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Averaged Iterative Water-Filling Algorithm:

Robustness and Convergence
Mingyi Hong, Alfredo Garcia

Abstract

The convergence properties of the Iterative water-filling (IWF) based algorithms ([1], [2], [3]) have

been derived in the ideal situation where the transmitters in the network are able to obtain theexact

value of the interference plus noise (IPN) experienced at the corresponding receiversin each iterationof

the algorithm. However, these algorithms are not robust because they diverge when there istime-varying

estimation error of the IPN, a situation that arises in real communication system. In this correspondence,

we propose an algorithm that possesses convergence guarantees in the presence of various forms of such

time-varying error. Moreover, we also show by simulation that in scenarios where the interference is

strong, the conventional IWF diverges while our proposed algorithm still converges.

I. INTRODUCTION

A. The IWF Algorithm

The Iterative Water-Filling algorithm has been first proposed by Yu et al in [1] to solve the power

allocation problem in DSL network, and it has since been applied to various areas in communications

and signal processing to obtain solutions for network powerallocation problems (see, e.g. [3], [4], [5],

[6] and the references therein).

We consider an application of the IWF algorithm to the resource allocation problem in wireless

communication network, where there areN users andK subchannels; each user is a transmitter-receiver

pair that tries to communicate with each other. Define the sets N , {1, · · · , N}, andK , {1, · · · ,K};

let {Si}i∈N denote the set of users in the network; letpi(k) denote the amount of powerSi transmits on

channelk; let pi , [pi(1), · · · , pi(K)]⊺, p−i ,
[
p
⊺

1 , · · · ,p
⊺

i−1,p
⊺

i+1, · · · ,p
⊺

N

]
⊺

andp ,
[
p
⊺

1 , · · · ,p
⊺

N

]
⊺
.

The channel gain between the transmitter ofSi to the receiver ofSj on channelk is denoted by|Hi,j(k)|
2.
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The power of the environmental noise experienced atSi’s receiver on channelk is denoted byni(k). We

assume that there is no interference cancelation performedat the receivers, and the interference caused by

the other users is considered as noise. Then the signal to interference plus noise ratio (SINR) measured

at the receiver ofSi on channelk can be expressed as:SINRi(k) =
|Hi,i(k)|2pi(k)

ni(k)+
∑

j 6=i
|Hj,i(k)|2pj(k)

.

Using Shannon’s capacity, the maximum transmission rate achievable forSi can be expressed as:

Ri(pi,p−i) =
∑K

i=1 log(1 + SINRi(k)). We consider the following constraints for each user:[C-1)]

eachSi has limited power budget, i.e.,0 ≤
∑K

k=1 pi(k) ≤ p̄i, ∀ i ∈ N ; [C-2)] we require0 ≤ pi(k) ≤

pmask(k),∀ k ∈ K and i ∈ N . As such, we usePi to denote the set of feasible power allocations for

Si: Pi ,

{
pi :

∑K
k=1 pi(k) ≤ p̄i, 0 ≤ pi(k) ≤ pmask(k), ∀ k ∈ K

}
.

Dynamic power allocation in this network can be formulated as a non-cooperative game where each

userSi is interested in maximizing its own rate when deciding how toallocate its power across the

spectrum, i.e.,Si wants to findp∗
i ∈ Pi such that p∗

i ∈ argmaxpi∈Pi
Ri(pi,p−i). A Nash Equilibrium

(NE) can be expressed as the set of power profiles{p∗
i }i∈N satisfying the set of conditions:p∗

i ∈

argmaxpi∈Pi
Ri(pi,p

∗
−i) ∀ i ∈ N . The IWF and its various extensions are essentially policiesfor the

players to jointly reach a NE of this game in a distributed manner.

In the IWF, the transmitters iteratively adjust their transmission power levels to maximize their own

transmission rate. Specifically, in iterationt+ 1, each userSi computes
{
pt+1
i (k)

}
k∈K

as follows:

pt+1
i (k) = arg max

pi∈Pi

Ri(pi,p
t
−i)

=
[
σi −

(
n̄i(k) +

∑

j 6=i

|H̄j,i(k)|
2ptj(k)

)]pmask(k)

0

=
[
σi − IPN t

i (k))
]pmask(k)

0
, Φk

i (p
t
−i) (1)

whereσi is the dual variable associated with the total power constraint for useri, and it is also referred

to as the “water level” in the traditional water-filling algorithm; |H̄j,i(k)|
2 and n̄i(k) are defined as

|H̄j,i(k)|
2 ,

|Hj,i(k)|2

|Hi,i(k)|2
andn̄i(k) ,

ni(k)
|Hi,i(k)|2

, respectively;IPN t
i (k) is defined as the normalized total in-

terference plus noise (IPN) for userSi on channelk at timet: IPN t
i (k) , n̄i(k)+

∑
j 6=i |H̄j,i(k)|

2ptj(k).

This quantity is measured at the receivers and fed back to their corresponding transmitters in each

iteration t beforept+1
i (k) is computed. DefineΦi(p−i) , [Φ1

i (p−i), · · · ,Φ
K
i (p−i)]

⊺, and let Φ(p) ,

[Φ1(p−1), · · · ,ΦN (p−N )]⊺. The functionΦ(.) is called thewater-filling operatorof the system, and

the IWF algorithm can be written concisely:pt+1 = Φ(pt). If the algorithm reaches a power profilep∗

such thatp∗ = Φ(p∗), we say the IWF converges.

Sufficient conditions for convergence of the IWF algorithm and its various extensions have been widely
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studied, for example, in [4], [6], [7]. Essentially, if the interference received (generated) at the receiver

(transmitter) of each user is weak enough compared with the desired signal, then the IWF converges.

When these conditions are not met, it is possible that the IWFdiverges [8].

B. The Uncertainty of IPN and the Water-Filling Operator

One of the key assumptions of the IWF based algorithms is thatthe receivers canalwaysget the exact

values of the IPN on each channel in each iteration of the algorithm, and fed back to the transmitters.

This assumption is not valid in real communication systems because the power of the noise/interference

experienced at the receivers needs to beestimatedin each iteration, thus is subject to time-varying

estimation errors [9], [10]. Therefore, in each iteration of the algorithm, we can only obtain a noisy

version of the true solution of (1), referred to as thenoisy water-filling solution, as:

pt+1
i (k) =

[
σ̂i − ÎPN

t

i(k)
]pmask(k)

0
, Φ̂k

i (p
t
−i) (2)

whereÎPN
t

i(k) is the noisy (estimated) IPN for userSi on channelk. Note that the uncertainty of the

IPN leads to the inaccuracy of the dual variable, as now it should satisfy
∑K

k=1

[
σ̂i − ÎPN

t

i(k)
]pmask(k)

0
= p̄i,

andσi 6= σ̂i in general.

There is little work in the literature that addresses the impact of such time-varying uncertainty of the

IPN on the performance of the IWF algorithm. In [3], [4], a “relaxed” version of IWF (R-IWF) was

proposed to heuristically deal with inaccurate IPN levels.In each iteration, the transmission power levels

are computed aspt+1 = (1− λ)pt + λΦ(pt), where theλ ∈ (0, 1] is a free parameter. Although it has

been shown in [4] that this algorithm converges under similar conditions as the IWF in situationswithout

IPN uncertainty, the effect of this algorithm in the presence of IPN inaccuracy is not clear, and as we

will see later in the simulation section, the performance ofR-IWF depends strongly on the choice of

λ. In [11], a robust version of IWF is proposed to deal with errors related to changes in the number of

users and their mobility. The algorithm guarantees an acceptable level of performance under worst case

conditions (i.e., the maximum possible error of the IPN). This algorithm trades performance in favor

of robustness, thus the equilibrium solution obtained is generally less efficient than that of the original

IWF. In our work, we are concerned with reaching the equilibrium solution of the original IWF in the

presence of IPN uncertainty. In [12], the authors provide a probabilistically robust IWF to deal with the

quantization errors of the IPN at the receiver of each user. In this algorithm, users allocate their powers

to maximize their total rate for a large fraction of the errorrealization. However, a specific distribution of

the error process is assumed in the derivation of the algorithm, and such statistical information is usually
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not available in practice (as suggested in section V of [11]). A recent work [13] proposes algorithms

for system with finite-state Markov channel in interferencenetwork. The channel itself is modeled as

time-varying in this work, and the objective is to track the time-varying equilibria. In the present paper,

uncertainty of the channel is due to imperfect receiver estimation of the value of IPN as opposed to

changes in the state of the channel.

In this correspondence, we propose an extension of the IWF algorithm that is robust in the presence

of time-varying IPN uncertainties. Specifically, we model the uncertainty regarding to the IPN as time-

varying added noises, and show that the proposed algorithm converges with probability 1 under some

conditions on the channel gains and the noise process. We verify the above claim by simulation, and

demonstrate the advantage of the proposed algorithm with respect to the original IWF and the R-IWF. Ad-

ditionally, we show by simulation that in some strong interference channels where the conventional IWF

algorithm diverges, our proposed algorithm still converges. This last result indicates that the convergence

condition of our algorithm may be further relaxed.

This correspondence is organized as follows. In section II we introduce the proposed algorithm and

provide convergence analysis. In section III we demonstrate the performance of the proposed algorithm

and compare the results with conventional IWF. This correspondence concludes in section IV.

II. PROPOSEDALGORITHM AND CONVERGENCERESULTS

In the proposed algorithm, in each iterationt, all the users compute their power allocations as follows:

1) Obtain{ÎPN
t

i(k)}k∈K, and calculate the noisy water-filling solution̂Φi(p
t
−i).

2) Calculate the power output according to the following policy:

pt+1
i =





Φ̂i(p
t
−i) for t = 0

(1− αt)p
t
i + αtΦ̂i(p

t
−i) for t ≥ 1

(3)

where the elements of̂Φi(p
t
−i) are defined in (2). The sequence{αt : 0 < αt ≤ 1}∞t=0 satisfies the

following (defineα0 = 1):

lim
T→∞

T∑

t=0

αt = ∞, lim
T→∞

T∑

t=0

α2
t < ∞. (4)

Note that from the last inequality in (4), we havelimt→∞ αt = 0. The update procedure (3) is essentially

Mann’s iterations (see [14] for its properties), which is designed for situations where conventional iterative

methods for finding the fixed point of a self-mapping (say Picard’s method) fail. If we chooseαt =
1

t+1 ,

then the update policy in (3) can be rewritten as:pT+1
i = 1

T+1

∑T
t=0 Φ̂i(p

t
−i). ClearlypT+1

i is anaverage

of the history ofSi’s water-filling solution, hence the name of Average Iterative Water-Filling (A-IWF)

March 2, 2022 DRAFT
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for the proposed algorithm. This algorithm maintains the distributed nature of the original IWF, because

in each iterationt+ 1, Si only needs to know the set of IPN{IPN t
i (k)}k∈K as well as its own power

allocation{pti(k)}k∈K in iteration t (both of which can be obtained locally bySi), but does notneed to

know the transmission power profiles of other users.

We see that the main difference between the proposed algorithm and the previously mentioned R-IWF

is that we use a set ofdiminishingand iteration dependentstepsize{αt}
∞
t=0 that satisfies (4), instead of

the fixed stepsizeλ. We will see later that it is exactly these properties of the{αt}
∞
t=0 that guarantee the

convergence of A-IWF under IPN uncertainty.

We model the noisy IPN for userSi on channelk as:ÎPN
t

i(k) = IPN t
i (k)+ǫti(k), whereǫti(k) repre-

sents the estimation error of the true valueIPN t
i (k). Let ǫi , [ǫi(1), · · · , ǫi(K)]⊺, andǫ , [ǫ1, · · · , ǫN ]⊺.

Let FT
i be defined as the filtration generated bypT+1

i

⋃
{pt

i, Φ̂i(p
t
−i)}

T
t=0. We assume the error process

to be zero mean, i.e.,E[ǫti(k)|F
t−1
i ]=0. This assumption is reasonable because conditioning on the

knowledge of the desired signal (pt
i in our case), the estimation error ofIPN t

i (k), ǫ
t
i(k) can indeed

be viewed as a zero mean random variable using most conventional estimators (see Section V of [9] for

detailed comparison of estimation biases for different algorithms). The above model is very general in

the sense that we do not assume the explicit forms of the algorithms that perform the estimation, nor do

we require that the error process{ǫti(k)}
T
t=1 be independent with the history of IPN up to timeT , i.e.,

our model allowsÎPN
t

i(k) to be calculated based on the previous or the current observations made by

the receiver ofSi.

In the following, we use “w. p. 1” to abbreviate “with probability 1”. We need the following definition

before introducing Lemma 1, which characterizes the noisy version of the water-filling operator̂Φ(p).

For any positiveN × 1 vectorw , [w1, · · · , wN ]⊺ and the operator̂Φ(p), the (vector)block-maximum

norm ||.||w2,block is defined as [15]:||Φ̂(p)||w2,block , maxi∈N
||Φ̂i(p−i)||2

wi
.

Lemma 1: Define aN ×N matrix Υ related to the channel gains as:

[Υ]i,j ,





maxk∈K |H̄j,i(k)|
2 if i 6= j

0 otherwise
. (5)

Let ρ(Υ) be the spectral radius of the matrixΥ. Then ifρ(Υ) < 1, there must exist a positive vector

w̄, and a constantβ that satisfies0 < β < 1, such that for any feasiblep1,p2 ∈ P,

||Φ̂(p1)−Φ(p2)||w̄2,block ≤ β||p1 − p2||w̄2,block + ||ǫ||w̄2,block. (6)

Proof: The Proof is similar to Proposition 2 of [4]. Please see Appendix A for detail.
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We note here that it has been proven by [4], that whenρ(Υ) < 1 is true, the original water-filling

operatorΦ(p) is a contraction with coefficientβ < 1, and hence has auniquefixed point, i.e., there

exists a uniquep∗ ∈ P such thatp∗ = Φ(p∗).

We then characterize the convergence property of the A-IWF algorithm under two different assumptions

of the noise process{ǫt}∞t=0. For simplicity of notation, in the following, we use||.|| to denote the norm

||.||w̄2,block, wherew̄ is the positive vector obtained from the proof of Lemma 1.

Theorem 1: Assumeρ(Υ) < 1, {αt}
∞
t=0 satisfies(4), and{ǫt}∞t=0 satisfies

∑∞
t=1 αt||ǫ

t|| < ∞, w. p. 1.

Then the sequence of power profiles{pt}∞t=1 generated by the A-IWF algorithm converges to the unique

fixed point of the original mappingΦ(.), denoted byp∗. More precisely, we have:||pt−p∗|| → 0 w. p. 1.

Proof: Please see Appendix B for proof.

Theorem 2: Assumeρ(Υ) < 1, and{αt}
∞
t=0 satisfies(4), and the error process satisfieslimt→∞ ||ǫt|| =

0, w. p. 1. Then we have:||pt − p∗|| → 0 w. p. 1.

Proof: Please see Appendix C for proof.

At this point, we would like to give some remarks regarding tothe above convergence results.

Remark 1:The conditionρ(Υ) < 1, which is a restriction on the channel gains, coincides withthe

condition that ensures the convergence of IWF without the IPN uncertainties in Theorem 1 of [4]. We

refer the readers to [4] for physical interpretation as wellas the comparison of this condition with other

similar conditions derived in the literature, e.g., those in [6] and [7].

Remark 2:We will show in section III-B that in many cases whenρ(Υ) < 1 is not satisfied, our

algorithm still converges. This suggests that the A-IWF algorithm may need more relaxed convergence

conditions than the one stated in this correspondence. We will leave this task as a future research topic.

Theorem 1 and Theorem 2 differ in their respective restrictions on the error process{ǫt}∞t=0, as

technically the conditions
∑∞

t=0 αt||ǫ
t|| < ∞ and limt→∞ ||ǫt|| = 0 do not imply each other. Although

these conditions require that the error process bediminishing, we do observe in our simulations (to be

shown in Section III) that the A-IWF converges in the presence of more general forms of noises, for

example noises with zero mean and bounded second moment. This observation leads us to believe that

the above conditions on the error process are overly restrictive. Such belief is partially justified as follows.

AssumeE[ǫti|F
t−1
i ]=0, andǫti has bounded second moment for alli. Further assumêΦ(pt) can be

approximated as:̂Φ(pt) = Φ(pt) + ξt, where the elements of thebias vectorξt satisfies:

E[ξti (k)|F
t−1
i ]=0 andE[(ξti (k))

2|F t−1
i ]<∞. (7)

Then we have the following convergence result. See AppendixD for the proof.

March 2, 2022 DRAFT
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Theorem 3: SupposêΦ(pt) is approximated aŝΦ(pt) = Φ(pt)+ξt with the elements ofξt satisfies(7).

If Φ(.) is a contraction with constantβ, and if {αt}
∞
t=1 satisfy(4), then we have:||pt−p∗|| → 0 w. p. 1.

Theorem 3 essentially says that if the above approximation of the noisy water-filling solution is accurate,

then we only require the error process{ǫt}∞t=0 to have mean zero and bounded second moments to ensure

the convergence of the algorithm. Note that in this case the bias vectorξt summarizes the uncertainties

regarding both the IPNs and the dual variables. The key assumption here is thatE[ξTi (k)|F
T−1
i ] = 0 ∀ i, k,

i.e., based on all the knowledge it has for the evolution of the algorithm until timeT − 1, a particular

userSi predicts that the biases{ξTi (k)}k are zero mean. The following empirical experiments show that

such assumption is approximately true.

Consider a network with 10 users and 32 channels. Letp̄i = 10, pmask(k) = 3, ∀ k ∈ K. We define

the bias of the noisy water-filling solution as:

ξi(k) , Φ̂k
i (p−i)− Φk

i (p−i)

= [σ̂i − IPNi(k)− ǫi(k)]
pmask(k)
0 − [σi − IPNi(k)]

pmask(k)
0 .

We simplify the analysis a bit by assuming the bias process tobe Markovian, i.e.,E[ξTi (k)|F
T−1
i ] =

E[ξTi (k)|p
T
i ]. We investigate the distribution of{E[ξi(k)|pi]}i,k. Define the variance of noiseǫi(k) as

vari(k); introduce a term called Interference Error Ratio (IER) to quantify the strength of the IPN errorǫ:

IERi(k) , 10 log10

(
IPNi(k)
vari(k)

)
. We fix IER = 10dB during the experiment. AsE[ξi(k)|pi] is a function

of pi, we fix {pi ∈ Pi}i∈N , and obtain an estimate of{E[ξi(k)|pi]}i,k, denoted by{Mi(k)}i,k, by doing

the follows: 1) generate the channel gains{|Hi,j(k)|
2)} randomly; 2) generateL samples of IPN noise

vectors{ǫl}Ll=1 by: ǫli(k) ∼ N(0, vari(k)), ∀ i, k, y; 3) obtain the bias{ξl}Ll=1 according to its definition

above; 4) calculateMi(k) =
1
L

∑L
l=1 ξ

l
i(k), ∀ i, k. We repeat the above procedure for 1,000 times with

randomly generated sets of{pi ∈ Pi}i∈N , and plot the empirical distribution of{E[ξi(k)|pi]}i,k in Fig.

1 (different graphs in Fig. 1 represent the results obtainedby experiments using differentL). We see that

when the estimates{Mi(k)}i,k are getting more accurate with larger number of samples (largerL), the

empirical distribution of{E[ξi(k)|pi]}i,k is getting more concentrated at zero. Thus we conjecture that

asymptotically withL → ∞, E[ξi(k)|pi] can be approximated as zero for alli andk.

Remark 3:We give some remarks comparing the convergence conditions of conventional IWF and A-

IWF under uncertainty. From [16] (Chapter 12, Th. 12.2.1–12.2.5) we see that the conditionlimt→∞ ||ǫt|| =

0 in Theorem 2 is sufficient and necessary for the conventionalIWF to converge to the fixed point without

performing averaging. However, the conventional IWF diverges under condition
∑∞

t=1 αt||ǫ
t|| < ∞ in

Theorem 1, because this condition is not equivalent tolimt→∞ ||ǫt|| = 0. Moreover, from Th. 12.2.5 in

March 2, 2022 DRAFT
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Fig. 1. Empirical distribution of{E[ξi(k)|p]}i,k. Left: L = 1, 000; Middle: L = 10, 000; Right: L = 100, 000.

[16], under the assumption in Theorem 3, the conventional IWF produces a sequence that finally stays

in a ball around the fixed point. However, the radius of such ball is increasing withmaxt ||ξ
t
||

1−β
. Notice

that in this case||ξt|| needs not to be decreasing, thus the maximum possible error of the conventional

IWF may be large (consider whenβ is close to1).

III. S IMULATION RESULTS

In this section we conduct three experiments to demonstratethe properties of the A-IWF algorithm.

A. Performance with Estimation Error

We simulate a network with10 randomly located users, and64 channels. We choose the noise to be a

zero mean Gaussian random variable asǫti(k) ∼ N(0, varti(k)); we choose theIER for all the users on

all the channels to beIERt
i(k) = 20dB, 15dB; we choose the channel gains{|Hi,j(k)|

2} randomly and

appropriately such thatρ(Υ) < 1 is satisfied; we chooseαt =
1

t+1 . For ease of demonstration, different

algorithms are examined with the same starting points.
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Fig. 2. Comparison of the output for different algorithms, IER=20dB.

In Fig. 2, we show the power output produced by various algorithms of a particular user on a particular

channel, withIER = 20dB. It is clear that in the presence of estimation error, the IWFalgorithm
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produces a sequence of noisy power profiles which exhibits nosign of convergence. We also show the

performance of IWF algorithmwithoutestimation error, for the purpose of comparison. It is seen that the

A-IWF algorithm converges to the unique NE predicted by the IWF (without estimation error) quickly.

In Fig. 2, we also show the output of the R-IWF algorithm with various values ofλ. We observe that

whenλ is large, the output is still noisy, while whenλ is small, the convergence is slow. The point is

that the choice ofλ is important for the performance of R-IWF, but it is difficultto correctly chooseλ

to guarantee both robustness and fast convergence. In Fig. 3, we compare the selected power profiles of

R-IWF and A-IWF whenIER = 15dB.
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Fig. 3. Comparison of different algorithms, IER=15dB.
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B. Performance with Strong Interference

As stated above, the convergence of the IWF in ideal situations usually dependes on the weak

interference condition. It is observed that in the system with strong interference, IWF algorithm diverges

[8]. In the following simulation, we demonstrate several scenarios in which the IWF diverges, but the

A-IWF algorithm converges. The purpose of these simulations is to argue that the A-IWF may need

weaker conditions for convergence.

Consider the following scenario of strong interference (example5 in [8]). Suppose there are3 users

and2 channels in the system, with channel matricesH(k) expressed as follows:

H(1) = H(2) =

(
1 0 2

2 1 0

0 2 1

)

where each element of the matrixH(k) is defined as[H(k)]i,j , |Hi,j(k)|
2. Set the noise power on

channel1 to beσ2, the noise on channel2 set to beσ2 + p̄i, with p̄i = 10, for all i ∈ N . There is a
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unique NE of this game, in which each user allocates two-thirds of its power to channel1 and the rest

to channel2. The left hand side part of Fig. 5 shows the power profiles of user 1 on channel1 that

are produced by different algorithms (with the same starting point). It is seen that the IWF algorithm

oscillates, while the A-IWF algorithm converges quickly. Similar results are obtained in the right hand

side part of Fig. 5 with the following settings:

H(1) =

(
1 2 4

4 1 2

2 4 1

)
, H(2) =

(
2 3 5

3 2 5

5 3 2

)
(8)

and the noise power on both channels set to be the same. We observe again that the performance of

R-IWF algorithm is very sensitive to the choice ofλ: when 0.6 ≤ λ ≤ 1, the output oscillates; when

0 ≤ λ ≤ 0.5, the output converges, with largerλ for faster convergence. However, it is not clear what

rules one should follow in general to select such critical parameter.
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Fig. 5. Convergence properties of difference algorithms instrong interference channels.

C. Convergence In Ideal Cases

Questions may arise as to how does the A-IWF perform in situations when the water-filling solution

in (1) can be carried out accurately. As shown in [4], the IWF algorithm convergeslinearly in this

ideal scenario. Theoretically, we can only show that A-IWF convergessublinearlyin ideal scenario, i.e.,

limt→∞
||pt+1−p

∗||
||pt−p∗|| = 1. However, we observe in various randomly generated channelgains and random

starting points of the algorithms, that the A-IWF algorithmseems to always converge as fast as the IWF

algorithm. Fig. 4 shows such an instance of this experiment.In this figure, we compare the power output

of selected users on selected channels (in a network with 10 users and 64 channels) generated by the

IWF and the A-IWF. It takes less than10 iterations before two algorithms agree with each other. Note

that the dotted lines represent the output of the IWF algorithms and the solid lines represent the output

of the A-IWF algorithm.
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IV. CONCLUSION

In this correspondence, we proposed an extension to the IWF algorithm which is more robust and has

better convergence properties. We proved that the proposedalgorithm converges w. p. 1 under suitable

assumptions. We argue that this algorithm is indeed robust against time-varying estimation error of the

power of interference plus noise that is needed for the computation of the IWF computation. We also

show by simulation that the proposed algorithm converges when strong interferences are present in the

communication channel, a scenario in which the IWF algorithm diverges. An interesting future research

topic is to develop a possibly more general condition for theconvergence of the proposed algorithm.

APPENDIX A

PROOF OFLEMMA 1

Proof: Define H̄j,i = diag(|H̄j,i(1)|
2, · · · , |H̄j,i(K)|2); define IPNi = [IPNi(1), · · · , IPNi(K)]⊺,

and defineÎPNi similarly. From Corollary 3 of [4], we have that the water-filling operator Φi(p−i)

can be expressed as the projection of−IPNi onto the spacePi, i.e., Φi(p−i) = [−IPNi]Pi
. Similarly,

we have that Φ̂i(p−i) =
[
−ÎPNi

]
Pi

. Consequently, we have:

||Φ̂i(p
1
−i)−Φi(p

2
−i)||2

(a)

≤ || −
∑

j 6=i

H̄j,ip
1
j − ǫi +

∑

j 6=i

H̄j,ip
2
j ||2

≤
∑

j 6=i

||H̄j,i||2||p
1
j − p2

j ||2 + ||ǫi||2

(b)
=
∑

j 6=i

(
max
k

|H̄j,i(k)|
2

)
||p1

j − p2
j ||2 + ||ǫi||2, ∀ i ∈ N (9)

where(a) is because of the non-expansiveness of the projection operator under Euclidean norm;(b) is

due to the fact that the 2-norm of a diagonal matrix equals to the maximum absolute value of its diagonal

elements. DefineeΦi
, ||Φ̂i(p

1
−i) − Φi(p

2
−i)||2, ei , ||p1

i − p2
i ||2, and leteΦ ,

[
eΦ1

, · · · , eΦN

]
⊺

,

e , [e1, · · · , eN ]⊺, andeǫ , [||ǫ1||2, · · · , ||ǫN ||2]
⊺.

In order to proceed, we define the vector weighted maximum norm [15] as:

||x||w∞,vec , max
i

|xi|

wi
, w > 0,x ∈ RN (10)

and the matrix weighted maximum norm as:

||A||w∞,mat , max
i

1

wi

N∑

j=1

|[A]i,j |wj , w > 0,A ∈ RN×N . (11)
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Notice, that from the definition of norm||.||w∞,vec, ||.||
w

∞,mat and the block-maximum norm, we have the

following equivalence:

||e||w∞,vec = max
i

|ei|

wi
= max

i

||p1
i − p2

i ||

wi
= ||p1 − p2||w2,block

||eΦ||w∞,vec = max
i

|eΦi
|

wi
= ||Φ̂(p1)−Φ(p2)||w2,block

||eǫ||
w

∞,vec = max
i

||ǫi||2
wi

= ||ǫ||w2,block. (12)

The set ofN inequalities in (9) can be concisely written in vector form as (Υ is defined in (5)):

eΦ ≤ Υe+ eǫ. Applying vector weighted maximum norm to this inequality results in:

||eΦ||w∞,vec ≤ ||Υ||w∞,mat||e||
w

∞,vec + ||eǫ||
w

∞,vec

= ||Υ||w∞,mat||p
1 − p2||w2,block + ||ǫ||w2,block. (13)

Arguing similarly as the derivation of the Proposition 2 of [4] by using (12) and (13) we have:

||Φ̂(p1)−Φ(p2)||w2,block

= ||eΦ||w∞,vec ≤ ||Υ||w∞,mat||p
1 − p2||w2,block + ||ǫ||w2,block. (14)

SinceΥ is a non-negative matrix, from [15] Corollary 6.1, we have that there exists āw such that

ρ(Υ) < 1 ⇐⇒ ||Υ||w̄∞,mat < 1. Consequently, we conclude that ifρ(Υ) < 1, then there must exists a

β ∈ (0, 1) and a positive vector̄w that satisfy (6).

APPENDIX B

PROOF OFTHEOREM 1

Proof: Starting from an arbitrary initial pointp0 ∈ P, the magnitude of the difference betweenp1

and the fixed pointp∗ can be expressed as:

||p1 − p∗|| = ||(1 − α0)p
0 + α0Φ̂(p0)− p∗||

≤ ||(1 − α0)(p
0 − p∗)||+

∣∣∣
∣∣∣α0

(
Φ̂(p0)−Φ(p∗)

)∣∣∣
∣∣∣

(i)

≤ (1− α0)||p
0 − p∗||+ α0β||p

0 − p∗||+ ||α0ǫ
0||

=

(
1− α0(1− β) +

||α0ǫ
0||

||p0 − p∗||

)
||p0 − p∗|| (15)
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where (i) is from Lemma 1. Let us denoteµt , (1 − αt(1 − β)). From (3) and (4), clearly we have

α0 = 1 andαt ≤ 1, which impliesµ0 ≤ µt ∀ t. By induction, we show that in general:

||pT − p∗|| ≤
( T−1∏

t=0

µi +

∑T−1
t=0

(∏T−1
j=t µj

)
||αtǫ

t||

µ0||p0 − p∗||

)
||p0 − p∗||. (16)

Clearly from (15) at timeT = 1, (16) is true. Suppose at timeT , (16) is true. At timeT + 1, we have:

||pT+1 − p∗|| ≤ (1− αT )||p
T − p∗||+ αTβ||p

T − p∗||+ ||αT ǫ
T ||

≤
( T∏

t=0

µi +

∑T−1
t=0

(∏T
j=t µj

)
||αtǫ

t||

µ0||p0 − p∗||
+

||αT ǫ
T ||

||p0 − p∗||

)
||p0 − p∗||

≤
( T∏

t=0

µi +

∑T
t=0

(∏T
j=t µj

)
||αtǫ

t||

µ0||p0 − p∗||

)
||p0 − p∗||. (17)

Note that in the last inequality, we have used the fact thatµt ≥ µ0, and ||αTǫT ||
||p0−p∗|| ≤

µT ||αTǫT ||
µ0||p0−p∗|| . From

the assumption
∑∞

t=1 αt||ǫ
t|| < ∞, w. p. 1, there must exist some constant0 < b < ∞ such that:

lim
T→∞

T∑

t=1

||αtǫ
t|| ≤ b < ∞ w. p. 1. (18)

In the following, we showlimT→∞
∑T−1

t=0

(∏T−1
j=t µj

)
||αtǫ

t|| = 0 w. p. 1.

First note that we havelimT→∞
∏T

t=0 µt = 0, because:

lim
T→∞

log
( T∏

t=0

µt

)
= lim

T→∞

T∑

t=0

log
(
1 + (−αt(1− β))

)
(i)

≤ lim
T→∞

(1− β)

T∑

t=0

−αt
(ii)
= −∞ (19)

where (i) is because−1 < −αt(1 − β) and the factlog(1 + x) ≤ x,∀ x > −1, (ii) is because (4)

andβ < 1. Clearly (19) implies limT→∞
∏T

t=0 µt = 0. Thus for anyδ > 0, and a fixedT there exists

T̂ (T, δ) > T such that:

N−1∏

t=T

µt ≤
δ

2b
, ∀ N ≥ T̂ (T, δ). (20)

From (18) we have that for anyδ > 0, there existsT (δ) such that:
∞∑

t=T

||αtǫ
t|| ≤

δ

2
, ∀ T ≥ T (δ), w. p. 1. (21)
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Then we have that for allN > max
{
T (δ), T̂ (T (δ), δ)

}
= T̂ (T (δ), δ):

N∑

t=0

(N−1∏

j=t

µj

)
||αtǫ

t||

=

T (δ)∑

t=0

(N−1∏

j=t

µj

)
||αtǫ

t||+
N∑

t=T (δ)+1

(N−1∏

j=t

µj

)
||αtǫ

t||

(i)

≤

T (δ)∑

t=0

( N−1∏

j=T (δ)

µj

)
||αtǫ

t||+
δ

2

(ii)

≤
N−1∏

j=T (δ)

µj

T (δ)∑

t=0

||αtǫ
t||+

δ

2
(iii)

≤
δ

2b
b+

δ

2
= δ w. p. 1 (22)

where(i) is because (21) and the fact that
∏N−1

j=t µj < 1 for all t ≤ N − 1; (ii) is because
∏N−1

j=T (δ) µj

is independent oft; (iii) is because of (18) and (20). Consequently, we have that:

lim
T→∞

T−1∑

t=0

( T−1∏

j=t

µj

)
||αtǫ

t|| = 0 w. p. 1. (23)

From (16), (23), andlimT→∞
∏T

t=0 µt = 0, we conclude :limt→∞ ||pt − p∗|| = 0 w. p. 1.

APPENDIX C

PROOF OFTHEOREM 2

Proof: Due to space limit, we only show the proof for the case thatαt =
1

t+1 . The proof for general

{αt} can be obtained similarly. When takingαt =
1

t+1 , the A-IWF algorithm can be written compactly

as:pT+1 = 1
T+1

∑T
t=0 Φ̂(pt). We can write:

||pT+1 − p∗|| ≤
1

T + 1

T∑

t=0

||Φ̂(pt)−Φ(p∗)||

(i)

≤
β

T + 1

T∑

t=0

||pt − p∗||+
1

T + 1

T∑

t=0

||ǫt|| (24)

where(i) is from Lemma 1. Suppose the sequence{pt} does not converge top∗, i.e., limT→∞ sup ||pT −

p∗|| = δ > 0. Using the Stolz-Cesàro Theorem [17], we have that:

lim
T→∞

sup

∑T
t=0 ||p

t − p∗||

T + 1
≤ lim

T→∞
sup ||pT − p∗|| = δ;

lim
T→∞

∑T
t=0 ||ǫ

t||

T + 1
= lim

T→∞
||ǫT || = 0, w. p. 1. (25)

March 2, 2022 DRAFT



15

Taking lim sup on both sides of (24), we have:

lim
T→∞

sup ||pT+1 − p∗||

≤ lim
T→∞

sup
β

T + 1

T∑

t=0

||pt − p∗||+ lim
T→∞

sup
1

T + 1

T∑

t=0

||ǫt|| (26)

which can be reduced to:δ ≤ βδ by applying (25). This is a contradiction to the fact thatβ < 1. Then

we conclude thatlimT→∞ sup ||pT − p∗|| = 0 which in turn implieslimT→∞ ||pT − p∗|| = 0.

APPENDIX D

PROOF OFTHEOREM 3

Due to space limit, we only show the proof for the case thatαt =
1

t+1 . The proof for general{αt}

can be obtained similarly. We first state a lemma, the proof ofwhich can be found in Appendix E.

Lemma 2: Ifwt+1 = (1 − αt)w
t + αtξ

t+1, andE[ξt|F t−1] = 0, andE[(ξt)2|F t−1] = b is uniformly

bounded,{αt} satisfies(4), then we must havelimt→∞wt = 0, w. p. 1.

We are now ready to prove Theorem 3. The A-IWF algorithm can becompactly written as:pT+1=

1
T+1

∑T
t=0 Φ̂(pt)= 1

T+1

∑T
t=0 Φ(pt)+wT , wherewT , 1

T+1

∑T
t=0 ξ

t = (1− 1
T+1)w

T−1+ 1
T+1ξ

T . Note

that by applying the results of Lemma 2, we havelimT→∞wT = 0. Then the magnitude of difference

betweenpT+1 and the unique fixed point of the mappingΦ(.) can be expressed as:

||pT+1 − p∗|| ≤
1

T + 1

T∑

t=0

||Φ(pt)−Φ(p∗)||+ ||wT ||

≤
β

T + 1

T∑

t=0

||pt − p∗||+ ||wT ||. (27)

Suppose the sequence{pt} does not converge top∗, then there must exist aδ > 0 such thatlimT→∞ sup ||pt−

p∗|| = δ. Using again the Stolz-Cesàro Theorem as in (25), and taking lim sup on both sides of

(27), we have:limT→∞ sup ||pT+1 − p∗|| ≤ limT→∞ sup β
T+1

∑T
t=0 ||p

t − p∗|| + limT→∞ ||wT ||. This

inequality can be reduced to:δ ≤ βδ, which contradicts to the fact thatβ < 1. Thus we conclude that

limT→∞ ||pt − p∗|| = 0, and thatlimT→∞ pt = p∗.

APPENDIX E

PROOF OFLEMMA 2

Proof: We havewt+1 = wt + αt(ξ
t+1 − wt). Consider the following iteration:

(wt+1)2 = (wt + αt(ǫ
t+1 − wt))2

= (wt)2 + 2αt(ξ
t+1 − wt)wt + α2

t (ξ
t+1 − wt)2. (28)
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ThenE[(wt+1)2|F t] can be expressed as:

E[(wt+1)2|F t]

= (wt)2t − 2αt(w
t)2 + 2αtE[ξt+1|F t]wt + α2

tE[(ξt+1 − wt)2|F t]

= (wt)2 − 2αt(w
t)2 + α2

t

(
E[(ξt+1)2|F t] + (wt)2 − 2wtE[ξt+1|F t]

)

≤ (wt)2 − 2αt(1−
αt

2
)(wt)2 + α2

t b. (29)

Notice that the term2αt(1−
αt

2 )(w
t)2 ≥ 0 because0 < αt ≤ 1. We see thatlimT→∞

∑T
t=0 α

2
t b < ∞ be-

cause
∑∞

t=1 α
2
t < ∞. In order to proceed, we define the notion of anon-negative almost-supermartingale

[18]. Let zt, βt, ξt andζt be non-negativeF t measurable random variables. The sequence{zt} is called

non-negative almost-supermartingaleif E[zt+1|F
t] ≤ (1 + βt)zt + ξt − ζt. From Theorem 1 of [18], we

havelimt→∞ zt exists and is finite and
∑∞

t=1 ζt < ∞ w. p. 1 if {
∑∞

t=1 βt < ∞,
∑∞

t=1 ξt < ∞}.

Now it is clear that the sequence{(wt)2}∞t=0 is a non-negative almost-supermartingale, and according

to the above mentioned theorem we have the following results: 1) {(wt)2}∞t=0 converges; 2)
∑T

t=1 αt(1−

αt

2 )(w
t)2 < ∞ w. p. 1. The second result implies thatlimT→∞

∑T
t=1 αt(w

t)2 < ∞. Combined with the

fact that
∑∞

t=0 αt = ∞ and limt→∞ αt = 0, we have thatlim inft→∞(wt)2 = 0. Moreover, we know

from the first result that the sequence{(wt)2}∞t=0 converges, then it must converge to0.
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