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U-Invariant Sampling: Extrapolation and Causal
Interpolation From Generalized Samples
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Abstract—Causal processing of a signal’s samples is crucial in
on-line applications such as audio rate conversion, compression,
tracking and more. This paper addresses the problems of pre-
dicting future samples and causally interpolating deterministic
signals. We treat a rich variety of sampling mechanisms encoun-
tered in practice, namely in which each sampling function is
obtained by applying a unitary operator on its predecessor. Ex-
amples include pointwise sampling at the output of an antialiasing
filter and magnetic resonance imaging (MRI), which correspond
respectively to the translation and modulation operators. From an
abstract Hilbert-space viewpoint, such sequences of functions were
studied extensively in the context of stationary random processes.
We thus utilize powerful tools from this discipline, although our
problems are deterministic by nature. In particular, we provide
necessary and sufficient conditions on the sampling mechanism
such that perfect prediction is possible. For cases where perfect
prediction is impossible, we derive the predictor minimizing the
prediction error. We also derive a causal interpolation method
that best approximates the commonly used noncausal solution.
Finally, we study when causal processing of the samples of a signal
can be performed in a stable manner.

Index Terms—Frames, prediction, Riesz bases, sampling, sta-
tionary sequences.

I. INTRODUCTION

S AMPLING and reconstruction of continuous-time signals
play a crucial role in signal processing and communica-

tions. During the last several decades, sampling theory has en-
joyed rapid development [1], [2] due in part to fruitful fertil-
izations from other disciplines, such as wavelet theory [3], ap-
proximation theory [4], general Hilbert space formulations [5],
variational approaches [6], estimation theory [7], [8], and op-
timization [9]. While these recent developments found wide-
spread use in image processing, their deployment in unidimen-
sional applications, such as audio sampling-rate conversion, is
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less common. One of the reasons for this seems to be the rela-
tively few studies treating causality constraints within the above
frameworks, which becomes crucial in on-line applications.

Causal recovery of signals from their samples was mainly
addressed in the context of spline interpolation and uniform
pointwise sampling. Several heuristic methods were developed
and analyzed in [10]–[12] for modifying the noncausal prefilter,
which is at the heart of cubic spline interpolation, into a causal
counterpart. In [13], an optimization approach was pro-
posed for approximating the noncausal prefilter by a causal one.
This method admits a closed form solution for cubic splines, but
has to be solved numerically for higher orders. Causal interpola-
tion was also studied in [14] from an approximation-theory per-
spective. There, the authors characterized the set of interpolation
kernels with a given support for which the prefilter is causal, and
whose approximation order is maximal.

In modern sampling theory, sampling of is often de-
scribed [1] by an evaluation of inner products
with a set of sampling functions , in contrast to the uni-
form pointwise framework. This more general formulation can
be used to model nonideal sampling devices [15]. It also encom-
passes a large class of signal representations commonly used in
signal processing, including the Gabor and wavelet transforms
[16]. The set of sampling functions typically possesses
structure that is either predetermined by the application’s hard-
ware (e.g. uniform sampling at the output of an antialiasing filter
[15]) or deliberately constructed to obtain a meaningful signal
description (e.g. the uniform time-frequency tiling in Gabor rep-
resentations [16]).

In this paper, we study causal sampling problems with a spe-
cial type of structure, which we term U-invariance. Specifically,
we concentrate on scenarios in which the sampling functions are
obtained from a single sampling function as

(1)

where U is some unitary operator. Examples include the trans-
lation, modulation, and dilatation operators, which are used, re-
spectively, in classical shift-invariant (SI) sampling problems
[1], [2], in magnetic resonance imaging (MRI) and Gabor anal-
ysis [17], and in wavelet analysis [16], [18], [19]. The special
case in which U is a translation operator has been studied ex-
tensively in the sampling literature and corresponds to uniform
sampling at the output of an antialiasing filter [15]. For this sce-
nario, a wide variety of non-causal recovery techniques have
been developed. Noncausal recovery with an arbitrary U was
studied in [20].

Here, we address the problems of sample extrapolation and
causal recovery in U-invariant sampling. These problems are
of great significance in on-line applications such as audio sam-
pling-rate conversion, in which it is desired to causally process
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the samples of a signal in order to produce samples at a dif-
ferent rate. To develop a general framework, we borrow several
mathematical tools from the field of random processes. In this
discipline, functions of the form (1) are known as stationary
stochastic sequences [21]–[23]. As we show, the well estab-
lished theory of prediction and causal estimation of stochastic
processes, can be harnessed to solve the problems of extrapo-
lation and causal interpolation from U-invariant samples. This
is despite the fact that the latter problems are completely deter-
ministic by nature.

We begin by addressing the problem of extrapolating future
samples. Specifically, given the “past” generalized samples

, of a signal in an arbitrary
Hilbert space , we derive conditions on the U-invariant
sequence of sampling functions such that the “future”
samples can be perfectly predicted. When perfect
prediction is impossible, we seek a predictor that minimizes
the extrapolation error for the worst-case feasible signal . To
demonstrate our method, we provide formulas for the predictor
of samples of a signal that has passed through an RC
circuit and a B-spline filter prior to sampling.

We next turn to causal recovery of a signal from its U-in-
variant samples. Here, the purpose is to construct an approxima-
tion of by using a linear combination of a set of predefined
functions , such that the coefficients of the combination
are obtained by causal processing of the samples of . To obtain
a simple generalization of SI interpolation, we assume that the
reconstruction sequence is also U-invariant. Using the frame-
work of estimation theory, we derive an explicit formula for the
causal prefilter whose output is closest to that of the noncausal
solution [20] for the worst-case feasible signal . As a concrete
example, we specialize our result to SI reconstruction and de-
velop causal spline interpolation algorithms. Interestingly, one
of the approaches examined in previous works [10]–[12] on
causal spline interpolation can be obtained as a special case of
our algorithm, when the sampling functions are orthog-
onal. This happens, for example, if the support of the sampling
filter is smaller than the sampling period. However, for gen-
eral sampling filters, the worst-case error of previous methods is
larger than that of our solution. Thus, as we demonstrate via sim-
ulations, our method often yields a lower reconstruction error
than previous approaches.

Finally, we study the concept of causal stability in U-in-
variant sampling, which quantifies whether extrapolation and
causal recovery can be done in a stable manner. In particular,
we show that perfect extrapolation cannot be carried out in a
stable manner.

The paper is organized as follows. In Section II we present
the framework of U-invariant sampling in detail, and summa-
rize the main results. Section III provides a short review of basic
results from sampling theory and the theory of stationary se-
quences. Section IV investigates the prediction of future sam-
ples based on knowledge of past samples. We provide a formula
for the transfer function of the optimal prediction filter and de-
rive an explicit condition such that the prediction error is zero.
In Section V we consider causal recovery of signals from their
U-invariant samples. We demonstrate the theoretical results in
the context of causal spline interpolation. Finally, in Section VI
we derive conditions on U-invariant sampling to be stable and
causally-stable.

II. PROBLEM FORMULATION AND MAIN RESULTS

A. Notations

Let denote the Hilbert space of complex square inte-
grable functions on the real axis with the inner product

and norm . For every

(2)

denotes the Fourier transform of .
We write for the unit circle in the

complex plane . Let be a finite nonnegative measure on the
interval . Then denotes the Hilbert space of all
functions on with the inner product

and norm . When is the Lebesgue measure,
i.e., , we will simply write .

We denote by the set of all complex polynomials, i.e., the
set of all functions of the form

for some arbitrary , and by
the set of all such polynomials with .

Let be an arbitrary Hilbert space with inner product
and norm . If is a closed subspace of , then de-
notes the orthogonal projection of onto , and stands
for the orthogonal complement of in . If is an arbi-
trary index set and is a collection of vectors in then

denotes the closed linear span of
in .

Throughout the paper, we omit subscripts denoting the space
over which an inner product or a norm is defined, whenever the
meaning is clear from the context.

B. From Shift-Invariant to U-Invariant Sampling

Continuous-time signals are often analyzed using discrete-
time signal processing methods. This paradigm relies on an ini-
tial stage where the analog signal of interest is converted to a
discrete-time sequence by means of sampling. A simple model
for a practical acquisition device comprises a prefilter fol-
lowed by an ideal sampler [15], as depicted in Fig. 1. In this case,
the th sample is given by

(3)

where is the sampling period. Assuming that both and
are in , (3) can be interpreted as the inner product
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Fig. 1. SI sampling.

where . The functions are called the
sampling functions, and their closed linear span is termed the
sampling space . One immediate consequence of the fact that
each sampling function is a shifted-by- version of its prede-
cessor, is that if a function lies in then is also
in for any . Spaces possessing this property are called
SI spaces.

SI sampling can be considered a special case of a more
general acquisition paradigm, where a signal in an arbitrary
Hilbert space is measured by a sequence of sampling vectors

in that are generated by successive application of
some unitary operator U, as in (1). Such sequences of vectors
are called stationary sequences. We refer to the space spanned
by a stationary sequence as a U-invariant space. Consequently,
we term this setting U-invariant sampling. Such spaces are a
special case of atomic spaces, coined in [20].

Commonly used operators U include compositions in various
orders of the translation, modulation, and dilatation operators
defined by

(4)

(5)

(6)

respectively, for an arbitrary . SI sampling corresponds to
the special case in which and U is the translation
operator. Another important U-invariant sampling setting lies at
the heart of MRI. There, the continuous-space Fourier transform
of a signal is measured on a lattice of points. Thus, the samples
in this imaging modality correspond to inner products ,
where is the modulation operator (5) and is some window
function. Consequently, this process can be thought of as mod-
ulation-invariant sampling [17]. Finally, the Gabor and wavelet
transforms of a signal can be expressed as ,
with and respec-
tively [17], for some window and scalars and . Thus,
slices of these transforms can be viewed as originating from a
U-invariant sampling device.

Note that when U is not the time-shift operator, the index of
the sample sequence does not necessarily correspond to the
time variable of the signal . In fact, our analysis applies
also to signal classes, which are not even a function of time.
Nevertheless, we are interested in situations where the measure-
ment device produces the samples in a sequential manner, as
is the case, e.g., with MRI. Thus, the terms “past” and “future”
in this paper correspond to the samples that have already been
measured and to those that have not, rather than to the past and
future of the signal itself.

Several fundamental properties of U-invariant sampling and
reconstruction were explored in [20]. These include condi-
tions on the function and operator U in (1) such that the
sampling is stable, and a derivation of a consistent recovery
technique. Specifically, it was shown how the sequence of

samples of , can be processed to produce a recovery
whose U-invariant samples coincide with those of . In this

paper we study various other aspects of U-invariant sampling
by addressing the following problems:

1) Extrapolation: Given the past samples of
, predict the values of the future samples .

2) Causal Recovery: Given the sequence of samples
of , produce a recovery by using only causal processing
operations.

3) Causal Stability: Find conditions on the function and op-
erator U in (1) such that extrapolation and causal recovery
can be carried out in a stable manner.

We note that the issue of stability has been analyzed only in
the context of non-causal recovery [20], wheras Problem 3 refers
to the study of stability of causal processing. Problems 1 and 2
were given very little attention even in the SI setting, despite the
fact that causal processing is crucial for real-time applications.
In this paper we develop extrapolation and causal recovery tech-
niques for U-invariant sampling, and then demonstrate them in
the special case of SI sampling.

C. Main Results

We now briefly present the main results of the paper.
1) Extrapolation: Prediction is a well-understood problem

in the context of stochastic processes. Here, however, the signal
, and consequently the samples , are not random. In this

paper we show that whether perfect extrapolation is possible or
not is related to the behavior of the spectral density ,
which is the discrete-time Fourier transform (DTFT) of the au-
tocorrelation sequence . Specifically, we show
that if , then the future samples can be
perfectly predicted given the past. Interestingly, this is analo-
gous to the well known Paley-Wiener condition for the setting
in which are random and the auto-correlation is defined as

, where is the expectation operator [25].
For cases where this condition is not satisfied, we derive a pre-
dictor, whose worst-case error is minimal, and provide an ex-
pression for the resulting error.

Our approach can be used, for example, to predict the uniform
samples of a signal at the output of an antialiasing filter ,
as shown in Fig. 1, in which case U is the translation operator

. Another example is Gabor analysis, in which prediction of
the coefficients in the time direction corresponds to the
shift operator and prediction in the frequency direction cor-
responds to the modulation operator . These two scenarios
are depicted in Fig. 2(a) and (b), respectively. Finally, we can
predict the coefficients of the wavelet transform of a signal
in the time direction using the translation operator , or in
the scale direction using the dilation operator . These last two
situations are shown in Fig. 2(c) and (d).

As aforementioned, our predictor minimizes the worst-case
extrapolation error, for which we provide a closed form expres-
sion as a function of the spectral density associated with and
U. Thus, for each of these settings, our analysis yields a con-
dition on indicating whether perfect prediction is possible or
not. In particular, we obtain as a special case the well known
result that a bandlimited signal can be perfectly predicted from
its past samples taken above the Nyquist rate [31], [32].
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Fig. 2. Scenarios of prediction. (a), (b) Prediction in the time and frequency
directions, respectively, of Gabor coefficients. (c), (d) Prediction in the time and
scale directions, respectively, of wavelet coefficients.

Fig. 3. SI reconstruction.

2) Causal Recovery: Reconstructing a signal from its
SI samples is often approached by employing a SI interpolation
formula of the form

(7)

with some reconstruction kernel [1]. A widely used method
for constructing the sequence relies on the consistency cri-
terion [15]. An attractive feature of this method is that is
obtained by feeding the samples into a digital LTI filter. The
resulting recovery scheme is shown in Fig. 3.

In [20], a consistent recovery technique was developed for
general U-invariant sampling. This was done by replacing the
SI reconstruction formula (7) by its U-invariant generalization

(8)

It was shown that in this case as well is obtained by filtering
the samples with an LTI filter. A major drawback of the con-
sistency approach, though, is that it generally leads to a non-
causal filter. To make it adequate for use in real-time applica-
tions, we address in this paper the problem of designing causal
recovery methods. Specifically, in Section V we design a filter
whose output minimizes the error for the worst
case signal . We demonstrate our technique in the context of
causal SI spline interpolation and show that it is advantageous
over the commonly used naive approach of truncating the non-
causal solution [10]–[12].

3) Causal Stability: In Section VI we derive conditions such
that the past sampling functions corresponding to a
U-invariant sampling device form a Riesz basis or a frame. We
relate these conditions to the ability to perfectly predict the fu-
ture samples. In particular, we show that if perfect prediction is
possible, then it cannot be done in a stable manner.

III. STATIONARY SEQUENCES

We begin by presenting several basic results from sampling
theory and from the theory of stationary sequences, which pro-
vide the basis for the derivations in the following sections.

A. Sequences and Sampling

Let be a Hilbert space and be a sequence in
. The set is said to be a frame for if there exist constants

such that

(9)

for all . The numbers and are called frame bounds.
The sequence is called a Bessel sequence if it satisfies the right
hand side (RHS) inequality of (9), and is a Riesz basis for if
it ceases to be a frame when an arbitrary element is removed.

With every sequence in we associate the synthesis oper-
ator defined by

(10)

Its domain is the set of all sequences of complex
numbers for which converges in . If is a Bessel sequence
then is a bounded operator on . The operator
associated with the sequence and defined by

is called the analysis operator. If is a Bessel sequence then
is a bounded operator which maps into and is the adjoint
of . Although from a practical viewpoint it is important that
the sampling functions form a Bessel sequence, the results we
present in this paper do not require this assumption. Therefore,
we refrain from using the adjoint notation , as com-
monly done in the sampling literature (e.g., [24]).

Finally, with the sequence in we associate the subspaces

(11)

which we call the sampling space and the past sampling space,
respectively.

B. Stationary Sequences

A sequence of vectors in a separable Hilbert
space is called a stationary sequence if

i.e. if the inner product1 depends only on the difference
. The sequence

(12)

is called the covariance function of . For every stationary se-
quence , there exists a unitary operator U on uniquely deter-
mined by , which satisfies

1In the random signals literature, �� � is a sequence of random variables and
the inner product �� � � � is defined as �� �� �.
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Fig. 4. The Lebesgue decomposition of the spectral measure � ���. (a) corre-
sponds to a combination of the spectral density � �� � (b) and a singular part
� ��� (c).

for all . Conversely, given an and a unitary operator
U on , the sequence defined by , is a
stationary sequence. This motivates the following definition.

Definition: Let be a vector in a Hilbert space , and let U
be a unitary operator on . The sequence , , is
called a stationary sequence generated by (U, ).

By the spectral theorem for unitary operators, the covariance
function of a stationary sequence generated by (U, ) has a
spectral representation:

where is the spectral measure of . In words, the spectral
measure can be thought of as the DTFT of the covari-
ance sequence . By Lebesgue decomposition [21]–[23],
we have

(13)

where denotes the singular part of and is the
Radon-Nikodym derivative of with respect to the Lebesgue
measure, which is also known as the spectral density of . Note
that in the engineering literature, often no explicit distinction is
made between the regular and singular parts, in which case the
spectrum may contain delta functions [25]. In our terminology,
the singular part comprises the delta functions whereas
denotes the rest of the spectrum, as depicted in Fig. 4.

In studying prediction and causal recovery problems, we will
encounter expressions of the type , where

is a stationary sequence in and is a
sequence of scalar coefficients. The spectral representation im-
plies that

for all . We thus have the following result.
Lemma 1: Let for some stationary se-

quence and scalars , and let

. Then if and only if in
which case .

Therefore, to evaluate the expression , we
can replace each by an exponent and the norm on
by the norm . This implies that the sampling space
(11) associated with is isometric isomorphic to .

Proof: By definition

(14)

which completes the proof.
Two stationary sequences and are said to be stationary

correlated if

In this case, the sequence

is called the cross-covariance function. It has a spectral repre-
sentation

and cross-spectral measure . As before, the cross-spec-
tral measure can be thought of as the DTFT
of . By Lebesgue decomposition we have again

with the cross spectral
density . Two stationary sequences and are
stationary correlated if and only if they are generated by the
same unitary operator U.

C. Examples

We close this section with some examples of stationary se-
quences often used in sampling applications.

Example 1 (Translation Operator): We begin by exam-
ining the widely studied SI case. Specifically, assume that

, is an arbitrary function, and is a
real number. Let

(15)

Computing the DTFT of the covariance function
, the spectral density of is given by

where denotes the Fourier transform (2) of .
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Example 2 (Modulation Operator): Next, we examine
the modulation-invariant setting. Specifically, assume that

, is an arbitrary function in , and is a
real number. Let

The spectral density in this case is given by

Example 3 (Dilatation Operator): For an arbitrary ,
consider the sequence

generated by applying the dilation operator on . Its
spectral density is given by the Fourier series

with the Fourier coefficients

Note that in all three examples the singular part of the
spectral measure is identically zero. The next example demon-
strates that this is not always the case.

Example 4 (Finite Dimensional Spaces): Consider the space
with the standard inner product and let

where and U is a unitary matrix. Since U is
unitary, it can be factored as , where V is unitary
and D is diagonal with for some .
Consequently

where is the th element of the vector . This implies
that the spectral measure comprises only a singular part, which
satisfies2 and for every set

that does not contain .
Note that the spectral measure depends not only on U and
but also on the Hilbert space on which the sequence is

defined, as illustrated next.
Example 5 (Translation Operator in Sobolev Spaces): As-

sume that is the Sobolev space of order

2In engineering terms, the spectrum comprises only delta functions, namely
� �� � � �� �� � ��� � � �.

endowed with the inner product

where and are the th-order derivatives of and , re-
spectively. Then for every the translation operator
considered in Example 1 defines by (15) a stationary sequence

in . Its spectral density can be calculated by taking the
DTFT of , which yields

for every .
Example 6 (Stationary Correlated Sequences): Consider

next the translation operator of Example 1 on
with . If and are two different func-
tions, then and
are two stationary sequences in . Moreover, both se-
quences are stationary correlated since

The cross-spectral density is

(16)

for every .
However, the two sequences and

generated by two different unitary operators
and , are not stationary correlated since

depends on the absolute position and not only on the differ-
ence .

IV. EXTRAPOLATION

A. General Approach

We consider the following problem: Based on the knowledge
of past samples of a vector , we want to
predict the future samples for , where
for every . We begin our analysis with general sampling
vectors , and then specialize the discussion to sta-
tionary sequences in Sections IV-B and -C.

Our goal is to minimize the prediction error

(17)

where is an estimate of that is a function of . Unfortu-
nately, (17) depends on , which is unknown. Let
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denote the subsequence of sampling vectors with a nonposi-
tive index, and let be the corresponding analysis operator.
To eliminate the dependency on , we instead consider the fol-
lowing min-max problem

(18)

where is the set of signals
that could have generated the observed sequence of past samples

, and whose norm is bounded by some scalar . Thus,
we look for the predictor that minimizes the prediction error
for the worst-case feasible signal . The following proposition
shows that the solution of (18) is equal to the inner product be-
tween and the best approximation of in the past sampling
space .

Proposition 2: Let be a sequence in a Hilbert space . Then
the unique solution of

(19)

is given by

(20)

where is the past sampling space (11).
Proof: See Appendix A.

Proposition 2 was proved in [26] for the case in which the
sequence forms a frame for the past sampling space . The
proof we provide in Appendix A does not require this assump-
tion and is therefore more general.

Note that (20) does not depend on the bound . However, it
seems to depend on , which is unknown. Nevertheless, of
(20) can be written explicitly as a linear combination of the past
samples, which are given. Indeed, we can write3

(21)

for some sequence of coefficients (which depends
on ). Consequently,

(22)

Interestingly, the min-max predictor is linear in the past sam-
ples, although we did not restrict ourselves to linear schemes in
(19). In Sections IV-B and -C we discuss how to compute the
coefficients .

When is a stationary sequence, the U-invariance struc-
ture implies that for any , the min-max predictor
of based on the samples is given by

. Therefore, in the stationary set-
ting, the -step-ahead predicted sequence is
computed by feeding the sample sequence into the
causal filter whose impulse response is for
and for . The transfer function of this filter is

.

3More precisely, we can approximate � � as closely as desired by linear
combinations of the form (21).

Since the orthogonal projection is self-adjoint, one obtains
from (20) that . This allows the interpretation
that the optimal prediction is obtained by first approximating
the signal by its orthogonal projection onto the past sampling
space , and then sampling this approximation with the sam-
pling function .

From (20), it follows that the prediction error attained by the
min-max predictor for any is

(23)

This error will usually be nonzero. However, there always exist
signals with zero prediction error. This happens, for
example, for all because then

. An interesting question is under what conditions
on the sampling functions the prediction error becomes zero
for every signal . If this happens, we will say that the
sample can be perfectly predicted from the past samples .
From (23) we immediately have the following observation.

Proposition 3: Let be a sequence in a Hilbert space . Then
the sample can be perfectly predicted from the past samples

if and only if . In particular, perfect prediction is
possible if the spaces and of (11) are equal.

B. Stationary Perfect Prediction

We now show that when is stationary, Proposition 3 trans-
lates into a simple condition on the spectral density . This
result is obtained by using Szegö’s famous theorem [27].

Theorem 4: Let be a sequence of sampling
functions in a Hilbert space , let be arbitrary, and
let be the past generalized samples of .
Assume that is a stationary sequence with spectral measure

. Then the future samples
can be perfectly predicted from if and only if

(24)

Before proving the theorem, we note that condition (24)
also characterizes perfect predictability in stochastic scenarios.
Specifically, the well known Paley-Wiener theorem [25] states
that a sequence of random variables with autocorrelation

can be perfectly predicted if and only if the
DTFT of satisfies (24). Thus, the spectral density

in our case can be thought of as the analog of the
spectrum of the samples in the stochastic setting.

Proof: First, we consider the case of one step prediction
. From Proposition 2, the prediction error obtained by the

min-max predictor can be written using (23) as

(25)

where we denoted and used the
Cauchy–Schwarz inequality. Moreover, there always exists an

for which equality holds in (25). Using (21), can be
written as . Thus, perfect prediction is
possible if and only if can be
made arbitrary small by a proper choice of the sequence of
coefficients .



2092 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 5, MAY 2011

Fig. 5. Scenarios of perfect prediction. (a) A completely singular measure. (b) A bandlimited spectral density. (c) A spectral density with a locally flat zero:
� �� � � �����������.

Employing Lemma 1

where denotes the causal complex polynomial
of a certain finite degree . Now,

Szegö’s theorem states that

if and only if (24) is satisfied (see, e.g., [28, Ch. IV.3]). In this
case there exists a function in the
closure of in such that the RHS of (25) vanishes,
i.e., such that the estimation error is zero.

By induction, it follows that if we can perfectly predict ,
then we can also perfectly predict for all .

There are three different cases in which condition (24) is sat-
isfied, as demonstrated in Fig. 5:

a) Singular case: The spectral measure is com-
pletely singular, as shown in Fig. 5(a).

b) Bandlimited case: The spectral density vanishes
on a set of positive Lebesgue measure, as shown in
Fig. 5(b).

c) Locally-flat zero case: almost everywhere on
but (24) holds, as shown in Fig. 5(c). For example,

with .

To determine the predictor, recall from the proof of
Theorem 4 that the prediction error is upper bounded by

Let be an arbitrary small admissible prediction error. Then it
suffices to find a finite-degree polynomial such that

(26)

in order that the prediction error be smaller than for
every signal whose norm is bounded by . If is such
a polynomial then it can be written as

(27)

and the coefficients of the corresponding linear predictor (22)
are given by the coefficients of .

a) Singular case: In this setting, the measure is con-
centrated on a set of Lebesgue measure zero. As-
sume first that is composed of a finite number of frequencies:

. Then the polynomial

clearly satisfies for every so that
. By writing this polynomial

in the form (27), we extract the coefficients of the
predictor, which is a finite-impulse response (FIR) filter.

The more general case, in which is an arbi-
trary set of Lebesgue measure zero, can be treated in a sim-
ilar manner. Specifically, let be the disk algebra, i.e., the
closure of the polynomials in the infinity norm

. Then a theorem of Fatou [29] states that there
exists a function such that for every with we
have if and only if with (see, e.g.,
[30, Ch. 2.2] where also an explicit construction of is given).
In particular and we can define
which can be written as

By this construction and the
desired polynomial, which satisfies (26), is obtained from by
writing for a sufficiently large degree

.



MICHAELI et al.: U-INVARIANT SAMPLING 2093

Fig. 6. The min-max optimal �-step-ahead predictor corresponds to the causal
filter ��� � of (28).

b) Bandlimited and locally-flat zero cases: The bandlim-
ited case is well studied in the engineering literature in the con-
text of stochastic processes (see, e.g., the discussion and refer-
ences in [31]). In this case, the spectral density is con-
centrated on a set of Lebesgue measure strictly
smaller than . Here, the existence of a polynomial
which satisfies (26) follows from the fact that the set
is dense in , the set of square integrable functions on
[30], [31].

In terms of constructing a polynomial complying with a
given (arbitrarily small) prediction error, both the locally-flat
zero scenario and the bandlimited setting can be treated in the
spirit of the approach presented in [32]. Specifically, the spectral
density can be approximated arbitrarily well by a dif-
ferent spectral density , which does not satisfy (24). In
Section IV-C, we present a closed form formula for the predictor
minimizing the prediction error associated with such a .
Therefore, by an appropriate choice of , and using the
result we present in Section IV-C, a predictor meeting the de-
sired admissible error, can be designed.

C. Stationary Estimation of Future Samples

If (24) is not met, then perfect prediction of future samples is
impossible. However, (20) still provides a predictor which mini-
mizes the worst-case error. To explicitly compute this predictor,
we have to find the orthogonal projection of onto the past
sampling space . For stationary sequences whose spectral
measure contains no singular part (i.e. )
and whose spectral density does not vanish anywhere,
the solution is well known in the field of stochastic-processes
and is given by (see, e.g., [23])

where is the inverse DTFT of the Wiener predictor

(28)

Here, denotes a spectral factor of the spectral density ,
which is a function in satisfying ,
and whose inverse DTFT is a causal stable sequence.4 The op-
erator sets the past coefficients of its
argument to zero in the time domain:

. To summarize, according to (22), the optimal
-step-ahead prediction , is obtained by feeding the

samples into the causal filter with transfer function
corresponding to (28). This is demonstrated schematically in
Fig. 6.

4It exists since � ���� �� �	� � ��.

Fig. 7. Sampling at the output of an RC circuit.

For the case of one-step-ahead prediction , Szegö’s
theorem also provides an upper bound for the resulting error in
terms of the spectral density of .

Theorem 5: Assume that is a stationary sequence in
whose spectral density does not satisfy (24). Then the min-
imal one step prediction error is upper bounded by

with equality if and only if for some .
Proof: It was already shown in the proof of Theorem 4 that

the minimal prediction error is upper bounded by

Szegö’s theorem (see, e.g., [28, Ch. IV.3]) states that the in-
fimum on the RHS is equal to .
The first inequality in the above equation follows from the
Cauchy-Schwarz inequality (cf. proof of Theorem 4). Con-
sequently, equality holds if and only if is a multiple of

.
Note that the upper bound is independent of the singular part

of the spectral measure since the sample component associ-
ated with this part can be perfectly predicted. Furthermore, the
bound is attained by signals whose past samples are identically
zero. Indeed, we have seen that the bound is attained by all sig-
nals of the form , whose samples are given by

. For these signals, the
optimal predictor of the future samples will give for all

.

D. RC-Circuit Sample Prediction

To demonstrate prediction of future samples, we consider the
SI setting of Fig. 1 with an RC sampling filter, as shown in Fig. 7.
The impulse response in this case is given by

where is the time constant of the circuit and is the
unit step function.

The autocorrelation function associated with is
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TABLE I
FREQUENCY RESPONSE OF ONE-STEP-AHEAD B-SPLINE SAMPLE PREDICTORS FOR VARIOUS DEGREES �

This sequence can be factored as

where

(29)

is a stable sequence. We therefore conclude that is the
inverse DTFT of the spectral factor .

Using (29), for any the numerator in
(28) corresponds to the sequence

implying that . Conse-
quently, the prediction filter (28) is given by

.

This implies that the min-max optimal -step ahead prediction
is obtained by shrinking the last available sample, namely

E. B-Spline Sample Prediction

As another example, consider the SI setting of Fig. 1 with a
B-spline sampling filter and a sampling period of . A
B-spline of degree , denoted , is recursively defined by

(30)

where is the unit square

;
otherwise.

In other words, is obtained by the -fold convolu-
tion of . The filter is a good model for optical systems
in which the effect of the point spread function (PSF) of the lens
is negligible with respect to pixel size. B-splines of higher de-
grees have a bell-like shape, which constitutes a good model for
imaging devices with nonnegligible PSF.

The spectral density of an th-degree B-spline sampler can
be computed using the convolution property (30) and the fact
that is symmetric

Expressions for the -transform of and for the cor-
responding spectral factorization for B-splines of various

degrees can be found in [33]. In Table I, we provide the for-
mula for for B-splines of degrees 0, 1, and 2, as well as
the resulting frequency response of the one-step-ahead
Wiener predictor . The values , , and , appearing in
the table, are constants which do not affect .

As can be seen in the table, the predictor corresponding to
a B-spline of degree 0, is identically zero. This follows from
the fact that the functions do not overlap so
that the past samples carry no information about the future. For
B-splines of degree 1 and 2, the predictor is a simple infinite
impulse response (IIR) filter, which can be implemented effi-
ciently. For example, for , we have the recursive imple-
mentation .

V. CAUSAL RECOVERY

A common task in signal processing is that of recovering
a continuous-time signal from a sequence of uniformly
spaced samples taken at the output of a filter

, as depicted in Fig. 1. As discussed in Section I, the sam-
ples in this case correspond to the inner products , with
the functions . This task is often
approached by employing a recovery formula of the form (7)
with some predefined reconstruction kernel [1]. The overall
recovery scheme, therefore, comprises a digital correction filter
followed by a digital-to-analog reconstruction stage, as shown
in Fig. 3.

In our setting, for some unitary operator U, and
thus it is reasonable to replace the SI reconstruction formula
(7) by its U-invariant generalization (8). A common method for
constructing the sequence of coefficients results
from requiring that for all [15]. In [20]
it was shown that such a consistent recovery is unique if the
cross-spectral density associated with the sampling
kernel and reconstruction kernel , satisfies
for some and for all . In this case, is
obtained by filtering the samples with

(31)

A major drawback of the consistency approach is that the
correction filter (31) is generally noncausal, i.e., does not
vanish for . Thus, our goal is to approximate by relying
only on the set of samples . To this end, we observe that

can be written as
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where with given by

(32)

This representation allows a simple interpretation of our task.
Given the past samples , , corresponding
to a stationary sequence generated by (U, ), we would like
to produce an estimate of the generalized sample

for some , corresponding to the stationary se-
quence generated by (U, ). Note that the dis-
cussion in Section IV on extrapolation of future samples is a
special case of this problem, corresponding to . We now
address this problem in detail.

A. Causal Estimation of a Different Representation

The problem of approximating a set of generalized samples
of a signal based on a second set of generalized samples corre-
sponding to a frame sequence was addressed in [26]. Here, we
do not require that and constitute frames. Furthermore, we
would like to exploit the knowledge that and are stationary
correlated, to obtain simple closed form expressions for the op-
timal predictor.

As in Section IV, we look for an estimate for the gener-
alized sample , which minimizes the error for the worst-case
feasible signal

where is the set of
signals that could have generated the observed sequence of past
samples , and whose norm is bounded by some scalar .
The solution to this min-max problem (the proof is as in Lemma
2) is given by

The resulting estimation error is given by

This implies that the estimation error becomes zero for every
signal (perfect estimation) if and only if .

To obtain a closed form expression for the min-max optimal
estimator, we note that is given by a linear combination of
the past samples. Indeed, we can write

with a sequence , which depends on . Conse-
quently, the min-max optimal estimator is of the form

(33)

Similarly, it can be easily verified that when and are sta-
tionary correlated, the min-max estimator of based on the
samples is given by . There-

fore, the -step-ahead estimated sequence is com-
puted by feeding the sample sequence into the causal
filter whose impulse response is for and

for . The transfer function of this filter is
.

To obtain an explicit expression for the coefficient sequence
, we next assume that and are stationary correlated with

cross-spectral measure . For sim-
plicity, we also assume that the spectral measure of the sequence

is given by with a spectral density
that does not vanish anywhere. It is well known in the

stochastic literature that the sequence is given in this case by
the inverse DTFT of the causal Wiener filter (see, e.g., [23])

(34)

Thus, according to (33), the filter corresponding to (34)
causally converts between the two signal representations asso-
ciated with the sampling sequences and .

B. Application to Causal Recovery

We now utilize (34) to approximate the consistent recovery
approach using a causal digital filter. To do that, we first need to
express in terms of and . Using (32)

In the Fourier domain, this relation becomes

(35)

where we used (31). Substituting (35) into (34), and using the
fact that , we conclude that the min-max
optimal causal filter is given by , where

(36)

This filter, in general, does not lead to a consistent recovery.
However, among all causal filters, the expansion coefficients it
produces are closest to those of the consistency approach for the
worst-case signal .

An interesting phenomenon occurs when the sampling func-
tions are orthogonal. This happens, for example, in the SI
setting , when is the rectangular window

or when is the ideal low-pass filter . In
this situation, for some constant and
thus reduces to , which corresponds
to a simple truncation of the impulse response of the non-causal
filter of (31). The important thing to note, however, is
that when the functions are not orthogonal, is not
constant and simple truncation is no longer optimal.

C. Causal Spline Interpolation

To demonstrate the causal recovery technique discussed
above, we next apply it to causal spline interpolation. The class
of splines is a popular choice of SI spaces in many image pro-
cessing applications. A spline of degree is a piecewise
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Fig. 8. Frequency response of the filter � ���.

polynomial with the pieces combined at knots, such that the
function is continuously differentiable times. It can be
shown that any spline of degree with knots at the integers
can be generated using (7) where is the B-spline
function of degree .

As a simple example, consider again the SI setting of Fig. 1
where the sampling period is and the sampling filter

is a B-spline of degree 1. The frequency response of
is given by . Therefore, in this case can be
considered a nonideal antialiasing low-pass filter whose cutoff
frequency is slightly smaller than the sampling rate ,
as shown in Fig. 8. We would like to approximate the signal

using (7) with5 , where the coefficients are
obtained by causal processing of the samples .

Using the convolution property (30) of B-splines, we have

As shown in [33], the -transform of is given by
, where . Therefore, the

noncausal consistent filter (31) is given by

(37)

and corresponds to the impulse response

A naive solution for obtaining a causal correction filter fol-
lows from truncating the impulse response [10]–[12].
This approach results in the filter , whose

-transform is

(38)

Our framework, however, dictates a different strategy. Specifi-
cally, recall from Table I that , where

. Substituting this expression into (36) leads to

5Reconstruction with � ��� is a shifted-by-1/2 version of zero-order hold re-
covery, also known as nearest neighbor interpolation in image processing.

Fig. 9. Reconstruction of ���� from its samples � using the noncausal filter
� ��� of(37), the truncated filter � ��� of (38) and the min-max optimal
causal filter � ��� of (39).

This expression can be shown to equal

(39)

Fig. 9 compares the above methods in the task of recovering
a randomly generated spline of degree 2. In this example,
the noncausal solution (37) attains a signal-to-noise ratio (SNR)
of6 . The truncated filter
(38) suffers from a significant degradation attaining an SNR of
7.59 dB. By contrast, our min-max solution (39) results in an
SNR of 8.21 dB, which is only slightly worse than the noncausal
approach.

VI. CAUSAL STABILITY

In sampling theory and signal representations, it is often de-
sired that the sequence of sampling functions be a
frame or a Riesz basis. This guarantees that small changes in
the signal result in small changes in the sample sequence

. Moreover, it ensures that slight perturbations in
the samples can only be a result of minor perturbations in the
signal . Consequently, recovery of from can be conducted
in a stable manner. However, in causal processing tasks, such
as extrapolation and causal recovery, one only has access to the
past samples . Therefore, stability in these appli-
cations, is ensured if the past sampling functions form
a frame or a Riesz basis for their span. In this section, we derive
conditions for the past of a stationary sequence to form a Riesz
basis or a frame. We then study the relation between stability
and extrapolation.

We begin with a condition on an entire stationary sequence
to be a Bessel-, Riesz-, or frame sequence.

Theorem 6: Let be a stationary sequence in a Hilbert space
with spectral measure with Lebesgue decomposition (13).

Then
1) is a Bessel sequence with bound if and only if

6The SNR was computed for a long time segment, only a small portion of
which is shown in Fig. 9.
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Fig. 10. The spectral density � �� � corresponding to various scenarios of stability and perfect extrapolation. (a) Riesz basis. (b) Frame. (c) Bessel sequence
with a locally flat zero: � �� � � �����������. (d) Bessel sequence with a locally sharp zero: � �� � � ���������� �.

TABLE II
STABILITY, CAUSAL STABILITY, AND PERFECT PREDICTION IN

U-INVARIANT SAMPLING

2) is a Riesz basis with bounds if and only if

(40)

3) is a frame with bounds if and only if

(41)

where .
Note that if satisfies (40) then it also satisfies (41), reflecting

the fact that every Riesz basis is also a frame. Conversely, if
the Lebesgue measure of the set , defined under point 3), is
positive, then (40) is not satisfied and is a frame which is not
a Riesz basis.

Proof: See Appendix B.
Remark 1: The above theorem is well known for the case in

which the sequence is generated by the translation operator
given in Example 1 (see, e.g., [16], [19], [24], [34]). Part 2 of
the theorem was also derived in [20] for arbitrary stationary se-
quences. For completeness, we present in Appendix B a unified
proof for all three cases.

We now proceed to study causal stability by discussing
several cases, as demonstrated in Fig. 10 and summarized in
Table II. We assume in the sequel that .

a) is a Riesz sequence: Assume that is a Riesz basis for
, as demonstrated in Fig. 10(a). If one element is removed from

a Riesz basis, then it ceases being a Riesz basis. Consequently,
the subset of past sampling functions cannot be a
Riesz basis for the whole sampling space . However, it is still a

Riesz basis for the past sampling space (see, e.g., [16]) so that
causal processing can be pursued in a stable manner. Therefore,
if is a Riesz sequence then U-invariant sampling is both stable
and causally stable. Nevertheless, since does not satisfy (24),
perfect extrapolation is impossible in this setting, as can be seen
in the first column of Table II.

b) is a frame sequence: Assume next that is a frame for
, as depicted in Fig. 10(b). In this case, satisfies condition

(24) so that the past functions also span . However, the next
result shows that cannot be a frame for .

Corollary 7: Let be a stationary frame se-
quence for with bounds and and assume that its spectral
density satisfies (24). Then

(42)

for all nonzero , but there exists no constant
such that for all . Thus,

is not a frame for .
Proof: See Appendix C.

According to (42), the analysis operator , corresponding
to the past sampling functions , is one-to-one. Therefore, it
is invertible on its range in the pure algebraic sense. However,
since is not bounded from below, the corresponding inverse
is not bounded, i.e. is not invertible if it is viewed as a
bounded linear operator . This implies that although
perfect prediction is theoretically possible, it cannot be achieved
by any stable procedure, as summarized in the second column
of Table II.

c) is a Bessel sequence but not a Riesz basis or a frame:
When is a Bessel sequence that is not a Riesz basis or a frame,
its spectral density is not bounded from below by any posi-
tive constant outside the set . This scenario
can be divided into two subcategories, which differ by the be-
havior of around its zeros.

1) Locally flat zero: satisfies (24). For example,
with , as shown in

Fig. 10(c), or being a continuous function, which
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vanishes for all where is of positive
Lebesgue measure.

2) Locally sharp zero: does not satisfy (24). For ex-
ample, with , as demon-
strated in Fig. 10(d).

In both cases does not constitute a frame for since the
lower bound in (41) is not satisfied. As we have seen, in the
flat zero case condition (24) is satisfied and, therefore, .
Since is not a frame, there exist unit-norm functions
such that is arbitrarily small. For these func-
tions, of course, is also arbitrarily small. This,
in turn, implies that is also not a frame for , despite the fact
that it spans . Therefore, in this case perfect prediction is pos-
sible but it is not a stable operation, as shown in the third column
of Table II.

The same argumentation shows that does not constitute
a frame for in the sharp-zero case as well. However, in this
setting condition (24) is not satisfied so that . Therefore,
this does not yet imply that causal stability is lacking. Whether

forms a frame for or not, remains an open question. All
we know is that in this setting, perfect prediction is impossible.

VII. CONCLUSION

In this paper we explored the use of the theory of stationary
stochastic sequences for solving sampling problems, which are
of a deterministic nature. The theory of stationary sequences
seems to have been primarily used in the probability and sta-
tistics communities, while barely fertilizing the sampling lit-
erature. In this work, we showed that several well-developed
tools from this theory can be used to predict future samples of
a signal based on its past and causally interpolate a signal from
its samples. We also introduced and studied the notion of causal
stability, which quantifies the ability to causally predict and in-
terpolate a signal in a stable fashion. Our results indicate that in
cases where perfect prediction is theoretically possible, it cannot
be done stably.

APPENDIX A
PROOF OF PROPOSITION 2

Any signal can be written as where
and . The signals all satisfy and
thus differ from one another only in the second component .
Using this observation, the inner maximization in (19) can be
written as

(43)

where .
The vector attaining the maximum must satisfy

since we can change the sign of without effecting the con-
straint. Consequently

(44)

combining (43) and (44), we have that

where the equality is a result of solving the minimization, which
is obtained at

(45)

We now show that the inequality becomes an equality with
of (45). Indeed, substituting (45) into (43), we have that

from which the proof follows.

APPENDIX B
PROOF OF THEOREM 6

First, we show that the synthesis operator given in (10) is
unbounded on if the singular part of the spectral measure
is not identically zero. The singular measure is concentrated
on a set of Lebesgue measure zero. Without loss
of generality, we assume that and that .
For an arbitrary , we consider the scalar sequence

given by and for all
. One easily verifies that

Next, we use the isometric isomorphism between and
(cf. Lemma 1). Therewith, we get

where . At
, we obviously have

such that

This shows that to every there exists a sequence
with such that . Thus is un-
bounded on and it follows that cannot be a Bessel sequence
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and consequently it also cannot be a Riesz basis or a frame for
(see, e.g., [16]).
It remains to show that is a Bessel sequence, Riesz basis,

or frame if the spectral density satisfies the conditions of
Theorem 6. It is known (see, e.g., [16]) that is a Riesz basis
for with Riesz bounds if and only if

(46)

Assume that satisfies (40). Then it follows from Lemma 1
and from Parseval’s theorem that

for all , where . In the same
way, one gets which shows that is a Riesz
basis for . Conversely, assume that (46) holds. Then Parseval’s
theorem and Lemma 1 give

Since this holds for all , (40) follows.
The proof of (41) is similar to the proof of [16, Th. 7.2.3]

for the special case of the translation operator. Here, only the
isometric relation of Lemma 1 has to be used at the appropriate
points. Therefore, the details are omitted.

APPENDIX C
PROOF OF COROLLARY 7

The upper bound in (42) follows from

To prove the lower bound in (42) we show first that to every
nonzero there always exists at least one index
such that . Indeed, assume to the contrary
that for all . Then the
min-max optimal predictor (20) of the future sample gives

. Since satisfies (24), Theorem 4 implies that this
prediction is perfect, i.e., that . By induction, it
follows that for all and consequently

. However, this contradicts the lower
bound in (9) which has to be satisfied because is assumed to
be a frame for . Consequently

which proves the lower bound in (42).

To prove the last statement, it suffices to show that to every
there exists an with such that

. Let be an open interval on
which for all . Without loss of generality
we can assume that for some . For
an arbitrary positive integer define the function

if

if .

Using (41), one easily verifies that .
Consequently and therefore there exists an

with (cf. Section III-B). For the
generalized samples of , one obtains

and therewith, one obtains

Consequently, for a sufficiently large one gets
.
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