arxiv:1102.1960v1 [cs.IT] 9 Feb 2011

1

Averaged Iterative Water-Filling Algorithm:

Robustness and Convergence

Mingyi Hong, Alfredo Garcia

Abstract

The convergence properties of the Iterative water-fillingK) based algorithms[([1]/12]]3]) have
been derived in the ideal situation where the transmitterthé network are able to obtain tkexact
value of the interference plus noise (IPN) experiencedattrresponding receiveirs each iterationof
the algorithm. However, these algorithms are not robusabse they diverge when theretise-varying
estimation error of the IPN, a situation that arises in remhmunication system. In this correspondence,
we propose an algorithm that possesses convergence geesamtthe presence of various forms of such
time-varying error. Moreover, we also show by simulatioattin scenarios where the interference is

strong, the conventional IWF diverges while our proposemthm still converges.

|. INTRODUCTION
A. The IWF Algorithm

The Iterative Water-Filling algorithm has been first progabdy Yu et al in[[1] to solve the power
allocation problem in DSL network, and it has since beeniappio various areas in communications
and signal processing to obtain solutions for network poalfercation problems (see, e.@J [3]) [41.] [5],
[6] and the references therein).

We consider an application of the IWF algorithm to the reseuallocation problem in wireless
communication network, where there aveusers and< subchannels; each user is a transmitter-receiver
pair that tries to communicate with each other. Define the A& {1,--- N}, and = {1,--- , K};
let {S; }icnr denote the set of users in the network;jgtk) denote the amount of powé; transmits on
channek; letp; £ [p;(1), - ,pi(K)]7, p—i 2 [P}, .Pl_1,PL1. - PN andp = [p],--- ,py]".

The channel gain between the transmittefpfo the receiver ofs; on channek is denoted byH; ;(k)|?.
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The power of the environmental noise experiencefl;atreceiver on channél is denoted by; (k). We
assume that there is no interference cancelation perfoang: receivers, and the interference caused by

the other users is considered as noise. Then the signaledergnce plus noise ratio (SINR) measured

at the receiver of5; on channek can be expressed aSTNR;(k) = (k)J§J¢E ‘)Ilfp((:))‘zpj 5

Using Shannon’s capacity, the maximum transmission rateeeable for.S; can be expressed as:
Ri(pi,p—i) = Zfillog(l + SINR;(k)). We consider the following constraints for each ugdé:1)]
eachs; has limited power budget, i.€0, < fo:lpi(k) < p;, Vi€ N;[C-2)] we required < p;(k) <
pmask(k),¥V k € K andi € N. As such, we usé; to denote the set of feasible power allocations for
S Py 2 {pi s UL pilk) < 51,0 < pilk) < prase(B), ¥ k€ K}

Dynamic power allocation in this network can be formulatedaanon-cooperative game where each
user S; is interested in maximizing its own rate when deciding howaliocate its power across the
spectrum, i.e.S; wants to findp;} € P; such that p; € arg maxp,cp, Ri(pi, p—i). A Nash Equilibrium
(NE) can be expressed as the set of power profiles};c\ satisfying the set of conditionspp; €
arg maxp,cp, Ri(pi, p*;) Vi € N. The IWF and its various extensions are essentially polifoeshe
players to jointly reach a NE of this game in a distributed rmen

In the IWF, the transmitters iteratively adjust their transsion power levels to maximize their own

transmission rate. Specifically, in iteration- 1, each usetS; computes {p}*'(k)}, . as follows:
pi* (k) = arg max R;(pi, pL;)
P:EP;
pmask(k)
= [0 = (k) + X2 H (0w (8)|
0
J#i
masi(k
= [oi = IPN{(k))] g™ 2 ok (pL) (1)

whereg; is the dual variable associated with the total power coimdtfar useri, and it is also referred

to as the “water level” in the traditional water-filling alggthm; |H,;(k)|*> and n;(k) are defined as

|H;i(k)|> = l\ZJ Ekﬂz andn;(k) = ‘H"I((’Z) 7 respectively PN/ (k) is defined as the normalized total in-
terference plus noise (IPN) for uséy on channek at timet: IPN/!(k) £ i (k)+> 4 |Hj,i(k’)|2p§'(k’).
This quantity is measured at the receivers and fed back tio tleeresponding transmitters in each
iteration ¢ beforep!*' (k) is computed. Define®;(p_;) £ [®}(p_;), -, ®X(p_;)]T, and let &(p) 2
[®1(p-1), -, ®Pn(p_n)]T. The function®(.) is called thewater-filling operatorof the system, and
the IWF algorithm can be written concisely'™! = &(p!). If the algorithm reaches a power profite
such thatp* = ®(p*), we say the IWF converges.

Sufficient conditions for convergence of the IWF algorithnad dts various extensions have been widely
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studied, for example, irf_[4][6]/[7]. Essentially, if thaterference received (generated) at the receiver
(transmitter) of each user is weak enough compared with #sérebtl signal, then the IWF converges.

When these conditions are not met, it is possible that the divErges|([8].

B. The Uncertainty of IPN and the Water-Filling Operator

One of the key assumptions of the IWF based algorithms istlieateceivers caanlwaysget the exact
values of the IPN on each channel in each iteration of theritfgw, and fed back to the transmitters.
This assumption is not valid in real communication systeexsase the power of the noise/interference
experienced at the receivers needs toeséimatedin each iteration, thus is subject to time-varying
estimation errors[]9],[[10]. Therefore, in each iterationtlee algorithm, we can only obtain a noisy
version of the true solution of1), referred to as timsy water-filling solutionas:

t Pmask (k) o~
| @)

PN k) = |5 - IPN(h)|
WhereI/PJ\VZ(k) is the noisy (estimated) IPN for uséf on channek. Note that the uncertainty of the
IPN leads to the inaccuracy of the dual variable, as now itkhsatisfy Zle[a- - I/P]\VZ(k)}meﬁ)@,
ando; # o; in general.

There is little work in the literature that addresses theaotf such time-varying uncertainty of the
IPN on the performance of the IWF algorithm. In [3]] [4], a laged” version of IWF (R-IWF) was
proposed to heuristically deal with inaccurate IPN leviiseach iteration, the transmission power levels
are computed ap’*! = (1 — \)p! + A®(p'), where the\ € (0,1] is a free parameter. Although it has
been shown in[4] that this algorithm converges under singitanditions as the IWF in situationgithout
IPN uncertainty, the effect of this algorithm in the presemd IPN inaccuracy is not clear, and as we
will see later in the simulation section, the performanceRelWF depends strongly on the choice of
A. In [11], a robust version of IWF is proposed to deal with esreelated to changes in the number of
users and their mobility. The algorithm guarantees an d@abéplevel of performance under worst case
conditions (i.e., the maximum possible error of the IPN)isTalgorithm trades performance in favor
of robustness, thus the equilibrium solution obtained igegally less efficient than that of the original
IWF. In our work, we are concerned with reaching the equiilifor solution of the original IWF in the
presence of IPN uncertainty. In_[12], the authors provideababilistically robust IWF to deal with the
guantization errors of the IPN at the receiver of each usethis algorithm, users allocate their powers
to maximize their total rate for a large fraction of the emrealization. However, a specific distribution of

the error process is assumed in the derivation of the algoriand such statistical information is usually
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not available in practice (as suggested in section VL of [1A]recent work [[13] proposes algorithms
for system with finite-state Markov channel in interferemework. The channel itself is modeled as
time-varying in this work, and the objective is to track tlme-varying equilibria. In the present paper,
uncertainty of the channel is due to imperfect receivemesion of the value of IPN as opposed to
changes in the state of the channel.

In this correspondence, we propose an extension of the I\Yyéritim that is robust in the presence
of time-varying IPN uncertainties. Specifically, we modat tuncertainty regarding to the IPN as time-
varying added noises, and show that the proposed algorittmmecges with probability 1 under some
conditions on the channel gains and the noise process. Vify #ee above claim by simulation, and
demonstrate the advantage of the proposed algorithm wsgier to the original IWF and the R-IWF. Ad-
ditionally, we show by simulation that in some strong inteehce channels where the conventional IWF
algorithm diverges, our proposed algorithm still converggnis last result indicates that the convergence
condition of our algorithm may be further relaxed.

This correspondence is organized as follows. In sedtionédlimroduce the proposed algorithm and
provide convergence analysis. In section Il we demorestifa¢ performance of the proposed algorithm

and compare the results with conventional IWF. This comasdence concludes in sectibnl IV.

II. PROPOSEDALGORITHM AND CONVERGENCERESULTS

In the proposed algorithm, in each iteratigrall the users compute their power allocations as follows:
—t1 ~
1) Obtain{IPN,(k)}rek, and calculate the noisy water-filling solutidn (p’ ;).

2) Calculate the power output according to the followingigol

®;(p’; fort =0
p§+1 _ (L) R -
(1 —a)pt+ oy ®;(pt,;) fort>1
where the elements G/I\’i(pt_i) are defined in[{2). The sequende; : 0 < oy < 1};2, satisfies the

following (defineag = 1):

T T
lim Zat =00, lim g o? < o0, 4
T—o00 =0 T—o00 =0

Note that from the last inequality ib](4), we hakm, .., oy = 0. The update procedurgl (3) is essentially
Mann’s iterations (seé [14] for its properties), which isidg@ed for situations where conventional iterative
methods for finding the fixed point of a self-mapping (say Ritamethod) fail. If we choose; = t%

then the update policy ifiX3) can be rewritten g5 = 1 37 ®;(p",). Clearlyp! ™' is anaverage

of the history ofS;’s water-filling solution, hence the name of Average IteatiVater-Filling (A-IWF)
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for the proposed algorithm. This algorithm maintains th&tributed nature of the original IWF, because
in each iterationt + 1, S; only needs to know the set of IPN PN/ (k)}rex as well as its own power
allocation{p (k) } ek in iterationt (both of which can be obtained locally I#), but does notneed to
know the transmission power profiles of other users.

We see that the main difference between the proposed dgodnd the previously mentioned R-IWF
is that we use a set afiminishinganditeration dependenstepsize{«, }:°, that satisfies[{4), instead of
the fixed stepsize. We will see later that it is exactly these properties of {he}{°, that guarantee the
convergence of A-IWF under IPN uncertainty.

We model the noisy IPN for use; on channek as:ﬁD]\VZ(k:) = IPN!(k)+e€k(k), wheree! (k) repre-
sents the estimation error of the true valueN;} (k). Lete; = [¢;(1),--- ,e(K)]T, ande £ [e1, -, en]T.
Let 7 be defined as the filtration generatedgy™ (J{p, ®,(p',)}L,. We assume the error process
to be zero mean, i.eE[¢! (k)| F~1]=0. This assumption is reasonable because conditioninghen t
knowledge of the desired signap/(in our case), the estimation error 6N/ (k), €!(k) can indeed
be viewed as a zero mean random variable using most conmahgstimators (see Section V of [9] for
detailed comparison of estimation biases for differenbatgms). The above model is very general in
the sense that we do not assume the explicit forms of the iddlgm that perform the estimation, nor do
we require that the error proce$g (k)}/_; be independent with the history of IPN up to tirfig i.e.,
our model allowsﬁ?J\Vz(k) to be calculated based on the previous or the current oldgBrsanade by
the receiver ofS;.

In the following, we use “w. p. 1” to abbreviate “with probéityi 1”. We need the following definition
before introducing Lemmal 1, which characterizes the noengion of the water-filling operatorf(p).
For any positiveN x 1 vectorw £ [wy,--- ,wy]|T and the operato@(p), the (vector)block-maximum
101M ||| 0er 5 defined asTIB]|B(p) [y & masicn 12l

Lemma 1: Define @&V x N matrix Y related to the channel gains as:

iy, 2 | e LGP i ®
’ 0 otherwise

Let p(Y) be the spectral radius of the matriX. Then if p(Y) < 1, there must exist a positive vector

w, and a constang that satisfie®) < 3 < 1, such that for any feasiblp!, p? € P,

1@ (P") — @(P°)|[Fpi0cr < BlIP" = P13 010ek + €l br0ck- (6)
Proof: The Proof is similar to Proposition 2 dfl[4]. Please see Amlefl for detail. |
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We note here that it has been proven by [4], that wph€éW) < 1 is true, the original water-filling
operator®(p) is a contraction with coefficient < 1, and hence has aniquefixed point, i.e., there
exists a unique* € P such thatp* = ®(p*).

We then characterize the convergence property of the A-IWy&rithm under two different assumptions
of the noise procesge’}°,,. For simplicity of notation, in the following, we ugg|| to denote the norm
||-|[¥10ck» Wherew is the positive vector obtained from the proof of Lemima 1.

Theorem 1: AssumgY) < 1, {ay }$°, satisfiedd)), and{e'}?°,, satisfiesy =, aq|€f|| < oo, w. p. 1.
Then the sequence of power profilgs }>°, generated by the A-IWF algorithm converges to the unique
fixed point of the original mappind@(.), denoted by*. More precisely, we havélp! —p*|| — 0 w. p. 1

Proof: Please see AppendiX B for proof. [ |

Theorem 2: AssumgY) < 1, and{a }$°, satisfied), and the error process satisfilis; . ||€'|| =

0, w. p. 1. Then we havéjp’ — p*|| - 0 w. p. 1
Proof: Please see Appendix C for proof. [ |
At this point, we would like to give some remarks regardingtte above convergence results.

Remark 1:The conditionp(Y) < 1, which is a restriction on the channel gains, coincides i
condition that ensures the convergence of IWF without tHé URcertainties in Theorem 1 dfi[4]. We
refer the readers t0 [4] for physical interpretation as waslithe comparison of this condition with other
similar conditions derived in the literature, e.g., thosdd] and [7].

Remark 2:We will show in sectior II[-B that in many cases whe(iY) < 1 is not satisfied, our
algorithm still converges. This suggests that the A-IWFodthm may need more relaxed convergence
conditions than the one stated in this correspondence. \Wéeave this task as a future research topic.

Theorem[l and Theorei 2 differ in their respective restniti on the error procesge’}s?,, as
technically the conditiond";° ) cu||€|| < oo and lim; . ||€!|| = 0 do not imply each other. Although
these conditions require that the error processlingnishing we do observe in our simulations (to be
shown in Sectiom Ill) that the A-IWF converges in the presen€ more general forms of noises, for
example noises with zero mean and bounded second momentobbérvation leads us to believe that
the above conditions on the error process are overly rég&icSuch belief is partially justified as follows.

AssumeE[e!| F!~!|=0, ande! has bounded second moment for @allFurther assumed(p') can be

approximated as®(p') = ®(p') + £&!, where the elements of tHeias vector¢! satisfies:
E[&} (k)| F; =0 and E[(&] (k)| F} ] <oo. 7)

Then we have the following convergence result. See Appdbtiar the proof.
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Theorem 3: Supposk(p') is approximated a® (p') = ®(p')+¢& with the elements & satisfieg(7).
If ®(.) is a contraction with constant, and if {a; }?°, satisfy(@), then we havef|p’ —p*|| — 0 w. p. 1.

Theoreni B essentially says that if the above approximafitimeonoisy water-filling solution is accurate,
then we only require the error procegs}°, to have mean zero and bounded second moments to ensure
the convergence of the algorithm. Note that in this case thg wectoré’ summarizes the uncertainties
regarding both the IPNs and the dual variables. The key gstiumhere is thaf[¢ (k)| F '] = 0V i, k,
i.e., based on all the knowledge it has for the evolution ef afgorithm until timeT" — 1, a particular
usersS; predicts that the biasgg? (k)}; are zero mean. The following empirical experiments show tha
such assumption is approximately true.

Consider a network with 10 users and 32 channels.piet 10, pyqsx(k) = 3, V k € K. We define

the bias of the noisy water-filling solution as:

&i(k) £ @f(p_;) — ®f(p-y)

We simplify the analysis a bit by assuming the bias procedsetd/arkovian, i.e.,E[fZT(k)]ﬁT‘l] =
E[¢T (k)|pl). We investigate the distribution dfE[¢;(k)|p:]}i .. Define the variance of noise(k) as
var;(k); introduce a term called Interference Error Ratio (IER) tauatify the strength of the IPN errer

IER;(k) = 10logy, (IPNI'(]“)). We fix I ER = 10dB during the experiment. AB'¢;(k)|p;] is a function

var; (k)

of p;, we fix {p; € P;}icnr, and obtain an estimate ¢#[&;(k)|p;]}i ., denoted by M;(k)}; ,, by doing
the follows: 1) generate the channel gai#l; ;(k)[*)} randomly; 2) generaté samples of IPN noise
vectors{e'} | by: e (k) ~ N(0,var;(k)), ¥ i, k,y; 3) obtain the biage'}~ , according to its definition
above; 4) calculatéd/;(k) = %Zle ¢l(k), ¥ i,k. We repeat the above procedure for 1,000 times with
randomly generated sets ¢b; € P; }icnr, and plot the empirical distribution dfE[¢;(k)|ps]}ix in Fig.
[ (different graphs in Fid.]1 represent the results obtalmedxperiments using differert). We see that
when the estimate§)M;(k)}, , are getting more accurate with larger number of samplegeidr), the
empirical distribution of{ E'[¢;(k)|p;]}i« iS getting more concentrated at zero. Thus we conjectutte tha
asymptotically withL — oo, E[¢;(k)|p;] can be approximated as zero for athnd .

Remark 3:We give some remarks comparing the convergence conditibosnventional IWF and A-
IWF under uncertainty. From [16] (Chapter 12, Th. 12.2.1213) we see that the conditidimn, . . ||€’|| =
0 in TheoremP is sufficient and necessary for the conventibb&lto converge to the fixed point without
performing averaging. However, the conventional IWF djesr under conditiory ;2 ay||€’|| < oo in

TheorentdL, because this condition is not equivaleniitq_, ., ||€!|| = 0. Moreover, from Th. 12.2.5 in
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Fig. 1. Empirical distribution of E[¢;(k)|p]}s,x. Left: L = 1,000; Middle: L = 10, 000; Right: L = 100, 000.

[16], under the assumption in Theorém 3, the conventiondF kbduces a sequence that finally stays
in a ball around the fixed point. However, the radius of such ibancreasing withm’l‘%”f”. Notice
that in this case|¢’|| needs not to be decreasing, thus the maximum possible drtbe @onventional

IWF may be large (consider whehis close tol).

IIl. SIMULATION RESULTS

In this section we conduct three experiments to demonstnate@roperties of the A-IWF algorithm.

A. Performance with Estimation Error

We simulate a network with0 randomly located users, aisd channels. We choose the noise to be a
zero mean Gaussian random variableds) ~ N (0, varf(k)); we choose thd ER for all the users on
all the channels to béE R (k) = 20dB, 15dB; we choose the channel gaifig?; ;(k)[*} randomly and
appropriately such thai(Y) < 1 is satisfied; we choose; = t% For ease of demonstration, different
algorithms are examined with the same starting points.

+ Relaxed IWF

* S
350, o IWF I _
+ -&-|WF without noise 35F -#-R-IWF A=0.5
+ /Re\axed IWF A=0.05 ---A-IWF . -»-R-IWF A=0.1
+ b X . -+-R-IWF A=0.05|
3 * T sk R-IWF A=0.05 AWE
A-IWF i » g

P R-IWF A=0.1
5250 | . S, ,
H : X e
o

‘s
IWF without Noise e

Power

» .
~ e

+a 4
R4,

9 Bt trrigas

a0 ° o 0o o ] ***0**9§9a+

° o
o

b 151

[} o
° o °

S -

I
5 10 15 20 25 30 35 40 45 50 o 20 25
Iteration Iteration

Fig. 2. Comparison of the output for different algorithmERE20dB.

In Fig.[2, we show the power output produced by various aflgors of a particular user on a particular

channel, with/ER = 20dB. It is clear that in the presence of estimation error, the I'&gorithm
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produces a sequence of noisy power profiles which exhibitsigio of convergence. We also show the
performance of IWF algorithrwithout estimation error, for the purpose of comparison. It is séanthe
A-IWF algorithm converges to the unique NE predicted by téI(without estimation error) quickly.
In Fig.[2, we also show the output of the R-IWF algorithm witarieus values of\. We observe that
when \ is large, the output is still noisy, while whexiis small, the convergence is slow. The point is
that the choice of\ is important for the performance of R-IWF, but it is difficatt correctly choose

to guarantee both robustness and fast convergence. IflRige Bompare the selected power profiles of

R-IWF and A-IWF when/ER = 15dB.

: " . . .
R-IWF A=0.05
R-IWF A=0.5 -
v / 18

R-IWF A=0.5 8 4|
R-IWF A=0.05 Ve i H
. P . / > c

R PR RO T

-IWF . N b 0.6

. YA
Y R-IWFA=0.05
¥

R-IWF A=0.5 oF

1 1 1 1 I I I I L L
0 20 40 60 80 100 120 140 160 180 200 0 5 10 15
Iteration Iteration

Fig. 3. Comparison of different algorithms, IER=15dB.  Fig. 4. Comparison of convergence speed of IWF and A-IWF.

B. Performance with Strong Interference

As stated above, the convergence of the IWF in ideal sitnatiosually dependes on the weak
interference condition. It is observed that in the systeth wirong interference, IWF algorithm diverges
[8]. In the following simulation, we demonstrate severatrsarios in which the IWF diverges, but the
A-IWF algorithm converges. The purpose of these simulatignto argue that the A-IWF may need
weaker conditions for convergence.

Consider the following scenario of strong interferenceaegle5 in [8]). Suppose there arg users

and2 channels in the system, with channel matrit®g:) expressed as follows:

H(1):H(2):(l X i)

where each element of the mati(k) is defined agH(k)]; ; = |H; ;(k)>. Set the noise power on

channell to bes?, the noise on channél set to bes? + p;, with p; = 10, for all i € N. There is a
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unique NE of this game, in which each user allocates twalshof its power to channdl and the rest
to channel2. The left hand side part of Fi§] 5 shows the power profiles @&t dson channell that
are produced by different algorithms (with the same stgrpoint). It is seen that the IWF algorithm
oscillates, while the A-IWF algorithm converges quicklym8ar results are obtained in the right hand

side part of Fig[b with the following settings:

H(1):<lf§>,ﬂ(2):<§3§> ®)

and the noise power on both channels set to be the same. Wevelzsgain that the performance of
R-IWF algorithm is very sensitive to the choice &f when0.6 < A < 1, the output oscillates; when
0 < X\ < 0.5, the output converges, with largerfor faster convergence. However, it is not clear what

rules one should follow in general to select such criticabpeeter.

R-IWF A=0.2

-a-IWF / ¥
L H i i

L L L L L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20 0 10 20 30 40 50 60
Iteration Iteration

-*-R-IWF A=0.1]

Fig. 5. Convergence properties of difference algorithmstiong interference channels.

C. Convergence In Ideal Cases

Questions may arise as to how does the A-IWF perform in sitngatwhen the water-filling solution
in (@) can be carried out accurately. As shown [in [4], the IW&odthm convergedinearly in this

ideal scenario. Theoretically, we can only show that A-I\Wiawergessublinearlyin ideal scenario, i.e.,

llp™=p*]| _
[[p*—p*]|

starting points of the algorithms, that the A-IWF algoritls@ems to always converge as fast as the IWF

limy oo 1. However, we observe in various randomly generated chagaies and random
algorithm. Fig[% shows such an instance of this experimarthis figure, we compare the power output
of selected users on selected channels (in a network withs&é@suand 64 channels) generated by the
IWF and the A-IWF. It takes less thal® iterations before two algorithms agree with each othereNot
that the dotted lines represent the output of the IWF algordt and the solid lines represent the output
of the A-IWF algorithm.
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IV. CONCLUSION

In this correspondence, we proposed an extension to the Igéfithm which is more robust and has
better convergence properties. We proved that the propalgedithm converges w. p. 1 under suitable
assumptions. We argue that this algorithm is indeed rohysinat time-varying estimation error of the
power of interference plus noise that is needed for the coatipn of the IWF computation. We also
show by simulation that the proposed algorithm convergesmngtrong interferences are present in the
communication channel, a scenario in which the IWF algaoritfiverges. An interesting future research

topic is to develop a possibly more general condition forabavergence of the proposed algorithm.

APPENDIX A
PROOF OFLEMMA [I]
Proof: Define H;; = diag(|H;;(1)|%,--- ,|H;:(K)|?); define IPN; = [IPN;(1),--- ,IPN;(K)]",
and defineIf’lV,— similarly. From Corollary 3 of[[4], we have that the watelifiy operator ®;(p—;)
can be expressed as the projection-dPN; onto the spac®;, i.e., ®;(p-;) = [-IPN;], . Similarly,

we have that@,—(p_,-) = [—IT’I\\I,} . Consequently, we have:

—~ (a) _ _
12:(p1;) — @i(p2)ll2 < || = > Hjpj — €+ Y Hjpllls

J#i J#i
< I llp} — b2l + el
J#i
(b) - )
05 (s 30 ) 19}~ w2l + el v € N ©
J#i

where (a) is because of the non-expansiveness of the projection tmparader Euclidean normp) is
due to the fact that the 2-norm of a diagonal matrix equalséoniaximum absolute value of its diagonal

elements. Defineg = |®@i(pL;) — ®;(p2))|

T
9, 6 2 lel — plz\ 2, and leteg £ eP, ,e(I,N} ,
es [61,"' 76N]Tv andee £ [H61H27"' 7H€NH2]T'

In order to proceed, we define the vector weighted maximurmridg] as:

1]

T
Zvovecémax‘ Z’, w > 0,x € RY (10)
’ 1 W

and the matrix weighted maximum norm as:

N
1
[N max —— > l[Aijlws, w>0,A € RV, (11)
i
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Notice, that from the definition of norm.||%, ,.cc, [I-[[% mq: @nd the block-maximum norm, we have the

following equivalence:

lei] I} — Pl
||e||gvo7vec = mZaXFZZ = miaX - w; == ||p1 - p2||§jblock
leg ~
He@Hgvo,vec = mlax '7’ = H(I)(pl) - (b(p2)H§:’block
i
[leill2
||e€||gvo,vec = miax Zl = ||€||¥bl0ck‘ (12)

2

The set of N inequalities in [P) can be concisely written in vector form @ is defined in [(b)):

ed < Ye + ee. Applying vector weighted maximum norm to this inequalitpués in:
i) pplying g q B
lleg|[3e,vec < I[N matllel|3,vee + [l€€ll5 vee
= ||T||Zvo,mat||p1 - p2||§:block + ||6||§Ybl0ck' (13)
Arguing similarly as the derivation of the Proposition 2 @] by using [(12) and[(13) we have:
H‘I’(Pl) - ‘I’(P2)H§,'block
w

- He(I’Hoo,vec < HTHgvo,mathl - p2H§jblock + Heugblock' (14)

Since Y is a non-negative matrix, from_[15] Corollary 6.1, we havattithere exists av such that
p(Y) <1 <= [|Y||¥ . < 1. Consequently, we conclude thatifY) < 1, then there must exists a

B € (0,1) and a positive vectow that satisfy [(B). [ |

APPENDIX B

PROOF OFTHEOREM([

Proof: Starting from an arbitrary initial poinp® € P, the magnitude of the difference betwegh

and the fixed poinp* can be expressed as:
P! = p*ll = [|(1 — a0)p® + @ (p") — p7|
< (1= ao) 0 — )l + |[ao (B0°) — @07 |

i

< (1 —ao)llp® = p*[| + aoBl[p® — p*[| + [lane’]|

I M)o_*
—Q ol = 8)+ o) I~ o) (15)

—
=
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where (i) is from Lemmall. Let us denote; = (1 — ay(1 — 3)). From [3) and[(®), clearly we have

ap =1 anda; < 1, which impliespg < ¢ V t. By induction, we show that in general:

T-1 T-1
S (TS ) llowet]
Ip" ~ o'l < (T i+ I

pulrs fol[p® — p*||

Clearly from [15) at timel’ = 1, (18) is true. Suppose at timg, (18) is true. At timeT" + 1, we have:

1P =27l (16)

o =PIl < (L= an)llp” — p*|| + arBllp” —p*|| + llae’||

T—1 T
< (I + Mwnﬁwwmﬂb-mﬁw)wopm
e o] [p° — p*|| Ip® — p*||
T T
v S (M) el
< ([Tw+ )P =Pl (a7
Pl to|[p° — p*||
Note that in the last inequality, we have used the fact that 1, and H‘I‘DC“UT_E;*”H < ;ZTH!)C‘Y’T—(;’J;I' From
the assumptioy ";°; au||€'|| < oo, w. p. 1, there must exist some constént b < co such that:
T
li HI<b w. p. 1 18
Tgl;o;!\ate!\_ <00 W. p (18)
In the following, we showlimy ., >/ ' (H;-F:_tl uj) llogel| =0 w. p. 1.
First note that we havBm_, H?:o ue = 0, because:
T T
fim log ([T ) = (1 (ot =) ©
Jim log ([T pe) = Jim > Tlog (1+ (~au(1 — 5))
t=0 t=0
S
. 2
< Jim (1 - 5) ; —ap = —o0 (19)

where (i) is because —1 < —ay(1 — ) and the factog(l + z) < x,V = > —1, (ii) is because[{4)
and 3 < 1. Clearly [I9) implies lim7_, Hf:o ur = 0. Thus for anys > 0, and a fixedI" there exists
T(T,$) > T such that:

=2

e < % VY N > T(T,0). (20)
t=T
From [18) we have that for any > 0, there exists'(§) such that:
D logel|| < g VT >T(), w. p. 1 (21)
t=T
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N N-1

ST wa)llewelll

t=0 j=t
T(6) N-1 N N-1

=> (TT il + > (] ) llewe']
=0 j=t t=T(6)+1 j=t

() T N

<> | 1) e’ || + 5
t=0 ]:T((;)

<<%b+§:5\Mpl (22)

where (i) is because(21) and the fact tﬂé[l;V , ;< 1lforallt <N —1; (i) is because}—[] T(5
is independent of; (iii) is because of(18) an@(20). Consequently, we have that:

T-1 T-1
Jim S (TT ) llewe’l =0 w. p. 2 (23)
=0 =t
From [16), [2B), andim_, H?:o uy = 0, we conclude lim; o |[p* — p*|| =0 w. p. 1 [ |
APPENDIXC

PROOF OFTHEOREM[Z

Proof: Due to space limit, we only show the proof for the case that t% The proof for general

{a4} can be obtained similarly. When taking = the A-IWF algorithm can be written compactly

t+l’
as:p” ! = 7 S ®(p!). We can write:
1 T
T+1 % < (/i t _(b *
Ip p!M_T:TZ%H(p) (")l
W) B &
< t % t 24
_—TH;Hp pH+T+IZHeH (24)

where(i) is from LemmdlL. Suppose the sequefip€} does not converge tp*, i.e.,limy_,, sup |[p’ —

p*|| = § > 0. Using the Stolz-Cesaro Theorem[17], we have that:

T *
lim sup 2i=0 Ip° —p7| < lim SUPHPT -p'll=4;
T—so0 T+1 AT ’
T t
lim 2o ll€ll = lim ||e]| =0, w. p. 1 (25)
T—o0 T4+1 T—o0
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Taking lim sup on both sides of{24), we have:

T+1 _

lim sup ||p Pl
T— o0
T 1 T
. ST t 26
—TEEOSHPTHZtZO”p P ||+T5?>osupT+1Zt:0”€” (20)

which can be reduced t@: < 5§ by applying [2b). This is a contradiction to the fact thiat 1. Then

we conclude thatimr_,. sup ||[p? — p*|| = 0 which in turn implieslimr_, ||[p? — p*|| = 0. ]

APPENDIXD

PROOF OFTHEOREM[3

Due to space limit, we only show the proof for the case that t% The proof for genera{a,}
can be obtained similarly. We first state a lemma, the proaffith can be found in AppendIX E.

Lemma 2: Ifw'*! = (1 — ap)w® + ou&tHL, and E[¢HFY = 0, and E[(¢1)?|F~1] = b is uniformly
bounded{a;} satisfiesd), then we must havém; ,,, w' = 0, w. p. 1.

We are now ready to prove Theorém 3. The A-IWF algorithm carcdrapactly written asp’+'=
7 o ®(p) =77 i () +w, wherew” £ 75 7T € = (1— 7h)w” !+ 75¢7. Note
that by applying the results of Lemria 2, we hditar_... w’ = 0. Then the magnitude of difference

betweenp’ ! and the unique fixed point of the mappidg.) can be expressed as:

T
* 1 *
P =] < = > l1(!) — @) |+ [[w”
t=0
5 T
_T—HZHPt—P*HJFHWTH- (27)
t=0

Suppose the sequengp’} does not converge tp*, then there must exist@&> 0 such thatimr_, - sup ||p‘—
p*|| = 4. Using again the Stolz-Cesaro Theorem as[inl (25), and dakinsup on both sides of
@7), we havelimz_, o sup |[p” ! — p*|| < limp_,o sup TLH Z?:o Ipt — p*|| + lim7_ o0 ||[W7]|. This
inequality can be reduced té:< 6, which contradicts to the fact that < 1. Thus we conclude that

liInT—><>o ||pt — p*|| =0, and thaﬂimT_mo pt = p*_

APPENDIX E

PROOF OFLEMMA [2

Proof: We havew'*! = w! + a; (¢ — wt). Consider the following iteration:
(wt+1)2 _ (wt + at(et—i-l _ wt))2

_ (wt)Z + 2at(£t+l . wt)wt + a?(ft—H . wt)2' (28)
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Then E[(w!™1)?|F!] can be expressed as:
El(w' )27
= (w')f — 20y (w")? + 204 B[ | F'Jw' + o B[ — w')?|F]
= (w')? = 20y (w')? + of (E[(€1)?|F] + (w')? — 20 B[ F])

< (') = 204(1 = F)(w')* +afb. (29)

Notice that the tern2a (1 — %) (w!)? > 0 becaus® < a; < 1. We see thalimr_,., >/, a7b < oo be-
caused 2, a? < oo. In order to proceed, we define the notion af@n-negative almost-supermartingale
[18]. Let 2, B, & and(; be non-negativeF! measurable random variables. The sequdngkis called
non-negative almost-supermartingaleE [z, 1| F!] < (1 + B)z + & — ¢;. From Theorem 1 of [18], we
havelim;_,, z exists and is finite and",°, { < oo w. p. 1 if {d "7, B < 00,> 2, & < oo}

Now it is clear that the sequendéw’)?}, is a non-negative almost-supermartingale, and according
to the above mentioned theorem we have the following resliit§(w!)2}$2, converges; 2) ", a;(1—
%) (w')? < co w. p. 1. The second result implies thar_, >, a:(w)? < co. Combined with the
fact that) >,y = oo andlim; . oy = 0, we have thalim inf; oo (w!)? = 0. Moreover, we know

from the first result that the sequenfav?)?}:°, converges, then it must converge(to [ |

REFERENCES

[1] W. Yu, G. Ginis, and J. M. Cioffi, “Distributed multiuseroprer control for digital subscriber lines,JEEE Journal on
Selected Areas in Communication®l. 20, no. 5, pp. 1105-1115, 2002.

[2] G. Scutari, D. P. Palomar, and S. Barbarossa, “Optinmadr precoding strategies for wideband noncooperativiersgs
based on game theory — part I: Nash equilibriEEEE Trans. on Signal Processingol. 56, no. 3, pp. 1230-1249, 2008.

[3] F. Wang, M. Krunz, and S. G. Cui, “Price-based spectrunnagament in cognitive radio networks|EEE Journal of
Selected Topics in Signal Processimgl. 2, no. 1, pp. 74-87, 2008.

[4] G. Scutari, D. P. Palomar, and S. Barbarossa, “Optinmadr precoding strategies for wideband noncooperativieersss
based on game theory — part II: Algorithm3EEE Trans. on Signal Processingol. 56, no. 3, pp. 1250-1267, 2008.

[5] G. Scutari, D. P. Palomar, and S. Barbarossa, “Asyndausniterative water-filling for Gaussian frequency-select
interference channelsJEEE Transactions on Information Thegryol. 54, no. 7, pp. 2868—2878, 2008.

[6] Z-. Q. Luo and J-.S. Pang, “Analysis of iterative watdirfiy algorithm for multiuser power contorl in digital sulsier
lines,” EURASIP Journal on Applied Signal Processingl. 2006, pp. 1-10, 2006.

[7] K. W. Shum, K. K. Leung, and C. W. Sung, “Convergence ofative waterfilling algorithm for Gaussian interference
channels,”IEEE Journal on Selected Area in Communicationsl. 25, pp. 1091-1100, 2007.

[8] A. Leshem and E. Zehavi, “Game theory and the frequendgctee interference channel/IEEE Signal Processing
Magazine vol. 26, no. 5, pp. 28-40, 2009.

March 2, 2022 DRAFT



17

[9] T. R. Benedict and T. T. Soong, “The joint estimation ofrsl and noise from the sum evelopéEEE Transactions on
Information Theoryvol. 13, no. 3, pp. 447-454, 1967.

[10] D. R. Pauluzzi and N. C. Beaulieu, “A comparison of SNRimation techniques for the AWGN channel,JTEEE
Transactions on Communicatigngol. 48, no. 10, pp. 1681-1691, 2000.

[11] P. Setoodeh and S. Haykin, “Robust transmit powerobrior cognitive radio,” Proceedings of IEEEpp. 915-939, 2009.

[12] R. H. Gohary and T. J. Willink, “Robust IWFA for open-ggtium communications,”IEEE Trans. On Signal Process.
vol. 57, no. 12, pp. 4964-4970, 2009.

[13] Y. Cheng and V. K. N. Lau, “Distributive power controlgalrithm for multicarrier interference network over timarying
fading channels—tracking performance analysis and opditioin,” IEEE Transactions on Signal Processingl. 58, no.
9, pp. 4750-4760, 2010.

[14] W. R. Mann, “Mean value methods in iteration,” Rroc. Amer. Math.Soc1953, pp. 506-510.

[15] D. P. Bertsekas and J. N. TsitsikliParallel and Distributed Computation: Numerical Methodsthena Scientific, 1997.

[16] J. M. Ortega and W. C. Rheinboldtgrative Solution of Nonlinear Equations in Several Vates Academic Press, 1972.

[17] M. Muresan, A Concrete Approach to Classical AnalysBSpringer, 2008.

[18] H. Robbins and D. Siegmundy Convergence Theorem for Non-Negative Almost Superrgalés and Some Applications
Optimizing Methods in Statistics. Academic Press, New Ydr&71.

March 2, 2022 DRAFT






Comparison of Convergence of Different Algorithms
| | | |

— A—-IWF wi
== IWF withc
----- Relaxed |
- - -IWF with |

20 30 40 50 60 70 8
[teration



Bias









-0.05 | 0 0.(
The Value of the Biases {M "(K)}.,






|

-0.05 0 Y
The Value of the Biases {M "(K)}.,






	I Introduction
	I-A The IWF Algorithm
	I-B The Uncertainty of IPN and the Water-Filling Operator

	II Proposed Algorithm and Convergence Results
	III Simulation Results
	III-A Performance with Estimation Error
	III-B Performance with Strong Interference
	III-C Convergence In Ideal Cases

	IV Conclusion
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Theorem 1
	Appendix C: Proof of Theorem 2
	Appendix D: Proof of Theorem 3
	Appendix E: Proof of Lemma 2
	References

