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Abstract

We consider a two-way relay network, where two source no8é&sand S2, exchange information through
a cluster of relay nodes. The relay nodes receive the sunalsfgpm S1 and S2 in the first time slot. In the
second time slot, each relay node multiplies its receivgdaiby a complex coefficient and retransmits the signal
to the two source nodes, which leads to a collaborative tag-beamforming system. By applying the principle
of analog network coding, each receiver at S1 and S2 caneelsstlf-interference” in the received signal from
the relay cluster and decodes the message. This paperssthdi-dimensional achievable rate region for such a
two-way relay network with collaborative beamforming. Wiifferent assumptions of channel reciprocity between
the source-relay and relay-source channels, the acheevats region is characterized under two setups. First, with
reciprocal channels, we investigate the achievable rag®mme when the relay cluster is subject to a sum-power
constraint or individual-power constraints. We show ttreg bptimal beamforming vectors obtained from solving
the weighted sum inverse-SNR minimization (WSISMin) peshé are sufficient to characterize the corresponding
achievable rate region. Furthermore, we derive the closed folutions for those optimal beamforming vectors and
consequently propose the partially distributed algorghmimplement the optimal beamforming, where each relay
node only needs the local channel information and one glpa@meter. Second, with the non-reciprocal channels,
the achievable rate regions are also characterized forthetlsum-power constraint case and the individual-power
constraint case. Although no closed-form solutions arelaha under this setup, we present efficient numerical
algorithms by solving a sequence of semi-definite programr8DP) problems after semi-definite relaxation (SDR),
where the optimal beamformer can be obtained under the swe+pconstraint and approximate optimal solutions

can be obtained under the individual power constraints.
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. INTRODUCTION

Cooperative communication has been extensively studiegast years, where various cooperative relaying
schemes have been proposed, such as amplify-and-forw&d[{# decode-and-forward (DF)[2], compress-and-
forward (CF) [3], and coded-cooperatidi [4]. Among theskesges, due to its simplicity, the AF-based relaying
is of the most practical interest, where multi-antennayrédlaamforming has also been explored to achieve higher
spatial diversity [[5]. In certain resource constrainedwoeks, such as sensor networks, the node size is limited
such that each node could only mount a single antenna [6]cderdo exploit the multi-antenna gain in such size-
limited cases, collaborative relay beamforming straegiave been developed where the relaying nodes cooperate
to generate a beam towards the receiver under sum or indivjghwer constraints [7][8].

As an extension to the AF-based one-way relaying schemejRHeased two-way relaying schenie [9] is based
on the principle of analog network coding (ANC) [10] to suppmommunications in two directions. Traditionally,
two-way relaying avoids the simultaneous transmissionsmof source terminals, and requires four time-slots to
finish one round of information exchange between them. Orctdmgrary, the two-way relaying scheme proposed
in [10] allows the relay to mix the data and amplify-and-fard it, where the two terminals exploit the underlying
self-interference structure. By doing so, the amount otiiregl transmission time-slots is reduced from four to two
and the overall network throughput is thus improved. Theeesaveral other works discussing such two-way relay
systems. In particular, the authors In [9] characterizedrttaximum achievable rate region for the two-way relay
beamforming scheme by assuming a single relay node equipipleanultiple antennas and two source nodes each
equipped with a single antenna. As a counterpart of the worfg], the decode-and-forward two-way relaying
has been studied in [11] and the performance bounds are givid2]. The authors in[[13] studied the AF-based
two-way relay with collaborative beamforming, where theus is to minimize the total transmit power of the
source nodes and the relay cluster under a given pair of Isigirise ratio (SNR) constraints.

The works on characterizing the rate region of two-way rielgyhas also been done i |14], where authors
considered the collaborative beamforming case. Howelleof @xisting works only obtained numerical solutions.
The missing of closed-form solutions leads to difficultieglesigning efficient algorithms due to the lack of insight
into the structure of the optimal beamforming vectors. €bgr in this paper, we try to seek the closed-form solutions
for the optimal beamforming vectors to characterize the imarm achievable rate region and correspondingly
propose efficient distributed algorithms. Our work différesm the work in [9] from two main aspects. First, we
assume a cluster of single-antenna relay nodes and cormsiti@gorativetwo-way relay beamforming rather than
the multiple-antenna single-relay beamforming. Due todtstributed feature, we will study the case where each
relay node has an individual power constraint in additiorthi® case where all relay nodes are subject to a sum-

power constraint. Second, we present closed-form solsition the optimal beamforming vectors when we have
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Fig. 1: System model

reciprocal channels. For the non-reciprocal channelsatiieevable rate regions are also characterized. Although
no closed-form solutions are available under this setup present efficient numerical algorithms by solving a
sequence of semi-definite programming (SDP) problems a#ari-definite relaxation (SDR), where the optimal
beamformer can be obtained under the sum-power constraghbpproximate optimal solutions can be obtained
under the individual power constraints.

The rest of the paper is organized as follows. In Sedfibn B, imtroduce the system model and define the
achievable rate region. In Sectiohs| Ill ahd] IV, we charao¢ethe achievable rate regions with two different
assumptions on the channel reciprocity. Sub-optimal selsewith lower complexity are discussed in Secfidn V.
Numerical results are presented in Secfioh VI with conolusiin Sectioh VII.

Notations We use uppercase bold letters to denote matrices and lageigold letters to denote vectors. The
conjugate, transpose, and Hermitian transpose are debgtéd*, ()7, and (-)", respectively. The phase of a
complex variablex is denoted asZa. We use t(-) and rank-) to represent the trace and the rank of a matrix,
respectively. A diagonal matrix with the elements of veet@s diagonal entries is denoted as diggA = 0 means
A is positive semi-definitea = b meansa; > b; component-wise, an@d stands for the Hadamard (elementwise)

multiplication.

[I. SYSTEM MODEL

As shown in Fig[1l, we consider a collaborative two-way redggtem consisting of two source nodes S1 and
S2, each with a single antenna, and a relay cluster Witlsingle-antenna relay nodd®’s, i = 1,--- , K. No
direct links between S1 and S2 exist. The forward channeta 81 and S2 to relay nodeare denoted as; ; and
hs,i, respectively, whileh] ; and i ; denote the backward channels from relay node S1 and S2, respectively.
All the involved channels are assumed to take complex vaunedsremain constant during one operation period. In
addition, all channel state information is revealed to S, &d the design/control center where the beamforming

solution is solved.



The two-way relaying takes two consecutive equal-lengtieislots to finish one round of communication between
S1 and S2 via the relay cluster with perfect synchronizagissumed among S1, S2, aRg i =1,--- , K. In the
first time-slot, S1 and S2 transmit their signals simultarsépto the relay cluster; theth relay node receives the

mixed signalt;(n), which is expressed as
ti(n) = hiis1(n) + ha;sa(n) + vi(n), 1)

wheres;(n) andsqe(n) are the transmitted symbols at time indexandv;(n) is the receiver noise at relay node
i, which is assumed to be circularly symmetric complex Gaus6CSCG) with zero mean and variance In the
second time-slot, upon receiving the mixed signal, relagienomultiplies a complex coefficient; and forwards
the signal, which is given as;(n) = w;t;(n). At the source node terminals, S1 and S2 receive the sumlsigna

from all the relay nodes, which are respectively given as
nn) = Z B ui(n) + z1(n), )

ya(n) = th,ul ) + zo(n), (3)

wherez;(n) and z3(n) are the noises at S1 and S2, respectively, which are assuntel €SCG with zero mean
and variances %, ando?%,, respectively. Since S1 and S2 know their own transmittgdas, s1(n) and sz(n),
respectively, they could subtract the resulting selfriietence termgfil hy jwihy is1 (n) andei1 hg’iwihgﬂ'SQ(n)

from the received signals, respectively. Accordingly, thmaining signals for S1 and S2 are

K
y1(n) = Z [hiiwihQ,iSQ(n) + hiiwivi(n)] + z1(n), 4)
i=1
K
jo(n) = Y [hbwihygsi(n) + b wivi(n)] + za(n). (5)
i=1
Therefore, for a giverw = [wy,--- ,wk]? the maximum achievable rates for the end-to-end link from©31

and from S1 to S2 are respectively given as

1 Psolfy w]®
R = =1 1+ ——— 6
L= gom (145 £ ) ©
Ry = =1 14 5——"—+— 7
2 2 082 + J§2—|—WHA2W ) ( )
wheref; = h;oh%, f; = hoohf with h; = [k 1, -+, h; k]? andh! = [hf 1, ,h;”K]T,z' =1, 2. In addition,A; =
diag|ht ,[*07,- -, |} [Po%], Ag = diag|hy,[*07, -, |hb g [*o%], Ps1 and Psy are the maximum transmit

powers at S1 and S2, respectively, and the fatf@ris due to the use of two orthogonal time-slots for relaying.



Accordingly, we can define the set of rate pairs achievablalbfeasible beamforming vector’s as

R = U {(r1,m2) s 71 < Ri,70 < Ra}, (8)

weQ,
where the feasible se®,, can be defined by either a sum-power constraint or indivigoaler constraints.
Specifically, when the sum-power constraint is considevesl,have(),, = {w : pr(w) < Pr}, where Py is
a scalar power limit anghz(w) is the sum-power of the relay cluster given the beamformiagtar w. When
individual-power constraints are considered, we h@ye= {w : pr(w) = Pg}, wherepr(w) is a vector of
individual transmit powersPy is a vector with its elements denoting the power constrdimtsndividual relay
nodes, andK is element-wise.

When time-sharing between different achievable rate jpaitensidered, the achievable rate region is then defined
as the convex hull over the set &f.

Definition 1: The achievable rate regiaf is the convex hull over the set of achievable rate p&irs.e.,
0= HCVX(R)7 (9)

where Hcx(+) is the convex hull operation.
The goal of this paper is to efficiently characterize the exdible rate regio®. According to different assump-
tions on the channel reciprocity between the forward andkWwand channels, we first study the reciprocal case,

and then study the non-reciprocal case.

I1l. RECIPROCAL CHANNEL CASE

In this section, we assume that the forward channels frorh saarce node to the relay nodes are reciprocal to
the backward channels from the relay nodes to each corrdsmpsource node, i.eh;; = hj; andhy; = hy ;,
fori=1,--- , K, which usually holds for a time-division-duplex (TDD) rgiag system. In this case, it is obvious

that whenZw; = —(Zhy; + Zho,;), fori =1,--- | K, both rates given by {6) anfll(7) are maximized for a given

set of |w;|'s. Thus, we only need to further find the optimal amplitudesthe elements iw. Let z; = |w;| and
fi = |h1i||he,i|; we rewrite [6) and[{7), respectively, as
=T
1 Psg(f X)2
R = =1 1+ —"————— 10
1 2 0g2< +O‘§1—|—XTA1X ) ( )
=T
1 PSl(f X)2
Ry = <1 1+ ¥——~— 11
2 9 082 ( * 0%y +xTAsx |’ (11)
wherex = [Jwi|,--- , |wg|]” andf = [k 1]|h2],- -, |h1.k||h2x|]T- In order to obtair®, we need to characterize

the Pareto boundary oR. A common method is via solving a sequence of weighted suen4meaximization



(WSRMax) problems[[15], each for a different non-negativeght vector(\,1 — 1),0 < X < 1, as follows

Peo(F x)? )

O%l + xTAlx
AT
1—A P51 (f X)2
1 1+ =" 12
* 5 082 ( - 02y + xTAgx (12)
St x € Q. (13)

A
max 5 log, (1 +

Unfortunately, we cannot derive the closed-form solutionthe WSRMax problem. However, from (10) afd](11),

we see that the received SNRs at S1 and S2 are

AT
ng(f X)2
SNR, = -2~~~ 14
! 0% +xTAx’ (14)

PSl (%TX)2

SNR —
2 0'%2 —|-XT.A2X7

(15)

respectively, where their numerators differ by only a scatmstant. As shown later, for each given weight vector
(1,1 —p),0 < p <1, we could easily find a closed-form solution for the follogimeighted sum inverse-SNRs
minimization(WSISMin) problem

0?91 +xTA1x 0?92 + xT Ayx

min - + (1 — - 16
)i S )2 (1—n) Py ()2 (16)
St x € Q. @7

Hence, we could quantify the Pareto boundary for the inv&&R region. Based on this observation, together with
the fact that there exists a bijective mapping between agrsé@*SNR pair and a rate pair, we are inspired to probe
the question on whether we could construct the achievalbderegionO from the easily obtainable inverse-SNR
regionEI. In the following, we first introduce some definitions rethte the inverse-SNR region and then show that
we indeed can construct the achievable rate re@idnom the inverse-SNR region, based on the set of closed-form

solutions for a sequence of the WSISMin problems.

A. Characterizing the Achievable Rate Region

At first, we introduce some definitions.
Definition 2: Consider a bijective mapping : (z,y) — (3 logy(1 + 1/2), 3 logy(1 + 1/y)) with (z,y) € R ,;

1 In an independent work of [16], the authors also applied fyer@ach of inverse-SNR. However, their motivation and ciije are
completely different from ours, where they use the sum-MSEhe objective and use the approximatibhSE ~ 1/SNR to transform
the sum-MSE into the sum of inverse-SNR. Hence, their resarty hold for high SNR cases. In addition, they apply thenffeamer that
corresponds to the minimum sum-MSE directly to maximizesthn-rate. The optimality is suspicious since the beamfotire minimizes
the sum-MSE is not necessary the beamformer that maximimesum-rate.



then the set of achievable inverse-SNR pdirs defined as
I= {(tl,tg) :Z/{(tl,tg) S R} .

For regionsk andZ, we are particularly interested in their Pareto boundamdsch are defined as follows.

Definition 3: The Pareto boundary oR is defined asP = {(r1,7r2) : (r1,72) € R,[(r1,r2) + K|[1R =
(r1,72)}, and the Pareto boundary @fis defined asB = {(t1,t2) : (t1,t2) € Z,[(t1,t2) — K] Z = (t1,t2)},
whereK = R%r is a non-negative coné [15].

Definition 4: Define the points obtained by solving the WSISMin problemhvétgiven weight vector, i) as

S(u,T) = {(t1,t2) : ( mi)nI,utl + fita}, (18)

wherep =1 — p.

Definition 5: The set of points that can be obtained from a sequence of WilgMblems is given as

ST = J Su1). (19)
0<p<l

In order to show that we can constru@tfrom S(Z), whereO can be obtained by convex hulling over we
need to prove two things: (1) A point ii could be mapped to a point i and vice versa, which meat§5) = P;
(2) The points inB that cannot be obtained by WSISMin are mapped to the poinf® that are unnecessary for
constructingO® by convex hulling overP, i.e.,U(B\ S(Z)) C Pnon, WhereP,,,, denotes the set of points iR
that are unnecessary for constructifigby convex hulling overP. With the above two statements hold, it is easy
to see thatP \ P,o, CU(S(Z)), i.e., the points obtained by WSISMin suffice to constr@ict

Proposition 1: The Pareto boundary of the inverse-SNR region can be mapmpé#tetPareto boundary of the

rate regionR by mappingl/ as given in Definitiod 2, and vice versa, i.e.,
P =U(B). (20)

Proof: See Appendix in_VIIT=A. [ |
Proposition 2: The image of3 \ S(Z) is not necessary for constructing the achievable rate me@io
Proof: See Appendix in_VIII-B. [ |
Theorem 1:The points inS(Z) are sufficient to construct the achievable rate redibn
Proof: SinceP = U(B) andU(B\ S(Z)) in P is not necessary for constructing the achievable rate me@io
it is easy to see thdt(S(Z)) suffices to construct the achievable rate regidgiven thatO is obtained by convex

hulling overP. [ |



Since we have shown th&{(Z) suffices to construct the achievable rate redgidninstead of studying the problem

in (I2) and [(IB), we now study the solutions of the WSISMinkbems in the following.

B. Collaborative Beamforming under Sum-power Constraint

In this subsection, we consider the case where the relayeclaas a sum-power constraint. The total transmit

power of the relay cluster is

K
PR = Z (|$z’h1,i|2P51 + |zihg i |* Psa + |5L'i|20'i2) (21)
i—1
= xHDx7 (22)
where we haveD = diag|h11|?Ps1 + |ho1|*Psa + 03, ,|h1 k|*Ps1 + |he,x|*Ps2 + 0%]. According to the

discussion in the last subsection, to quantify the rateoregg equivalent to seeking the optimal solutions for the

WSISMin problems given the sum-power constraint as foltows

min  u/SNR; + i/SNRy (23)

st x'Dx < Pg, (24)

where0 < p < 1 is the weight. First of all, the optimat* must satisfyx*” Dx* = Pg; otherwise, we can always

scale upx such that the objective function is decreased. When0 or 1, this problem degrades to find the optimal

beamforming vector for collaborativene-wayrelay, which has been extensively studied(ih [5], [7], dn6][1
Given the SNRs froni{14) anf {[15) and the factof Dx* = Pg, the optimakx for (23) should be the solution

of the following problem:
. X' [VD/Pr + 1/ Pso Ay + i/ Ps1 As]x

— , 25
x xTffT'x (25)
wherev = uo, /Pss + jic%,/Ps1. The above problem is equivalent to
TRFT
max x x (26)

x XT[VD/PR + 1/ Pso Ay + ﬂ/PSlAQ]X7

which can be written in the form of Rayleigh-Ritz ratio [1Mdathe optimal solution is thus given as

x* = 07 /|IT 7, (27)



2
K i
PS2 (Zi:l |h1’i||h2’i|\/0?+P51|h1,ﬁ2+Psz‘h2,i‘2ai)
SNR, = : (33)

2 K a?lhii2alp:
051+ i1 5 Psr Ty P+ PosThaP

2
K i
PSI (Zi:l |h2’i||h1’i|\/U?+P51|h1,ﬁ2+Psz‘h2,i‘2ai)
SNR, = . (34)

2 K o7 |ha.i|?adps
752 + Zi:l 02+ Ps1|h1,i[?+Psa|ha i|?

where
I = diag|lv=s+n,-- VB—K—i-nK (28)
PR ) ’ PR ?
Bi = o?+ Psi|hii|* + Psalhayl%, (29)
= o (e <) o

and¢ is a scalar such that*” Dx* = Py. By searching over alli's, we derived a set af*’'s and hence we could
compute a set of rate pairs by injecting](27) info] (10) dnd.(The achievable rate regiafi is then obtained by
convex-hulling over such a set of rate pairs.

Partially distributed implementationAfter exhausting allu’'s, we set up a lookup table for rate-pairs indexed
by 1. During normal operations, the control center first looksthg table to decides the appropriatesuch that
S1 and S2 achieve a desirable rate pair; and it broadpaatsd the global constart/||T'~'f||, while Ps;, Pss,
os1, 0g2 are constant and assumed to be known at all the relays. Upeivirgg the broadcast message from the
control center, each relay node determines the optimétom its local informationh; ; and ks ;, which is given

as

_ & millhaal  jsm vz (31)
IT=2£|| v/ Pr + i

7

C. Collaborative Beamforming under Individual-Power Coamts

In the previous subsection, we assume that the relay clastea sum-power constraint. In practice, each relay

may have its own power constraint due to the individual posugaplies. The transmit power at relays given as
2 2 2 2
PR, = |z *(|h1,:]° Ps1 + |ho|"Ps2 + 07), (32)

wherepr; < p;, with p; is the maximum allowable power for relay notleEquivalently, we could seir; = o?p;

with 0 < o; <1 as a new design variable. Correspondingly, the receivedsStéiR be rewritten a§ (B3) arld [34)
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Let
H, = diagoipi|hi1l? -, 0%pk|h x|, (35)
Hy, = diagoipi|heil?, -+, 0%pk|hoxl?], (36)
gi = +/Pilhil|lh2il//Di. (37)

We can recast(33) anf (34) as

PsoaTgg o
SNR, = 38
! J§1+aTH1D—1a’ (38)
PsiaTggl o
SNR, — (39)

0'%‘2 + aTHgD_la’
respectively, wher® < o < 1. The WSISMin problem for the individual-power constraimtse is now given as:

v+ ol (HD 'y/Psy + HaD i/ Ps1 )

0Zax1 alggl o ’ (40)
which is equivalent to solve
angTa
max — : (41)
0<a=<1V + aT(HlD_l,u/PSQ + HgD_l,u/PSl)a
For notation simplicity, let
_ 1 1/2
U = [(Hyu/Psz+Hopn/Ps1)D ™ /v] "7, (42)
g = g/Vv, (43)
where W is diagonal with its diagonal elements denoted/as: = 1,--- , K. Then the above problem becomes
ot 2
(8, ) (44)

0%a=1 1+ [Wal?’

For each giveru, (44) can be solved analytically by following the results[@). Before we present the solution,

we first defineg; = §;/1? fori =1,--- K and¢x1 = 0. Then we sortp; as¢,, > ¢, > - > ¢ > Drrcir -
k 2
Moreover, let\; = H%’l;qun and define the-th element of the vecton*) as
(k) 17 j:T17"'Tk

Ae@js J = Tkt TK
Then the solution for{(44) is given by following theorem.
. _ () . —1
Theorem 2:The solution of [4#) isa*") given by [4%), wheré:* is the smallest: such that\; < br-

Proof: This result directly follows the results in![8]. |
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Partially distributed implementationBesides the value gf, the control center only needs to broadcast at
each operation period. Each relay node then determinesith its local information. If<;52.‘1 < Mg+, the relay
node transmits at its maximum power. Otherwise, it transmitth power(Ak*qsi)?pi, i.e., the optimalw; =
aﬁk*)\/ﬁe‘ﬂéhu“h%), Whereagk*) is given in [45). From the solutions, we see that in genenaleselay nodes

may not transmit with maximum transmit power.

IV. NON-RECIPROCAL CHANNEL CASE

In the last section, we have discussed the case where th&kupid downlink channels are reciprocal. In this
section, we discuss the case where the uplink and downliakrels are non-reciprocal, which may be the result
of deploying frequency-division-duplex (FDD) system.

Due to the lack of channel reciprocity, the approach taketthe last section does not apply here. In order

to characterize the boundary of the regifn as we discussed before a commonly used method is to solve the

following
A Ps2|f2Tw|2
2 14 =222 L
e 9 082 ( * o3 +wHAw
— P51|f1TW|2

1 1+ 5—F—7——F7— 46
Ty o < i 02y +wHAyw (46)
st weQ,, 47)

for each given weight vectqi\, 1 — \). However, the above problem is non-convex since the obgeftinction is
not a concave function. To efficiently quantify the rate cegihere we resort to an alternative method called the

rate-profile method [9], formulated as

max Rsum (48)
W7RS1L’VVL

1 PsgnyTWP

S.t. —1 1+ —"=>—— ) > kRsum, 49

2 0g2< +o*%l—l-wHAlw =" (49)

PSlyflTWP _

—1 1+ —————— | > kRsum, 50

2 0g2< +a§2+wHA2w =n (50)

w € Oy, (51)

where R, is the sum rate given a rate profile vecferz] with 0 < x < 1 andk =1 — k. LetF; = ffflT,
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F, = f;f], andX = ww!. The above problem is equivalent to

max Roum (52)
X7RS'LL7TL
1 Pgotr(FyX)
st —logy 14 —oo2d2d) o op 53
20&< T raAax) )" (®3)

P51tr(F1X) _
=1 1 - | = sum 54
2‘%2< 2, tr(AsX) )~ (54)
X e Qx, (55)
X =0, (56)
rank X) = 1, (57)

where the last constraint rafiX) = 1 comes from the facK = ww’, andQx = {X : X = ww!l,w € Q,}
and(,, is defined after[{8). According to different assumptions lo@ power constraint, the above problem can be

further converted into different semi-definite programgn{$DP) problems after semi-definite relaxation (SDR).

A. Sum-power Constrained Case

In this subsection, we assume that the relay cluster oetatder a sum-power constraift. Given the sum-
power constraint, the power constraint [nJ(55) can be reglany t(DX) < Pg, whereD = diag|hi1|>Ps1 +
|ho1|?Psa + 0%, , |h1k|*Ps1 + |ho ik |* Ps2 + 0%]. Since the rank-one constraint is not convex, the problem is
still not a convex problem and hence may not be efficientlyatale. To address this issue, let us first remove the

rank-one constraint and consider the following relay pomértimization problem for given set of and Ry, = 7

m)én tr(DX) (58)

s.t. %logQ (1 + %) > KT, (59)

%logz <1 + %) > Rr, (60)

X =0, (61)

which is equivalent to

min  tr(DX) (62)

s.t. % >, (63)

% > %, (64)

X > 0, (65)
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wherey; = 22%" — 1, o = 22" — 1, and they can be considered as the SNR constraints for S12andspectively.

Sinceo?, +tr(A;X) > 0 ando?, +tr(A,X) > 0, we could rewrite the above problem as following SDP problem

m}én tr(DX) (66)
st tf(PsoFy — v1AX] > yi0%, (67)
tr[(Ps1F1 — 12A2)X] > 7203, (68)

X = 0. (69)

Denote the optimal value of the above problemp&s which is the minimum sum-power required by the relay
cluster to support the target SNRg and~, for S1 and S2, respectively. jf;, < Pg, then(v;,~2) must be an
achievable SNR pair. Otherwisg, and~; are not achievable. Based on this observation, we propes®liowing
bi-section algorithm such that the problem](52) withoutkrane constraint can be solved by solving a sequence of
convex power feasibility problems, with the assumptiort tha know an upper bound faR.,,,, denoted as,,,q.
Algorithm 1:

o Initialize 70, = 0, 7up = Tmaz-

« Repeat

1) Setr + %(rlow + Typ).
2) Solve problem[{86)=(89) with the given
3) Updater with the bi-section method [15]: b}, < Pr, setr;,, = r; otherwiser,, = r.

o Until 7., — 100 < €, Wheree is a small positive accuracy parameter.

The rate upper bound,,.., can be derived as follows. We first decouple the two-way relagnnel into two
one-way relay channels and obtain a rate for each one-way o#lannel. Denote the larger raterasThenr,,q.
can be set a&r. The one-way collaborative relay beamforming with sum-poaonstraint is well-studied, and the
rate can be derived from the results fin [7].

1) Rank-one solutionThe resulting optimal solutioiX,,; obtained from Algorithm 1 may not be of rank-one
due to the SDP relaxation, which means tiaj},, may not lead to an optimal beamforming vector However,
since there are only two linear constrairits] (67) (6&)ak been shown in ][9] and [18] that an exact rank-one
optimal solution can always be constructed from a non-ram&-optimal solution. The transformation techniques
developed in[[9] and [18] can be used to obtain the rank-ohdisn. Note that the beamforming solution for the

non-reciprocal channel case is fully centralized, whichrnzd be implemented in a partially distributed fashion.
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B. Individual-Power Constrained Case

In the previous subsection, we have discussed the sum-powrestrained case where the non-convex rate
maximization problem is converted into a sequence of cosuax-power minimization problems. In this subsection,
we put a stricter limitation on the relay power by assumingt thach node has its individual power constraint.
In this case, following a similar SDR technique to that in grevious subsection, the optimization problem with

individual power constraints can be cast as

max Rsum (70)
X,Roum

Psgtl’(FgX)

st oo2nd) o 71

0% (A X) = (1)
P51tl'(F1X)

ot A) 72

0% +1r(AX) — (2)

D;;X;; < Ph, i=1,- K, (73)

X =0, (74)

whereD, ; andX; ; are thei-th diagonal elements dD andX, respectively. The transmit power at nodamounts

to D, ;X;,; and the individual power limit at nodéeis P}'%. However, we cannot translate the above problem into
a sequence of power feasibility problems as given in thedabsection, since we now havée individual power
constraints rather than a single sum-power constrainthfervthole relay cluster. Alternatively, we aim at solving

a sequence of the following problem via bi-section searar ov

H)l(aii r (75)
st t(PseF2 — 11A1)X] > vi0%, (76)
tr[(Ps1F1 — 12A2)X] > 1203, (77)

X(i,i) < Ph/D(i,3), i =1, -, K, (78)

X = 0. (79)
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The above problem is convex ov&r at each given value aof. Let »* be the maximum value obtained by solving

(79). For a given value of, we solve the following feasibility problem

Find X (80)
st tf(PsoFy — v1A)X] > 102, (81)
tr[(Ps1F1 — 12A2)X] > 7203, (82)

X(i,i) < Ph/D(i,i), i=1, -, K, (83)

X = 0. (84)

If it is feasible, we have: < r* and the corresponding rate is achievable. Otherwise, we hav »* and the
corresponding rate is not achievable. Based on this olsmmyave apply bi-section search overto solve the
problem in [7b), where we solve a convex feasibility problem(80) at each step. We start with an interval
[0, 7maz] that contains the optimal valué wherer,,,,, can be obtained in a similar way as that for the sum-power
constrained case, and run the following algorithm.
Algorithm 2
o Initialize 745,=0, 7up = Tmaz-
« Repeat
1) Setr + %(Tzow + Typ).
2) Solve the feasibility problem given bl (80)-(83) with givr.
3) Updater: If the problem is feasible, set,,, = r; otherwiser,, = r.
o Until 7, — 1o < €. Thenr® = ry,,.
1) Rank-one solution based on randomizati@imilar to the sum-power constrained case, the solutioK @it
the end of Algorithm 2, denoted as,,;,, may not be rank-one. However, since there Are- 2 linear constraints
here, we cannot apply the rank-one decomposition technig[ie3], which require the number of linear constraints
to be less than or equal to 3. Fortunately, various techsidwee been developed [19] to generate good rank-
one approximate solutions to the original protHen@ne such efficient approach is based on randomization [19]:
using X,,: to randomly generate a set of candidate weight vectoss}, from which the “best” solution for the
beamforming vectow is selected. There are three ways of generafwg} as presented in [19]. In order to satisfy
the individual power constraint, we adopt the routine nameddB in [19]. Specially, lete; be the vector whose
elements are independent random variables uniformlyibliged on the unit circle in the complex plane, i.e., its

i-th elementle;|; = 7%, whereg), ;’s are independent and uniformly distributed oy@r2m). We choosew; such

2The randomization technique only provides approximatetimis. Hence, the corresponding rate region is not exact.
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that itsi-th elementlw;]; = /[Xopt)iilel]:- As we see|[w;];|> = [Xopt)ii; hence the individual power constraint
can be satisfied.

For eachXW=w;w/!, we associate eack; with a valuev(w;),

PsiF1 Ay

H
v(w;) = max <1 — tr[( -y - %)wlwl 1,
PsoFy Ay
e L T)wlwﬁ]), (85)
N1 951

which reflects how much the constraints are violated. Thet®seight vector among the candidate vectors is the

one that has the minimum(w;), i.e.,

I* = arg mlin v(wy), (86)

V. SUB-OPTIMAL SCHEMES

In this section, we propose some suboptimal schemes witarloamplexity for implementation than the optimal

ones established in the previous sections.

A. Reciprocal Channel Case

In the reciprocal channel case, at first the transmit phésssat the relays are matched to the channels as
0; = —(£Lh1;+ £ha;). Then with the sum-power constraint, we propose the suiprapequal power beamforming
scheme where each relay transmits with equal power. Withnitigidual-power constraints, we propose the max-

power beamforming scheme where each relay transmits vgitméximum power.

1) Equal-power beamformingAll the K relay nodes transmit with the same powet/K; 6;’'s and x;'s for

i=1,--- , K, are given as:

0; = —(ZLhii+ Zhay), (88)

Pr
- . 89
\/K(Psﬂfh,i!? + Psalha|? 4 02) (59

2) Max-power beamformingEach relay transmits with its maximum allowable powet ;; 6;'s and x;’s for

i=1,--- K, are given as:
0 = —(Lhii+ Zha), (90)

Pr;
. v | 01
’ \/Ps1|h1,z|2 + Psalhy |2 + o7 .
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These sub-optimal schemes enjoy implementation simplisihce each relay only requires the local channel

information h; ; andhy; to decide the transmit phase and

B. Non-reciprocal Channel Case

For the non-reciprocal channel case, since the transmgepbannot be matched to the two-directional channels
simultaneously, we propose a sub-optimal scheme that dyedaoses the transmit phases. Specifically, each relay
chooses the transmit phase to be eithiés ; + Zh; ; or ZLhy; + £hY ;, whichever maximizes its own contribution
to the overall SNRs at S1 or S2 without considering any othkys’ contributions, i.e., we pick one of the above

two phases that maximizes the following quantity:

22 Pso|hg ihY ;€7%|? 22 Py |hy ;hY e7%)?
max : > , (92)

0% + x| 207 T 0%y + af|hy |20}
where z; is the transmit amplitude. To determing’s, we adopt equal-power beamforming for the sum-power

constraint case and max-power beamforming for the indalighower constraint case, which are given[in] (89) and

(@1), respectively.

VI. NUMERICAL RESULTS

In the section, we present numerical results to quantifyaittdevable rate region for the two-way relay network
with collaborative beamforming. We assume that the relagter consists of 5 nodes; the channel coefficiénts
andhj,;, i =1,---, K, are independent CSCG variables with distributiok(0, 1); the channel coefficients; ;
andhy,;,i=1,---, K, are also independent and distributed’a$(0, 1). The noises at the relays and source nodes
are assumed to have unit variance in the simulations. Wegehafrom 0 to 1 with step).1 and obtainl1 Pareto
boundary points. For each point, we run 100 channel re@izato measure the expected performance. We then
do convex hulling over these points.

First, we investigate the achievable rate region. Bothprecial channel and non-reciprocal channel cases are
discussed under a sum-power constraint and individualepa@enstraints, respectively. When the channel is recip-
rocal, we seth;; = hi; andhy; = hy,; fori = 1,---, K. As shown in Fig[P, the solid curves represent the
reciprocal channel cases, with the outer one denoting themawer constraint case and the inner one denoting
the individual-power constraints case; the dashed cue@®sent the non-reciprocal channel cases, with the outer
one denoting the sum-power constraint case and the innedemating the individual-power constraints case. For
the sum-power constraint case, the relay powgr= 10 W while the transmit power®s; = Pso = 1 W. For the
individual-power constraints case, the relay power cairss are given as 2.5, 3, 0.5, 1, 3 W (noises are assumed

to have unit power in Watt), which is summed up to 10 W. We useXC¥ Matlab-based optimization software
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Fig. 3: Achievable rate regions for reciprocal channel aasger a sum-power constraint, network total power@rg), 100
W, using equal-power beamforming as sub-optimal scheme.

[20], to solve the SDP problems. As we see in Fig. 2, due to ymensetry of the transmit powers and channel

statistics, the achievable rate regiénis symmetric. WhenPg, = 0, the rate pairs collapse to the segment on the
horizontal axis, which corresponds to the achievable rateafone-way relay network where only S1 transmits.

Moreover, the rate region for the individual-power conistraase is smaller than that for the sum-power constraint
case. This is quite intuitive since the individual-powenswaint is stricter than the sum-power constraint.

In Fig.[2, we also compare the rate regions for the recipraodl non-reciprocal channel cases under the same
power constraint assumption. As we can see, the maximunfaoat®l in the reciprocal channel case is the same
as the one in the non-reciprocal channel case. This is becaud a maximum rate is obtained by optimizing the
one-way link from S1 to S2 without considering the link fror2 & S1. Since the one-way link from S1 to S2
consists oth; andh?, whetherh] = h; or not does not affect the statistics of the one-way link fi8into S2. The
same argument holds for maximum rate at S2. We also obseavéhth rate region for the reciprocal channel case

is larger than that in the non-reciprocal channel case gikersame settings of powers and noises. The reason is
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Fig. 4. Achievable rate regions for reciprocal channel aasger individual-power constraints, network total powss a
0,10, 100 W, using max-power beamforming as sub-optimal scheme.
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Fig. 5: Achievable rate regions for non-reciprocal charoade under a sum-power constraint, network total power are
0,10,100 W, using equal-power beamforming as sub-optimal scheme.

that we can match the beamforming phase to the overall chahase (i.e./w; = Zhi; + Zhg;,i =1,--- | K.)
in the reciprocal channel case, while we are not able to dm $be non-reciprocal channel case. Therefore, TDD
based system is more favorable in terms of the achieval#eregion if the channel coherence time is larger than
one operation period and the transmit-receive chain ealdor [21] can be properly done. Besides the rate region,
the amount of information needs to be broadcast by the doogrter is significantly different. In the reciprocal
channel case, the control center only needs to broadcasioater at each time slot. However, in the non-reciprocal
channel case, the control center needs to broadcast thddre@ng vector, which is a complex vector of dimension
K.

Second, we investigate the performance of the sub-optinterees in relative to the maximum achievable rate
regions. As we see in Figl 3 for reciprocal channels caseruthdesum-power constraint, the rate pairs achieved by
the equal-power beamforming scheme, denoted as singléspaie strictly sub-optimal. On the contrary, as shown

in Fig.[4 for the individual-power constraints case, the nadir achieved by max-power beamforming gets closer to
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Fig. 6: Achievable rate regions for non-reciprocal chargasle under individual-power constraints, network totaligoare
0,10, 100 W, using maximum-power beamforming as sub-optimal scheme.

the boundary when the power budget is redLH:ijig.IH and Fig[ B, we consider the non-reciprocal chanaets
show the performance of equal-power beamforming and mavepbeamforming with greedy phase selection as
given in [92). The performance of both equal-power beamifogrand max-power beamforming schemes degrades
as Pg increases. Thereby, the sub-optimal schemes for the rayproeal channel case works well only whét,

is small.

VIl. CONCLUSION

In this paper, we considered the two-way relay networks wihaborative beamforming and investigated the
achievable rate region, which is defined as the convex huldlbfachievable rate pairs. We studied both the
reciprocal and non-reciprocal channel cases. In the recibrchannel case, we characterized the rate region when
the relay cluster is subject to either a sum-power congt@irindividual-power constraints, respectively. It was
shown that we could characterize the whole achievable eg®m via the Pareto-optimal beamforming vectors
obtained from solving a sequence of WSISMin problems. Feuntiore, we derived the closed-form solutions for
those optimal beamforming vectors and consequently pexpaartially distributed algorithms to implement the
optimal beamforming, where each relay node only needs its losal channel information and one global scalar
sent from the control center. For the non-reciprocal chboase, we used the rate-profile approach to compute the
Pareto-optimal beamforming vectors. When the relay clustesubject to a sum-power constraint, we computed
the optimal beamforming vector via solving a sequence @xed SDP power minimization problems followed by
a special rank-one reconstruction. When the relay clusteubject to individual-power constraints, we solved a
sequence of relaxed SDP feasibility problems and the raekswmlution is obtained by randomization techniques.
From the numerical results, we found that the achievabke megion is larger in the reciprocal channel case than

3We set the individual powerP g = [2.5,3,0.5, 1, 3] W with total power equal to 10 W. When total power is changed & and 100
W, we scale the vector proportionally.
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dp*(y) _ dp'(y)/de
dy? dy/dx
z+a2® [q (@) (z+a22) (1+22)(q(z) + q(2)?) — (¢ () + 2q(2)q (2))(x + 2?)
T2 | q() +q@? ! ( q(z) + q(x)? ﬂ -0

(93)

that in the non-reciprocal channel case. Hence, TDD-baskeging scheme is more favorable for the two-way

relay network with collaborative beamforming.

VIII. A PPENDICES
A. Proof of Propositio1l

Proof: We will show this by contradiction. Assume, b) € B butl{/((a,b)) ¢ P. Then we can find another
point (¢, d) € R such thatc > 1/2logs(1 + 1/a) andd > 1/2log,(1 + 1/b). According to the definition of, the
point (52—, 5=+—) € Z. Thus, there exists a point @i such that»— < a and 5+— < b, which contradicts
the assumption thafa, b) is a Pareto optimal point. Henéé(3) C P. The converse thdt/(3) O P can also be

proven in the similar way. Therefor® = U(5). [ |

B. Proof of Propositiol 2

In order to prove Propositidn 2, we first introduce the folilogvtwo lemmas.
Lemma 1:Suppose(x) is a positive, decreasing, and linear function with- 0. The bijective mapping/ maps
(z,q(x)) to (y,p(y)); thenp(y) is a non-negative, decreasing, and convex function.
Proof: Let y = logy(1 + 1/2) and p(y) = logy(1 + 1/q(x)) be an implicit function ofy, wherez > 0.
Sinceq(x) is positive, decreasing, and linear, we haye) > 0, ¢'(x) < 0, ¢’ (x) = 0, and hence(y) > 0. The

first-order derivative op(y) is

dp(y)/dzx
dy/dx
x4+ 22

= 1O awr <

Py =

The second-order derivative is given lhy1(93), which is pesit

Thus,p(y) is a convex function ofj. [ |

—

According to the above lemma, the line segmént)- in Fig.[7(@) is mapped to a convex curgs @, in Fig.

[7(B) by . In addition, it is easy to see thal; Q2 + K — Q/lQ\2 — K, i.e., any point abové); Q- (for example,
P in Fig.[7(a)) will be mapped to be a point belqﬂQ\’2 (i.e., P in Fig.[7(D)).
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Fig. 7: lllustration of Lemma&ll. Mapping a straight line Into a convex curve k.

Lemma 2:Let a point(qi,¢2) € bd(Z) \ S(u,Z), wherebd(Z) denotes the boundary of regich If ¢; =
At1 + As1, where(ty,t), (s1,82) € S(u, Z) and (t1,t2) # (s1, s2), We havegs > Mo + Aso, i.€., the point(qy, ¢2)
is above the line segment connectifig, t2) and (s, s2).

Proof: We show this by contradiction. SuppoS§¢u, Z) has more than one elements for a givernsuch that
(t1,t2), (s1,82) € S(u, Z), and (ty1,t2) # (s1,s2). According to the definition o5(u,Z) given by [18), we have
uty + ity = psy + pse = m, wherem is the minimum value of the weighted sum for a givemver all points in

T.If q1 = A1 + 5\81 andq2 < Ao + /_\82, we have

pqr+ fige < p(At A+ Ast) 4 @(Ato + Asa) (94)
= Mpty + fita) + M(psy + fis2) (95)
= m. (96)

If g1+ fige < m, it contradicts thatn is the minimum value of the weighted sum for the giyenf pq; +pges = m,

it contradicts tha{qi, g2) is not in S(u, Z). Therefore, the lemma holds. [ |
According to the above lemma, for a givenif S(u,Z) has more than one elements, the set of boundary points

{(q1,42) : (q1,q2) € bA(Z) \ S(1, L), s1 < q1 < t1,(s1,82), (t1,t2) € S(u,Z)} must be above the line segment

connecting(sy, s2) and(ty,t2); and hence are not attainable by solving WSISMin. This ie far all u's; henceif

a boundary point is not attainable by solving WSISMin, it trhesabove a line segment connecting two particular

points inS(u,Z) for someu. With the above two lemmas, we are ready to prove Propodias follows.

Proof of Proposition 2

Proof: First we define

A ={p:S8(u,Z) has more than one elemehts 97)

and let/,, be the line segment (e.g4B in Fig.[8(@)) with two end points fron$(, Z) for u € A (e.g., pointsA
andB in[8(a)). According to LemmBl 2, the boundary points that areattainable by solving WSISMin, denoted as
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(a) Inverse-SNR region (b) Rate region

Fig. 8: Inverse-SNR region and corresponding rate and negio

bd(Z)\S(Z) (here referring to curvel 3 in Fig.[8(a)), must be abovg’s, i.e.,bd(Z)\S(Z) € U, ([, +K); and it

follows thatt/ (bd(Z)\S(Z)) € U(U ,ea (1 +K)). According to Lemmalld (U ,ca (1. +K)) € U en U (1) —K),

wherel{(l,) is a convex curve (e.g., hetgl,,) refers to the dashed convex CUNEB’ in Fig.[8(D)). LethM be a line

segment (i.e., the dot-dashed line segmé&i®’ in Fig.[8(b)) that connects the two end points of the convaxeu

U(l,,). Due to the convexity of/((,,), we havel{(l,) — K C [, — K and hencé/(bd(Z)\ S(T)) € U,en (I, — K).

Notice UMGA(fquK) is sufficient for constructing by convex hulling. Thereforé/(bd(Z)\S(Z)) orbd(Z)\S(Z)

is not necessary for constructid@g Since3 C bd(Z), the setB\ S(Z) is also not necessary for constructiéy m
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