andX, respectively. The transmit power at nodei amounts

to Di,iXi,i and the individual power limit at nodei is P iR. However, we cannot translate the above problem into

a sequence of power feasibility problems as given in the lastsubsection, since we now haveK individual power

constraints rather than a single sum-power constraint for the whole relay cluster. Alternatively, we aim at solving

a sequence of the following problem via bi-section search over r.

max
X,r

r (75)

s.t. tr[(PS2F2 − γ1A1)X] ≥ γ1σ2S1, (76)

tr[(PS1F1 − γ2A2)X] ≥ γ2σ2S2, (77)

X(i, i) ≤ P iR/D(i, i), i = 1, · · · ,K, (78)

X � 0. (79)
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The above problem is convex overX at each given value ofr. Let r∗ be the maximum value obtained by solving

(75). For a given value ofr, we solve the following feasibility problem

Find X (80)

s.t. tr[(PS2F2 − γ1A1)X] ≥ γ1σ2S1, (81)

tr[(PS1F1 − γ2A2)X] ≥ γ2σ2S2, (82)

X(i, i) ≤ P iR/D(i, i), i = 1, · · · ,K, (83)

X � 0. (84)

If it is feasible, we haver ≤ r∗ and the corresponding rate is achievable. Otherwise, we have r > r∗ and the

corresponding rate is not achievable. Based on this observation, we apply bi-section search overr to solve the

problem in (75), where we solve a convex feasibility problemof (80) at each step. We start with an interval

[0, rmax] that contains the optimal valuer∗ wherermax can be obtained in a similar way as that for the sum-power

constrained case, and run the following algorithm.

Algorithm 2

• Initialize rlow=0, rup = rmax.

• Repeat

1) Setr ← 1
2 (rlow + rup).

2) Solve the feasibility problem given by (80)-(83) with given r.

3) Updater: If the problem is feasible, setrlow = r; otherwise,rup = r.

• Until rup − rlow < ǫ. Thenr∗ = rlow.

1) Rank-one solution based on randomization:Similar to the sum-power constrained case, the solution ofX at

the end of Algorithm 2, denoted asXopt, may not be rank-one. However, since there areK + 2 linear constraints

here, we cannot apply the rank-one decomposition techniquein [18], which require the number of linear constraints

to be less than or equal to 3. Fortunately, various techniques have been developed [19] to generate good rank-

one approximate solutions to the original problem2. One such efficient approach is based on randomization [19]:

usingXopt to randomly generate a set of candidate weight vectors,{wl}, from which the “best” solution for the

beamforming vectorw is selected. There are three ways of generating{wl} as presented in [19]. In order to satisfy

the individual power constraint, we adopt the routine namedrandB in [19]. Specially, letel be the vector whose

elements are independent random variables uniformly distributed on the unit circle in the complex plane, i.e., its

i-th element[el]i = ejθl,i , whereθl,i’s are independent and uniformly distributed over[0, 2π). We choosewl such

2The randomization technique only provides approximate solutions. Hence, the corresponding rate region is not exact.
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that its i-th element[wl]i =
√

[Xopt]ii[el]i. As we see,|[wl]i|2 = [Xopt]ii; hence the individual power constraint

can be satisfied.

For eachX(l)=wlw
H
l , we associate eachwl with a valuev(wl),

v(wl) = max

(
1− tr[(

PS1F1

γ2σ2S2
− A2

σ2S2
)wlw

H
l ],

1− tr[(
PS2F2

γ1σ2S1
− A1

σ2S1
)wlw

H
l ]

)
, (85)

which reflects how much the constraints are violated. The “best” weight vector among the candidate vectors is the

one that has the minimumv(wl), i.e.,

l∗ = argmin
l
v(wl), (86)

w∗ = wl∗. (87)

V. SUB-OPTIMAL SCHEMES

In this section, we propose some suboptimal schemes with lower complexity for implementation than the optimal

ones established in the previous sections.

A. Reciprocal Channel Case

In the reciprocal channel case, at first the transmit phasesθi’s at the relays are matched to the channels as

θi = −(∠h1,i+∠h2,i). Then with the sum-power constraint, we propose the sub-optimal equal power beamforming

scheme where each relay transmits with equal power. With theindividual-power constraints, we propose the max-

power beamforming scheme where each relay transmits with its maximum power.

1) Equal-power beamforming: All the K relay nodes transmit with the same powerPR/K; θi’s and xi’s for

i = 1, · · · ,K, are given as:

θi = −(∠h1,i + ∠h2,i), (88)

xi =

√
PR

K(PS1|h1,i|2 + PS2|h2,i|2 + σ2i )
. (89)

2) Max-power beamforming: Each relay transmits with its maximum allowable powerPR,i; θi’s and xi’s for

i = 1, · · · ,K, are given as:

θi = −(∠h1,i + ∠h2,i), (90)

xi =

√
PR,i

PS1|h1,i|2 + PS2|h2,i|2 + σ2i
. (91)
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These sub-optimal schemes enjoy implementation simplicity since each relay only requires the local channel

informationh1,i andh2,i to decide the transmit phase andxi.

B. Non-reciprocal Channel Case

For the non-reciprocal channel case, since the transmit phase cannot be matched to the two-directional channels

simultaneously, we propose a sub-optimal scheme that greedily chooses the transmit phases. Specifically, each relay

chooses the transmit phase to be either∠h1,i +∠hr2,i or ∠h2,i +∠hr1,i, whichever maximizes its own contribution

to the overall SNRs at S1 or S2 without considering any other relays’ contributions, i.e., we pick one of the above

two phases that maximizes the following quantity:

max

(
x2iPS2|h2,ihr1,iejθi |2
σ2S1 + x2i |hr1,i|2σ2i

,
x2iPS1|h1,ihr2,iejθi |2
σ2S2 + x2i |hr2,i|2σ2i

)
, (92)

wherexi is the transmit amplitude. To determinexi’s, we adopt equal-power beamforming for the sum-power

constraint case and max-power beamforming for the individual-power constraint case, which are given in (89) and

(91), respectively.

VI. N UMERICAL RESULTS

In the section, we present numerical results to quantify theachievable rate region for the two-way relay network

with collaborative beamforming. We assume that the relay cluster consists of 5 nodes; the channel coefficientsh1,i

andhr1,i, i = 1, · · · ,K, are independent CSCG variables with distributionCN (0, 1); the channel coefficientsh2,i

andhr2,i, i = 1, · · · ,K, are also independent and distributed asCN (0, 1). The noises at the relays and source nodes

are assumed to have unit variance in the simulations. We changeµ from 0 to 1 with step0.1 and obtain11 Pareto

boundary points. For each point, we run 100 channel realizations to measure the expected performance. We then

do convex hulling over these points.

First, we investigate the achievable rate region. Both reciprocal channel and non-reciprocal channel cases are

discussed under a sum-power constraint and individual-power constraints, respectively. When the channel is recip-

rocal, we seth1,i = hr1,i and h2,i = hr2,i for i = 1, · · · ,K. As shown in Fig. 2, the solid curves represent the

reciprocal channel cases, with the outer one denoting the sum-power constraint case and the inner one denoting

the individual-power constraints case; the dashed curves represent the non-reciprocal channel cases, with the outer

one denoting the sum-power constraint case and the inner onedenoting the individual-power constraints case. For

the sum-power constraint case, the relay powerPR = 10 W while the transmit powersPS1 = PS2 = 1 W. For the

individual-power constraints case, the relay power constraints are given as 2.5, 3, 0.5, 1, 3 W (noises are assumed

to have unit power in Watt), which is summed up to 10 W. We use CVX, a Matlab-based optimization software
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Fig. 2: Achievable rate regions for reciprocal and non-reciprocal channels with sum-power constraint and individual-power
constraint, respectively. Transmitter powers:PS1=PS2=1 W, relay network powerPR=10 W (sum-power constraint),PR=

[2.5, 3, 0.5, 1, 3] W (individual power constraint).
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Fig. 3: Achievable rate regions for reciprocal channel caseunder a sum-power constraint, network total power are0, 10, 100
W, using equal-power beamforming as sub-optimal scheme.

[20], to solve the SDP problems. As we see in Fig. 2, due to the symmetry of the transmit powers and channel

statistics, the achievable rate regionO is symmetric. WhenPS2 = 0, the rate pairs collapse to the segment on the

horizontal axis, which corresponds to the achievable rate for a one-way relay network where only S1 transmits.

Moreover, the rate region for the individual-power constraint case is smaller than that for the sum-power constraint

case. This is quite intuitive since the individual-power constraint is stricter than the sum-power constraint.

In Fig. 2, we also compare the rate regions for the reciprocaland non-reciprocal channel cases under the same

power constraint assumption. As we can see, the maximum ratefor S1 in the reciprocal channel case is the same

as the one in the non-reciprocal channel case. This is because such a maximum rate is obtained by optimizing the

one-way link from S1 to S2 without considering the link from S2 to S1. Since the one-way link from S1 to S2

consists ofh1 andhr2, whetherhr1 = h1 or not does not affect the statistics of the one-way link fromS1 to S2. The

same argument holds for maximum rate at S2. We also observe that the rate region for the reciprocal channel case

is larger than that in the non-reciprocal channel case giventhe same settings of powers and noises. The reason is
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Fig. 4: Achievable rate regions for reciprocal channel caseunder individual-power constraints, network total power are
0, 10, 100 W, using max-power beamforming as sub-optimal scheme.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

r
1
 b/s/Hz

r 2 b
/s

/H
z

 

 

100 W

10 W

1 W

100 W

10 W

1 W

Fig. 5: Achievable rate regions for non-reciprocal channelcase under a sum-power constraint, network total power are
0, 10, 100 W, using equal-power beamforming as sub-optimal scheme.

that we can match the beamforming phase to the overall channel phase (i.e.,∠wi = ∠h1,i +∠h2,i, i = 1, · · · ,K.)

in the reciprocal channel case, while we are not able to do so in the non-reciprocal channel case. Therefore, TDD

based system is more favorable in terms of the achievable rate region if the channel coherence time is larger than

one operation period and the transmit-receive chain calibration [21] can be properly done. Besides the rate region,

the amount of information needs to be broadcast by the control center is significantly different. In the reciprocal

channel case, the control center only needs to broadcast onescalar at each time slot. However, in the non-reciprocal

channel case, the control center needs to broadcast the beamforming vector, which is a complex vector of dimension

K.

Second, we investigate the performance of the sub-optimal schemes in relative to the maximum achievable rate

regions. As we see in Fig. 3 for reciprocal channels case under the sum-power constraint, the rate pairs achieved by

the equal-power beamforming scheme, denoted as single points, are strictly sub-optimal. On the contrary, as shown

in Fig. 4 for the individual-power constraints case, the rate pair achieved by max-power beamforming gets closer to
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Fig. 6: Achievable rate regions for non-reciprocal channelcase under individual-power constraints, network total power are
0, 10, 100 W, using maximum-power beamforming as sub-optimal scheme.

the boundary when the power budget is reduced.3 In Fig. 5 and Fig. 6, we consider the non-reciprocal channelsand

show the performance of equal-power beamforming and max-power beamforming with greedy phase selection as

given in (92). The performance of both equal-power beamforming and max-power beamforming schemes degrades

asPR increases. Thereby, the sub-optimal schemes for the non-reciprocal channel case works well only whenPR

is small.

VII. C ONCLUSION

In this paper, we considered the two-way relay networks withcollaborative beamforming and investigated the

achievable rate region, which is defined as the convex hull ofall achievable rate pairs. We studied both the

reciprocal and non-reciprocal channel cases. In the reciprocal channel case, we characterized the rate region when

the relay cluster is subject to either a sum-power constraint or individual-power constraints, respectively. It was

shown that we could characterize the whole achievable rate region via the Pareto-optimal beamforming vectors

obtained from solving a sequence of WSISMin problems. Furthermore, we derived the closed-form solutions for

those optimal beamforming vectors and consequently proposed partially distributed algorithms to implement the

optimal beamforming, where each relay node only needs its own local channel information and one global scalar

sent from the control center. For the non-reciprocal channel case, we used the rate-profile approach to compute the

Pareto-optimal beamforming vectors. When the relay cluster is subject to a sum-power constraint, we computed

the optimal beamforming vector via solving a sequence of relaxed SDP power minimization problems followed by

a special rank-one reconstruction. When the relay cluster is subject to individual-power constraints, we solved a

sequence of relaxed SDP feasibility problems and the rank-one solution is obtained by randomization techniques.

From the numerical results, we found that the achievable rate region is larger in the reciprocal channel case than

3We set the individual powersPR = [2.5, 3, 0.5, 1, 3] W with total power equal to 10 W. When total power is changed to1 W and 100
W, we scale the vector proportionally.
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dp2(y)

dy2
=

dp′(y)/dx

dy/dx

= −x+ x2

ln 2

[
q

′′

(x)(x+ x2)

q(x) + q(x)2
+ q

′

(x)

(
(1 + 2x)(q(x) + q(x)2)− (q

′

(x) + 2q(x)q
′

(x))(x + x2)

q(x) + q(x)2

)]
> 0.

(93)

that in the non-reciprocal channel case. Hence, TDD-based relaying scheme is more favorable for the two-way

relay network with collaborative beamforming.

VIII. A PPENDICES

A. Proof of Proposition 1

Proof: We will show this by contradiction. Assume(a, b) ∈ B but U((a, b)) /∈ P. Then we can find another

point (c, d) ∈ R such thatc > 1/2 log2(1 + 1/a) andd > 1/2 log2(1 + 1/b). According to the definition ofI, the

point ( 1
22c−1 ,

1
22d−1 ) ∈ I. Thus, there exists a point inI such that 1

22c−1 < a and 1
22d−1 < b, which contradicts

the assumption that(a, b) is a Pareto optimal point. HenceU(B) ⊆ P. The converse thatU(B) ⊇ P can also be

proven in the similar way. Therefore,P = U(B).

B. Proof of Proposition 2

In order to prove Proposition 2, we first introduce the following two lemmas.

Lemma 1:Supposeq(x) is a positive, decreasing, and linear function withx > 0. The bijective mappingU maps

(x, q(x)) to (y, p(y)); thenp(y) is a non-negative, decreasing, and convex function.

Proof: Let y = log2(1 + 1/x) and p(y) = log2(1 + 1/q(x)) be an implicit function ofy, wherex > 0.

Sinceq(x) is positive, decreasing, and linear, we haveq(x) > 0, q′(x) < 0, q
′′

(x) = 0, and hencep(y) ≥ 0. The

first-order derivative ofp(y) is

p′(y) =
dp(y)/dx

dy/dx

= q′(x)
x+ x2

q(x) + q(x)2
< 0.

The second-order derivative is given by (93), which is positive.

Thus,p(y) is a convex function ofy.

According to the above lemma, the line segmentQ1Q2 in Fig. 7(a) is mapped to a convex curvêQ
′

1Q
′

2 in Fig.

7(b) byU . In addition, it is easy to see thatQ1Q2 +K 7→ Q̂
′

1Q
′

2 −K, i.e., any point aboveQ1Q2 (for example,

P in Fig. 7(a)) will be mapped to be a point beloŵQ′

1Q
′

2 (i.e., P
′

in Fig. 7(b)).
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Fig. 7: Illustration of Lemma 1. Mapping a straight line inI to a convex curve inR.

Lemma 2:Let a point (q1, q2) ∈ bd(I) \ S(µ,I), where bd(I) denotes the boundary of regionI. If q1 =

λt1 + λ̄s1, where(t1, t2), (s1, s2) ∈ S(µ,I) and(t1, t2) 6= (s1, s2), we haveq2 > λt2 + λ̄s2, i.e., the point(q1, q2)

is above the line segment connecting(t1, t2) and (s1, s2).

Proof: We show this by contradiction. SupposeS(µ,I) has more than one elements for a givenµ, such that

(t1, t2), (s1, s2) ∈ S(µ,I), and (t1, t2) 6= (s1, s2). According to the definition ofS(µ,I) given by (18), we have

µt1 + µ̄t2 = µs1 + µ̄s2 = m, wherem is the minimum value of the weighted sum for a givenµ over all points in

I. If q1 = λt1 + λ̄s1 andq2 ≤ λt2 + λ̄s2, we have

µq1 + µ̄q2 ≤ µ(λt1 + λ̄s1) + µ̄(λt2 + λ̄s2) (94)

= λ(µt1 + µ̄t2) + λ̄(µs1 + µ̄s2) (95)

= m. (96)

If µq1+µ̄q2 < m, it contradicts thatm is the minimum value of the weighted sum for the givenµ; If µq1+µ̄q2 = m,

it contradicts that(q1, q2) is not in S(µ,I). Therefore, the lemma holds.

According to the above lemma, for a givenµ, if S(µ,I) has more than one elements, the set of boundary points

{(q1, q2) : (q1, q2) ∈ bd(I) \ S(µ,I), s1 < q1 < t1, (s1, s2), (t1, t2) ∈ S(µ,I)} must be above the line segment

connecting(s1, s2) and(t1, t2); and hence are not attainable by solving WSISMin. This is true for all µ’s; henceif

a boundary point is not attainable by solving WSISMin, it must be above a line segment connecting two particular

points inS(µ,I) for someµ. With the above two lemmas, we are ready to prove Proposition2 as follows.

Proof of Proposition 2:

Proof: First we define

∆ = {µ : S(µ,I) has more than one elements}, (97)

and letlµ be the line segment (e.g.,AB in Fig. 8(a)) with two end points fromS(µ,I) for µ ∈ ∆ (e.g., pointsA

andB in 8(a)). According to Lemma 2, the boundary points that are not attainable by solving WSISMin, denoted as
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Fig. 8: Inverse-SNR region and corresponding rate and region.

bd(I)\S(I) (here referring to curvêAB in Fig. 8(a)), must be abovelµ’s, i.e.,bd(I)\S(I) ⊆ ⋃µ∈∆(lµ+K); and it

follows thatU(bd(I)\S(I)) ⊆ U(⋃µ∈∆(lµ+K)). According to Lemma 1,U(⋃µ∈∆(lµ+K)) ⊆ ⋃µ∈∆(U(lµ)−K),

whereU(lµ) is a convex curve (e.g., hereU(lµ) refers to the dashed convex curvêA′B′ in Fig. 8(b)). Letl̃µ be a line

segment (i.e., the dot-dashed line segmentA′B′ in Fig. 8(b)) that connects the two end points of the convex curve

U(lµ). Due to the convexity ofU(lµ), we haveU(lµ)−K ⊆ l̃µ−K and henceU(bd(I) \S(I)) ⊆ ⋃µ∈∆(l̃µ−K).

Notice
⋃
µ∈∆(l̃µ+K) is sufficient for constructingO by convex hulling. Therefore,U(bd(I)\S(I)) or bd(I)\S(I)

is not necessary for constructingO. SinceB ⊆ bd(I), the setB\S(I) is also not necessary for constructingO.
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