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Distributed Adaptive Estimation of Node-Specific
Signals in Wireless Sensor Networks

With a Tree Topology
Alexander Bertrand, Student Member, IEEE, and Marc Moonen, Fellow, IEEE

Abstract—We present a distributed adaptive node-specific signal
estimation (DANSE) algorithm that operates in a wireless sensor
network with a tree topology. The algorithm extends the DANSE
algorithm for fully connected sensor networks, as described in pre-
vious work. It is argued why a tree topology is the natural choice
if the network is not fully connected. If the node-specific desired
signals share a common latent signal subspace, it is shown that
the distributed algorithm converges to the same linear MMSE so-
lutions as obtained with the centralized version of the algorithm.
The computational load is then shared between the different nodes
in the network, and nodes exchange only linear combinations of
their sensor signal observations and data received from their neigh-
bors. Despite the low connectivity of the network and the multi-hop
signal paths, the algorithm is fully scalable in terms of communi-
cation bandwidth and computational power. Two different cases
are considered concerning the communication protocol between
the nodes: point-to-point transmission and local broadcasting. The
former assumes that there is a reserved communication link be-
tween node-pairs, whereas with the latter, nodes communicate the
same data to all of their neighbors simultaneously. The conver-
gence properties of the algorithm are demonstrated by means of
numerical examples.

Index Terms—Adaptive estimation, distributed compression,
distributed estimation, wireless sensor networks (WSNs).

I. INTRODUCTION

A wireless sensor network (WSN) consists of sensor nodes
that cooperate to perform a certain task, such as the esti-

mation of a parameter or signal, where data is shared between
nearby nodes through a wireless link. A general objective is
to utilize all available data throughout the network, possibly
through a fusion center that gathers all sensor signal observa-
tions and performs all computations. However, in many cases a
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distributed approach is preferred, which is scalable with respect
to both communication resources and computational power. In
this case, data diffuses through the network and each node con-
tributes to the processing (e.g., [1]–[4]).

In this paper, we consider distributed signal estimation,
rather than parameter estimation. This means that the number
of variables to estimate grows linearly with the number of
temporal observations, i.e., for each sample time of the sensors,
a new sample of the desired signal(s) needs to be estimated.
The estimation then usually relies on linear spatial filtering or
beamforming, as often used in signal enhancement [5]–[8]. In
parameter estimation problems on the other hand, the number
of estimation variables is fixed, i.e., it does not grow with the
number of temporal observations [1]–[4], [10], [11]. Usually,
intermediate estimates are then exchanged and iteratively im-
proved over time, often without exchanging the actual sensor
observations. In the case of distributed beamforming or signal
estimation, (fused or compressed) signal observations are
exchanged between nodes, and then the aim is to iteratively
improve the local fusion rules to better estimate future samples.
These type of WSNs are usually smaller in size, and operate
with a larger bandwidth and energy consumption compared to
traditional large-scale WSNs [7], [8], especially in applications
with high sampling rates. They are often also assumed to be
more robust, especially in real-time systems, since packet loss
can then result in instantaneous signal degradation. Therefore,
in this paper, we assume that the communication links are ideal,
i.e., they are not subject to noise or random failures.

In [12] and [13], a distributed adaptive node-specific signal
estimation (DANSE) algorithm is presented, based on linear
MMSE estimation. It operates in a fully connected sensor net-
work where each node has access to multi-channel sensor signal
observations. The term “node-specific” refers to the fact that
each node estimates a different desired signal. Node-specific es-
timation is relevant in cases where inherent spatial information
in the local observations of the target sources needs to be pre-
served during the estimation, e.g., to serve as an input for a local-
ization algorithm, or in collaborating hearing aids when the aim
is to also preserve the cues for directional hearing [14]. Due to
the linearity of the proposed centralized estimator, the algorithm
can be made distributed and it significantly compresses the sig-
nals that are communicated between nodes, provided that the de-
sired signals of the different nodes share a common low dimen-
sional latent signal subspace (which is assumed to be unknown).
Although the nodes broadcast only a few linear combinations of
their sensor signal observations, the DANSE algorithm provides
linear minimum mean squared error (MMSE) estimates as if all
data were available at each node. In [15], the DANSE algorithm
is extended to also guarantee convergence when nodes update
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simultaneously or asynchronously, which generally results in
faster tracking. In [17], a more robust version of DANSE has
been formulated, referred to as R-DANSE. Simulations in [7]
and [8] illustrate the potential of the algorithm for distributed
speech enhancement in acoustic sensor networks.

A limitation of the DANSE algorithm in [12] is that the net-
work is assumed to be fully connected, which is only possible
in practice if the nodes have sufficient transmission power, and
if the available communication bandwidth is large enough. Fur-
thermore, the amount of data that is received and processed by
each node increases with the number of nodes in the network.
In this paper, we modify the DANSE algorithm, such that it can
operate in a network with a tree topology, avoiding the afore-
mentioned issues. We refer to this algorithm as tree-DANSE
or T-DANSE. The choice for a tree topology is justified by the
fact that it contains no cycles, and hence does not introduce any
feedback paths. We will explain that feedback paths harm the
convergence and optimality of the DANSE algorithm. The for-
mulation of T-DANSE was briefly introduced in [16], without a
theoretical analysis. In this paper, we provide more details and
include a convergence and optimality proof.

In the T-DANSE algorithm, the signal observations of the dif-
ferent nodes are fused in a decentralized way, i.e., each node
linearly combines its own sensor signal observations with data
obtained from its neighbors before forwarding them to the next
node. Remarkably, despite this distributed fusion process, each
node is able to optimally estimate its own node-specific signal
as if all data of the complete network were available. The local
estimation task at each node is equivalent to the centralized es-
timation problem, but at a much smaller scale, i.e., with a dras-
tically reduced amount of signals.

As opposed to fully connected DANSE, the number of
signals that need to be processed by a node in T-DANSE does
not depend on the total number of nodes in the network, but
only on the number of neighbors of that node. This is important
since the number of signals that a single node can receive
and process in real-time is usually limited, especially when
operating at large sampling rates. An additional advantage
of using multi-hop networks, is the fact that nodes can
transmit with lower power, and it enables spatial reuse of the
spectrum. Furthermore, even when nodes only have access to
observations of a single-channel sensor signal, the T-DANSE
algorithm yields a benefit in terms of communication bandwidth
efficiency, whereas fully connected DANSE is only useful
if the number of sensor signals per node is larger than
the dimension of the latent signal subspace that contains
the desired signals [12].

We will consider two different communication protocols:
point-to-point transmission and local broadcasting. The former
assumes that there is a reserved communication link between
node-pairs, whereas with the latter, a node communicates the
same data to multiple neighbors simultaneously. We will show
that both cases can be treated equivalently from a theoretical
point of view. However, the broadcast protocol is obviously
more efficient in terms of communication bandwidth.

The outline of this paper is as follows. In Section II, the
general problem statement for distributed node-specific linear
MMSE estimation is given. We briefly review the DANSE al-
gorithm [12] for fully connected networks in Section III, which
will act as a starting point and which allows us to introduce some

necessary notation.1 In Section IV, we point out that feedback
paths in the network topology harm the convergence and op-
timality of the DANSE algorithm. In Section V, we introduce
the T-DANSE algorithm in a network with a tree topology, and
prove convergence and optimality. In Section VI, we explain
how T-DANSE can be used in a communication protocol that
supports local broadcasting. Section VII provides some simula-
tion results. Conclusions are given in Section VIII.

II. PROBLEM FORMULATION AND NOTATION

In this section, we briefly describe the data model and the
problem statement. More details can be found in [12]. This sec-
tion can be skipped if the reader is familiar with the setup and
the notation in [12].

A. Data Model

Consider a network with sensor nodes . At
this point, we do not yet make any assumptions on the topology
of this network. In the sequel, we assume that all mentioned sig-
nals are stationary and ergodic.2 Sensor node collects obser-
vations of a complex3 valued random -channel sensor signal

, where is the discrete sample time index. For the
sake of an easy exposition, we will omit the time index when
referring to a signal, and we will only write the time index when
referring to one specific observation, i.e., is the observation
of the signal at time . We define as the -channel signal
in which all are stacked, where . This sce-
nario is depicted in Fig. 1. The different channels of the signal

may correspond to different sensors at node (as it is the
case in Fig. 1), or different delayed versions of its sensor sig-
nals to exploit temporal information.

The objective for each node is to optimally estimate a node-
specific -channel desired signal that is assumed to be cor-
related to . We consider the general case where is not an
observed signal, i.e., it is assumed to be unknown, as it is the
case in signal enhancement. We assume that the node-specific
desired signals share a common -dimensional latent signal
subspace, defined by the channels of an unknown -channel la-
tent signal , i.e.,

(1)

with a full rank matrix with unknown coefficients.4
It is noted that we assume (without loss of generality) that the

1Although this paper does not assume prior knowledge on the fully connected
DANSE algorithm, it is recommended to read [12] first, since it addresses a
much simpler case, which allows the reader to get familiar with the notation,
the problem statement, and the algorithm.

2In practice, the stationarity and ergodicity assumption can be relaxed to
short-term stationarity and ergodicity, in which case the theory should be
applied to finite signal segments that are assumed to be stationary and ergodic.

3Throughout this paper, all signals are assumed to be complex valued to
permit frequency domain descriptions. In this case, multi-tap estimation is
also covered, and the data model (1) then corresponds to a frequency domain
description of a convolutive mixture.

4It is noted that node-specific estimation also exists in a distributed parameter
estimation context, e.g., in random-field estimation [10], [11] However, usually
it is assumed that the covariance or other parameters describing the dependen-
cies between the hidden node-specific variables are known. This is not the case
in our approach, i.e., we do not know the� ’s or the cross-correlation between
the � ’s. We only exploit the prior knowledge that the � ’s share a common
laten signal subspace, but we do not know anything about this subspace, except
for its dimension.
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Fig. 1. Description of the scenario. The network (with undefined topology)
contains� sensor nodes, � � � � � � � , where node � collects� -channel sensor
signal observations and estimates a node-specific desired signal � , which is a
mixture of the � channels of a common latent signal �.

number of channels of the desired signals , is equal
to the dimension of the latent signal subspace defined by . In
many practical cases, only a subset of the channels of may
be of actual interest, in which case the other channels should be
seen as auxiliary channels to capture the entire -dimensional
signal subspace defined by (the reason for this will be ex-
plained later).

To make this more concrete, we give an example in the
context of noise reduction for speech enhancement that fits the
aforementioned data model. Assume a scenario with speech
sources, stacked in the signal . The observed signals at the

sensors (i.e., microphones) of node are then described by
the linear sensor data model

(2)

with an (unknown) steering matrix to the mi-
crophones of node , and a noise component containing
point-source interferers, diffuse noise and sensor noise. Note
that (2) is a frequency domain representation, transforming the
convolutive acoustic mixture of the speech signals in an instan-
taneous mixture. The goal of each node is to estimate the mix-
ture of the signals in observed at one of their microphones,5
referred to as the reference microphone. If , additional
auxiliary reference microphones need to be selected to obtain
a -dimensional node-specific desired signal . If the first
microphones are selected in each node, then in (1) corre-
sponds to the first rows of in (2). For more information
regarding this acoustic application, we refer to [7].

We emphasize that expression (2) is given here as an example,
and we do not restrict ourselves to this sensor data model in the
design of the algorithms in the sequel.

B. Centralized Linear MMSE Estimation

We first consider the centralized estimation problem, i.e., we
assume that all nodes have access to observations of all

5This is the best one can do in a blind approach, i.e., when there is neither
knowledge about � nor the mixing system. The desired signal is then the ob-
served mixture of target sources at the local sensors. This technique is often used
in noise reduction applications for speech enhancement [6]–[8].

channels of . Node uses a linear estimator to estimate
as

(3)

where is a complex matrix, and where superscript
denotes the conjugate transpose operator. This is similar to

beamforming frameworks [5], where multiple signals are lin-
early combined to generate an output signal with suppressed in-
terferers and background noise. We consider linear MMSE esti-
mation (similar to multi-channel Wiener filtering [6]) based on
a node-specific estimator , i.e.,

(4)

where denotes the expected value operator. Assuming that
the correlation matrix has full rank, the solu-
tion of (4) is

(5)

with . Based on the assumption that the sig-
nals are ergodic, and can be estimated by time av-
eraging. The is estimated from the sensor signal observa-
tions. Since is assumed to be unknown, has to be esti-
mated indirectly. A possible way to estimate , is to period-
ically transmit training sequences, or by exploiting the ON–OFF

behavior of the desired signal, e.g., in speech enhancement ap-
plications [7], [17]. More information on the estimation of
can be found in [12]. In the sequel we will assume that , or
its distributed variants, can be estimated adaptively during op-
eration of the algorithm.

In the distributed case, each node only has access to ob-
servations of which is a subset of the channels of the full
signal . Therefore, to find the optimal MMSE solution (5) in
each node, the observations of in principle have to be com-
municated to all nodes in the network, which requires a large
communication bandwidth, especially if the network is not fully
connected, i.e., if multi-hop transmission is required. As shown
in the sequel, due to the linearity of the centralized estimator (5)
and the low dimension of the latent signal subspace, we are still
able to obtain the linear MMSE solution (5) at each node, even
when the data communicated by the nodes is significantly com-
pressed. We assume ideal communication links, i.e., they are not
subject to noise or random failures. The issue of link failures in
real-time signal estimation in wireless networks is briefly ad-
dressed in [18].

III. THE DANSE ALGORITHM IN A FULLY

CONNECTED NETWORK

In this section, we briefly review the algorithm6 in
a fully connected sensor network, as introduced in [12] and [13].
This is important to introduce some notation, and to grasp the
underlying idea on how we can distribute each estimator over
different nodes. In Section V, we will extend this framework
for signal estimation in networks with a tree topology.

We define a partitioning of the matrix as
where is the part of

6The subscript� refers to the number of channels in the broadcast signals of
each node. To obtain the optimal estimators, this number should be equal to the
dimension of the latent signal subspace defined by �, as proven in [12].
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that is applied to the sensor signal observations of . The
equivalent of (4) is then

...

(6)

In the algorithm, is linearly compressed
to a -channel signal (the compression rule will be
defined later), which is then broadcast to the remaining

nodes. We define the -channel signal
. Node then collects

observations of its own sensor signals in and the signals in
obtained from the other nodes in the network. Similar to

(4), node can then compute the linear MMSE estimator with
respect to these input signals, i.e.,

(7)

where is the part of the estimator that is applied to
node ’s own sensor signals in and where

with de-
noting the part of the estimator that is applied to . The linear
compression rule that generates the broadcast signal is then
given by

(8)

A schematic illustration of this scheme is shown in Fig. 2, for a
network with nodes. It is noted that both acts as a
compressor and as a part of the estimator . Based on Fig. 2,
it can be seen that the parametrization of the effectively
applied at node , to generate , is then

... (9)

where we assume that with denoting the
identity matrix. Expression (9) defines a solution space for all

, simultaneously, where node can only control
the parameters and . The following theorem ex-
plains how this parametrization is still able to provide an optimal
signal estimate in each node. A similar result will be obtained
in Section V for the case of tree topology networks.

Theorem III. 1: If (1) holds, then the optimal estimators
, given in (5) are in the solution space defined

by parametrization (9).
Proof: Since , and because of (5), we know that

the following holds:

(10)

with . The theorem is proven by comparing
(10) with (9), and by setting .

The algorithm iteratively updates the parameters
in (9), by letting each node compute (7), , in a sequen-

Fig. 2. The ����� scheme with three nodes �� � �	. Each node � esti-
mates a signal� using its own� -channel sensor signal observations, and two
compressed�-channel signal observations broadcast by the other two nodes.

tial round robin fashion.7 It is noted that each node then essen-
tially performs a similar task as in a centralized computation,
but on a smaller scale, i.e., with less signals. In [12], it is proven
that this procedure converges to the centralized linear MMSE
estimators at all nodes, i.e., . It is
noted that we are not directly interested in the ’s, but rather
in the estimated samples of the ’s. The estimate of a sample

of the desired signal in node at any point in the iter-
ative process is computed as

(11)

Remark I: It is assumed that the cross-correlations
and can be (re-)estimated during

operation of the algorithm. As explained earlier, this is only
possible in certain applications, e.g., when the target source has
an ON–OFF behavior or when training sequences can be used.
We will not elaborate on this issue here, and we refer to [12]
instead for further details.

Remark II: The iterative nature of the algo-
rithm may suggest that the same sensor signal observations
are compressed and broadcast multiple times, i.e., once after
every iteration. However, in practical applications, iterations
are spread over time, which means that successive updates
of the estimators use different sensor signal observations. By
exploiting the (short-term) stationarity assumption, updated
estimators are only used for new (future) observations. This
means that the iterations are not performed on the same block
of data, but only on the local fusion rules at the nodes. For a
detailed non-batch description of the algorithm, we refer to
[12].

IV. DANSE IN SIMPLY CONNECTED NETWORKS WITH CYCLES

If the network is not fully connected, information must be
passed from one side of the network to the other over multiple

7Results where nodes update simultaneously are also available [15], but these
are not addressed here.
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Fig. 3. Two different types of data fusion in a network that is not fully con-
nected. (a) The relay case. (b) Linear combination of inputs.

edges of the network graph. One can make the network virtu-
ally fully connected by letting nodes act as relays and so even-
tually provide every node with all observations of , as shown
in Fig. 3(a). However, this is not scalable in terms of communi-
cation bandwidth and computational power, and the routing of
the data streams can become very complex for large networks.
A more desirable approach is to let each node transmit linear
combinations of all its inputs, i.e., its own sensor signal obser-
vations as well as the data provided by other nodes, as shown
in Fig. 3(b). We will first describe a straightforward fusion rule,
and we will point out that this approach is problematic if the
network contains cycles, since this introduces feedback compo-
nents. We will then explain how this feedback can be avoided,
which will lead to the tree-DANSE algorithm in Section V.

A. A Straightforward Fusion Rule

To pass information from node to node without increasing the
communication bandwidth, one can apply the same
algorithm as in the previous section, but now let each node
transmit the observations of the -channel signal

(12)

to its neighbors, with denoting the set of nodes that are con-
nected to node , node excluded. The signal is then a fused
signal containing all the input signals of node . Notice that this

corresponds to the node-specific estimated signal of node ,
i.e., . This is illustrated in Fig. 4 for a three-node net-
work with a line topology. From this figure, it can be seen that
the implicit definition of the , that is applied to to generate

, is then

(13)

with denoting an all-zero matrix of appropriate dimension.
Parametrization (13) defines a solution space for all

, simultaneously. We assume that the matrices are all-
zero matrices, or do not exist, if there is no connection between
node and node .

In [16], it is pointed out that the parametrization (13) has an
impact on the dynamics of the algorithm, but also on the solu-

Fig. 4. Visualization of parametrization (13) in a three-node sensor network
with a line topology.

tion space. Unfortunately, if (1) holds, i.e., if the desired signals
share a -dimensional latent signal subspace,8 the algorithm
cannot obtain the optimal estimators (5), which was proven in
[16] for a two-node network. In the following theorem, we proof
the general statement.

Theorem IV.1: Consider a network with any topology. If (1)
holds, then the optimal estimators given by (5) are not in
the solution space defined by parametrization (13).

Proof: We prove the theorem by contradiction, so we as-
sume that the optimal centralized solution , is
in the solution space defined by (13). By substituting (10) in
parametrization (13) for (w.l.o.g.), we obtain

...
...

(14)

where denotes an all-zero matrix. From the
first rows in (14), we obtain

(15)

From the last rows in (14), we obtain9

(16)

Combining (15) and (16) yields , meaning that
the sensor signals of node 1 are not used in the centralized so-
lution (5). Instead of choosing , we can use a similar rea-
soning for all to eventually find that

, which contradicts (5).

8Remarkably, if (1) does not hold, the solution space defined by parametriza-
tion (13) contains the same estimators as when using parametrization (9) [16].
However, the optimal solution (5) cannot be achieved in this case since it cannot
be parametrized by (9).

9We implicitly assume that the submatrix � �� � � � �� � of the optimal
centralized estimator given by (5), has full rank. Although this is not fully guar-
anteed by the imposed assumptions, this is satisfied in most practical cases since
� �� � � , and because � and the stacked� �� submatrices of
� in (5) have full rank (due to spatial diversity of the sensors).
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The fundamental problem with parametrization (13) is the
feedback in the signal paths. Indeed, the observations of that
node receives from neighboring nodes also contain a
component with the sensor signal observations of node it-
self. This results in a solution space for the algorithm
that does not contain the optimal estimators (5), as pointed out
by Theorem IV.1.

We will distinguish between two forms of feedback: direct
and indirect feedback. Direct feedback is caused by the feed-
back path from node to a neighboring node and back to node

, i.e., a cycle of length two. In Section IV-B, we show that this
type of feedback can be easily controlled. Indirect feedback is
more difficult to deal with. It occurs when data transmitted by
node travels through a path in the network, containing more
than two different nodes, and eventually arrives back at node .
In Section IV-C, we will explain that indirect feedback can be
avoided by removing direct feedback and by pruning the net-
work to a tree topology.

B. Direct Feedback Cancellation

To avoid direct feedback, each node can send different data
to each of its neighbors instead of locally broadcasting (12). Let

denote the signal of which observations are transmitted from
node to node , then direct feedback is avoided by choosing

(17)

(18)

We will refer to this strategy as “transmitter feedback cancel-
lation” (TFC), since the direct feedback at node is cancelled
by the transmitting node . We will refer to the signals defined
in (17) as TFC-signals. It is noted that expression (17) provides
an implicit definition of the TFC-signals, and that it is difficult
to obtain a general closed form expression due to the remaining
indirect feedback.

The TFC strategy matches perfectly with a point-to-point
communication protocol, in which each individual node pair
has a reserved communication link. In this case, direct feedback
can be avoided without an increase in communication band-
width. However, when the communication protocol supports
local broadcasting, a more efficient strategy is possible, based
on expression (18), which we will describe in Section VI-B.
This strategy will be referred to as “receiver feedback cancel-
lation” (RFC). However, from a theoretical point of view, the
TFC and RFC strategies are equivalent. For the sake of an easy
exposition, we use the former in the theoretical analysis.

C. Removal of Indirect Feedback

As mentioned in Section IV-B, direct feedback can be easily
removed. Unfortunately, indirect feedback is more difficult to
avoid. However, if direct feedback is removed, the data diffuses
through the network in one direction, i.e., data sent by node
over a specific edge of the network graph cannot return to node

through the same edge in opposite direction, and so it can only
return through a different edge that is part of a cycle. Hence, if
the network has a tree topology, i.e., the network graph contains
no cycles, indirect feedback is automatically removed if direct
feedback is removed. In the sequel, we assume that the network

graph has been pruned to a spanning tree of the initial graph.
Optimal spanning trees can be defined and computed in several
ways. An overview of different spanning tree problems can be
found in [19].

It is noted that the combination of TFC with a tree topology
has some similarities with the message passing for belief
propagation (BP) in trees (see, e.g., [20]). Furthermore, in
Section VI-A, we will decompose the signal flow in an inwards
fusion and an outwards diffusion flow, which is also similar
in BP. Despite these strong similarities in the data flow, the
estimation frameworks of both algorithms are very different
and incomparable, even on a higher level of abstraction.

V. DANSE IN A NETWORK WITH A TREE TOPOLOGY (T-DANSE)

In this section, we will extend the algorithm,
to operate in networks with a tree topology. We will refer to
this as tree- or – . In the sequel, we will
often refer to Fig. 5, showing an example network with a tree
topology.

A. – Algorithm

A node transmits observations of the -channel
TFC-signal , defined by (17), to a node . Fig. 6
illustrates this for a network graph with a line topology, which
is a subgraph of the network graph in Fig. 5.

It is noted that a tree topology defines a unique path be-
tween any pair of nodes, if an edge can only be used once. Let

denote the ordered set of nodes
defining the unique path from node to node , and let
denote the inverse path, i.e., . Define

(19)

with denoting the th node in the path . We define
. The order of the ’s in (19) must be the

same as the order of the nodes in the inverse path .
Example: The matrix for the network graph depicted

in Fig. 5 is . This structure is clearly
visible in the network graph of Fig. 6, defined by the path .
Notice that .

The parametrization of the effectively applied at node ,
to generate , is then

... (20)

Parametrization (20) defines a solution space for all
, simultaneously, that depends on the network topology. No-

tice that its structure is very similar to (9), as used in fully con-
nected DANSE.

Theorem V.1: If (1) holds, then the optimal estimators
given in (5) are in the solution space defined by parametrization
(20).

Proof: The proof is based on expression (10), which fol-
lows from (1) and (5), and which is repeated here for conve-
nience:

(21)
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Fig. 5. Example of a network graph with tree topology with nine sensor nodes.

with . By setting all matrices equal to
, we automatically have that

for any and , since , for any , and .
By using a similar reasoning as in the proof of Theorem III.1,
we can show that all , are in the solution space
defined by parametrization (20).

Let the matrix denote the stacked version of all
matrices for which . Vector denotes the vector
in which all -channel signals are stacked, for all ,
i.e., it contains all signals that node receives from its neigh-
bors. Let denote an ordered set of nodes that contains all
nodes in the network, possibly with repetition of nodes. Let
denote the th element in this set and let denote the number
of elements in . In general, we will use to denote at it-
eration , where can be a signal or a parameter.

The – algorithm then consists of the following
steps:

The – Algorithm

1) Initialize and , as random
matrices.

.
.

2) Node updates its local parameters and
by minimizing its MSE criterion, based on

observations of its own inputs sensor signal and
of the compressed signals , that it receives from
nodes :

(22)

The other nodes do not change their variables:

(23)

3) .
4) .
5) Return to step 2

The estimate of a sample of the desired signal at
node at any point in the iterative process is computed as

(24)

Fig. 6. The �–����� scheme in a network graph with a line topology.

Remark I: We emphasize again that the iterative nature of
the algorithm does not mean that the same sensor signal obser-
vations are retransmitted after every iteration. In practical appli-
cations, iterations are spread over time, i.e., if is updated to

at time , this is only used to compress new observations
and estimate the samples for which , while

previous observations for are neither recompressed, re-
transmitted nor re-estimated. Effectively, each sensor signal ob-
servation is compressed and transmitted only once. This is mo-
tivated by the stationarity assumption of the involved signals.

Remark II: In the – algorithm, each node
solves an estimation problem that is equivalent to the central-
ized problem (4), but on a much smaller scale, i.e., with less
signals. This means that the computations are distributed over
the nodes in the network.

Remark III: It is noted that, even when nodes only have
access to observations of a single-channel sensor signal, i.e.,

, the – algorithm yields a benefit
in terms of communication bandwidth efficiency, compared to
the relay case depicted in Fig. 3(a). In the fully connected case,

only yields an improvement in bandwidth efficiency
if [12]. Furthermore, the – algorithm is
fully scalable, i.e., the amount of data transmitted between each
node pair does not depend on the number of nodes , and the
computational effort at each node only depends on the number
of neighboring nodes (but not on ). This is important since the
number of signals that a single node can receive and process in
real-time is usually limited, especially when operating at large
sampling rates. Based on the complexity analysis in [12], we
find that the computations at node (in a recursive implemen-
tation) have a complexity of

(25)

This is to be compared with the complexity
of fully connected DANSE, which depends on the total

number of nodes .

B. Convergence and Optimality

The following theorem provides a sufficient condition on the
updating order for – to guarantee convergence to
the optimal estimators.

Theorem V.2: Consider a network with a tree topology. Let
denote an ordered set of nodes that defines a path through
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the network that starts in and ends in any , such that
. If (1) holds, then the – algorithm

as described in Section V-A converges for any initialization of
its parameters to the linear MMSE solution (5) for all .

Proof: The proof of this theorem is elaborate, and can be
found in Appendix A. Some additional concepts and lemmas are
used in the proof, which can be found in Appendix A and B.

Theorem V.2 states that the updating order of the nodes
must correspond to a path through the network. This
means that if node updates in iteration , then the node
that updates in iteration must be in . For ex-
ample, for the network in Fig. 5, a possible choice for
is .

Remark I: Extensive simulations show that the condition
in Theorem V.2 on the updating order is sufficient, but not
necessary. In fact, the algorithm is always observed to con-
verge, regardless of the updating order of the nodes (see also
Section VII). This is stated here as an observation since a proof
is not yet available. However, choosing an updating order sat-
isfying the condition in Theorem V.2 usually results in a faster
convergence for most of the nodes. This can be explained by the
fact that this condition generally implies that nodes with many
neighbors are updated more often. Since these nodes act as bot-
tlenecks in the data diffusion, it is important that these are indeed
updated frequently, whereas updates of nodes at the boundary of
the network have less impact on the data flow in the rest of the
network.

Remark II: The proof of convergence in Appendix A shows
that the algorithm is at least as fast as a centralized alternating
optimization (AO) algorithm or block-coordinate descent
method (a.k.a. nonlinear Gauss-Seidel iteration [21]), where
alternating blocks of variables are optimized while the other
variables are fixed. The – algorithm is usually even
faster, since none of the variables are actually fixed, but rather
constrained to a subspace. Since an AO method converges

-linearly for strictly convex objective functions [22], we can
conclude that – converges at least -linearly. The
convergence proof in Appendix A also shows that the MSE
monotonically decreases at node (when evaluated after each
update of node ). When the network grows, convergence takes
longer due to the sequential nature of the method, i.e., it takes
more iterations to have a full round of updates. When nodes
would update simultaneously, the convergence time usually
scales much better with the network size, but convergence
cannot be guaranteed anymore. Relaxation methods, similar to
the ones applied in [15] may again yield convergence in this
case, but this is beyond the scope of this paper.

Remark III: For the sake of an easy exposition, we have ig-
nored clock- and transmission delays in the signal paths. How-
ever, if proper compensating delays are added at the right places
in the signal path, the theoretical analysis above is not affected
by this practical aspect. Section VI also describes a data-driven
computation of the sample estimates, which has the advantage
that nodes do not need any information on the transmission de-
lays.

Remark IV: In the special case where all the nodes estimate
the same signal, i.e., , the convergence prop-
erties remain the same as in the scenario with node-specific es-
timation problems, i.e., the fact that different signals are esti-
mated at each node does not affect the convergence speed of

the algorithm. This straightforwardly follows from the proof of
Theorem V.2.

VI. T-DANSE WITH LOCAL BROADCASTING

In this section, we describe how T-DANSE can operate in
a WSN that allows local broadcasting to neighboring nodes,
instead of using reserved communication links between node
pairs. By describing the system as a data-driven feed-forward
data flow, we will be able to transform the TFC procedure into
another feedback cancellation procedure that exploits the higher
communication bandwidth efficiency of a local broadcast com-
munication protocol. However, these practical aspects have no
effect on the iterations of the T-DANSE algorithm, and therefore
the theoretical analysis of the previous section remains valid.

For reasons that will become clear, we will first group the
different nodes of the network in subsets, which we will refer to
as ‘shells’ of the network. Let denote the maximum number
of hops between node and any other node in the network, and
let and . We define

. Let denote the subset of nodes that form
the outer shell of the network, i.e., .
Similarly, we define the shells

(26)

The inner shell contains maximally 2 nodes, which we refer
to as the root nodes. It is noted that the nodes in the outer shell

are leaf nodes, i.e., nodes with a single neighbor, but
does not necessarily contain all the leaf nodes of the network.

Example: The shells of the network depicted in Fig. 5 are
(white), (light grey) and

(dark grey).
In the sequel, we assume that each node knows the shell index

to which it belongs, together with the shell indices of its neigh-
boring nodes. This requires some upper layer protocol or coor-
dination.

A. Data-Driven Computation of TFC-Signals

The T-DANSE algorithm uses the TFC-signals as defined
in (17), which is an implicit definition. This signal definition is
illustrated in Fig. 7 for node 3 of the graph depicted in Fig. 5. Be-
cause the network is assumed to have a tree topology, (17) can be
easily solved for the ’s by backwards substitution, where the
leaf nodes act as starting points. Indeed, if is a leaf node, then

, which does not contain contributions from any
other node. This backwards substitution defines causality con-
straints, and can be described by means of a data-driven signal
flow graph, where elementary building blocks (as the one de-
picted in Fig. 7) are interconnected. Each internal operator is
triggered when it has received a sample or a data packet on each
of its input lines, generating a new packet of data on its output
line. This description can also be used in a practical implementa-
tion, and has the advantage that nodes do not need any informa-
tion on the transmission delays (which is particularly interesting
in communication networks with variable transmission delays).

Furthermore, the chain of computations in this data-driven
procedure will show that the signal flow naturally decomposes
in an inwards flow followed by an outwards flow. To this end, an
important observation is that any non-root node has only one
neighbor that is in a deeper shell, i.e.,
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Fig. 7. Illustration of the internal data flow in node 3 of the network depicted
in Fig. 5.

. The data flow is then decomposed as
follows:

1) Fusion flow : The fusion flow is initiated by
the leaf nodes, who fire immediately after the collection
of a new sensor observation. A non-leaf node fires when
it has received data from all of its neighbors in the outer
shell. At this event, the node fuses and forwards this data
to the single neighbor in the deeper shell that has not fired
yet. In this way, the data travels inwards from to ,
where it is fused on the way with other local sensor data,
and eventually arrives at the root node(s). If there are 2
root nodes, they have to exchange observations of the TFC
signals, such that each of them has access to (fused) data
that contains all sensor observations.

2) Diffusion flow : After arrival of the fusion flow
in , the root nodes initiate the diffusion flow by firing to
all their neighbors in the outer shell, providing each with
its node-specific TFC-signal. The neighbors at their turn do
the same until the data is spread out over the entire network.

Remark I: In practice, the fusion flow and diffusion flow
can run simultaneously, be it with a relative time lag. In other
words, a leaf node can fire each time it collects a new sensor
observation , even though the previous estimation sample

cannot be computed yet due to the fact that the required
data is still on its way through the network.

Remark II: It is noted that in the fusion flow, each node
transmits only one TFC-signal, whereas in the diffusion flow,
a node has to transmit TFC-signals (and a single root
node will transmit TFC-signals). This will be exploited in
the next subsection to reduce the communication bandwidth.

B. Receiver Feedback Cancellation

In Section IV-B, it is explained how direct feedback can be
avoided by transmitter feedback cancellation. Although this is
an efficient strategy in point-to-point communication protocols,
TFC is very inefficient if the communication protocol allows
local broadcasting. A better strategy would then be to let a node
broadcast the same signal to all of its neighbors, and let the re-
ceiving nodes themselves remove their node-specific feedback

component. We will refer to this strategy as ‘receiver feedback
cancellation’ (RFC). The natural choice for the broadcast signal
would be to use the as defined in (12). A node that receives
the signal from node can then remove its own feedback
component,10 using

(27)

However, (12) and (27) are implicit definitions, and it is not
possible to compute the broadcast signals (12), , due
to causality issues. Indeed, the computation of the sample
based on (12) requires the samples , but
cannot be computed by node without the sample , which
results in a deadlock.

To resolve this deadlock, we have to combine TFC with RFC,
since the former is computable. To this end, we redefine the
signals , with an explicit definition based on the
TFC-signals:

(28)

where denotes the set of leaf nodes. We denote the signals
(on the left-hand side) as RFC-signals. By comparing (28) with
(17), we find that

(29)

If a receiving node would have access to the signals
and , and the parameters , then node itself can com-

pute the TFC-signal by using expression (29). Therefore,
some of the TFC-signals will have to be broadcast together with
the RFC-signals. The natural question is then how to organize
this. The answer straightforwardly follows from the decompo-
sition of the signal flow in a fusion and a diffusion flow, as ex-
plained in the previous subsection.

In the fusion flow, each node provides only one neighbor
with signal observations, i.e., its single neighbor in the deeper
shell. In this case, RFC cannot provide any benefit, and there-
fore TFC-signals are transmitted. In the diffusion flow on the
other hand, node will provide nodes with signal ob-
servations. In this case, however, a root node can compute ob-
servations of the RFC-signal according to (28), since it has
access to observations of all the signals on the right-hand side
(which are provided by the fusion flow). Node then broad-
casts observations of , and its neighbors in the outer shell can
extract observations of their node-specific TFC-signal from the
observations of , by using (29). A receiving node , can then
compute the observations of , similarly to (28), and broadcast
this to its neighbors in the next shell. This is illustrated
in Fig. 8 for a subgraph of the graph in Fig. 5.

When this RFC strategy is used, each node (except leaf nodes
and single root nodes) transmits observations of 2 signals; a
TFC-signal in the fusion flow and an RFC-signal in the diffu-
sion flow. Hence, the amount of data that a node transmits is
independent of the number of neighbors of that node.

10Here it is assumed that� is known at node �, which requires some minor
additional information exchange between nodes, assuming that the sampling
rate of the sensors is significantly larger than the update frequency of the esti-
mation parameter at the different nodes.
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Fig. 8. Illustration of the fusion flow (dashed line) and the diffusion flow
(dotted line) between nodes 1, 2, and 3 for broadcast communication in the
network depicted in Fig. 5.

VII. SIMULATIONS

In this section, we provide batch mode simulation results for
the – algorithm in networks with a tree topology.
The first experiment is performed based on the network depicted
in Fig. 5. The network contains 9 nodes , each having 10
sensors . The dimension of the latent signal subspace
defined by is . All three signals in are uniformly
distributed random processes on the interval from
which samples are generated. All sensor measure-
ments correspond to a random linear combination of the three
generated signals to which zero-mean white noise is added with
half the power of the signals in . The variables are ini-
tialized randomly, whereas the variables are initialized as
all-zero matrices. All MMSE cost functions are replaced by their
related least-squares (LS) cost functions, i.e., (for node )

(30)

The results are given in Fig. 9(a), showing the LS cost of
node 1 (above) and the summed LS cost of all the nodes (below)
versus the iteration index . Notice that one iteration corresponds
to the time needed for a node to estimate the statistics of its in-
puts and to calculate the new parameter setting. Three different
cases are simulated. In the first case, the network is assumed
to be fully connected, and the algorithm of [12] is ap-
plied where the updating order is round-robin. In the second and
third case, the network has the tree topology shown in Fig. 5 and
the – algorithm is applied. In case 2, the updating
order is , which
satisfies the condition of Theorem V.2, whereas in case 3 the
updating order is , i.e., round-robin, and so
the condition of Theorem V.2 is not satisfied.

Remarkably, the updating order yields a faster conver-
gence than at node 1, despite the fact that the update rate
of node 1 is higher in the latter. As mentioned already in
Section V-B, this holds for most of the nodes. If we only retain
the iteration indexes in , i.e., the iteration steps
in which node 1 updates its parameters, then the cost function

decreases monotonically for updating order , as indicated
by (42) in the proof of Theorem V.2. This does not hold in the
round-robin case.

In the second experiment, – is applied in a nine-
node network with a line topology, i.e., each node has exactly
two neighbors, except for the 2 leaf nodes. The results are shown
in Fig. 9(b). Here, we compare the updating order (round
robin) with , where the latter sat-
isfies the conditions of Theorem V.2. The difference in conver-
gence speed between updating order and is even more
significant in this case, where the latter converges much faster
than the round-robin updating order .

In both plots, it is observed that the LS cost function may
increase significantly, even after it nearly reached the optimal
level. This is due to the fact that the other nodes did not yet
achieve optimal estimation performance, yielding significant
changes in their estimation parameters. Since the estimators of
all the nodes are intertwined due to (20), these changes have
a significant effect on the local cost function at node 1, re-
sulting in an increase. However, after a couple of iterations, an
equilibrium state is reached where each node has optimal per-
formance. The reason why the cost remains almost constant
in the initial iterations, is due to the fact that node 1 chooses
small entries for in the first iteration, and therefore node 1
is basically cut off from the network until its next update.

VIII. CONCLUSION

In this paper, we have extended the algorithm, in-
troduced in [12] and [13] for a fully connected sensor network,
to the – algorithm which operates in a network with
a tree topology. It is argued that feedback is to be avoided, when
a straightforward modification of is applied in a net-
work that is not fully connected, since it harms the convergence
and optimality properties of the algorithm. Direct feedback can
be avoided easily, whereas indirect feedback is more difficult to
remove in a network topology that has cycles. A tree topology
is then a natural choice, since it has no cycles, for which the

– algorithm can subsequently be derived. A condi-
tion is given on the updating order of the nodes to guarantee
convergence to the optimal estimators. Simulations have shown
that the condition on the updating order of the nodes is sufficient
but not necessary, although convergence is faster if the condition
is satisfied.

Two different communication protocols have been consid-
ered, i.e., point-to-point transmission between node pairs and
local broadcasts. For both protocols it is possible to remove di-
rect feedback, and so from a theoretical point of view, there is
no true difference. However, the local broadcast communication
protocol is more efficient and scalable in terms of connectivity,
i.e., the amount of data that is transmitted is independent of the
number of neighbors at each node.

APPENDIX

A. Proof of Theorem V.2 (Convergence of – )

Before proving Theorem V.2, we first introduce some new
concepts and lemmas. We will consider a partitioning , which
is an ordered set of non-overlapping subsets of a set of nodes

. The first subset of a partitioning is referred to as the free
subset, whereas the other subsets are referred to as the con-
strained subsets.

Example: For a five-node network a possible partitioning is
. is the free subset, and and

are constrained subsets.
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Fig. 9. The LS cost of node 1 and summed LS cost versus the number of iterations (a) in the network depicted in Fig. 5 and (b) in a nine-node network with line
topology.

For a certain subset of nodes , let denote the stacked
version of all the ’s (see Section III) for which . As-
sume that the estimator is initialized with a certain matrix

. We consider an updating scheme that updates the values
in by a sequence of alternating optimizations11 (AO), de-
fined by a sequence of partitionings . In each step

of the AO sequence, MMSE optimization (6) is performed, but
with constraints added to the variables in the constrained sub-
sets of . In the th optimization step, the columns of
are constrained to the subspace defined by the columns of the
current values of , where is a constrained subset of .
For , the corresponding AO update step
is then

... (31)

where are matrices.
Example: the optimization in the AO-step defined by

is

11The AO used in this paper is different from the AO algorithms (a.k.a. non-
linear Gauss-Seidel algorithms) described in [21], [22] in which the optimiza-
tion is done over a subset of the variables, while other variables are fixed to their
current value. In this paper, the optimization in an AO step is performed over all
variables, but constraints are added to certain variables in an alternating fashion.

At first, we will consider the hypothetical case where all
sensor signal observations are available to all nodes, and a
node can compute any AO-step on its full unparametrized

. Later, we will consider the AO procedure that is related
to the actual network, by linking the sequence of partitionings

to the network topology. To analyze this AO
process, we will first analyze the convergence properties in a
two-node network where the AO steps of both nodes are linked,
based on the sensors to which each node has access. Based on
this results, we will prove the convergence of the –
algorithm by making a hierarchical decomposition of the entire
network into simpler two-node networks.

In the sequel, we will refer to the MSE cost function of node
, as given in (31), with . No-

tice that for any AO-step performed on :

(32)

and because the optimization problem (31) is strictly convex12:

(33)

Lemma A.1: Consider an arbitrary AO sequence de-
fined by a sequence of partitionings with

. This AO sequence is simultaneously
applied to the cost function of node to update
and to the cost function of node to update .
Assume that the two initial centralized estimators and
are related through ,

where is a non-singular matrix. If (1) is satisfied,
then the following holds for any :

(34)

with .
Proof: See Appendix B.

12Strict convexity is satisfied if the sensor measurements � are not perfectly
correlated, which is always satisfied in practice due to sensor noise.



BERTRAND AND MOONEN: DANSE IN WIRELESS SENSOR NETWORKS WITH A TREE TOPOLOGY 2207

Fig. 10. The hypothetical two-node network for the edge (3, 4) in the network
depicted in Fig. 5.

Lemma A.1 shows that all the (centralized) AO-steps at the
different nodes (minimizing different cost functions) result in

’s that have the same -dimensional column subspace, if
they are initialized properly.

In a network with a tree topology, there always exists a unique
graph cut that cuts the edge between two neighboring
nodes and , and no other edges. This cut partitions the graph
in two complementary sets of nodes: denotes the one that
contains node , and denotes the one that contains node .

Consider a hypothetical two-node network with nodes and
, where node has access to the sensor signal observations

and node has access to the sensor signal observations
, where and denote the stacked version of all

for which and , respectively. We now
parametrize a subset of and as follows:

(35)

(36)

It is assumed that node has access to the variables
and , and that node has access to the variables
and , as it is the case in the algorithm with
parametrization (9).

Example: Consider the network in Fig. 5. Let and
, then and , and

the two-node network corresponding to (35)–(36) is shown in
Fig. 10.

The parametrization of the hypothetical two-node network as
described above corresponds to partitionings that satisfy a
specific form. Indeed, node can never freely manipulate the
variables in , and therefore any AO-step performed by
node must have partitionings of the form

(37)

Expression (37) implies that, during any optimization step at
node , the search space of the variables in is con-
strained to the current column space of , which is due to
(35) and the fact that node can only change through

. Similarly, an AO-step performed by node must have par-
titionings of the form , which is also given by (37) (by
switching and ). It is noted that, even though it is assumed
that node can directly manipulate all entries in , we
do not assume that . The set can be

divided in a free subset together with one or more constrained
subsets. The latter can even be merged with .

Example: Consider the network in Fig. 5. Let
and , then a possible partitioning is

. Notice that is a
subset of one of the constrained subsets of , as defined by
(37).

We will consider AO sequences that are computed by the two
nodes in this hypothetical network as follows. If the partitioning
is of the form , then the AO step (31) is performed by
node where the optimization is with respect to cost function

. This node has direct access to the vector ,
although it may also be constrained by other constrained sets
in . The variables in are parameterized as in (35)
and manipulated through the matrix. Similarly, if the parti-
tioning is of the form node will optimize its parameters

and with respect to cost function . It is
noted that, due to (35)–(36), an update of also changes

and an update of changes .
Lemma A.2: Consider a network with tree topology, and

consider the hypothetical two-node network defined by the
edge as explained above, with the corresponding linked
parametrization of and as defined by (35)–(36).
Consider an AO sequence of steps defined by a sequence
of partitionings , where the
first and last AO step are performed by node and the others
by node . Assume that in the first and last AO step, the set
is a constrained subset as such, without additional nodes. If (1)
is satisfied, then the resulting will be the same as if node
had access to all sensor signal observations and performed all
optimizations in the AO sequence by itself with respect to its
own cost function .

Proof: This lemma is a straightforward consequence of
Lemma A.1, which shows that any that results from an AO
sequence with respect to , is the same as that results
from the same AO sequence with respect to , except
for a transformation by the matrix . The latter can be com-
pensated by the ’s in parametrization (35)–(36). Since node
performs the last AO step, and since is a constrained subset,

indeed compensates for this transformation with respect to
. Since is a constrained subset in the initial AO step,

the assumption in Lemma A.1 on the initialization of the param-
eters is automatically satisfied by the parametrization (35)–(36).

We now define a one-to-one correspondence between a node
and a partitioning as follows:

(38)

with denoting the set containing all the sets for which
.

Example: In the case of the network depicted in Fig. 5, we
have that .

The correspondence (38) defines another correspondence be-
tween a path over edges through the network, and an

-step AO procedure defined by the sequence of partitionings

(39)

In the sequel, we assume that , is parametrized
according to (20), and that the AO step with partitioning of the
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form (38) is applied to the cost function . Notice that an
update of node by the – algorithm is equivalent to
such an AO step. Indeed, the update of and is defined
by a constrained optimization over the variables in , where

are unconstrained variables (free subset) and where the ma-
trix is used to manipulate the constrained variables in the
constrainedsubsetsof(38).The – algorithmthusper-
forms the AO sequence based on the sequence of partitioning de-
fined by (39), in which the actual cost function and optimization
variables change along with the corresponding node that is actu-
ally updating. It is noted that, even though an AO step at node
is defined on the variable , the resulting update of and

has an indirect influence on the other variables with
, since they are linked through parametrization (20).

Lemma A.3: Consider a network with a tree topology and
a path through this network with length , that
never passes through node , except at the start and at the
end. Consider the – updating sequence equiva-
lent to the -step AO sequence defined by the partitionings

. If (1) is satisfied, then the resulting
, parameterized by (20), will be the same as if node

had access to all sensor signal observations and performed all
optimizations in the AO sequence by itself with respect to its
own cost function .

Proof: This lemma can be proven by recursively applying
Lemma A.2 on the different edges that are visited in the path

. Let be the second node that is visited in the path ,
then . Notice that the new path again
starts and ends with the same edge. This is a consequence of the
fact that the network has a tree topology. Since the path
eventually returns to node through the edge (k,q), Lemma
A.2 can be applied at this edge, in which
and . Indeed, and both
contain as a constrained subset, and the partitionings in

all contain in one of their constrained
subset. This can then be viewed as a hypothetical two-node
network in which node performs the AO sequence defined by

, assuming that node has access to all sensor
signal observations in . Lemma A.2 then states
that the resulting is the same as if node performed the
whole AO sequence defined by by itself.

Obviously, node does not have direct access to all sensor
signal observations in and cannot perform the
AO sequence . However, since the new path

also starts and ends with the same edge, we can again
apply Lemma A.2 on the edge between node and the node
that is visited third in the path . This line of thought can be
continued further until the problem has been recursively decom-
posed into a hierarchy of two-node networks. Applying Lemma
A.2 backwards on all these recursive problems proves the the-
orem.

Lemma A.4: Under the same assumptions of Lemma A.3,
the following holds:

(40)

where is the neighboring node of that is visited first and last
but one in the path .

Proof: Assume hypothetically that node performs all the
updates of the AO sequence defined by the path , on its

own cost function . Since , and
because of (32), we find that

. The latter, combined with (33), yields

(41)

Keep in mind that (41) only holds if node itself would perform
all the AO steps, which is not the case. However, since
starts and ends in node , the first and last AO step are performed
by node itself, and Lemma A.3 then explains that and
are equal to the result we would obtain if node performed all
updates by itself. Therefore, (41) does indeed hold for ,
which proves the first part of the right-hand side of (40).

If node would perform all the updates of the AO sequence
defined by the path , on its own cost function ,
then (41) and Lemma A.1 would imply that

. Since node is the second to last node that is
updated, the latter does indeed hold for (implied by
Lemma A.3). Therefore, , and since is not
updated in the last step of the AO sequence,

. The fact that can be proven with a similar
argument.

We can now prove the main theorem:
Proof of Theorem V.2: Consider the node , i.e.,

the first node that is updated by the – algorithm.
Consider the infinite path , i.e., the periodic
extension of path , that defines the updating order of the

– algorithm. Path can be split into a sequence of
subpaths that all satisfy the conditions in Lemma
A.3. This lemma shows that, every time node is updated, the
result is as if node performed all optimizations in the AO
sequence with respect to its own cost function , even though
the AO updates are performed by different nodes with respect
to different cost functions. With (32), we therefore find that

(42)

where the subsequence corresponds to the
iteration indices at which node updates the entries in
and . By using a similar reasoning, it can be shown
that expression (42) holds for any node . This shows that all

sequences , are decreasing sequences,
and since they have a lower bound, they converge. It can

be shown that convergence of the sequence
, implies convergence of the sequences

and , by applying Lemma A.4 to each

subpath of the form . This proves

convergence of the – algorithm.
Notice that, from Lemma A.4, it follows that

(43)

and therefore, for any and , since
, for any , and . Parametrization (20) then shows that

(44)

which satisfies the mutual property of the MMSE solutions
given by (10). With this, we can show that

, by using the same arguments as in the optimality
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proof for the algorithm in a fully connected network,
as given in [12]. It is therefore omitted here.

B. Proof of Lemma A.1

Proof: We will prove the following induction hypothesis:

(45)

with denoting the set of non-singular complex
valued matrices. The left-hand side of (45) states that
any has the same column space as . This implies

that the search space for and is the same in the th
optimization step.

For notational convenience, we omit the superscript in
and the subscript in . By substituting the constraints of (31)
in the cost function, we obtain the unconstrained optimization
problem:

(46)

with

...
(47)

where and denote the stacked vector of all for which
and , respectively. The solution of(46) is

(48)

with and . Con-
sider the optimization problem (46) for another node , i.e.,

. The solution of this optimization
problem is

(49)

If the left-hand side of (45) is satisfied, then we can write

(50)

with a block diagonal matrix defined by
, where denotes an identity

matrix of appropriate dimensions. From (1) and (50) we find
the following relations between correlation matrices:

(51)

with . Comparison of (48) and (49), together
with (51), yields

(52)

By comparing the left-hand side and the right-hand side of (52),
we find that

(53)

(54)

which proves the induction hypothesis (45). Notice that

(55)

i.e., if the right-hand side of (45) holds for , then the
left-hand side of (45) holds for . With (45) and (55),
and since the left-hand side of (45) is satisfied for , the
lemma is proven by induction.
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