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Abstract

Interference alignment (IA), given uncorrelated channel components and perfect channel state
information, obtains the maximum degrees of freedom in an interference channel. Little is known,
however, about how the sum rate of IA behaves at finite transmit power, with imperfect channel
state information, or antenna correlation. This paper provides an approximate closed-form signal-
to-interference-plus-noise-ratio (SINR) expression forIA over multiple-input-multiple-output (MIMO)
channels with imperfect channel state information and transmit antenna correlation. Assuming linear
processing at the transmitters and zero-forcing receivers, random matrix theory tools are utilized to
derive an approximation for the post-processing SINR distribution of each stream for each user. Perfect
channel knowledge and i.i.d. channel coefficients constitute special cases. This SINR distribution not
only allows easy calculation of useful performance metricslike sum rate and symbol error rate, but
also permits a realistic comparison of IA with other transmission techniques. More specifically, IA is
compared with spatial multiplexing and beamforming and it is shown that IA may not be optimal for
some performance criteria.

I. INTRODUCTION

Many important wireless communication scenarios can be modeled using an interference
channel. Examples include interfering base stations in a cellular network, wireless local area
networks, and simultaneous transmission in mobile ad-hoc networks. The general capacity of
the interference channel and the design of practical schemes approaching the known upper
bounds on sum rates have been of great interest over the last 30 years. The earliest attempts to
characterize the capacity region of the interference channel, inspired by the framework established
by Shannon in [2], were focused on two-user interference channels. Although the special cases
of strong and very strong interference have been solved [3],[4], the general capacity of the
interference channel is still an open problem. Recently, a series of attempts have been made
to describe an approximation of the asymptotic sum capacitybehavior known as the maximum
achievable multiplexing gain ordegrees of freedom(DoF) [5] where focus is on the high SNR
regime and the interference/broadcast characteristics ofthe wireless network. The DoF studies
paved the way for a novel method of dealing with interference, known asinterference alignment
(IA) [5], [6].

A. Recent Work and Motivation

IA uses beamforming matrices at the transmitters to align the interference to a received signal
subspace such that an interference free subspace becomes available for direct signal transmission.
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Thus in IA, the primary goal of the transmitting nodes is to reduce their decremental effect
on the unintended receivers. In contrast to other techniques of interference management such
as orthogonal access, decoding the interference [7] or treating the interference as noise [8],
IA achieves the maximum DoF in aK-user interference channel [5]. IA has also been used
successfully to characterize the maximum DoF of other network scenarios including the MIMO
interference channel with time varying/frequency selective channels [5] or constant channel
coefficients [9], [10], the X channel [11], the MIMO X channel[6], X [12], and MIMO X
networks [13].

Given the potential of IA, recent work has further explored its applications and limitations.
Iterative and distributed algorithms for IA over constant channel coefficients are presented in
[9], [14]. The feasibility of IA over spatial dimensions is studied in [10], [15]. Reducing the
overhead associated with IA is considered in [16]. Adaptation of IA to multi-cell networks is
considered in [17], [18]. A method of opportunistic access in cognitive radios inspired from IA is
proposed in [19]. Using IA for secure communications is studied in [20]. And finally, extending
IA to relay-aided networks is considered in [21]–[23].

On the one hand, despite the large number of practical wireless networks for which IA is
being considered, IA in its original form [5] is only shown tobe optimum for asymptotically
high SNR given perfect channel state information (CSI) and i.i.d. channel coefficient values
among the users and between the antennas. On the other hand, in practical systems [24], the
communicating nodes only have access to an imperfect estimate of the channel coefficients,
working at intermediate SNR values is inevitable and correlation either between the nodes or
especially between the antennas exists. Previous work to quantify the effect of imperfect CSI and
intermediate SNR values on IA are few, and either confined to calculating bounds on achievable
sum rates [17] or rely on experimental results [23] without providing accurate quantification of
key performance measures such as symbol error rate or achievable sum rate. The reason is the
complicated expressions of the linear beamforming/combining filters.

Our motivation for considering ZF receivers is two fold. First, although zero-forcing (ZF)
receivers are asymptotically sufficient for achieving the DoF promised by IA [5] and they provide
a simple and effective method for multiple stream detection, in the context of IA, little is known
about the performance of such receivers in intermediate SNRregimes with imperfect CSI and
correlated antennas/channels. Second, some other classesof receiver filters, such as minimum
mean square error or regularized ZF filters, converge to the ZF receiver at high SNR which
raises further question about ZF receivers at lower SNR.

Note that interference can be aligned on both the signal level space [25] (multi-level and
lattice coding) and in the signal vector space [5], [13], [26] (designing the beamforming and
combining filters using the time/frequency/spatial dimensions). Furthermore, although next gen-
eration MIMO based networks [24] present the opportunity tocode over frequency, time and
space dimensions, lack of sensitive frequency synchronization between the nodes, potential high
correlation between the channel coefficient values (IA highly relies on independence between
the used channel coefficients to achieve the full multiplexing gain [5]) and delay-sensitive
communications justifies using IA only over the spatial dimensions, i.e. IA over constant MIMO
channels [9], [10].

B. Contributions

In this paper, we quantify the IA performance under imperfect CSI for constant MIMO
channels with transmit correlation with ZF filters. First, using random matrix theory tools, we
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show that given perfect CSI at all the nodes and uncorrelatedi.i.d. channel coefficients, the
received SNR per stream for each user after a ZF equalizer is exponentially distributed. In
other words, using a ZF receiver results in parallel single-input-single-output Rayleigh channels.
Next, we show that if there exists an arbitrary Kronecker-modeled transmit correlation, using
the asymptotic behavior of the eigenvectors of Wishart matrices, we can quantify its effect
approximately on the received SNR distribution. Our analysis shows that the accuracy of this
approximation depends on the number of antennas at each node, the transmit antenna correlation,
and the transmit power.

After quantifying the effect of transmit correlation on theSNR distribution, we analyze the
effect of imperfect CSI (Gauss-Markov model) on the received SNR. We show that the imperfect
channel knowledge reduces the mean received SNR in proportion to the number of streams. In
other words, increasing the multiplexing gain, either by using more antennas at each node or by
increasing the number of transmit-receive pairs, increases the detrimental impact of imperfect
channel knowledge. Moreover, we show that if the imperfection in CSI does not vanish at
asymptotically high transmit powers, one can not achieve the full multiplexing gain promised
by IA. Finally we show that using the derived per-stream SNR distributions, it is possible to
accurately compare an IA network with other interference management methodologies such as
an orthogonal access network which is utilizing spatial multiplexing (SM) or beamforming.
Our recent work on this subject [1] did not include channel correlation and was restricted to
quantifying the impact of imperfect CSI on the distributionof the post-processing SINR for IA
over constant MIMO channels.

C. Organization and Notation

Organization: In Section II we present the system model and analyze the performance of IA
given perfect channel knowledge and i.i.d. channel coefficient values. In Sections III and IV we
progressively introduce transmit correlation and imperfect CSI into the system model and then
quantify their effects on the distribution of the post-processing SINR of each received stream.
Section V analyzes a point-to-point MIMO system relative toour IA configuration. Numerical
experiments are presented in Section VI and concluding remarks are given in Section VII.

Notation: Capital and small bold letters stand for matrices and vectors.A∗, AT andA−1 are
conjugate transpose, transpose and inverse ofA respectively.A(n,m) is the element on thenth

row andmth column ofA. A(:, m) is the vector ofmth column ofA. tr
(

A
)

and rank(A) are
trace and rank ofA, respectively.[A,B] is the matrix constructed by horizontal concatenation
of matricesA and B. vec (A) operator stacks the columns ofA. ⌈a⌉ is the smallest integer
larger than or equal toa, IN is theN × N identity matrix and0a×b is an a × b matrix of all
zeros.

II. IA O VER A CONSTANT MIMO CHANNEL

Consider theK-userNr × Nt MIMO interference channel shown in Fig. 1. Transmitteri
encodesdi streams using a precoding matrixFi which is then decoded by theith receiver after
processing the received signal with a combining matrixWi. Assuming perfect synchronization
between the nodes, the received signal at receiveri can be written as

yi =

K
∑

k=1

HikFkxk + zi, (1)
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wherezi is AWGN with elements distributed asCN (0, σ2), transmitted streamsxi obey the total
power constraintE {x∗

ixi} = P , Hik is the matrix of the channel coefficients between receiver
i and transmitterk. Note that in constant MIMO channels, coding over frequency/time does not
change the achievable DoF [5] and without loss of generalitywe can assume the channels are
narrowband.

The goal of IA for the MIMO constant channel is to design the precoding and combining
matrices such that the following conditions are satisfied

{

rank
(

WiHiiFi

)

= di

WiHikFk = 0 ∀k 6= i
∀i ∈ {1, . . . , K}. (2)

Except the3-user [5] and the(N + 1)-userN × N [10] constant MIMO channels, analytical
expressions directly solving (2) for the unknowns are stillunder investigation. There exist,
however, numerical methods for both designing the precoding/combining matrices and calculating
the achievable DoF [9], [14]. We focus in this paper on the alternating minimization method in
[9]; we leave extending the developed theory and the resultsto other IA precoding/combining
matrix design techniques for future work. Note that a systemof IA can have multiple solutions
[15] and it is possible to select a solution with specific properties for each channel instance
[27, Section VI]. Our analysis, however, is based on selecting a random IA solution for a given
channel instance and studying the behavior of solutions with specific properties (through extreme
statistics) is out of the scope of this work.

For theith transmitter/receiver pair, the alternating minimizationmethod results in a unitary
transmitter beamforming matrix,Fi, and a set of non-unique orthonormal basis for the interfer-
ence subspace, i.e. columns ofCi, such that

F∗
iFi = C∗

iCi = I ∀i ∈ {1, . . . , K}. (3)

Note that in the alternating minimization method, the direct channel linksHii do not appear
in the computation of precoding matrices (and interferencesubspaces) [9] and therefore the
elements ofHii are independent ofFi andCi for i ∈ {1, . . . , K}.

The next step is to design the receiver equalizers. Assumingthe alternating minimization
method has converged to an IA solution (see [9] and [28, Section 6] for discussions on its
convergence), by knowing a basis for the interference subspace at each receiveri, i.e. columns
of Ci, (1) can be written as

yi = HiiFixi +Ci

K
∑

k 6=i

Aikxk + zi = H̃i

[

xi
∑K

k 6=iAikxk

]

+ zi, (4)

whereAik determines the interference from transmitterk at receiveri and is given byCiAik =
HikFk and H̃i

△

=
[

HiiFi,Ci

]

is the effective channel at receiveri. Note that any other or-
thonormal basis for the interference subspace is related toCi through a unitary mapping and,
by appropriately transformingAik, we can restrict our attention toCi without affecting the
forthcoming discussions. Moreover, asHii is independent ofCi andFi (through construction),
the columns of theNr × di matrix of HiiFi do not completely lie in the subspace spanned by
columns of theNr × (Nr −di) matrix of Ci, i.e. theNr ×Nr matrix of

[

HiiFi,Ci

]

is full rank.
In addition, given that IA is feasible and that transmittersare communicating the maximum
number of allowed streams,Fi andCi are always of dimensionNt×di andNr × (Nr −di) and
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H̃i is always square. Therefore, the ZF equalizer at receiveri will be

WZF
i =

[

Idi, 0di×(Nr−di)

]

H̃−1
i . (5)

Define Bi =
[

Idi , 0di×(Nr−di)

]

. Applying the ZF receiver given by (5) to the received signal
given in (4) leads to an expression for the SNR of thenth stream at receiveri

γi,n =
γo/di

[

Bi(H̃∗
i H̃i)−1B∗

i

]

n,n

, (6)

whereγo = P
σ2 . Using Lemma 1, the denominator of (6) can be simplified into an expression

better suited for statistical analysis.

Lemma 1. Assuming IA is feasible, the denominator of (6) simplifies to[F∗
iH

∗
ii (INr

−CiC
∗
i )HiiFi]n,n.

Proof: Given thatH̃i =
[

HiiFi,Ci

]

H̃∗
i H̃i =

[

HiiFi,Ci

]∗[
HiiFi,Ci

]

=

[

Γ1 Γ2

Γ3 Γ4

]

, (7)

whereΓ1 = F∗
iH

∗
iiHiiFi, Γ2 = F∗

iH
∗
iiCi, Γ3 = C∗

iHiiFi andΓ4 = C∗
iCi = INr−di . Noting that

left and right multiplication of any matrix byBi andB∗
i keeps the firstdi rows and the first

di columns of that matrix, if(Γ1 − Γ2(Γ4)
−1Γ3) is not singular, the inverse of (7) simplifies to

(Γ1 − Γ2(Γ4)
−1Γ3)

−1 [29, Section 3.5.3]. As(INr
−CiC

∗
i ) is a projection matrix and hence an

(Hermitian) idempotent matrix

Γ1 − Γ2(Γ4)
−1Γ3 = F∗

iH
∗
iiHiiFi − F∗

iH
∗
iiCiC

∗
iHiiFi

= F∗
iH

∗
ii (INr

−CiC
∗
i )HiiFi = F∗

iH
∗
iiC̃iHiiFi = F∗

iH
∗
iiC̃iC̃iHiiFi, (8)

whereC̃i = (INr
−CiC

∗
i ). Furthermore,̃Ci is a projection matrix into thedi dimensional null-

space of the interference subspace at theith receiver constituting a combining matrix which
satisfies (2). Therefore,rank

(

C̃iHiiFi

)

= di and thedi × di matrix in (8) is nosingular.
Using Lemma 1, (6) simplifies to

γi,n =
γo/di

[

(

F∗
iH

∗
iiC̃iHiiFi

)−1
]

n,n

. (9)

Define∆i = F∗
iH

∗
ii. Lemma 2 gives the distribution of∆i∆

∗
i which is then used in Lemma 3

to find the distribution of∆iC̃i∆
∗
i .

Lemma 2. If the channel coefficients are i.i.d. zero-mean unit-variance Gaussian random vari-
ables,Hii is independent ofFi, (3) holds, then thedi × di random matrix∆i∆

∗
i is a complex

Wishart matrix withNr degrees of freedom and covariance matrixIdi .

Proof: In the alternating minimization algorithm, the columns ofFi aredi eigenvectors (cor-
responding to thedi least significant eigenvalues) of theNt×Nt matrix

∑K
k 6=iH

∗
ki (I−CkC

∗
k)Hki.

Let the eigenvalue decomposition of
∑K

k 6=iH
∗
ki (I−CkC

∗
k)Hki be UiΣiU

∗
i where Σi is a

diagonal matrix holding the eigenvalues sorted in ascending order andUi is a unitary matrix
holding the corresponding eigenvectors. ThenFi = Ui

[

Idi, 0di×(Nt−di)

]T
. Therefore∆i =
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[

Idi, 0di×(Nt−di)

]

U∗
iH

∗
ii and following the unitarily invariance property ofH∗

ii,
[

Idi , 0di×(Nt−di)

]

U∗
iH

∗
ii

hasNr columns of sizedi with each element distributed asCN (0, 1). It follows that thedi × di
matrix of ∆i∆

∗
i has a central Wishart distribution withNr degrees of freedom and covariance

matrix Idi .
Using Lemma 2 and noting that̃Ci is a projection matrix into a sub-space of dimensiondi,

Lemma 3 gives the distribution of∆iC̃i∆
∗
i .

Lemma 3. If the d×d matrix∆∆∗ has a central Wishart distribution withN degrees of freedom
and covariance matrixId and C̃ is a projection matrix into a sub-space of dimensionc ≤ N ,
the d × d matrix of ∆C̃∆∗ has a central Wishart distribution withc degrees of freedom and
covariance matrixId.

Proof: As a projection matrix into a sub-space,C̃ can be rewritten asUΣU∗, whereU
is a unitary matrix andΣ holds thec unity eigenvalues of̃C on its main diagonal and zeros
elsewhere. Proof follows from unitarily invariance of columns of∆ and idempotent property of
Σ [30, Theorem 3.4.4].
From Lemma 3 it follows that the SNR of each stream given by (9)is exponentially distributed
[31], i.e.

f(γi,n) =
di
γo

exp

(

−
diγi,n
γo

)

. (10)

By using a ZF receiver, the system effectively consists of
K
∑

m=1

dm parallel Rayleigh point-to-point

links.

III. T RANSMIT ANTENNA CORRELATION

A more general channel model includes spatial correlation between the channel elements. In
this section we suppose that there is transmit spatial correlation, thus

Hik = Hw
ikR

1/2
t ∀i, k ∈ {1, . . . , K}, (11)

where Hw ∼ CN (0, I) and Rt is a constant Hermitian positive semidefinite (PSD) matrix
[32]. Note that when the receive spatial correlation,Rr, is not an identity matrix, neither the
columns nor the rows ofHii are independent and analyzing the distribution ofH∗

iiC̃iHii (which
appears in the denominator of SNR expressions) is more challenging. Therefore, including receive
correlation is a topic of future work. For the initial analysis, we assume that the spatial correlation
is the same for all channels in the interference network; we relax this assumption at the end of
the section.

Assume IA is done over the instantaneous channels as before.Note that the feasibility of a
system of IA is a function of number of equations and variables in (2) [15]. Therefore, as long as
Rt is not rank deficient, transmit correlation will not change the achievability of IA. Replacing
(11) in (9) gives

γc
i,n =

γo/di
[

(

F∗
i (R

1/2
t )∗(Hw

ii)
∗C̃iH

w
iiR

1/2
t Fi

)−1
]

n,n

=
γo/di

[

(

∆̃iC̃i∆̃
∗
i

)−1
]

n,n

, (12)
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where∆̃i = F∗
i (R

1/2
t )∗(Hw

ii)
∗. ∆̃i has i.i.d. columns with covariance matrix̃Ri defined as

R̃i = cov(∆̃i(:, n), ∆̃i(:, n)) = E

{

F∗
i (R

1/2
t )∗(Hw

ii(:, n))
∗Hw

ii(:, n)R
1/2
t Fi

}

= E {F∗
iRtFi} .

(13)

AssumingR̃i is known, similar to (10), the SINR of thenth stream at receiveri given by (12)
is exponentially distributed [31] as

f(γc
i,n) =

diσ
2
i,n

γo
exp

(

−
diσ

2
i,nγi,n

γo

)

, (14)

andσ2
i,n is thenth diagonal entry ofR̃−1

i , i.e.

σ2
i,n = eTn,diR̃

−1
i en,di , (15)

whereen,di is thenth column ofIdi . Next we boundσ2
i,n using Lemma 4.

Lemma 4. AssumeRt is a Hermitian PSD matrix,F is a randomNt × d matrix such that
F∗F = Id and R̃ = E {F∗RtF}. Then,σ2

n = eTn,dR̃
−1en,d can be bounded as

{

1
λN

≤ σ2
n ≤ 1

λ1
d = 1

1
λ1

+ (λ1−λN )2

λ1(λ1λN−d‖Rt‖22)
≤ σ2

n ≤ 1
4λ1

(

λ1

λN
+ λN

λ1

+ 2
)

d > 1
, ∀n ∈ {1, · · · , d}, (16)

whereλ1 ≤ λ2 ≤ . . . ≤ λN are the eigenvalues ofRt.

Proof: The Kantrovich inequality [33] states that for ad× d PSD matrixR̃ [34]

σ2
n ≤

1

4R̃(n, n)

(

λlb

λub
+

λub

λlb
+ 2

)

, (17)

whereλlb and λub are lower and upper bounds for the smallest and largest eigenvalue of R̃
respectively. Moreover,̃R(n, n) = E {F∗(n, :)RtF(:, n)} is a quadratic form and can be bounded
as

λ1 ≤ R̃(n, n) ≤ λN , (18)

whereλ1 ≤ λ2 ≤ . . . ≤ λN are the eigenvalues ofRt. In addition, sinceF∗F = Id, using
Pioncare’s separation theorem [29], the sorted eigenvalues of R̃, λ̃i i ∈ {1, . . . , d}, can be
bounded as

λi ≤ λ̃i ≤ λN−d+i i = 1, · · · , d . (19)

Substituting the bounds from (18) and (19) into (17) gives anupper bound onσ2
n, i.e.

σ2
n ≤

1

4λ1

(

λ1

λN

+
λN

λ1

+ 2

)

. (20)

Note that whend = 1, (13) will simplify and (18) gives a tighter upper-bound onσ2
n. Combining

the bounds from (18) and (20) results in

σ2
n ≤

{

1
4λ1

(

λ1

λN
+ λN

λ1

+ 2
)

d > 1
1
λ1

d = 1
, ∀n ∈ {1, · · · , d}.
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As
∑d

m=1 ‖ R̃(n,m) ‖22 ≤ d ‖ Rt ‖
2
2 [35], by using the upper bound on the diagonal entries

of R̃ given by (18), a lower bound onσ2
n can be found [36]

σ2
n ≥

1

λ1

+
(λ1 − λN)

2

λ1(λ1λN − d ‖ Rt ‖22)
∀n ∈ {1, · · · , d}. (21)

Whend = 1, as‖ Rt ‖22= λ2
N , the right hand side of (21) simplifies to

1

λ1
+

(λ1 − λN)
2

λ1λN(λ1 − λN)
=

λN (λ1 − λN) + (λ1 − λN)
2

λ1λN (λ1 − λN)
=

1

λN
,

which agrees with (18).
Instead of bounding (15), we could directly computeR̃i. To computeR̃i, correlation (covari-

ance) function between the elements ofFi is needed. In the alternating minimization algorithm,
the columns ofFi are set to thedi least dominant eigenvectors of

∑

k 6=i

H∗
ki(INr

−CkC
∗
k)Hki , (22)

and becauseCk is not independent ofHki for i 6= k, (22) is not a Wishart matrix and the known
results for the covariance matrix of the eigenvectors of Wishart matrices (e.g. see [37], [38] and
references therein) do not lead to an exact characterization of R̃i. Assumption 1, however, paves
the way for directly computing (approximating)̃Ri using Corollary 1 and Lemma 5.

Assumption 1. Any set of basis of the interference subspace at thekth receiver, columns ofCk,
is independent of the channels between the interfering transmitters and thekth receiver,Hki for
i 6= k ∈ {1, . . . , K}.

Using Assumption 1 and Lemma 3, each term of the summation in (22) is anNr×Nr Wishart
distributed matrix withdk degrees of freedom and covariance matrixRt. Moreover, asHki is
independent ofHnm for k 6= i or i 6= m, based on [30, Theorem 3.4.3], distribution of (22) is
given by Corollary 1.

Corollary 1. In the alternating minimization algorithm, using Assumption 1, Lemma 2, and
Lemma 3, (22) is anNr × Nr complex Wishart matrix with

∑

k 6=i dk degrees of freedom and
covariance matrixRt.

Based on Corollary 1, columns ofFi are a subset of eigenvectors of a matrix with central
complex Wishart distribution. Lemma 5 gives the covariance(correlation) function between
components of the eigenvectors of a Wishart matrix which canbe used to compute (13).

Lemma 5. Let λ̃p andũp, for p = 1, . . . , N , be the eigenvalues and the eigenvectors of anN×N
matrix with a central complex Wishart distribution withD degrees of freedom and covariance
matrixRt. Next, letλp anduuup, for p = 1, . . . , N , be the eigenvalues and eigenvectors ofRt. Also
let theqth elements of̃up andup be ũpq andupq respectively. Assumingλ1 > λ2 > · · · > λN > 0,
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for D → ∞ and fixedN

E {ũp} = up , (23)

cov(ũpq, ũp′q′) =



















λp

D

N
∑

r=1,r 6=p

λrurqu
∗
rq′

(λr − λp)2
p = p′

−
λpλp′upqu

∗
p′q′

D(λp − λp′)2
p 6= p′

. (24)

Proof: See [39, Chap. 3.6], [37, Chap. 10] and references therein.
Using Lemma 5,R̃i(n,m) ∀n,m ∈ {1, . . . , di} in (13) is given by

R̃i(n,m) = tr (E {F∗
i (n, :)RtFi(:,m)}) = tr (E {Fi(:,m)F∗

i (n, :)}Rt)

= tr ((cov (Fi(:,m),Fi(:, n)) + E {Fi(:,m)}E {F∗
i (n, :)})Rt) . (25)

Moreover, values given by (25) should be normalized by noting thatF∗
iFi = Idi and hence

tr (cov (Fi(:,m),Fi(:,m)) + E {Fi(:,m)}E {F∗
i (m, :)}) = 1 ∀m ∈ {1, . . . , di}.

Note that the asymptotic expressions presented in Lemma 5 are valid when the number of
streams in the IA network is asymptotically large while the number of antennas in each node
is kept constant. We know, however, for a K-user interference channel, when the number of
streams in the network increases, IA remains feasible only if the number of antennas at each
node increases accordingly [15]. But such asymptotic results fall into the category of asymptotic
behavior of eigenvectors of large covariance matrices (e.g. see [38] and references therein) where
closed form solutions similar to (24) are either not available or their complexity will not benefit
the current discussion of this paper. It should be noted thatmore accurate results for the values
of R̃i can always be obtained by using a better approximation or a more complex closed-form
expression.

Under certain models of spatial correlation, for example those based on scattering clusters
[40], the spatial correlation is a function of cluster locations and will vary for different transmit
and receiver locations. Now we assume there is a potentiallydifferent transmit correlation for
each link pair, i.e.Rti 6= Rtk for k 6= i ∈ {1, . . . , K}. Using Assumption 1, (22) will be a linear
sum of Wishart matrices with equal degrees of freedom but unequal covariance matrices. It is
shown in [41] that such a linear sum can be approximated with another Wishart matrix whose
degrees of freedom and covariance matrix are given by Lemma 6.

Lemma 6. SupposeT̄ =
∑K−1

i=1 Ti whereTi is a N × N Wishart distributed matrix withdi
degrees of freedom and covariance matrixRti. ThenT̄ has, approximately, Wishart distribution

with d̄ degrees of freedom and covariance matrixR̄t where d̄ =
tr(

∑
K−1

i=1
diRti)

2

+tr2(
∑

K−1

i=1
diRti)

∑K−1

i=1
di(tr(R2

ti
)+tr2(Rti

))
and R̄t =

1
d̄

∑K−1
i=1 diRti.

Proof: See [41, Section 3]
Using Lemma 5 and Lemma 6, the correlation between the elements of eigenvectors of (22)

can be found and consequently one can compute (13) for each receiver. Note that ifRti 6= Rtk

for i 6= k ∈ {1, . . . , K}, then σ2
i,n 6= σ2

k,n. For the rest of this manuscript, to simplify the
notation, we assume equal transmit correlations at each transmitter. The forthcoming analysis
and the derived equations, however, can be generalized to unequal transmit correlation matrices.
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IV. I MPERFECTCHANNEL KNOWLEDGE

The channel state is estimated and thus known imperfectly inrealistic wireless systems. We
model imperfect CSI through a Gauss-Markov uncertainty of the form [42], [43]

Hw =
√

1− β2Ĥw + βE , (26)

whereHw ∼ CN (0, I) is the true Gaussian part of the channel matrix,Ĥw ∼ CN (0, I) is the
imperfect observation ofHw available to the nodes andE ∼ CN (0, I) is an i.i.d Gaussian noise
term. The parameterβ characterizes the partial CSI sinceβ = 0 corresponds to perfect channel
knowledge andβ = 1 corresponds to no CSI knowledge and values of0 < β < 1 account for
partial CSI. Note that our forthcoming discussion on the general expression of the imperfect
CSI at the nodes as modeled in (26) can be used to study specificscenarios of imperfect CSI
such as channel estimation error or analog feedback. The difference between such scenarios is
how β changes as a function of different system parameters. For example, with MMSE channel
estimation,β is a function of pilot symbol SNR [44] or for an analog feedback link, β is a
function of the number of channel uses per channel coefficient and the SNR of the feedback
link [45]. We assumeβ is a constant but one can extend the results toβ being an arbitrary
function of the system parameters.

In presence of a transmit correlation,Rt, using arguments similar to [46], [47], we assume that
the transmit correlation varies slower than the channel itself such that the nodes have a perfect
estimate ofRt even if their observation ofH is not perfect. Therefore, the channel correlation
given by (11) can be considered in conjunction with the CSI imperfection using the following
model

H = (
√

1− β2Ĥw + βE)R
1/2
t . (27)

We assume that the precoding and combining matrices are designed usingĤwR
1/2
t , thus

effectively ignoring the introduced CSI imperfection. Similar to (1) and (4)

yi =
K
∑

k=1

(

√

1− β2Ĥw
ik + βEik

)

R
1/2
t Fkxk + zi

=
√

1− β2Ĥi

[

xi
∑K

k 6=i Âikxk

]

+ βEi(R
1/2
t ⊗ IK)Fx + zi , (28)

whereĤi = [Ĥw
iiR

1/2
t Fi,Ci], Âik is found by solvingCiÂik = Ĥw

ikR
1/2
t Fk, F andEi are block

diagonal matrices withF1, . . . ,FK andEi1, . . . ,EiK on their main diagonals respectively and
x =

[

xT
i , . . . ,x

T
K ]

T . The ZF equalizer, similar to (5), is given byBiĤ
−1
i and the distribution of

the post-processing SINR after applying the ZF equalizer to(28) is given by Lemma 7.

Lemma 7. Given the channel model of (27), assuming the IA precoders are designed ignoring
the CSI imperfection, the post-processing SINR distribution after applying a ZF equalizer is
given by

f ci(γi,n) = 1/αi exp (−γi,n/αi) i ∈ {1, . . . , K}, n ∈ {1, . . . , di}, (29)

whereαi =
1−β2

σ2

i,ndi(β
2I+ 1

γo
)
, σ2

i,n is given by (15) andI =
∑K

i=1 tr
(

F∗
iRtFi

)

/di.
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Proof: Applying the ZF equalizer to (28), the per stream SINR of theith user is given by

γci
i,n =

(1− β2)/di
[

Bi

(

β2Ĥ−1
i Ei(R

1/2
t ⊗ IK)FDF∗(R

1/2
t ⊗ IK)∗E∗

i

(

Ĥ−1
i

)∗
+ 1

γo

(

Ĥ∗
i Ĥi

)−1
)

B∗
i

]

n,n

,

(30)

whereD = E {xx∗}. As Ei has i.i.d unit-variance zero-mean terms, we haveE {AEiBE∗
iC} =

tr(B)AC for any matricesA,B andC independent ofEi [35, Section 21.2]. Therefore, (30)
simplifies to

γci
i,n =

(1− β2)/di
[

Bi

(

β2tr
(

(R
1/2
t ⊗ IK)FDF∗(R

1/2
t ⊗ IK)∗

)

Ĥ−1
i

(

Ĥ−1
i

)∗
+ 1

γo

(

Ĥ∗
i Ĥi

)−1
)

B∗
i

]

n,n

=
(1− β2)/di

[

Bi

(

β2tr
(

(Rt ⊗ IK)FDF∗
)(

Ĥ∗
i Ĥi

)−1
+ 1

γo

(

Ĥ∗
i Ĥi

)−1
)

B∗
i

]

n,n

, (31)

where the equalitytr(AB
)

= tr
(

BA) was used in (31). Exploiting the block diagonal structure
of F and (Rt ⊗ IK) results in

γci
i,n =

(1− β2)/di
[

Bi

(

(β2I + 1
γo
)
(

Ĥ∗
i Ĥi

)−1
)

B∗
i

]

n,n

. (32)

Similar to (9), (32) further simplifies to

γci
i,n =

(1− β2)/di

(β2I + 1/γo)

[

(

∆̂i(INr
−CiC

∗
i )∆̂

∗
i

)−1
]

n,n

, (33)

where∆̂i = F∗
i (R

1/2
t )∗(Ĥw

ii)
∗. The SINR distribution follows from comparing (33) to (12).

ForRt 6= I, I can either be approximated using Lemma 5 or bounded using (16) by summing
over the bounds of diagonal entries ofR̃i. Note that forRt = I, the values ofI and σ2

i,n in
(32) and (15) will be exact and equal toK and1 respectively. Moreover, as expected, forβ = 0
andσ2

i,n = 1, (29) reduces to (10). Comparing (10) to (29), the mean SINR at each stream has
reduced by a factor ofσ2

i,n(γoβ
2I + 1)/(1− β2) which results in the mean post-processing SINR

reaching the maximum value of(1− β2)/(σ2
i,ndiβ

2I) asγo → ∞, implying a symbol-error-rate
(SER) floor and a sum rate cap givenβ 6= 0. Note that whenβ = 0, the mean SINR still scales
linearly with increasingγo and the effect of antenna correlation can be seen as a shift inSER
or sum rate curves. Moreover, ifβ decreases with increasingγo, provided thatRt is not rank
deficient, there will be no SER floor or sum rate cap and the fullmultiplexing gain promised
by IA will be attainable.

V. COMPARISON WITH POINT-TO-POINT MIMO

In an interference channel, instead of utilizing IA, nodes can access the network resources in an
orthogonal fashion (TDMA/FDMA). In the resulting parallelpoint-to-point links, nodes can apply
any of the traditional MIMO transmission strategies. In this section, we discuss the two most
common strategies, beamforming and SM, and present the post-processing SNR distributions in
each case. The post-processing SNR distributions can be used to compare IA to beamforming
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and SM for a wide range of system performance measures. For the point-to-point MIMO links,
we assume existence of transmit correlation and imperfect CSI similar to (27).

A transmitter with CSI can use beamforming to send a single stream to its receiver. Assume
the transmitter ignores the channel imperfection in (27) and treatsĤwR

1/2
t as the true channel. To

maximize the received SNR, the precoding and combining vectors are set toV(:, 1) andU(:, 1)∗,
respectively, whereU andV are given by the singular value decomposition ofĤwR

1/2
t = UΣV∗

andΣ is diagonal matrix holding the singular values ofĤwR
1/2
t in descending order. The post-

processing SNR is then

γBF =
(1− β2)λ̂1

β2ν + 1/γo
, (34)

whereν = E {tr (V∗(:, 1)RtV(:, 1))} and λ̂1 is the largest eigenvalue of̂HwR
1/2
t (R

1/2
t )∗(Ĥw)∗

with correlated central complex Wishart distribution. Note that columns ofV are also the
eigenvectors of(R1/2

t )∗(Ĥw)∗ĤwR
1/2
t which has central complex Wishart distribution with

covariance matrixRt and N degrees of freedom and similar to (13), Lemma 5 can be used
to computeν. Therefore, the distribution of the beamforming SNR is given by

fBF (γ) =
(1− β2)f cw(Rt, γ)

β2ν + 1/γo
, (35)

wheref cw(Rt, γ) is the distribution of the largest eigenvalue of a correlated central complex
Wishart matrix with covariance matrixRt [48, Section IV].

In absence of transmit CSI, SM can be used to conveyN data streams to the receiver. Assume
the channel imperfection is ignored at the receivers and theZF equalizer is given by(ĤwR

1/2
t )−1.

The post-processing SINR per stream can be written as

γSM
n =

(1− β2)/N
(

β2tr(Rt)/N+ 1
γo

)

[

(

(R
1/2
t )∗(Hw)∗HwR

1/2
t

)−1
]

n,n

,

which is distributed as

fSM
n (γn) =

1

ω
exp

(

−γn
ω

)

, (36)

whereω = 1−β2

σ2
n(n)(β2tr(Rt)+

N

γo
)

andσ2
n(n) is thenth diagonal entry ofR−1

t .

Using (32), (34) and (36), the performance of beamforming, SM and IA can be compared
for a wide range of system performance metrics. One such metric is the achievable throughput
given by

Rsum(γo, β, α) =
d̂

∑

n=1

∫ ∞

0

log2(1 + γ)f(γ)dγ, (37)

where d̂ is the number of streams in the network equal to
∑

i di, N and 1 for IA, SM and
beamforming, respectively. Another point of comparison between IA and point-to-point MIMO
links is the per-stream SER. For any modulationM, the AWGN SER is a function ofγ, e.g.
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EM(γ), and the per-stream SER can be written as

SERM(γo, β, α) =

∫ ∞

0

EM(γ)f(γ)dγ,

wheref is any of the distributions given by (32), (34) or (36). Note that both (32) and (36) are
exponentially distributed and the mean value of the distributions suffices to compare IA and SM
in terms of per-stream SER (assumingdi = dj ∀i, j ∈ {1, . . . , K}). Specifically, the ratio of the
mean SINR of the SM link to the mean SINR of the IA network is given by

E
{

fSM
}

E {f ci}
=

σ2
i,nd

(

β2I + 1
γo

)

σ2
n(n)

(

β2 + N
γo

) , (38)

whereσ2
i,n = σ2

j,n for i, j ∈ {1, . . . , K}. When (38) results in a value greater than1, the (per
stream) mean SINR of the SM MIMO network is higher, i.e. when (38) is larger than1, given
a SER constraint, a point-to-point SM MIMO link will satisfythat constraint with a smaller
transmit power.

VI. NUMERICAL RESULTS

Consider aK-userN ×N MIMO interference channel. All the channel and noise coefficients
are distributed asCN (0, 1). To focus on the distribution of the received SINR, we exclude
any large-scale fading effects from the channel model effectively assuming all the nodes are
co-located and equipped with omni-directional antennas. It is shown in [9] that using IA, each
transmitter can send a single stream to its corresponding receiver as long asN = ⌈(1 +K)/2⌉.
In the forthcoming discussions, the channel coefficient matrices are normalized such that‖
H ‖2F= NrNt which given the transmit correlation and channel imperfection model of (26)
translates totr (Rt) = Nt. Note that there exist constraints on the off-diagonal elements of the
Rt due to the transmit correlation matrix being Hermitian PSD.In this section, for the transmit
correlation matrix, we adapt aN ×N transmit correlation matrix of the formRt(i, j) = α|i−j|

for i, j ∈ {1, · · · , N}, whereα ∈ C is such thatRt is positive definite. This model, widely
used in literature and industry [49], models the correlation between elements of a uniform linear
array antenna whereα = 0 and |α| = 1 correspond to no correlation and a rank1 channel,
respectively.

The numerical values of̃R−1
i computed from (13), the theoretical approximation found by

replacing (24) and (23) into (13) and the bounds given by (16)versusα for two different IA
networks are depicted in Fig. 2. The two IA networks are a3-user2×2 and a5-user3×3 MIMO
networks withdi = 1, i ∈ {1, . . . , K}. Both networks use the alternating minimization algorithm
to compute the precoding and combining matrices. As expected, the theoretical approximation is a
better estimate of the true values ofR̃−1

i than the presented upper and lower bounds, especially
for small values ofα. Note that by increasingN and α, the accuracy of the approximation
decreases.

In computing (29), for a fixedγo, as β increases, the numerator approaches zero and the
impact of any errors in approximatingσ2

i,n on (29) diminishes. Therefore, we expect that by
increasingβ the distribution of the received SINR given by (29) will approach to the true
distribution. Moreover, for a fixedβ, as1/γo approaches zero, any errors in computingσ2

i,n will
be attenuated by a smaller value and we expect (29) to become closer to the true value of the
distribution. Although there exists numerous methods of quantifying the accuracy of (29), we
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choose the Kullback-Leibler divergence (KLD) [50] betweenthe distribution given by (29) and
the empirical one. The continuous distributions required to compute KLD are approximated with
uniformly spaced samples in their range.

Now consider a3-user IA network withdi = 1 ∀i ∈ {1, 2, 3} and transmit nodes equipped with
a uniform linear array of2 antennas spacedaλ apart wherea ∈ R+ andλ is the transmission
signal wavelength. Here, we controlα by varying a. We use the method proposed in [49]
(Suburban Macro-cellenvironment) to calculateα for various antenna spacings. Table VII shows
the selected antenna spacings and the correspondingα values. The KLD between empirical
distribution of the received SINR and theoretical distribution given by (29) as a function ofα
for three values ofβ and two values ofγo is shown in Fig. 3. As expected, the divergence
between the distributions decreases by increasingβ andγo.

As discussed in Section IV, the distribution of per stream SINR given by (29) is exact for
α = 0. The sum rate of a4-user3× 3 MIMO system, whenRt = I, for four values ofβ versus
γo is depicted in Fig. 4 where theoretical sum rate curves are found by replacing (29) into (37)
and the maximum achievable sum rates (whenβ > 0) are found by replacing the mean value of
(29) with its limit asγo approaches infinity, i.e. 1−β2

σ2

i,n
diβ2I

. As can be seen, the numerical results
exactly follow the theoretical predictions. Moreover, when β 6= 0 the multiplexing gain is zero.
For β 6= 0, however, by comparing the sum rate curve with the case of perfect CSI (β = 0), one
could find ranges of transmit power where channel imperfection has practically no effect on the
sum rate; for example,γo < 20dB for β = 0.01.

The effect of transmit correlation and imperfect CSI on the sum rates of a3-user2×2 MIMO
IA network and a2 × 2 point-to-point MIMO beamforming link is shown in Fig. 5. Several
important conclusions can be drawn from this figure. First, for non-ideal transmit correlation
and imperfect CSI, sum rate of a beamforming link can be higher than the sum rate of an IA
network with the cross-over point between the sum rate curves being a function ofα, β andγo.
Second, the accuracy of (29), as discussed before, increases with increasingγo while it decreases
with increasingα. Note that asα increases,Rt approaches a rank-deficient matrix (violating
our assumptions in Lemma 5) which reduces the accuracy of (29). Third, Lemma 5 can be used
to accurately predict the performance of beamforming in presence of transmit correlation and
channel imperfection.

Consider a3-user2 × 2 MIMO IA network with di = 1, i ∈ {1, . . . , K} and a2 × 2 SM
MIMO link with a ZF receiver. Although it can be shown that theRsum of the SM link, in this
configuration, is always less than theRsum of the IA network, a measure of relative performance
between the two networks can be defined as (38). The contours curves of (38), in terms ofα and
β for varyingγo, are shown in Fig. 6. As can be seen, the SM link has a better performance in the
areas defined by largeβ and smallα and this area grows by increasingγo. This behavior can be
explained by noting that the effect of imperfect CSI on the IAand SM networks is proportional
to K and N , respectively, and whenK > N , imperfect CSI is more destructive for the IA
network. The effect of antenna correlation, however, is more tolerated in the IA network where
the eigenvalues ofRt, unlike the SM MIMO link, are not directly limiting the ZF performance.
The corresponding numerical curves of Fig. 6 are shown in Fig. 7 where by increasingγo, the
theoretical approximation better estimates the true behavior of the IA network. Moreover, both
the theoretical and numerical contours show similar valuesfor α andβ for which by increasing
γo, the relative behavior of the SM link to IA network will not change, i.e.α ≅ 0.58 and
β ≅ 0.04, showing how our derived theoretical results can be used to accurately predict the IA
system performance over a large range ofβ, α andγo.
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VII. CONCLUSION

The performance of MIMO IA networks depend on the accuracy ofCSI and channel correla-
tion. This paper quantified the impact of imperfect CSI and transmit antenna correlation via the
per-stream post-processing SINR distribution. Upon usingzero-forcing equalizers in a Rayleigh
channel, post-processing SINR was shown to be exponentially distributed with the mean value
being a function of the number of antennas at each node, the transmit antenna correlation, the
imperfection in CSI, and the transmit power. It was shown that, in the presence of imperfect CSI,
the performance of IA degrades with increasing total numberof streams in the network and if
the imperfection does not vanish at asymptotically high transmit powers, the multiplexing gain
is zero. Moreover, it was shown that as long as the channel matrices are full-rank, the impact of
transmit correlation is less detrimental confined to a constant power loss which does not decrease
the multiplexing gain achievable through IA. The performance of the two most commonly used
transmit techniques in orthogonal access networks, beamforming and spatial multiplexing, was
compared to the performance of IA by utilizing the derived SINR distributions where it was
shown that IA is not always the optimum transmission strategy given realistic system parameters.

The results of this paper can be used as a starting point for further research. The performance
of other communication techniques for interference channels such as combinations of orthogonal
access, beamforming, coordinated multipoint transmission/reception and so on can be compared
to the performance of MIMO IA networks and optimal switchingpoints between different
methods based on number of nodes, number of antennas, transmission power, amount of CSI
imperfection or structure of the transmission correlationcan be found which might help guide
which techniques are appropriate for different networks.
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TABLE I
CHANNEL CORRELATION VALUES FOR VARYING ANTENNA SPACING IN ASUB-URBAN MACRO-CELL ENVIRONMENT [49]

Antenna Spacing (×λ) α |α|

10 −0.1743 + 0.0951i 0.1986
9 0.2064 + 0.1066i 0.2323
8 −0.0341− 0.2872i 0.2892
7 −0.2817 + 0.2408i 0.3706
6 0.4551 + 0.1317i 0.4738
5 −0.1717− 0.5660i 0.5915
4 −0.4616 + 0.5439i 0.7134
3 0.8193 + 0.1101i 0.8267
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