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Abstract

In this correspondence, we address the problem of error propagation inherent in the VBLAST detection

process. To this end, two improved VBLAST schemes are proposed. The first one replaces hard decision with soft

decision; whereas the other also utilizes soft symbol estimate, but in the meantime exploits the noncircular nature

of the residual co-antenna interference (CAI) and noise, it involves refining the error criterion and nulling filter.

Simulation results show that both schemes outperform their conventional counterpart, and utilization of noncircular

CAI significantly alleviates the error propagation problem and improves the performance of the VBLAST detection.

I. INTRODUCTION

The next generation wireless communication systems call for advanced signal processing techniques to support

ever-increasing data rates. Multiple-input-multiple-output (MIMO) systems provide an effective means of achieving

high data rate transmission without increasing the total transmission power or bandwidth for wireless systems [1].

Spatial division multiplexing (SDM) systems achieve high data rate transmission by transmitting multiple sub-

streams simultaneously from multiple transmit antennas. The receiver also has a multiple-antenna architecture

to detect spatially multiplexed substreams. For such SDM systems, maximum likelihood (ML) detection has a

prohibitive complexity which grows exponentially with the number of antennas and the signal constellation size.

The V-BLAST detection technique [2]–[4] offers a good tradeoff between performance and complexity. It uses

a combination of linear and nonlinear detection techniques: first nulling out the interference from undetected

signals, then canceling out the interference using already detected signals. However, the V-BLAST scheme suffers

from the error propagation inherent in the decision feedback process. To tackle this problem, we can replicate

the co-antenna intereference (CAI) components using the log-likelihood ratio (LLR) of the interfering signals and
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subtract the soft replica from the received composite-signal vector [5]. Some efficient and fast implementations

of the V-BLAST algorithm have been introduced in [6], [7]. In order to approach the near-optimal performance,

this successive interference cancellation (SIC) based detection scheme is complemented by maximum likelihood

detection in [8] as well as lattice and list reduction scheme in [9]. An improved Turbo-MIMO detection scheme

using soft-input, soft-output, and soft-feedback is presented in [10], where the authors propose to make the symbol

decision by minimizing the power of the interference plus noise, given a priori probabilities of undetected layer

symbols and a posteriori probabilities of past detected layer symbols.

In this correspondence, we show that the performance of the VBLAST detection can be optimized by modifying

the error function after subtracting the CAI using their soft symbol estimates, a refined nulling filter is then applied

to remove the residual interference. The noncircular property of the residual CAI and noise is exploited in order

to improved performance of VBLAST detection. The remainder of this paper is organized as follows. The system

model is described and the conventional VBLAST detection scheme is briefly reviewed in Section II. Two variants

of improved VBLAST schemes are proposed in Section III and Section IV, respectivey. Numerical results are

presented in Section V to compare the performance of different techniques. Finally, conclusions are drawn in

Section VI.

The following notations are used: (·)T denotes matrix transpose, (·)H matrix conjugate transpose, (·)∗ matrix

conjugate, E[·] expectation, and IN an N × N identity matrix.

II. SYSTEM MODEL

We consider a MIMO system with N transmit antennas and M receive antennas. First, a binary input bit

sequence is mapped to a complex valued symbol sequence d = [d1, d2, . . . , dN ]T , where each element is selected

from a finite set or constellation alphabet and transmitted by different antenna. The received signal can be expressed

as

r = Hd + u =
N∑

n=1

(H)ndn + u ∈ C
M×1, (1)

where r =
[

r1 r2 . . . rM

]T
is the received signal vector; u =

[

u1 u2 . . . uM

]T
denotes the complex

additive white Gaussian noise vector with zero mean and covariance matrix σ2
uIM . The channel matrix H ∈ C

M×N

contains the complex channel gains, and can be formed as H =











H11 H12 . . . H1N

H21 H22 . . . H2N

...
...

. . .
...

HM1 HM2 . . . HMN











, where Hpq is the

complex channel gain between the pth receive antenna and the qth transmit antenna. The data symbols are assumed

to be uncorrelated and have zero mean and unit energy, i.e., E[ddH] = IN . The vector (H)n is the nth column

of H.
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Let the ordered set S ≡ {k1, k2, . . . , kN} be a permutation of the integer 1, 2, . . . , N specifying the order in

which components of the transmitted symbol vector d are detected. The conventional VBLAST detection algorithm

can be summarized as follows

ki = arg min
j /∈{k1,...,ki−1}

‖(Gi)j‖2

ri = ri−1 − d̂ki−1
(H)ki−1

(2)

Gi = (HH
ki−1

Hki−1
+ σ2

uI)
−1HH

ki−1

wki
= [Gi]ki

yki
= wH

ki
ri

d̂ki
= Q(yki

)

i = i + 1 (3)

where Q(·) denotes the slicing operation appropriate for the constellation in use; [Gi]j is the jth row of Gi;

Hki−1
denotes the matrix obtained by zeroing columns k1, k2, . . . , ki−1 of H. The above recursive procedure is

initialized with r1 = r and G1 = (HHH+ σ2
uI)

−1HH. Note that the algorithm expressed by (3) is the minimum

mean square error (MMSE) variant of the original VBLAST algorithm proposed in [3], [4].

III. VBLAST SCHEME USING SOFT SYMBOL ESTIMATE

We now derive an improved VBLAST scheme by replacing the hard decision in (2) with soft symbol estimate

in order to mitigate the effect of error propagation, i.e.,

ri = ri−1 − d̄ki−1
(H)ki−1

, (4)

where d̄ki−1
is the soft estimate of dki−1

. In order to further suppress the residual interference in ri, a nulling

filter mi is applied to ri, to obtain

zi = mH
i ri, (5)

where mi ∈ C
M×1 is chosen by minimizing E{|mH

i ri − dki
|2} under the MMSE criterion. It can be derived as

mi =





ki−1∑

j=k1

(H)j(H)Hj var(dkj
) +

kN∑

j=ki

(H)j(H)Hj + σ2
uIM





−1

(H)ki
, (6)

where

var(dkj
) = E[|dkj

− d̄kj
|2 = E[|dkj

|2] − |d̄kj
|2;

E[|dkj
|2] =

q−1
∑

m=0

|sm|2Pr(dkj
= sm);

d̄kj
=

q−1
∑

m=0

smPr(dkj
= sm). (7)



4

In (7), q denotes the modulation level, sm is the mth symbol in the signal constellation. In what follows, we

use QPSK and 16-QAM systems as examples to demonstrate how d̄kj
can be derived in order to carry out the

iterative process.

The nulling filter output can be expressed as zi = mH
i ri = µidki

+ ξi, where the combined noise and residual

interference ξi can be approximated as a Gaussian random variable [12], [13], i.e., ξi ∼ CN (0, Nξ). The parameters

µi, Nξ can be determined as

µi = E{zid
∗
i } = mH

i E[rid
∗
ki

] = mH
i Crd = mH

i (H)ki

Nξ = E[|ξi|2] = E[|zi − µidi|2] = E{|zi|2} − µ2
i = µi(1 − µi). (8)

After computing the values of µi and Nξ, the conditional probability density function (PDF) of the filter output

can be obtained as

f(zi|dki
= sm) =

1

πNξ
exp







−|zi − µism|2

Nξ
︸ ︷︷ ︸

p(sm)








,

In QPSK systems, each symbol dki
corresponds to two information bits, denoted as b0

ki
and b1

ki
. The soft

estimate of dki
is computed according to its LLR value as

d̄ki
= tanh[λ(b0

ki
)/2]/

√
2 + j tanh[λ(b1

ki
)/2]/

√
2, (9)

where λ(b0
ki

) and λ(b1
ki

) are the log-likelihood ratio (LLR) for b0
ki

and b1
ki

, respectively. The former can be

computed as

λ(b0
ki

) = ln
f(zi|b0

ki
= 1)

f(zi|b0
ki

= 0)
= ln

f(zi|dki
= s3) + f(zi|dki

= s4)

f(zi|dki
= s1) + f(zi|dki

= s2)

≈ ln
exp(−|zi − µid

+
ki
|2/Nξ)

exp(−|zi − µid
−
ki
|2/Nξ)

=
1

Nξ
{|zi − µid

−
ki
|2 − |zi − µid

+
ki
|2}

=
2

1 − µi
Re{d+∗

ki
zi − d−∗

ki
zi}, (10)

where d+
ki

denotes the QPSK symbol corresponding to max{p(s3), p(s4)}, and d−ki
denotes the QPSK symbol

corresponding to max{p(s1), p(s2)}, since the real part of the symbols s3, s4 corresponds to 1, and the real part

of the symbols s1, s2 corresponds to 0 as shown in Fig. 1.

The LLR value for the second information bit b1
ki

can be obtained in a similar manner.

For the 16-QAM constellation shown in Fig. 2, each symbol dki
is associated with four bits b0

ki
, b1

ki
, b2

ki
, b3

ki
,

their LLR values of can be obtained as

λ(b0
ki

) = ln
f(zi|b0

ki
= 1)

f(zi|b0
ki

= 0)
= ln

∑

s∈(c2,c3)
f(zi|dki

)
∑

s∈(c0,c1)
f(zi|dki

)
; λ(b1

ki
) = ln

f(zi|b1
ki

= 1)

f(zi|b1
ki

= 0)
= ln

∑

s∈(c0,c3)
f(zi|dki

)
∑

s∈(c1,c2)
f(zi|dki

)
;

λ(b2
ki

) = ln
f(zi|b2

ki
= 1)

f(zi|b2
ki

= 0)
= ln

∑

s∈(r0,r1)
f(zi|dki

)
∑

s∈(r2,r3)
f(zi|dki

)
; λ(b3

ki
) = ln

f(zi|b3
ki

= 1)

f(zi|b3
ki

= 0)
= ln

∑

s∈(r0,r3)
f(zi|dki

)
∑

s∈(r1,r2)
f(zi|dki

)
,

(11)
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Fig. 1. QPSK constellation and bit-to-symbol mapping.
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Fig. 2. 16-QAM constellation and bit-to-symbol mapping.

where s ∈ (ri), s ∈ (cj) denotes the symbols that lie in the ith row and the jth column of the signal constellation,

respectively. The above equations hold due to the symbol-to-bit mapping shown in Fig. 2. For example, f(zi|b0
ki

=

0) =
∑

s∈(c0,c1)
f(zi|dki

) since the first bit is 0 for all the symbols located at the first and second columns of the

constellation.

Utilizing the fact that one term usually dominates each sum, λ(b0
ki

; O) can be approximated as

λ(b0
ki

; O) ≈ ln
exp

(
−|zi − µis+|2/Nξ

)

exp (−|zi − µis−|2/Nξ)
=

1

Nξ

{
|zi − µis−|2 − |zi − µis+|2

}

=
1

µi
Re

{
[2(s+)∗zi − µi|d+|2] − [2(d−)∗zi − µi|d−|2]

}
(12)
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where s+ denotes the symbol corresponding to

max{p(s9), p(s10), p(s11), p(s12), p(s13), p(s14), p(s15), p(s16)},

and s− denotes the symbol corresponding to

max{p(s1), p(s2), p(s3), p(s4), p(s5), p(s6), p(s7), p(s8)}.

The other LLR values λ(b1
ki

), λ(b2
ki

), λ(b3
ki

) can be derived similarly. Note that a further approximation method

for deriving soft output was proposed for square M-QAM constellation in [11].

According to the symbol-to-bit mapping shown in Fig. 2, we have

Pr(dki
= s1) = Pr(b

0
ki

= 0) · Pr(b
1
ki

= 0) · Pr(b
2
ki

= 0) · Pr(b
3
ki

= 0)

Pr(dki
= s2) = Pr(b

0
ki

= 0) · Pr(b
1
ki

= 0) · Pr(b
2
ki

= 0) · Pr(b
3
ki

= 1)

...

Pr(dki
= s16) = Pr(b

0
ki

= 1) · Pr(b
1
ki

= 1) · Pr(b
2
ki

= 1) · Pr(b
3
ki

= 1), (13)

where

Pr(b
p
ki

= 1) =
eλ(bp

ki
)

1 + eλ(bp

ki
)
; Pr(b

p
ki

= 0) =
1

1 + eλ(bp

ki
)
. (14)

With the a priori probability of each symbol Pr(dki
= sj), the soft estimate d̄ki

in (4) can be calculated by (7).

In what follows, we show an alternative implementation of the VBLAST algorithm utilizing soft symbol estimate

but without nulling filter. Recall that Eq. (4) can be expanded as

ri = dki
(H)i +

ki−1∑

j=k1

(dkj
− d̄kj

)(H)j +

kN∑

j=ki+1

dkj
(H)j + u

︸ ︷︷ ︸

wi

,

where the first term is the desired signal, the last three terms are the combined interference and noise denoted by

wi. The elements of wi are assumed to be zero mean Gaussian random variables. Let Mi denote the covariance

matrix of wi, it can be easily shown that

Mi =

ki−1∑

j=k1

(H)j(H)Hj var(dkj
) +

kN∑

j=ki+1

(H)j(H)Hj + σ2
uIM .

The conditional PDF of ri can thus be derived as

f(ri|dki
= sm) =

1

2π
√

detMi
exp






−1

2
(ri − sm(H)i)

HM−1
i (ri − sm(H)i)

︸ ︷︷ ︸

g(sm)







.

In the case of QPSK modulation, the LLR value of b0
ki

can be computed as

λ(b0
ki

) = ln
f(ri|b0

ki
= 1)

f(ri|b0
ki

= 1)
≈ ln

exp[−1
2(ri − s+(H)i)

HM−1
i (ri − s+(H)i)]

exp[−1
2(ri − s−(H)i)HM−1

i (ri − s−(H)i)]

=
1

2
(ri − s−(H)i)

HM−1
i (ri − s−(H)i) −

1

2
(ri − s+(H)i)

HM−1
i (ri − s+(H)i), (15)
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where s+ denotes the symbol dki
corresponding to max{g(s3), g(s4)}; while s− denotes the symbol dki

corre-

sponding to max{g(s1), g(s2)}. The LLR value for the second information bit b1
ki

in the QPSK system as well

as LLRs for the 16QAM system can be obtained in a similar manner.

IV. VBLAST SCHEME UTILIZING COMPLETE SECOND-ORDER STATISTICS

For a complex random vector ri, its second-order statistics are completely characterized by its autocorrelation

matrix Crr = E[rir
H
i ] as well as its pseudo-autocorrelation matrix C̃rr = E[rir

T
i ]. Most existing receiver

algorithms only use the information contained in the autocorrelation function of the observed signal. The pseudo-

autocorrelation matrix C̃rr is usually not considered and is implicitly assumed to be zero. While this is the

optimum strategy when dealing with circular complex random processes, i.e., when C̃rr = 0, it turns out to be

sub-optimum in situations where the transmitted signals and/or interference are noncircular random processes, i.e.,

when C̃rr 6= 0. As we demonstrated in [14], the condition of the signal subspace can be improved by exploiting

the information contained in the pseudo-autocorrelation matrix. It was also shown in [15] that the performance

of the blind multiuser detectors can be improved by utilizing C̃rr in the presence of noncircular narrow-band

interference (NBI).

In the sequel, we show how C̃rr can be incorporated into the VBLAST detection scheme to optimize the system

performance. To this end, let us define

zi = w
H
i yi, (16)

and refine error criterion as εi = zi − dki
= w

H
i yi − dki

, where yi =
[

(ri)
T (r∗i )

T
]T

. According to the

orthogonality principle [16], the mean-square value of the estimation error εi is only minimal, if it is orthogonal

to the observation vector yi, i.e.,

E[yiε
∗
i ] = E[yi(w

H
i yi − dki

)H] = 0,

leading to the solution for the new nulling fiter

wi = C−1
yyCyd, (17)

where

Cyy = E{yiy
H
i } = E










ri

r∗i





[

rHi rTi

]






=




Crr C̃rr

C̃∗
rr C∗

rr



 ,

Cyd = E{yid
∗
ki
} = E










ri

r∗i



 d∗ki






=




Crd

C̃∗
rd



 =




(H)ki

0



 . (18)
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The matrix C̃∗
rd = 0 since E[(dki

− d̄ki
)∗d∗kn

] = 0 if ki 6= kn; and E[d∗ki
d∗ki

] = 0 for complex signal constellations.

The autocorrelation matrix Crr and the pseudo-autocorrelation matrix C̃rr can be computed as

Crr =

ki−1∑

j=k1

(H)j(H)Hj var(dkj
) +

kN∑

j=ki

(H)j(H)Hj + σ2
uIM ;

C̃rr =

ki−1∑

j=k1

(H)j(H)Tj Lkj
, (19)

where

Lkj
= E[(dkj

− d̄kj
)2] = E[d2

kj ,I ] − E[d2
kj ,Q] + d̄2

kj ,Q − d̄2
kj ,I , (20)

and

E[d2
ki,I ] =

q−1
∑

m=0

s2
m,IPr(dki

= sm);

E[d2
ki,Q] =

q−1
∑

m=0

s2
m,QPr(dki

= sm). (21)

In (20) and (21), dkj ,I , dkj ,Q are the real and imaginary parts of dkj
; sm,I sm,Q are the real and imaginary

parts of sm, respectively. Let us denote a complex symbol x = xI + jxQ, and x̄ = x̄I + jx̄Q, where x̄ = E[x].

Eq. (20) holds since

E[(x − x̄)2] = E[x2] − x̄2 = E[x2
I + 2jxIxQ − x2

Q] − x̄2
I − 2jx̄I x̄Q + x̄2

Q

= E[x2
I ] − E[x2

Q] + x̄2
Q − x̄2

I .

Note that for the VBLAST detector introduced in the previous section, the nulling filter mi in (6) is calculated

using only the autocorrelation matrix Crr = E[rir
H
i ] =

∑ki−1

j=k1
(H)j(H)Hj var(dkj

) +
∑kN

j=ki
(H)j(H)Hj + σ2

uIM ,

i.e., mi = C−1
rr Crd, leading to the sub-optimum solution, which will be verified by the simulation results shown

in Section V.

The refined nulling filter output can be expressed as zi = w
H
i yi = µidki

+ νid
∗
ki

+ ηi, where the combined

noise and residual interference ηi can be approximated as a Gaussian random variable. Next, we derive the LLR

values for QPSK and 16-QAM systems based on the assumption that the interference-plus-noise term ηi at the

output of the nulling filter is also a noncircular random process. The parameters µi, νi, Nη can be computed as

µi = E{zid
∗
ki
} = w

H
i E[yid

∗
ki

] = w
H
i Cyd = w

H
i




(H)ki

0





νi = E{zidki
} = w

H
i E[yidki

] = w
H
i C̃yd = w

H
i




0

(H)∗ki





Nη = E[|ηi|2] = E[|zi − µidki
− νid

∗
ki
|2]

= E{|zi|2} − |µi|2 − |νi|2 = µ∗
i − |µi|2 − |νi|2. (22)
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The above equation holds since zi = w
H
i yi and wi = C−1

yyCyd. Therefore,

E{|zi|2} = E{wH
i yiy

H
i wi} = w

H
i Cyywi = CH

ydC
−1
yyCyywi = CH

ydwi = µ∗
i .

In the derivation of the proposed scheme, we take into account the noncircular nature of ηi, and utilize the fact

that Ñη = E[η2
i ] 6= 0, which can be computed as

Ñη = E[η2] = E[(zi − µidki
− νid

∗
ki

)2] = E[(zi − µidki
− νid

∗
ki

)(zi − µidki
− νid

∗
ki

)]

= E{z2
i } − 2µiνi = E{wH

i yiy
T
i w

∗
i } − 2µiνi = w

H
i C̃yyw

∗
i − 2µiνi. (23)

Eq. (23) follows from the fact that w
H
i y = yT

i w
∗
i , and

E{z2
i } = E{wH

i yiy
T
i w

∗
i } = w

H
i E{yiy

T
i }w∗

i = w
H
i C̃yyw

∗
i ,

where

C̃yy = E{yiy
T
i } = E










ri

r∗i





[

rTi rHi

]






=




C̃rr Crr

C∗
rr C̃∗

rr



 .

Let us denote zi = zi,I + jzi,Q, µi = µi,I + jµi,Q, νi = νi,I + jνi,Q, dki
= dki,I + jdki,Q, and ηi = ηi,I + jηi,Q.

The filter output zi = µidki
+ νid

∗
ki

+ ηi can be reformed as



zi,I

zi,Q





︸ ︷︷ ︸

zi

=




(µi + νi,I)dii,I + νi,Qdki,Q

(µi − νi,I)dki,Q + νi,Qdki,I





︸ ︷︷ ︸

dki

+




ηi,I

ηi,Q





︸ ︷︷ ︸

ηi

(24)

Since the probability distribution of a complex random variable or vector is a joint distribution of its real and

imaginary part, we have

f(zi|dki
= sm) = f(zi|dki

= sm) =
1

2π
√

detΣi
exp






−1

2
(zi − dki

)HΣ−1
i (zki

− dki
)

︸ ︷︷ ︸

h(sm)







(25)

where dki
is formed according to (24) given that dki

= sm, and the covariance matrix of the Gaussian noise is

Σi = E[ηiη
H
i ]. Define the mapping matrix as J = 1√

2




1 j

1 −j



, which is an unitary matrix since JJH = JHJ = I,

and J−1 = JH. We have

JΣiJ
H = JE[ηiη

H
i ]JH = E[(Jηi)(Jηi)

H] =
1

2
E[εiε

H
i ] =

1

2
Φi, (26)

where εi =




ηi

η∗i



, and

Φi = E[εiε
H
i ] = E










ηi

η∗i





[

η∗i ηi

]






= E










ηiη

∗
i ηiηi

η∗i η
∗
i η∗i ηi










=




Nη Ñη

Ñ∗
η Nη



 (27)
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COMPLEXITY FOR ONE SYMBOL ESTIMATE FOR THE ALGORITHMS CONSIDERED.

operations ÷ × +/− tanh

VBLAST-I 2N2
4N3

+ 2N2
+ N 4N3 0

VBLAST-II 4N2
6N3

+ 2N2
+ 7N 6N3

2

VBLAST-III 10N2
+ 4 20N3

+ 10N2
+ 11N + 70 20N3

+ 8N2
+ 3N + 47 2

From (26), we have Σi = 1
2J

HΦiJ, and Σ−1
i = 2JHΦ−1

n J. The PDF in (25) can thus be reformed as

f(zi|dki
) =

1

2π
√

detΣi
exp[−(zi − dki

)HJHΦ−1
i J(zi − dki

)].

In the case of QPSK modulation, the LLR value of b0
ki

can be computed as

λ(b0
ki

) = ln
f(zi|b0

ki
= 1)

f(zi|b0
ki

= 0)
= ln

f(zi|dki,I = +1/
√

2)

f(zi|dki,I = −1/
√

2)
≈ ln

exp[−(zi − d+)HJHΦ−1
i J(zi − d+)]

exp[−(zi − d−)HJHΦ−1
i J(zi − d−)]

= (zi − d−)HJHΦ−1
i J(zi − d−) − (zi − d+)HJHΦ−1

i J(zi − d+), (28)

where d+ denotes the vector dki
corresponding to max{h(s3), h(s4)} and d− denotes the vector dki

corresponding

to max{h(s1), h(s2)}.

The LLR value for λ(b1
ki

) can be derived similarly. Then we use Equ. (9) to convert LLRs to soft symbol

estimate d̄ki
, which is needed for the interference cancellation at the next iteration.

In the LLR calculation for the bit b0
ki

in the 16-QAM system, d+ denotes the vector dki
corresponding to

max{h(s9), h(s10), h(s11), h(s12), h(s13), h(s14), h(s15), h(s16)},

and d− denotes the vector dki
corresponding to

max{h(s1), h(s2), h(s3), h(s4), h(s5), h(s6), h(s7), h(s8)}.

The LLR values for other bits b1
ki

, b2
ki

, b3
ki

can be derived similarly. Then we use Equations (7), (13), and (14)

to convert LLRs to soft symbol estimate d̄ki
.

Table I shows the complexity comparison among different VBLAST detectors including:

1) VBLAST I – the conventional VBLAST expressed by (3).

2) VBLAST II – the improved detector using soft symbol estimate and nulling filter (introduced in Sec. III).

zi is derived using (5); mi is derived using (6); LLRs are derived using (10) and (12).

3) VBLAST III – the improved detector with refined error criterion and nulling filter (introduced in Sec. IV).

zi is derived using (16); wi is derived using (17); LLRs are derived using (28).

The comparison is made for an N ×N MIMO configuration. The table shows the required number of complex

operations including divisions, multiplications, and additions/subtractions for each symbol estimate. It can be

seen from the table that the proposed schemes (especially the VBLAST-III) have a higher complexity than the
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Fig. 3. Comparison of different VBLAST schemes in 4 × 4 QPSK systems.

conventional scheme. However, the complexity of all the detectors is of the same order, which is cubic in the

number of antennas. As will become evident in the next section, the complexity increase by the proposed VBLAST

detectors is largely compensated by the significant performance improvements.

V. NUMERICAL RESULTS

Different VBLAST schemes are evaluated and compared through computer simulations. We assume an uncorre-

lated Rayleigh fading channel between each pair of transmit and receive antennas, and the channel is known to the

receiver. The channel coefficients are normalized such that the average channel gain for each transmitted symbol is

equal to unity. Fig. 3 shows the performance comparison of different VBLAST detectors in 4× 4 QPSK systems.

It can be seen from the figure that the improved detector VBLAST II outperforms the conventional detector

VBLAST I. The conventional V-BLAST detector suffers from the error propagation problem, inaccurate replica

miss-cancels the interference and errors would be propagated into the following interference cancellation stages.

The VBLAST II detector alleviates this problem by using soft estimates of the CAI components for cancellation,

while the VBLAST III detector further improves the performance by utilizing the complete second-order statistics,

the performance advantage can be up to 2 dB compared to the conventional VBLAST detector. The gain is smaller

at low SNRs due to the dominance of the circular channel noise. As SNR increases, the performance gain by the

proposed detector becomes larger since it benefits more from the exploiting the noncircularity of the interference.

Fig. 3 also shows the near maximum likelihood performance obtained by the sphere decoding (SD), which

performs a depth-first metric-constrained tree search on a triangular decomposition of the channel matrix [17].

The SD simulated here makes use of the Schnorr-Euchner enumeration [17], resulting in a lower complexity of the
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original SD. The initial radius in the SD is set to ∞ and reduced every time the tree search obtains a full-length

path satisfying the metric constraint. It is evident from the figure that the peformance of the VBLAST I scheme

is far away from the performance bound indicated by the SD curve, while the VBLAST III scheme brings the

system closer to the bound by 2 dB as a result of alleviating the error propagation problem. It should be noted

that the near-optimum performance produced by the SD comes at the cost of a high computational complexity

which grows exponentially with block sizes and constellation orders [18].

In Fig. 4, we compare the performance of two implementations of VBLAST II algorithm: one with nulling

filter (VBLAST-II-1); the other without nulling filtering (VBLAST-II-2). One can see from the figure that the

detector with nulling filter performs slightly better than the one without, meaning that the nulling filter further

suppresses the residual interference. Therefore, we only consider VBLAST-II-1 in the performance comparison

conducted in this section.

Different VBLAST schemes with 16-QAM are examined in Figs. 5 and 6 for 4×4 and 8×8 systems, respectively.

In the former case, the performance of the VBLAST II detector is almost identical to the conventional VBLAST

detector, meaning that 16-QAM systems are more prone to error propagation problem, which cannot be effectively

tackled just by replacing hard decision with soft symbol estimate. Fig. 5 also shows that the VBLAST-III detector

performs significantly better than the others, which indicates that we need to use both soft symbol estimate and

the complete second-order statistics in order to combat the error propagation inherent in the VBLAST detection

process. Comparing Fig. 6 to Fig. 5, one can see that the performance gain achieved by the VBLAST III detector

is more noticeable in 8 × 8 systems than in 4 × 4 systems. For example, a performance gain of up to 3 dB can
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be obtained by the VBLAST III detector compared to the conventional VBLAST detector.

VI. CONCLUSIONS

Two variants of VBLAST detection algorithms for MIMO systems have been proposed. We showed that the

conventional solution is suboptimal and its performance can be improved by utilizing soft symbol estimate and by

refining the error criterion and nulling filter in such a way that the noncircular property of residula CAI and noise

can be exploited. The proposed schemes are compared to the conventional V-BLAST scheme and are shown to

achieve superior performance with moderate increase in the computational complexity.
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