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Abstract

In this paper, we propose a transmit beamspace energy focusing technique for multiple-input

multiple-output (MIMO) radar with application to direction finding for multiple targets. The general

angular directions of the targets are assumed to be located within a certain spatial sector. We focus

the energy of multiple (two or more) transmitted orthogonalwaveforms within that spatial sector using

transmit beamformers which are designed to improve the signal-to-noise ratio (SNR) gain at each receive

antenna. The subspace decomposition-based techniques such as MUSIC can then be used for direction

finding for multiple targets. Moreover, the transmit beamformers can be designed so that matched-

filtering the received data to the waveforms yields multiple(two or more) data sets with rotational

invariance property that allows applying search-free direction finding techniques such as ESPRIT for

two data sets or parallel factor analysis (PARAFAC) for morethan two data sets. Unlike previously

reported MIMO radar ESPRIT/PARAFAC-based direction finding techniques, our method achieves the

rotational invariance property in a different manner combined also with the transmit energy focusing.

As a result, it achieves better estimation performance at lower computational cost. Particularly, the

proposed technique leads to lower Cramer-Rao bound than theexisting techniques due to the transmit

energy focusing capability. Simulation results also show the superiority of the proposed technique over

the existing techniques.
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I. INTRODUCTION

The development of multiple-input multiple-output (MIMO)radar is recently the focus of

intensive research [1]-[3]. A MIMO radar is generally defined as a radar system with multiple

transmit linearly independent waveforms and it enables joint processing of data received by

multiple receive antennas. MIMO radar can be either equipped with widely separated antennas

[2] or colocated antennas [3].

Estimating direction-of-arrivals (DOAs) of multiple targets from measurements corrupted by

noise at the receiving array of antennas is one of the most important radar applications frequently

encountered in practice. Many DOA estimation methods have been developed for traditional

single-input multiple-output (SIMO) radar [4]-[12]. Among these methods the estimation of

signal parameters via rotational invariance techniques (ESPRIT) and multiple signal classification

(MUSIC) are the most popular due to their simplicity and high-resolution capabilities [6], [9],

[12]. Moreover, ESPRIT is a special and computationally efficient case of a more general

decomposition technique of high-dimensional (higher than2) data arrays known as parallel

factor analysis (PARAFAC) [13], [14].

More recently, some algorithms have been developed for DOA estimation of multiple targets in

the context of MIMO radar systems equipped withM colocated transmit antennas andN receive

antennas [15]–[19]. The algorithms proposed in [15] and [16] require an exhaustive search over

the unknown parameters and, therefore, mandate prohibitive computational cost if the search

is performed over a fine grid. On the other hand, the search-free ESPRIT-based algorithms

of [17] and [18] as well as PARAFAC-based algorithm of [19] utilize the rotational invariance

property of the so-called extended virtual array to estimate the DOAs at a moderate computational

cost. It is worth noting that in the case of MIMO radar, the advantages of the aforementioned

DOA estimation methods over similar MUSIC- and ESPRIT/PARAFAC-based DOA estimation

methods for SIMO radar appear due to the fact that the extended virtual array ofMN virtual

antennas can be obtained in the MIMO radar case by matched-filtering the data received by

the N-antenna receive array toM transmitted waveforms. Therefore, the effective apertureof

the virtual array can be significantly extended that leads toimproved angular resolution. In

the methods of [17]–[19], the rotational invariance property is achieved by partitioning the

receiving array to two (in ESPRIT case) or multiple (in PARAFAC case) overlapped subarrays.

Then, the rotational invariance is also presumed for the virtual enlarged array ofMN virtual

antennas. However, the methods of [17]–[19] employ full waveform diversity, i.e., the number of
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transmitted waveforms equals the number of transmit antennas, at the price of reduced transmit

energy per waveform. In other words, for fixed total transmitenergy, denoted hereafter asE, each

waveform has energyE/M transmitted omni-directionally. It results in a reduced signal-to-noise

ratio (SNR) per virtual antenna. On the other hand, it is well-known that the estimation accuracy

of subspace-based techniques suffers from high SNR threshold, that is, the root-mean-squared

error (RMSE) of DOA estimates approaches the correspondingCramer-Rao bound (CRB) only

for relatively high SNRs [20], [21]. Therefore, the higher the SNR, the better the DOA estimation

performance can be achieved.

It has been shown in [22], [23] that a tradeoff between the SNRgain and aperture of the

MIMO radar virtual array can be achieved by transmitting less thanM orthogonal waveforms.

Exploiting this tradeoff, we develop in this paper1 a group of DOA estimation methods, which

allow to increase the SNR per virtual antenna by (i) transmitting less waveforms of higher energy

and/or (ii) focusing transmitted energy within spatial sectors where the targets are likely to be

located. At the same time, reducing the number of transmitted waveform reduces the aperture

of the virtual array, while a larger aperture may be useful for increasing the angular resolution

at high SNR region.

The contributions of this work are based on the observation that by using less waveforms

the energy available for each transmitted waveform can be increased, that is, the SNR per each

virtual antenna can be improved, while the aperture of the virtual array decreases toKN , where

K ≤ M is the number of orthogonal waveforms. Moreover, the SNR pervirtual antenna can

be further increased by focusing the transmitted energy in acertain sector where the targets

are located. Our particular contributions are as follows. The transmit beamformers are designed

so that the transmitted energy can be focussed in a certain special sector where the targets

are likely to be located that helps to improve the SNR gain at each receive antenna, and

therefore, improve the angular resolution of DOA estimation techniques, such as, for example,

MUSIC-based techniques. Moreover, we consider the possibility of obtaining the rotational

invariance property while transmitting1 < K ≤ M orthogonal waveforms using different

transmit beamforming weight vectors and focusing the transmitted energy on a certain spatial

sector where the targets are located. It enables us to designsearch-free ESPRIT/PARAFAC-based

DOA estimation techniques. In addition, we derive CRB for the considered DOA estimation

1An early exposition of a part of this work has been presented in [24].
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schemes that aims at further demonstrating how the DOA estimation performance depends on

the number of transmitted waveforms, transmit energy focusing, and effective array aperture of

the MIMO radar virtual array.

The paper is organized as follows. In Section II, MIMO radar signal model is briefly in-

troduced. In Section III, we present the transmit beamspace-based MIMO radar signal model.

Two approaches for designing the transmit beamspace weightmatrix are given in Section IV.

In Section V, we present MUSIC and ESPRIT DOA estimation for transmit beamspace-based

MIMO radar. Performance analysis and CRB are given in Section VI. Simulation results which

show the advantages of the proposed transmit beamspace-based MIMO radar DOA estimation

techniques are reported in Section VII followed by conclusions drawn in Section VIII.

II. MIMO R ADAR SIGNAL MODEL

Consider a MIMO radar system equipped with a transmit array of M colocated antennas and

a receive array ofN colocated antennas. Both the transmit and receive antennasare assumed to

be omni-directional. TheM transmit antennas are used to transmitM orthogonal waveforms.

The complex envelope of the signal transmitted by themth transmit antenna is modeled as

sm(t) =

√

E

M
φm(t), m = 1, . . . ,M (1)

where t is the fast time index, i.e., the time index within one radar pulse, E is the total

transmitted energy within one radar pulse, andφm(t) is themth baseband waveform. Assume

that the waveforms emitted by different transmit antennas are orthogonal. Also, the waveforms

are normalized to have unit-energy, i.e.,
∫

T
|φm(t)|2dt = 1, m = 1, . . . ,M , whereT is the pulse

width.

Assuming thatL targets are present, theN × 1 received complex vector of the receive array

observations can be written as

x(t, τ) =

L
∑

l=1

rl(t, τ)b(θl) + z(t, τ) (2)

whereτ is the slow time index, i.e., the pulse number,b(θ) is the steering vector of the receive

array,z(t, τ) is N × 1 zero-mean white Gaussian noise term, and

rl(t, τ) ,

√

E

M
αl(τ)a

T (θl)φ(t) (3)

is the radar return due to thelth target. In (3),αl(τ), θl, anda(θl) are the reflection coefficient

with varianceσ2
α, spatial angle, and steering vector of the transmit array associated with thelth
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target, respectively,φ(t) , [φ1(t), . . . , φM(t)]T is the waveform vector, and(·)T stands for the

transpose. Note that the reflection coefficientαl(τ) for each target is assumed to be constant

during the whole pulse, but varies independently from pulseto pulse, i.e., it obeys the Swerling

II target model [19].

Exploiting the orthogonality property of the transmitted waveforms, theN × 1 component of

the received data (2) due to themth waveform can be extracted using matched-filtering which

is given as follows

xm(τ) ,

∫

T

x(t, τ)φ∗

m(t)dt, m = 1, . . . ,M. (4)

where (·)∗ is the conjugation operator. Stacking the individual vector components (4) in one

column vector, we obtain theMN × 1 virtual data vector [3]

yMIMO(τ) , [xT
1 (τ) · · ·xT

M(τ)]T

=

√

E

M

L
∑

l=1

αl(τ)a(θl)⊗ b(θl) + z̃(τ)

=

√

E

M

L
∑

l=1

αl(τ)uMIMO(θl) + z̃(τ) (5)

where⊗ denotes the Kronker product,

uMIMO(θ) , a(θ)⊗ b(θ) (6)

is theMN×1 steering vector of the virtual array, andz̃(τ) is theMN×1 noise term whose co-

variance is given byσ2
zIMN . TheMN×MN covariance matrixRMIMO , E{yMIMO(τ)y

H
MIMO(τ)}

is hard to obtain in practice. Therefore, the following sample covariance matrix

R̂MIMO =
1

Q

Q
∑

τ=1

yMIMO(τ)y
H
MIMO(τ) (7)

is used, whereQ is the number of snapshots.

III. T RANSMIT BEAMSPACE BASED MIMO RADAR SIGNAL MODEL

Instead of transmitting omin-directionally, we propose tofocus the transmitted energy within

a sectorΘ by formingK directional beams where an independent waveform is transmitted over

each beam. Note that the spatial sectorΘ can be estimated in a preprocessing step using any

low-resolution DOA estimation technique of low complexity.

Let C, [c1, . . . , cK ]
T be the transmit beamspace matrix of dimensionM × K (K ≤ M),

whereck is theM×1 unit-norm weight vector used to form thekth beam. The beamspace matrix

October 23, 2018 DRAFT



6

can be properly designed to maintain constant beampattern within the sector of interestΘ and to

minimize the energy transmitted in the out-of-sector areas. Let φK(t) , [φ1(t), . . . , φK(t)]
T be

theK× 1 waveform vector. Thekth column ofC is used to form a transmit beam for radiating

the kth waveformφk(t). The signal radiated towards a hypothetical target locatedat a direction

θ via thekth beam can be modeled as

sk(t, θ) =

√

E

K

(

cHk a(θ)
)

φk(t) (8)

where
√

E/K is a normalization factor used to satisfy the constraint that the total transmit

energy is fixed toE. The signal radiated via all beams towards the directionθ can be modeled

as

s(t, θ)=

√

E

K

K
∑

k=1

(

cHk a(θ)
)

φk(t)

=

√

E

K
CHa(θ)φK(t) =

√

E

K
ãT (θ)φK(t) (9)

where(·)H stands for the Hermitian transpose and

ã(θ) ,
(

CHa(θ)
)T

. (10)

Then, the transmit beamspace can be viewed as a transformation that results in changing the

M × 1 transmit array manifolda(θ) into theK × 1 manifold (10).

At the receive array, theN × 1 complex vector of array observations can be expressed as

xbeam(t, τ)=

√

E

K

L
∑

l=1

αl(τ)
(

ãT (θl)φK(t)
)

b(θl)+z(t, τ). (11)

By matched-filteringxbeam(t, τ) to each of the waveformsφk (k = 1, . . . , K), the received signal

component associated with each of the transmitted waveforms can be obtained as

yk(τ) ,

∫

T

xbeam(t, τ)φ
∗

k(t)dt

=

√

E

K

L
∑

l=1

αl(τ)ã[k](θl)b(θl) + zk(τ) (12)

where(·)[k] is thekth entry of a vector and theN × 1 noise term is defined as

zk(τ) =

∫

T

z(t, τ)φ∗

k(t)dt. (13)

October 23, 2018 DRAFT
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Stacking the individual vector components (12) in one column vector, we obtain the following

KN × 1 virtual data vector

ybeam(τ) , [yT
1 (τ) · · ·yT

K(τ)]
T

=

√

E

K

L
∑

l=1

αl(τ) (ã(θl)⊗ b(θl)) + z̃K(τ) (14)

where z̃K(τ) , [z1(τ), . . . , zK(τ)]
T is theKN × 1 noise term whose covariance is given by

σ2
zIKN .

The transmit beamspace signal model given by (14) provides the basis for optimizing a general-

shape transmit beampattern over the transmit beamspace weight matrixC. By carefully designing

C, the transmitted energy can be focussed in a certain spatialsector, or divided between several

disjoint sectors in space. As compared to traditional MIMO radar, the benefit of using transmit

energy focusing is the possibility to increase in the signalpower at each virtual array element.

This increase in signal power is attributed to two factors:

(i) transmit beamforming gain, i.e., the signal power associated with thekth waveform reflected

from a target at directionθ is magnified by factor|cHk a(θ)|2;
(ii) the signal power associated with thekth waveform is magnified by factorE/K due to

dividing the fixed total transmit powerE overK ≤ M waveforms instead ofM waveforms.

As it is shown in subsequent sections, the aforementioned two factors result in increasing the

SNR per virtual element which in turn results in lowering theCRB and improving the DOA

estimation accuracy.

IV. TRANSMIT BEAMSPACE DESIGN

In this section, two methods for designing the transmit beamspace weight matrixC are

proposed.

A. Motivations

Given the beamspace angular sector-of-interestΘ, several beamspace dimension reduction

techniques applied to the data at the output of a passive receive array are reported in the literature

(see [25] and references therein). The essence of these beamspace dimension reduction techniques

is to perform DOA estimation in the reduced dimension space rather than in the elementspace

(full dimension of received data) which leads to great computational savings. Performing DOA

estimation in a reduced dimension beamspace has also provedto improve probability of source

October 23, 2018 DRAFT
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resolution as well as estimation sensitivity [26]. However, it is well known that the CRB on DOA

estimation performed in reduced dimension space is higher than (or at best equal to) the CRB

on DOA estimation performed in elementspace, i.e., applying beamspace dimension reduction

techniques to passive arrays does not improve the best achievable estimation performance [27].

This is natural because beamspace dimension reduction in passive arrays just preserves the signals

observed within a certain spatial sector and filters out signals observed outside that sector.

The transmit beamspace processing proposed in Section III focuses all transmit energy within

the desired spatial sector instead of spreading it omni-directionally in the whole spatial domain.

In other words, the amount of energy that otherwise could be wasted in the out-of-sector areas is

added to the amount of energy to be transmitted within the desired sector. As a result, the signal

strength within the desired sector is increased potentially leading to improved best achievable

estimation performance, i.e., as will be seen in Section VI-B lowering the CRB. The transmit

beamspace weight matrixC can be designed such that the following two main requirement

are satisfied: (i) Spatial distribution of energy transmitted within the desired sector is uniform;

(ii) the amount of energy that is inevitably transmitted in the out-of-sector area is minimized.

Here we present two methods for satisfying these two requirements.

B. Spheroidal Sequences Based Transmit Beamspace Design

Discrete prolate spheroidal sequences (DPSS) have been proposed for beamspace dimension

reduction in array processing [28]. The essence of the DPSS-based approach to beamspace

dimension reduction [21], [28] is to maximize the ratio of the beamspace energy that comes

from within the desired sectorΘ to the total beamspace energy, i.e., the energy within the

whole spatial domain[−π/2, π/2]. Following this principle, we propose to design the transmit

beamspace weight matrix so that the ratio of the energy radiated within the desired spatial sector

to the total radiated energy is maximized. That is, the transmit beamspace matrixC is designed

based on maximizing

Γk ,

∫

T

∫

Θ

∣

∣cHk a(θ)φk(t)
∣

∣

2
dθdt

∫

T

∫
π

2

−
π

2

|cHk a(θ)φk(t)|2 dθdt

=
cHk

(∫

Θ
a(θ)aH(θ)dθ

)

ck
∫

π

2

−
π

2

|cHk a(θ)|2dθ

=
cHk Ack

∫
π

2

−
π

2

|cHk a(θ)|2dθ
(15)
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whereA ,
∫

Θ
a(θ)aH(θ)dθ is a non-negative matrix. Note that the first equality in (15)follows

from the fact that
∫

T
φ(t)φ∗(t)dt = 1 . Moreover, it can be shown that ifa(θ) obeys Vandermonde

structure, then the following holds [21]
∫ π

2

−
π

2

|cHk a(θ)|2dθ = 2πcHk ck. (16)

Substituting (16) in (15), we obtain

Γk =
cHk Ack

2πcHk ck
, k = 1, . . . , K. (17)

The maximization of the ration in (17) is equivalent to maximizing its numerator while fixing its

denominator by imposing the constraint‖ck‖ = 1. To avoid the trivial solutionc1 = . . . = cK ,

an additional constraint might be necessary, for example, the orthogonality constraintcHk ck′ =

0, k 6= k′ can be imposed. Then, the maximization of{Γk}Kk=1 subject to the constraintCHC = I

corresponds to finding the eigenvectors ofA that are associated with theK largest eigenvalues

of A. That is, the transmit beamspace matrix is given as

C = [u1,u2, . . . ,uK ] (18)

where{ui}Ki=1 areK principal eigenvectors ofA.

It is worth noting that any steering vectora(θ), θ ∈ Θ belongs to the space spanned by the

columns ofC. This means that the magnitude of the projector ofa(θ) onto the column space

of C is approximately constant, i.e., the transmit power distribution

H(θ) = aH(θ)CCHa (19)

is approximately constant∀θ ∈ Θ. Therefore, the total transmit power distribution, i.e., the

distribution of the power summed over all waveforms, withinthe spatial sectorΘ is approxi-

mately uniform. However, the transmit power distribution over individual waveforms may not be

uniform within Θ. Such a uniform transmit power distribution over individual waveforms may

be desired especially when the difference between the first and the last essential eigenvalues

of A is significant. In this respect, note that the orthogonalityconstraintCHC = I is imposed

above only to avoid the trivial solutionc1 = . . . = cK when maximizing (17). This is different

from the case of the traditional beamspace dimension reduction techniques where orthogonality

is required to preserve the white noise property. Therefore, in our case where the latter is not

an issue,C can be easily rotated, if necessary, so that it achieves desirable features such as

uniform transmit power distribution over individual waveforms. The orthogonality may be lost
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after such rotation ofC without any consequences. For example, such rotation ofC is used in

our simulations (Section VII) to ensure that the uniform transmit power distribution per each

individual waveform is achieved.

C. Convex Optimization Based Transmit Beamspace Design

A more general transmit beamspace design technique applicable to a transmit array of arbitrary

geometry can also be formulated. Moreover, some DOA estimation techniques can be applied

only if the received data enjoy certain properties. For example, the ESPRIT DOA estimation

technique requires that the received data snapshots consist of two sets where one data set is

equivalent to the other up to some phase rotation. This property is commonly referred to as

rotational invariance. More generally, PARAFAC-based DOAestimation techniques are based

on the assumption that multiple received data sets are related via rotational invariance properties.

Fortunately, the transmit beamspace matrixC can be designed so that the virtual data vectors

given by (12) enjoy such rotational invariance property.

To obtain the rotational invariance property, we propose a convex optimization based method

for designingC. For the virtual snapshots{yk(τ)}Kk=1 to enjoy rotational invariance, the following

relationship should be satisfied

eµk(θ)
∣

∣

(

cHk a(θ)
)
∣

∣b(θ) = eµk′
(θ)

∣

∣

(

cHk′a(θ)
)
∣

∣b(θ), ∀θ ∈ Θ, k, k′ = 1, . . . , K (20)

where ,
√
−1, andµk(θ) andµk′(θ) are arbitrary phase shifts associated with thekth andk′th

virtual snapshots, respectively. The relationship (20) can be satisfied if the transmit beamspace

matrix C is designed/optimized to meet the following requirement

CHa(θ) = d(θ), ∀θ ∈ Θ. (21)

where d(θ) , [eµ1(θ), . . . , eµK(θ)]T is of dimensionK × 1. A meaningful formulation of a

corresponding optimization problem is to minimize the normof the difference between the left-

and right-hand sides of (21) while keeping the worst transmit power distribution in the out-of-

sector area below a certain level. This can be mathematically expressed as follows

min
C

max
i

‖CHa(θi)− d(θ)‖, θi ∈ Θ, i = 1, . . . , I (22)

subject to ‖CHa(θj)‖ ≤ γ, θj ∈ Θ̄, j = 1, . . . , J (23)

whereΘ̄ combines a continuum of all out-of-sector directions, i.e., directions lying outside the

sector-of-interestΘ, andγ > 0 is the parameter of the user choice that characterizes the worst
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acceptable level of transmit power radiation in the out-of-sector region. The parameterγ has an

analogy to the stop-band attenuation parameters in the classic bandpass filter design and can be

chosen in a similar fashion [29].

V. TRANSMIT BEAMSPACE BASED DOA ESTIMATION

In this section, we design DOA estimation methods based on transmit beamspace processing

in MIMO radar. We focus on subspace based DOA estimation techniques such as MUSIC and

ESPRIT.

A. Transmit Beamspace Based MUSIC

The virtual data model (14) can be rewritten as

ybeam(τ) = Vα(τ) + z̃K(τ) (24)

where

α(τ) , [α1(τ), . . . , αL(τ)]
T (25)

V , [v(θ1), . . . ,v(θL)] (26)

v(θ) ,

√

E

K

(

CHa(θ)
)

⊗ b(θ). (27)

TheKN ×KN transmit beamspace-based covariance matrix is given by

Rbeam , E
{

ybeam(τ)y
H
beam(τ)

}

= VSVH + σ2
zIKN (28)

whereS , E{α(τ)αH(τ)} is the covariance matrix of the reflection coefficients vector. The

sample estimate of (28) takes the following form

R̂beam =
1

Q

Q
∑

τ=1

ybeam(τ)y
H
beam(τ). (29)

The eigendecomposition of (29) can be written as

R̂beam = EsΛsE
H
s + EnΛnE

H
n (30)

where theL× L diagonal matrixΛs contains the largest (signal-subspace) eigenvalues and the

columns of theKN × L matrix Es are the corresponding eigenvectors. Similarly, the(KN −
L) × (KN − L) diagonal matrixΛn contains the smallest (noise-subspace) eigenvalues while

theKN × (KN − L) matrix En is built from the corresponding eigenvectors.
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Applying the principle of the elementspace MUSIC estimator[5], the transmit beamspace

spectral-MUSIC estimator can be expressed as

f(θ) =
vH(θ)v(θ)

vH(θ)Qv(θ)
(31)

whereQ = EnE
H
n = I − EsE

H
s is the projection matrix onto the noise subspace. Substituting

(27) into (31), we obtain

f(θ) =

[(

CHa(θ)
)

⊗ b(θ)
]H [(

CHa(θ)
)

⊗ b(θ)
]

[(CHa(θ))⊗ b(θ)]H Q [(CHa(θ))⊗ b(θ)]

=
[aH(θ)CCHa(θ)] · [bH(θ)b(θ)]

[(CHa(θ))⊗ b(θ)]H Q [(CHa(θ))⊗ b(θ)]

=
NaH(θ)CCHa(θ)

[(CHa(θ))⊗ b(θ)]H Q [(CHa(θ))⊗ b(θ)]
. (32)

B. Transmit Beamspace Based ESPRIT

The signal component of the data vectors{yk(τ)}Kk=1 can be expressed as

yk(τ) = Tkα(τ) (33)

where

Tk , [b(θ1), . . . ,b(θL)]Ψk (34)

Ψk , diag
{

cHk a(θ1), . . . , c
H
k a(θL)

}

. (35)

It is worth noting that the matrices{Tk}Kk=1 are related to each other as

Tk = TjΨ
−1
j Ψk, k, j = 1, . . . , K. (36)

By carefully designing the beamspace weight matrixC, for example by using (22)–(23), the

relationship (36) enjoys the rotational invariance property.

Consider the case when only two transmit beams are formed. Then, the transmit beamspace

matrix isC = [c1, c2]. In this case, (36) simplifies to

T2 = T1Ψ (37)

where

Ψ , diag

{

cH2 a(θ1)

cH1 a(θ1)
, . . . ,

cH2 a(θL)

cH1 a(θL)

}

. (38)

Furthermore, (38) can be rewritten as

Ψ = diag
{

A(θ1)e
Ω(θ1), . . . , A(θL)e

Ω(θL)
}

(39)
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whereA(θ) andΩ(θ) are the magnitude and angle ofcH2 a(θ)/c
H
1 a(θ), respectively. It can be

seen from (37) and (39) that the vectorsy1 andy2 (see also (33)) enjoy the rotational invariance

property. Therefore, ESPRIT-based DOA estimation techniques can be used to estimateΨ and

{θl}Ll=1 can be obtained fromΨ by looking up a table that convertsΩ(θ) to θ. Moreover, if

K > 2 is chosen, more than two data sets which enjoy the rotationalinvariance property can be

obtained by properly designing the transmit beamspace weight matrix. In this case, the means

of using PARAFAC instead of ESPRIT are provided as well.

It is worth mentioning that for traditional MIMO radar (5), DOA estimation using ESPRIT

has been proposed in [17]. Specifically,y(τ) in (5) has been partitioned intoy1(τ) , [xT
1 (τ),

. . . ,xT
M−1(τ)]

T and y2(τ) , [xT
2 (τ), . . . ,x

T
M(τ)]T and it has been shown thaty1 and y2

obey the rotational invariance property which enables the use of ESPRIT for DOA estimation.

However, the rotational invariance property is valid in [17] only when the transmit array is

a uniform linear array (ULA). Therefore, the method of [17] is limited by the transmit array

structure and may suffer from performance degradation in the presence of array perturbation

errors. Moreover, it suffers from low SNR per virtual antenna as a result of dividing the total

transmit energy overM different waveforms.

VI. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the proposed transmit beamspace MIMO radar

DOA estimation approach as compared to the MIMO radar DOA estimation technique. For

the reason of comparison, we also consider two techniques that have been recently reported

in the literature that employ the idea of dividing the transmit array into several smaller sub-

apertures/subarrays. The first technique uses transmit subapertures (TS) for omni-directionally

radiating independent waveforms [30], [31]. If the number of subapertures is chosen asK < M ,

then each subaperture radiates pulses of energyE/K. The second technique is based on par-

titioning the transmit array into overlapped subarrays where the antennas that belong to each

subarray are used to coherently transmit an independent waveform [22], [23]. We refer to this

technique as transmit array partitioning (TAP). Note that the TAP technique has transmit coherent

gain while the TS technique does not have such a coherent transmit gain.

In the following subsection, we compare between the aforementioned techniques in terms

of the effective aperture of the corresponding virtual array, the SNR gain per virtual element,

and the computational complexity associated with eigendecomposition based DOA estimation
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techniques. In the next subsection, we express/discuss theCRB for all considered techniques.

A. Colocated Uniform Linear Transmit Array

Consider the case of a ULA at the transmitter withλ/2 spacing between adjacent antennas,

whereλ is the propagation wavelength. Taking the first antenna as a reference, the transmit

steering vector can be expressed as

a(θ) ,
[

1, e−jπ sin θ, . . . , e−jπ(M−1) sin θ
]T

. (40)

Also, the receive antennas are assumed to be grouped in a ULA with half a wavelength interele-

ment spacing. Then, the receive steering vector is given as

b(θ) ,
[

1, e−jπ sin θ, . . . , e−jπ(N−1) sin θ
]T

. (41)

It is worth noting that the transmit and receive array apertures are(M −1)λ/2 and(N −1)λ/2,

respectively. In light of (40) and (41), we discuss/analyzethe following cases.

1) Traditional MIMO radar: Substituting (40) and (41) in (6), the MIMO radar virtual steering

vector can be expressed as

uMIMO(θ) =
[

1, . . . , e−jπ(N−1) sin θ, e−jπ sin θ, . . . , e−jπN sin θ,

. . . , e−jπ(M−1) sin θ, . . . , e−j2π(M−1+N−1) sin θ
]T

. (42)

From (42), we observe that the effective virtual array aperture is (M + N − 2)λ/2. Note that

the virtual steering vectora(θ)⊗a(θ) is of dimensionMN ×1, yet it only containsM +N −1

distinct elements. Moreover, the SNR gain per virtual element is proportional in this case to

E/M . This low SNR gain can lead to poor DOA estimation performance especially at low SNR

region. The computational complexity of applying eigen-decomposition based DOA estimation

techniques is ofO(M3N3) in this case.

2) Transmit subaperturing based MIMO radar:As compared to the traditional MIMO radar,

TS-based MIMO radar employsK subapertures instead ofM . This results in higher SNR per

virtual element in the corresponding virtual array at the receiver. To capitalize on the effect of

this factor on the DOA estimation performance, we consider the extreme case when only two

transmit subapertures2 are used to radiate the total transmit energyE. In this case, each transmit

2One can think of a subaperture as a large omni-directional antenna which is capable of radiating energyE/2 instead of

E/M . This case might be practically unattractive as it will require power amplifier of much higher amplifying gain as compared

to the case of usingM transmit antennas. However, for the sake of theoretical analysis/comparison we consider it in this paper.
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subaperture radiates a waveform of energyE/2. Assume that the two transmit subapertures are

separated in space byζ wavelength and that the first transmit subaperture is taken as a reference.

Then, the MIMO radar data model (5) becomes of dimension2N × 1 and can be expressed as

yTS(τ) =

√

E

2

L
∑

l=1

αl(τ)
(

[1, e−j2πζ sin θl]T ⊗ b(θ)
)

+ z̃TS(τ) (43)

wherez̃TS(τ) = [z1(τ), z2(τ)]
T .

Comparing (5) to (43), we observe that the signal strength for MIMO radar withM transmit

antennas is proportional to
√

E/M while the signal strength for the TS-based MIMO radar is

proportional to
√

E/2. This means that (43) offers an SNR gain that isM/2 times the SNR

gain offered by (5). We also observe from (43) that the effective virtual array aperture is given

by (ζ +N − 1)λ/2. Therefore, the effective aperture for this case can be controlled by selecting

ζ . For example, selectingζ = λ/2 yields a virtual array steering vector of dimension2N that

contains onlyN + 1 distinct elements, i.e, the effective aperture would beNλ/2. This case

is particularly important when performing DOA estimation using search free techniques such

as ESPRIT. Another important case is the choiceζ = Nλ/2 which yields a virtual array that

is equivalent to a2N-element ULA. In this case, the effective array aperture will be (2N −
1)λ/2. The computational complexity of applying eigen-decomposition based DOA estimation

techniques is ofO(23N3) in this case.

3) Transmit array partitioning based MIMO radar:Following the guidelines of [23] and

selectingK = 2, the M-antenna transmit array is assumed to be partitioned into two fully

overlapped subarrays ofM − 1 antenna each. The(M − 1) × 1 beamforming weight vectors

w1 = w2 = w are used to form transmit beams that cover the spatial sectorΘ. Two independent

waveforms are radiated. Each waveform hasE/2 energy per pulse. The transmit weight vector

w can be designed such that the transmit gain is approximatelythe same within the desired

sectorΘ, i.e., |wHā(θ)| = GTAP, ∀θ ∈ Θ where ā(θ) contains the firstM − 1 elements of

the vectora(θ) andGTAP is the TAP transmit coherent processing gain. Then, the TAP-based

MIMO radar data model becomes of dimension2N × 1 and can be formally expressed as

yTAP(τ) =

√

E

2

L
∑

l=1

αl(τ)
(

wH ā(θl)
)

uTAP(θl) + z̃TAP(τ)

= GTAP

√

E

2

L
∑

l=1

αl(τ)uTAP(θl) + z̃TAP(τ) (44)

October 23, 2018 DRAFT



16

whereuTAP(θ) , [1, e−jπ sin θ]T ⊗ b(θ) is the 2N × 1 steering vector of the corresponding

virtual array. Note that the TAP-based MIMO radar has transmit coherent gainGTAP which

results in improvement in SNR per virtual element. However,the corresponding virtual array

containsN+1 distinct elements, i.e., the effective virtual array aperture is limited toNλ/2. The

computational complexity of applying eigen-decomposition based DOA estimation techniques is

of O(23N3) in this case.

4) Transmit beamspace based MIMO radar:For the proposed transmit beamspace MIMO

radar, we chooseK = 2 and use (22)–(23) for designingC = [c1 c2] such that

d(θ) = Gbeam · [1, e−j2πN sin θ]T , ∀θ ∈ Θ (45)

whereGbeam is the transmit beamspace gain, i.e.,|cH1 a(θ)| ≈ |cH2 a(θ)| ≈ Gbeam, ∀θ ∈ Θ.

This yields a virtual array with2N distinct elements and(2N − 1)λ/2 effective array aperture.

Moreover, the proposed transmit beamspace technique offers SNR gain ofGbeam ·E/M , i.e., it

combines all the benefits of all other aforementioned techniques. The computational complexity

of applying eigen-decomposition based DOA estimation techniques is ofO(23N3) in this case.

A comparison between all methods considered is summarized in the following table.

Table1: Comparison between transmit beamspace-based MIMOradar and other existing tech-

niques.

Effective aperture SNR gain per virtual element Computational complexity

Traditional MIMO (5) (M +N − 2)λ
2

E

M
O(M3N3)

Transmit subaperturing (ζ = λ

2
) N λ

2

E

2
O(23N3)

Transmit subaperturing (ζ = N λ

2
) (2N − 1)λ

2

E

2
O(23N3)

Transmit array partitioning (44) N λ

2
G2

TAP · E

2
O(23N3)

Transmit beamspace MIMO (45) (2N − 1)λ
2

G2

beam · E

2
O(23N3)

B. Craḿer-Rao Bound

In this section, we discuss the CRB on DOA estimation accuracy in transmit beamspace-based

MIMO radar.

In the case of transmit beamspace-based MIMO radar, the virtual data model (14) satisfies

the following statistical model:

ybeam(τ) ∼ NC (µ(τ),R) (46)
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whereNC denotes the complex multivariate circularly Gaussian probability density function,

µ(τ) is the mean ofybeam(τ), andR is its covariance matrix.

1) Stochastic CRB:The stochastic CRB on estimating the DOAs using the data model (14)

is derived by assumingµ(τ) = 0 andR = Rbeam, whereRbeam is given by (28). Note that

under these assumptions, the virtual array signal model (14) (or its equivalent representation

(24)) has the same form as the signal model used in [32] to derive the stochastic CRB for DOA

estimation in conventional array processing. Therefore, the CRB expressions in its general form

derived in [32] can be used for computing the stochastic CRB for estimating the DOAs based

on (24), that is,

CRB(θ) =
σ2
z

2Q

{

Re(DP⊥

V
D)⊙GT

}−1
(47)

whereP⊥

V
, V(VHV)−1VH is the projection matrix onto the space spanned by the columns

of V, andG , (SVHR−1VS). In (47),D , [d(θ1), . . . ,d(θL)] is the matrix whoselth column

is given by the derivative of thelth column ofV with respect toθl, i.e.,

d(θ) ,
dv(θ)

dθ
=

√

E

K

d
[

(CHa(θ))⊗ b(θ)
]

dθ

=

√

E

K

(

(CHa′(θ))⊗ b(θ) + (CHa(θ))⊗ b′(θ)
)

(48)

wherea′(θ) = da(θ)/dθ andb′(θ) = db(θ)/dθ.

2) Deterministic CRB:The deterministic CRB is derived by assumingµ(τ) = Vα(τ) and

R = σ2
zIKN . Under these statistical assumptions, the virtual data model (14) is similar to the

general model used in [33] to find the deterministic CRB. According to [33], the deterministic

CRB expression can be obtained from (47) by replacingG with Ŝ, where Ŝ is the sample

estimate ofS.

It is worth noting that the expression (47) can be used not only for computing the CRB for the

proposed transmit beamspace technique but also for the other techniques summarized in Table 1.

Indeed, the following cases show how these techniques can beviewed as special cases of the

proposed model (14).

1) ChoosingC = IM , the transmit beamspace signal model (14) simplifies to the traditional

MIMO radar signal model (5). Therefore, the CRB for the traditional MIMO radar can be

obtained by substitutingC = IM in (47) and (48).

2) The TS-based MIMO radar signal model withζ = λ/2 can be obtained from (14) by
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choosingC in the following format

C =





1 0 0

0 1 0





T

. (49)

3) The TS-based MIMO radar signal modal forζ = Nλ/2 can be obtained from (14) by

choosingC in the following format

C =





1 0 0

0 0 1





T

. (50)

4) Finally, the TAP-based MIMO radar signal model (44) can beobtained from (14) by

choosingC in the following format

C =





w1 0

0 w2



 . (51)

VII. SIMULATION RESULTS

Throughout our simulations, we assume a uniform linear transmit array ofM = 10 omni-

directional antennas spaced half a wavelength apart. At thereceiver,N = 10 omni-directional

antennas are also assumed. The additive noise is Gaussian zero-mean unit-variance spatially and

temporally white. Two targets are located at directions−1◦ and1◦, respectively. The sector of

interestΘ = [−5◦, 5◦] is taken. Several examples are used to compare the performances of the

following methods: (i) The traditional MIMO radar (5); (ii)The TS-based MIMO radar (49)

with ζ = λ/2; (iii) The TS-based MIMO radar (49) withζ = Nλ/2; (iv) the TAP-based MIMO

radar (51); and (v) The proposed transmit beamspace MIMO radar (14). For all methods tested,

the total transmit energy is fixed toE = M . For the traditional MIMO radar (5), each transmit

antenna is used for omni-directional radiation of one of thebaseband waveforms

φm(t) =

√

1

T
e2π

m

T
t, m = 1, . . . ,M. (52)

For all methods that radiate two waveforms only, the first andsecond waveforms of (52) are

used. The total number of virtual snapshots used to compute the sample covariance matrix is

Q = 300. In all examples, the RMSEs and the probability of source resolution for all methods

tested are computed based on500 independent runs.
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A. Example 1: Stochatstic and Deterministic CRBs

For the proposed spheroidal sequences based transmit beamspace MIMO radar (18), the non-

negative matrixA =
∫

Θ
a(θ)aH(θ)dθ is built. The two eigenvectors associated with the largest

two eigenvalues are taken as the principle eigenvectors, i.e.,C = [u1 u2] is used. Two waveforms

are assumed to be radiated where each column ofC is used to form a transmit beam for radiating

a single waveform. Fig. 1 shows the transmit power distribution of the individual waveforms

|cka(θ)|2, k = 1, 2 as well as the distribution of the total transmitted power (19). As we can see

from this figure, the individual waveform power is not uniformly distributed within the sector

Θ while the distribution of the total transmitted power is uniform. To achieve uniform transmit

power distribution for each waveform a simple modification that involves vector rotation to the

transmit beamspace matrixC can be performed. This means thatC can be modified as

C̃ = CQ (53)

whereQ is a 2× 2 unitary matrix defined as

Q =





√

1/2
√

1/2
√

1/2 −
√

1/2



 . (54)

Fig. 2 shows the transmit power distribution for the individual waveforms|c̃ka(θ)|2, k = 1, 2 as

well as for the total transmitted power (19). It can be seen from this figure that the distribution

of individual waveforms is uniform within the desired sector.

For the TAP-based method, the transmit array is partitionedinto two overlapped subarrays

of 9 antennas each. Each subarray is used to focus the radiation of one waveform within the

sectorΘ. The transmit weight vectors are chosen asw1 = w2 = [−0.5623 −0.5076 −0.4358

−0.3501 −0.2542 −0.1524 −0.0490 0.0512 0.1441]T . This specific selection is obtained by

averaging the two eigenvectors associated with the maximumtwo eignevalues of the matrix
∫

Θ
a1(θ)a

H
1 (θ)dθ, wherea1(θ) is the 9 × 1 steering vector associated with the first subarray.3

The transmit power distribution of both waveforms is exactly the same as shown in Fig. 3.

The stochastic CRBs for all methods considered are plotted versusSNR = σ2
α/σ

2
z in Fig. 4. It

can be seen from this figure that the TS-based MIMO radar withζ = λ/2 has the highest/worst

CRB as compared to all other methods. Its poor CRB performance is attributed to the omni-

directional transmission, i.e., wasting a considerable fraction of the transmitted energy within

3Note that if the transmit array is not a ULA, thenw1 andw2 can be designed independently using classic FIR filter design

techniques.
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the out-of-sector region, and to the small effective aperture of the corresponding virtual array.

We can also see from the figure that the TS-based MIMO radar with ζ = Nλ/2 exhibits much

lower stochastic CRB as compared to the case withζ = λ/2. The reason for this improvement

is the larger effective aperture of the corresponding virtual array. The traditional MIMO radar

with M transmit antennas has the same effective aperture as that ofthe TS-based MIMO radar

with ζ = Nλ/2 but lower SNR per virtual element. Therefore, the stochastic CRB for traditional

MIMO radar is higher than the CRB for the TS-based MIMO radar with ζ = Nλ/2. At the

same time, it is better than the CRB of the TS-based MIMO radarwith ζ = λ/2 due to larger

effective aperture. The TAP-based MIMO radar has the same effective aperture as that of the TS-

based MIMO radar withζ = λ/2 but higher SNR per virtual element due to transmit coherent

processing gain. It yields lower CRB. In fact, the CRB for theTAP-based MIMO radar is

comparable to that of the traditional MIMO radar. Finally, the transmit beamspace MIMO radar

with spheroidal sequences based transmit weight matrix hasthe lowest CRB as compared to all

other methods. This can be attributed to the fact that the proposed transmit beamspace-based

MIMO radar combines the benefits of having high SNR due to energy focusing, high power of

individual waveforms, and large effective aperture of the corresponding virtual array.

The deterministic CRBs for all methods considered are plotted in Fig. 5. As can be seen from

this figure, the same observations and conclusion that are drawn from the stochastic CRB curves

also apply to the deterministic CRB.

B. Example 2: MUSIC-based DOA Estimation

In this example, the MUSIC algorithm is used to estimate the DOA for all aforementioned

methods. Note that the targets are considered to be resolvedif there are at least two peaks in

the MUSIC spectrum and the following is satisfied [21]
∣

∣

∣
θ̂l − θl

∣

∣

∣
≤ ∆θ

2
, l = 1, 2 (55)

where∆θ = |θ2 − θ1|. Fig. 6 shows the probability of source resolution versus SNR for all

methods tested. It can be seen from this figure that all methods exhibit a100% correct source

resolution at high SNR values. As the SNR decreases, the probability of source resolution starts

dropping for each method at a certain point until it eventually becomes zero. The SNR level

at which this transition happens is known as SNR threshold. It can be seen from Fig. 6 that

the TS-based MIMO radar withζ = λ/2 has the highest SNR threshold while the traditional
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MIMO radar and the TAP-based MIMO radar have the second and third highest SNR thresholds,

respectively. The SNR threshold of the TS-based MIMO radar with ζ = Nλ/2 is lower than the

aforementioned three methods while the proposed transmit beamspace-based MIMO radar has

the lowest SNR threshold, i.e., the best probability of source resolution performance.

Fig. 7 shows the RMSEs for the MUSIC-based DOA estimators versus SNR for all methods

tested. It can be seen from this figure that the TS-based MIMO radar with ζ = λ/2 has

the highest/poorest RMSE performance. It can also be seen that the TAP-based MIMO radar

outperforms the traditional MIMO radar at low SNR region while the opposite occurs at high

SNR region. This means that the influence of having large effective aperture is prominent at

high SNR region, while the benefit of having high SNR gain per virtual antenna (even if the

effective aperture is small) is feasible at low SNR region. It can also be observed from Fig. 7

that the estimation performance of the TS-based MIMO radar with ζ = Nλ/2 is better than

that of both the traditional MIMO radar and the TAP-based MIMO radar. Finally, the proposed

transmit beamspace-based MIMO radar outperforms all aforementioned methods.

It is worth noting that the width of the desired sector is10◦. Therefore, the parts of the RMSE

curves where the RMSEs exceed10◦ in Fig. 7 are not important. Thus, the comparison between

different methods within that region is meaningless.

C. Example 3: ESPRIT-based DOA Estimation

In this example, all parameters for all methods are the same as in the previous example except

for the M × 2 transmit weight matrix associated with transmit beamspace-based MIMO radar

which is designed using (22)–(23). The out-of-sector region is taken asΘ̄ = [−90◦, −15◦] ∪
[15◦, 90◦] and the parameter that controls the level of radiation within Θ̄ is taken asγ = 0.38.

Each column of the resulting matrixC is scaled such that it has unit norm. The transmit power

distribution for this case is similar to the one shown in Fig.2 and, therefore, is not shown here.

ESPRIT-based DOA estimation is performed for all aforementioned methods. For the traditional

MIMO radar-based method, theMN×1 virtual array is partitioned into two overlapped subarrays

of size (M − 1)N × 1 each, i.e., the first subarray contains the first(M − 1)N elements while

the second subarray contains the last(M − 1)N elements. For all other methods, the2N × 1

virtual array is partitioned into two non-overlapped subarrays, i.e., the first subarray contains the

first N elements while the second subarray contains the lastN elements.

The probability of source resolution and the DOA estimationRMSEs versusSNR are shown
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for all methods tested in Figs. 8 and 9, respectively. It can be seen from Fig. 8 that the ESPRIT-

based DOA estimator for the TS-based MIMO radar withζ = λ/2 has the highest/poorest SNR

threshold while the ESPRIT-based DOA estimator for the traditional MIMO radar has the second

highest SNR threshold. The ESPRIT-based DOA estimator for the TAP-based MIMO radar has

SNR threshold that is lower than the previous two estimators. Moreover, the SNR threshold of

the ESPRIT-based DOA estimator for the TS-based MIMO radar with ζ = Nλ/2 is lower than

the SNR threshold of the ESPRIT-based DOA estimator for the TAP-based MIMO radar. Finally,

the ESPRIT-based DOA estimator for the proposed transmit beamspace-based MIMO radar has

the lowest SNR threshold, i.e., the best probability of source resolution performance.

It can be seen from Fig. 9 that the ESPRIT-based DOA estimatorfor the TS-based MIMO

radar withζ = λ/2 has the highest/poorest RMSE performance. Also this figure shows that the

ESPRIT-based DOA estimator for the TAP-based MIMO radar outperforms the ESPRIT-based

DOA estimator for the traditional MIMO radar at low SNR region while the opposite occurs at

high SNR region. This confirms again the observation from theprevious example that having

large effective aperture is more important at high SNR region while having high SNR gain per

virtual antenna is more important at low SNR region. It can also be observed from Fig. 9 that the

ESPRIT-based DOA estimator for the TS-based MIMO radar withζ = Nλ/2 outperforms the

ESPRIT-based DOA estimator for both the traditional MIMO radar and the TAP-based MIMO

radar. Finally, the ESPRIT-based DOA estimator for the proposed transmit beamspace-based

MIMO radar outperforms all aforementioned estimators.

VIII. C ONCLUSION

A transmit beamspace energy focusing technique for MIMO radar with application to direction

finding for multiple targets is proposed. Two methods for focusing the energy of multiple (two

or more) transmitted orthogonal waveforms within a certainspatial sector are developed. The

essence of the first method is to employ spheroidal sequencesfor designing transmit beamspace

weight matrix so that the SNR gain at each receive antenna is maximized. The subspace

decomposition-based techniques such as MUSIC can then be used for direction finding for

multiple targets. The second method uses convex optimization to control the amount of dissi-

pated energy in the out-of-sector at the transmitter and to achieve/maintain rotational invariance

property at the receiver. This enables the application of search-free DOA estimation techniques

such as ESPRIT. Performance analysis of the proposed transmit beamspace-based MIMO radar
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and comparison to existing MIMO radar techniques with colocated antennas are given. Stochastic

and deterministic CRB expressions as functions of the transmit beamspace weight matrix are

found. It is shown that the proposed technique has the lowestCRB as compared to all other

techniques. The computational complexity of the proposed method can be controlled by selecting

the transmit beamspace dimension, i.e., by selecting the number of transmit beams. Simulation

examples show the superiority of the proposed technique over the existing techniques.
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Fig. 1. Transmit beamspace beampattern using spheroidal sequences without rotation. Total transmit power is uniformly

distributed within the desired spatial sector, however, different transmitted waveforms have different power distribution.
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Fig. 2. Transmit beamspace beampattern using spheroidal sequences with rotation. Total transmit power as well as individual

waveform powers are uniformly distributed within the desired spatial sector.
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Fig. 3. TAP-based MIMO radar transmit beampattern using twofully overlapped subarrays.
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Fig. 4. Stochastic CRB versus SNR.
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Fig. 5. Deterministic CRB versus SNR.

October 23, 2018 DRAFT



28

−20 −10 0 10 20 30 40
0

0.5

1

1.5

SNR (dB)

P
O

B
A

B
IL

IT
Y

 O
F

 T
A

R
G

E
T

 R
E

S
O

LU
T

IO
N

 

 
Transmit subaperturing with ζ=λ/2 (49)

Transmit subaperturing with ζ=Nλ/2 (50)
Traditional MIMO RADAR
Transmit array partioning (51)
Proposed transmit beamspace (18)

Fig. 6. Probability of target resolution versus SNR for MUSIC-based DOA estimators.
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Fig. 7. RMSE versus SNR for MUSIC-based DOA estimators.
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Fig. 8. Probability of target resolution versus SNR for ESPRIT-based DOA estimators.
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Fig. 9. RMSE versus SNR for ESPRIT-based DOA estimators.
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