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Abstract

In this paper, we propose a transmit beamspace energy facuschnique for multiple-input
multiple-output (MIMO) radar with application to directiofinding for multiple targets. The general
angular directions of the targets are assumed to be locaitkihva certain spatial sector. We focus
the energy of multiple (two or more) transmitted orthogomaleforms within that spatial sector using
transmit beamformers which are designed to improve theasignnoise ratio (SNR) gain at each receive
antenna. The subspace decomposition-based techniquessiUSIC can then be used for direction
finding for multiple targets. Moreover, the transmit beamfers can be designed so that matched-
filtering the received data to the waveforms yields multifl®#o or more) data sets with rotational
invariance property that allows applying search-freediom finding techniques such as ESPRIT for
two data sets or parallel factor analysis (PARAFAC) for mtran two data sets. Unlike previously
reported MIMO radar ESPRIT/PARAFAC-based direction firgdtechniques, our method achieves the
rotational invariance property in a different manner camebii also with the transmit energy focusing.
As a result, it achieves better estimation performance welocomputational cost. Particularly, the
proposed technique leads to lower Cramer-Rao bound thaexikgng techniques due to the transmit
energy focusing capability. Simulation results also shiogvguperiority of the proposed technique over

the existing techniques.
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. INTRODUCTION

The development of multiple-input multiple-output (MIMQadar is recently the focus of
intensive research [1]-[3]. A MIMO radar is generally deting@s a radar system with multiple
transmit linearly independent waveforms and it enablest jprocessing of data received by
multiple receive antennas. MIMO radar can be either equippiéh widely separated antennas
[2] or colocated antennas![3].

Estimating direction-of-arrivals (DOAs) of multiple taty from measurements corrupted by
noise at the receiving array of antennas is one of the mogiritaupt radar applications frequently
encountered in practice. Many DOA estimation methods haenlkdeveloped for traditional
single-input multiple-output (SIMO) radar [4]-[12]. Amgnthese methods the estimation of
signal parameters via rotational invariance techniqu&P@T) and multiple signal classification
(MUSIC) are the most popular due to their simplicity and higholution capabilities [6], 9],
[12]. Moreover, ESPRIT is a special and computationallycedfit case of a more general
decomposition technique of high-dimensional (higher tl2andata arrays known as parallel
factor analysis (PARAFAC) [13],[14].

More recently, some algorithms have been developed for D€itnation of multiple targets in
the context of MIMO radar systems equipped withcolocated transmit antennas aNdreceive
antennas [15]-[19]. The algorithms proposed.in [15] and [&uire an exhaustive search over
the unknown parameters and, therefore, mandate prolgbitnmputational cost if the search
is performed over a fine grid. On the other hand, the seaesh-ESPRIT-based algorithms
of [17] and [18] as well as PARAFAC-based algorithm of [19]limé the rotational invariance
property of the so-called extended virtual array to estintla¢ DOAs at a moderate computational
cost. It is worth noting that in the case of MIMO radar, the @thages of the aforementioned
DOA estimation methods over similar MUSIC- and ESPRIT/PARE-based DOA estimation
methods for SIMO radar appear due to the fact that the extemgitual array of M/ N virtual
antennas can be obtained in the MIMO radar case by matchedAd the data received by
the N-antenna receive array to/ transmitted waveforms. Therefore, the effective apertire
the virtual array can be significantly extended that leadsmproved angular resolution. In
the methods of[[17]-[19], the rotational invariance prdpes achieved by partitioning the
receiving array to two (in ESPRIT case) or multiple (in PAR&I-case) overlapped subarrays.
Then, the rotational invariance is also presumed for thauairenlarged array of/ N virtual

antennas. However, the methods|of [17]-H19] employ full @faum diversity, i.e., the number of
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transmitted waveforms equals the number of transmit aatgrat the price of reduced transmit
energy per waveform. In other words, for fixed total transgniérgy, denoted hereafter Aseach
waveform has energ¥ /M transmitted omni-directionally. It results in a reducegisil-to-noise
ratio (SNR) per virtual antenna. On the other hand, it is akathwn that the estimation accuracy
of subspace-based techniques suffers from high SNR tHrgstmat is, the root-mean-squared
error (RMSE) of DOA estimates approaches the correspondmager-Rao bound (CRB) only
for relatively high SNRs [20]/[21]. Therefore, the highbetSNR, the better the DOA estimation
performance can be achieved.

It has been shown i _[22]| [23] that a tradeoff between the Ijdih and aperture of the
MIMO radar virtual array can be achieved by transmittingslésan A/ orthogonal waveforms.
Exploiting this tradeoff, we develop in this pa@e&r group of DOA estimation methods, which
allow to increase the SNR per virtual antenna by (i) transngtless waveforms of higher energy
and/or (ii) focusing transmitted energy within spatialtees where the targets are likely to be
located. At the same time, reducing the number of transdhittaveform reduces the aperture
of the virtual array, while a larger aperture may be usefulifcreasing the angular resolution
at high SNR region.

The contributions of this work are based on the observatiat by using less waveforms
the energy available for each transmitted waveform can be#ased, that is, the SNR per each
virtual antenna can be improved, while the aperture of theiai array decreases /N, where
K < M is the number of orthogonal waveforms. Moreover, the SNRvinal antenna can
be further increased by focusing the transmitted energy @eréain sector where the targets
are located. Our particular contributions are as followse Transmit beamformers are designed
so that the transmitted energy can be focussed in a certa@ciaspsector where the targets
are likely to be located that helps to improve the SNR gain athereceive antenna, and
therefore, improve the angular resolution of DOA estimatiechniques, such as, for example,
MUSIC-based techniques. Moreover, we consider the pdisgilmf obtaining the rotational
invariance property while transmitting < K < M orthogonal waveforms using different
transmit beamforming weight vectors and focusing the tratisd energy on a certain spatial
sector where the targets are located. It enables us to desagoh-free ESPRIT/PARAFAC-based

DOA estimation techniques. In addition, we derive CRB foe ttonsidered DOA estimation

1An early exposition of a part of this work has been presemef24].
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schemes that aims at further demonstrating how the DOA astim performance depends on
the number of transmitted waveforms, transmit energy fioglisand effective array aperture of
the MIMO radar virtual array.

The paper is organized as follows. In Section Il, MIMO radamnal model is briefly in-
troduced. In Section Ill, we present the transmit beamspased MIMO radar signal model.
Two approaches for designing the transmit beamspace weiglrix are given in Section IV.
In Section V, we present MUSIC and ESPRIT DOA estimation fansmit beamspace-based
MIMO radar. Performance analysis and CRB are given in Secd#ib Simulation results which
show the advantages of the proposed transmit beamspaee-MHMO radar DOA estimation

techniques are reported in Section VIl followed by conausidrawn in Section VIII.

[I. MIMO RADAR SIGNAL MODEL

Consider a MIMO radar system equipped with a transmit arfay/ocolocated antennas and
a receive array ofV colocated antennas. Both the transmit and receive antemaasssumed to
be omni-directional. Thél/ transmit antennas are used to transiitorthogonal waveforms.

The complex envelope of the signal transmitted by sité transmit antenna is modeled as

Sm(t) = \/%gbm(t), m=1,...,M (1)

where t is the fast time index, i.e., the time index within one radaisp, F is the total
transmitted energy within one radar pulse, angdt) is themth baseband waveform. Assume
that the waveforms emitted by different transmit antenmasoathogonal. Also, the waveforms
are normalized to have unit-energy, i.¢,,|¢,,(¢)]*dt =1, m =1,..., M, whereT is the pulse
width.

Assuming thatl targets are present, thé x 1 received complex vector of the receive array
observations can be written as

x(t,7) = Y _mi(t,7)b(6;) +=(t,7) (2)

=1
wherer is the slow time index, i.e., the pulse numbefd) is the steering vector of the receive

array,z(t,7) is N x 1 zero-mean white Gaussian noise term, and

r(t,T) £ \/%QJ(T)aT(Qz)qb(t) 3)

is the radar return due to théh target. In[(8),«(7), 6,, anda(f,) are the reflection coefficient

with variances?, spatial angle, and steering vector of the transmit arrap@ated with théth
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target, respectivelyp(t) £ [¢1(1), ..., oa(t)]T is the waveform vector, an@)” stands for the
transpose. Note that the reflection coefficientr) for each target is assumed to be constant
during the whole pulse, but varies independently from ptdspulse, i.e., it obeys the Swerling
Il target model [[19].

Exploiting the orthogonality property of the transmittedweforms, theV x 1 component of
the received datd [2) due to theth waveform can be extracted using matched-filtering which
is given as follows

X (1) £ /Tx(t,r)éfn(t)dt, m=1,..., M. 4)

where (-)* is the conjugation operator. Stacking the individual vecomponents[(4) in one

column vector, we obtain th&/ N x 1 virtual data vector/[3]
- ()]

\/720[1 a(f;) ®b(6;) + z(1)
= \/%ZOZZ(T)U—MIMO(GZ) +Z(T) (5)

where® denotes the Kronker product,

YMIMO

uvnvo(0) = a(f) @ b(h) (6)

is the M/ N x 1 steering vector of the virtual array, agdr) is the M N x 1 noise term whose co-
variance is given by21,,y. The M N x M N covariance matriRymo = E{yumo (7)yino ()}

is hard to obtain in practice. Therefore, the following séengovariance matrix
X 1 &
Rymvio = 0 ZYMIMO(T)YﬁlMo(T) (7)

is used, wheré) is the number of snapshots.

[1l. TRANSMIT BEAMSPACE BASED MIMO RADAR SIGNAL MODEL

Instead of transmitting omin-directionally, we proposddous the transmitted energy within
a sector® by forming K directional beams where an independent waveform is tratessrover
each beam. Note that the spatial sedrican be estimated in a preprocessing step using any
low-resolution DOA estimation technique of low complexity

Let C£ [cy,...,ck]|! be the transmit beamspace matrix of dimensidnx K (K < M),

wherecy, is the M x 1 unit-norm weight vector used to form th¢h beam. The beamspace matrix
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can be properly designed to maintain constant beampatténimwhe sector of intere® and to
minimize the energy transmitted in the out-of-sector aréas ¢ (t) = [¢1(t), ..., ¢k (t)]" be
the K x 1 waveform vector. Théth column ofC is used to form a transmit beam for radiating
the kth waveforme,(¢). The signal radiated towards a hypothetical target locateal direction

0 via the kth beam can be modeled as

s(t,0) = @ (ct'a(6)) & (t) (8)

where \/E /K is a normalization factor used to satisfy the constraint tha total transmit

energy is fixed toF. The signal radiated via all beams towards the direcfiman be modeled

s(t,0) \/72 (ci'a
:\/; a(0)p(t) = \/EéT(@qbK(t) 9)

where (-)# stands for the Hermitian transpose and

as

a(h) 2 (C”a())" . (10)

Then, the transmit beamspace can be viewed as a transfomthat results in changing the
M x 1 transmit array manifolch(6) into the K x 1 manifold (10).

At the receive array, théV x 1 complex vector of array observations can be expressed as

Xbeam t 7- \/7Zal el ¢K( )) (el)+z(t77—)‘ (11)

By matched-filteringky,c. (, 7) to each of the waveforms, (k = 1,..., K), the received signal

component associated with each of the transmitted wavaf@an be obtained as

Yk(T) £ /TXboam(t,T)(bz@)dt
\/7Zal T)ay (0,)b(0;) + zx(7) (12)

where(-); is the kth entry of a vector and th&’ x 1 noise term is defined as

zr(7) :/Tz(t,T)gbZ(t)dt. (13)
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Stacking the individual vector componenritsi(12) in one calw®ctor, we obtain the following

KN x 1 virtual data vector

Ybeam(T) £ [Yf(T) e yf((T)]T

[E & ) i
=\ % > () (a(6) @ b(6))) + 2k (7) (14)
=1
wherezy (1) £ [z1(7),...,zx(7)]" is the KN x 1 noise term whose covariance is given by

O’?IKN.

The transmit beamspace signal model giverL by (14) provitebasis for optimizing a general-
shape transmit beampattern over the transmit beamspagbatweatrix C. By carefully designing
C, the transmitted energy can be focussed in a certain sgaiiébr, or divided between several
disjoint sectors in space. As compared to traditional MIM&dar, the benefit of using transmit
energy focusing is the possibility to increase in the sigg@aler at each virtual array element.
This increase in signal power is attributed to two factors:

(i) transmit beamforming gain, i.e., the signal power agged with thekth waveform reflected
from a target at directiod is magnified by factotc/a(6)|?;

(i) the signal power associated with thi¢h waveform is magnified by factoE/K due to
dividing the fixed total transmit powef over K < M waveforms instead of/ waveforms.

As it is shown in subsequent sections, the aforementioneddetors result in increasing the
SNR per virtual element which in turn results in lowering @G&B and improving the DOA

estimation accuracy.

IV. TRANSMIT BEAMSPACE DESIGN

In this section, two methods for designing the transmit bg@ane weight matrixXC are

proposed.

A. Motivations

Given the beamspace angular sector-of-intef@stseveral beamspace dimension reduction
techniques applied to the data at the output of a passiverecggay are reported in the literature
(seel[25] and references therein). The essence of thesespaeedimension reduction techniques
is to perform DOA estimation in the reduced dimension spatker than in the elementspace
(full dimension of received data) which leads to great cotaponal savings. Performing DOA

estimation in a reduced dimension beamspace has also provegbrove probability of source
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resolution as well as estimation sensitivity [26]. Howeweis well known that the CRB on DOA
estimation performed in reduced dimension space is higtar {or at best equal to) the CRB
on DOA estimation performed in elementspace, i.e., apgljieamspace dimension reduction
techniques to passive arrays does not improve the bestvableeestimation performance [27].
This is natural because beamspace dimension reductiomsgivpaarrays just preserves the signals
observed within a certain spatial sector and filters outagobserved outside that sector.

The transmit beamspace processing proposed in Séclionclisés all transmit energy within
the desired spatial sector instead of spreading it omeietiznally in the whole spatial domain.
In other words, the amount of energy that otherwise could dsted in the out-of-sector areas is
added to the amount of energy to be transmitted within theetbsector. As a result, the signal
strength within the desired sector is increased potentlading to improved best achievable
estimation performance, i.e., as will be seen in SedtioBMbwering the CRB. The transmit
beamspace weight matri€ can be designed such that the following two main requirement
are satisfied: (i) Spatial distribution of energy transedttvithin the desired sector is uniform;
(i) the amount of energy that is inevitably transmitted Ive tout-of-sector area is minimized.

Here we present two methods for satisfying these two reouargs.

B. Spheroidal Sequences Based Transmit Beamspace Design

Discrete prolate spheroidal sequences (DPSS) have beposaa for beamspace dimension
reduction in array processing [28]. The essence of the DiS8d approach to beamspace
dimension reduction [21]/ [28] is to maximize the ratio oktheamspace energy that comes
from within the desired secto® to the total beamspace energy, i.e., the energy within the
whole spatial domaif—=/2, 7/2]. Following this principle, we propose to design the trarismi
beamspace weight matrix so that the ratio of the energy tedliaithin the desired spatial sector
to the total radiated energy is maximized. That is, the trahbeamspace matri is designed

based on maximizing

p, & Jrfolcla(®)s (t)}Qdet

Jo S |ck i (1)|? dbdt
_ ci (Joal (0)db) ci
f_g |Ck a( )[>d6
cl Acy

N 15
J2= |efla(6)[2d0 (15)
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whereA £ [ a(6)a’’ (0)d0 is a non-negative matrix. Note that the first equalitylinl (fd)ows
from the fact thatf,, ¢(¢)¢*(¢)dt = 1 . Moreover, it can be shown thatdf#) obeys Vandermonde
structure, then the following holds [21]

us

/2 \ckHa(G)|2d9 = QWCkHCk. (16)
-3
Substituting [(1B) in[(15), we obtain
c Acy,
[, = % k=1,... K. 17
k 27TCk,HCk7 ) ) ( )

The maximization of the ration i _(17) is equivalent to maigimg its numerator while fixing its
denominator by imposing the constraifd;|| = 1. To avoid the trivial solutiorc; = ... = cg,
an additional constraint might be necessary, for exampke orthogonality constraint’ c;, =
0, k # k' can be imposed. Then, the maximization{d¥,}*_, subject to the constrai@” C = I
corresponds to finding the eigenvectorsfdfthat are associated with th€ largest eigenvalues

of A. That is, the transmit beamspace matrix is given as
C=luj,uy,...,ug| (18)

where{u;} X, are K principal eigenvectors oA.
It is worth noting that any steering vectaté), € © belongs to the space spanned by the
columns ofC. This means that the magnitude of the projecton@f) onto the column space

of C is approximately constant, i.e., the transmit power distion
H(9) = af(9)CcCa (19)

is approximately constanid € ©. Therefore, the total transmit power distribution, i.éet
distribution of the power summed over all waveforms, witktie spatial secto® is approxi-
mately uniform. However, the transmit power distributiorepindividual waveforms may not be
uniform within ®. Such a uniform transmit power distribution over indivilwaveforms may
be desired especially when the difference between the firdtthe last essential eigenvalues
of A is significant. In this respect, note that the orthogonadipstraintC”C = I is imposed
above only to avoid the trivial solutio®;, = ... = cx when maximizing[(1l7). This is different
from the case of the traditional beamspace dimension rexfutgchniques where orthogonality
is required to preserve the white noise property. Therefor@ur case where the latter is not
an issue,C can be easily rotated, if necessary, so that it achievesathsifeatures such as

uniform transmit power distribution over individual waweefs. The orthogonality may be lost
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10

after such rotation ofC without any consequences. For example, such rotatiofd o used in
our simulations (Section VII) to ensure that the uniforrnsiait power distribution per each

individual waveform is achieved.

C. Convex Optimization Based Transmit Beamspace Design

A more general transmit beamspace design technique abldittaa transmit array of arbitrary
geometry can also be formulated. Moreover, some DOA estmaéchniques can be applied
only if the received data enjoy certain properties. For gXemthe ESPRIT DOA estimation
technique requires that the received data snapshots tafisiwo sets where one data set is
equivalent to the other up to some phase rotation. This ptppe commonly referred to as
rotational invariance. More generally, PARAFAC-based D@gimation techniques are based
on the assumption that multiple received data sets areetklaa rotational invariance properties.
Fortunately, the transmit beamspace maftixan be designed so that the virtual data vectors
given by [12) enjoy such rotational invariance property.

To obtain the rotational invariance property, we proposeravex optimization based method
for designingC. For the virtual snapsho{y/,.(7) } &, to enjoy rotational invariance, the following

relationship should be satisfied
e @) | (cfa(0))| b(9) = e’ |(cfla(0))|b(d), Voe®©, kK =1,.. K (20)

where; = \/—1, andy,.(0) and . () are arbitrary phase shifts associated with ztteand’th
virtual snapshots, respectively. The relationshig (20) ba satisfied if the transmit beamspace

matrix C is designed/optimized to meet the following requirement

CHa(f) = d(h), Ve ®. (21)

whered(0) £ [ emx@]T js of dimensionkK x 1. A meaningful formulation of a

corresponding optimization problem is to minimize the nafrhe difference between the left-
and right-hand sides of (1) while keeping the worst tramgmower distribution in the out-of-

sector area below a certain level. This can be mathematieafiressed as follows
min max |ICHa(0;) —d@)|, 6:;€0, i=1,...,1 (22)
subject to  [|CTa(6;)| <, 6,€0, j=1,...,J (23)

where® combines a continuum of all out-of-sector directions, idirections lying outside the

sector-of-interes®, and~ > 0 is the parameter of the user choice that characterizes thgt wo
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11

acceptable level of transmit power radiation in the ous@détor region. The parametgrhas an
analogy to the stop-band attenuation parameters in thsiclbandpass filter design and can be

chosen in a similar fashion [29].

V. TRANSMIT BEAMSPACE BASED DOA ESTIMATION

In this section, we design DOA estimation methods basedamsinit beamspace processing
in MIMO radar. We focus on subspace based DOA estimatiomigales such as MUSIC and
ESPRIT.

A. Transmit Beamspace Based MUSIC

The virtual data model[ (14) can be rewritten as

Ybeam(T) = Veu(T) + 2x(7) (24)
where
a(r) £ on(r),...,ar(m)]" (25)
V2 [v(B),...,v(0L)] (26)
v(0) 2 \/g (C"a(6)) @ b(h). 27)

The KN x KN transmit beamspace-based covariance matrix is given by
Rbeam = E {Ybeam(T)yl]iam(T)}
= VSV¥ + 02Tk (28)

whereS = E{a(7)a” (1)} is the covariance matrix of the reflection coefficients vectde

sample estimate of (28) takes the following form

Q
R 1
Rbeam = @ Z Ybeam(T)ylZ;am(T)- (29)
T=1
The eigendecomposition df (29) can be written as
Rbcam = EsAsEf + EnAnEnH (30)

where thel x L diagonal matrixA, contains the largest (signal-subspace) eigenvalues @&nd th
columns of theK' N x L matrix E; are the corresponding eigenvectors. Similarly, theV —
L) x (KN — L) diagonal matrixA,, contains the smallest (noise-subspace) eigenvalues while

the KN x (KN — L) matrix E, is built from the corresponding eigenvectors.
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12

Applying the principle of the elementspace MUSIC estimdg]r the transmit beamspace
spectral-MUSIC estimator can be expressed as

Vo))
U )

whereQ = E,EZ =1 - E,E¥ is the projection matrix onto the noise subspace. Subistitut

(27) into (31), we obtain
f(0) =

(31)

[(C™a(0)) @ b(0)]" [(C"a(9)) ® b()]
[(Ca()) @ b(6)]" [(CHa(9)) ®b
2™ (9)CC"a(0)] - [b" (0)b(6)]

" [(CHa(9) @ b(0)7 Q[(CHa(h)) @ b(6)
_ NaH(@;CCH a(0) . (32)
[(CHa(6)) @ b(6)]" Q[(CHa(6)) @ b(6)]
B. Transmit Beamspace Based ESPRIT
The signal component of the data vectéss.(7)}5_, can be expressed as
yi(7) = Tre(7) (33)
where
Ti 2 [b(6h),....b(6,)]%, (34)
W, £ diag {c/a(6h),...,cla(f)} . (35)
It is worth noting that the matrice§T},} X, are related to each other as
T, =T;% ¥, kj=1.. K. (36)

By carefully designing the beamspace weight maftixfor example by using[ (22)=(23), the
relationship [(36) enjoys the rotational invariance proper
Consider the case when only two transmit beams are formeeh,Tthe transmit beamspace

matrix is C = [cy, ¢co]. In this case,[(36) simplifies to

Ty, =T,¥ (37)
where
Ha(6,) ctla(fy)
T 2 dia {c2a<1,..., 2 } 38
& cla(f,) cHa(or) (38)
Furthermore,[(38) can be rewritten as
¥ = diag {A 0,)e M0 ,A(@L)eﬁ(@“} (39)
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where A() and Q(6) are the magnitude and angle af a(9)/ca(f), respectively. It can be
seen from[(37) and_(B9) that the vectgrsandy, (see also(33)) enjoy the rotational invariance
property. Therefore, ESPRIT-based DOA estimation tealesgcan be used to estimateand
{6,}F, can be obtained from& by looking up a table that converf3(d) to . Moreover, if

K > 2 is chosen, more than two data sets which enjoy the rotatiomatiance property can be
obtained by properly designing the transmit beamspacehwenatrix. In this case, the means
of using PARAFAC instead of ESPRIT are provided as well.

It is worth mentioning that for traditional MIMO radal](5),@A estimation using ESPRIT
has been proposed in [17]. Specificayy.r) in (B) has been partitioned intp, (1) = [xT(7),
ooxb ()T andyo(r) = [xE(7), ...,xL(7)]" and it has been shown thgt and y,
obey the rotational invariance property which enables e af ESPRIT for DOA estimation.
However, the rotational invariance property is valid in][Iohly when the transmit array is
a uniform linear array (ULA). Therefore, the method bf [[1g]limited by the transmit array
structure and may suffer from performance degradation éenpfesence of array perturbation
errors. Moreover, it suffers from low SNR per virtual antares a result of dividing the total

transmit energy oven different waveforms.

VI. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the propasesmit beamspace MIMO radar
DOA estimation approach as compared to the MIMO radar DOAmedion technique. For
the reason of comparison, we also consider two techniqueshiéve been recently reported
in the literature that employ the idea of dividing the traitsarray into several smaller sub-
apertures/subarrays. The first technique uses transnafpsuiores (TS) for omni-directionally
radiating independent waveforms [30], [31]. If the numbkswabapertures is chosen &s< M,
then each subaperture radiates pulses of enérgl. The second technique is based on par-
titioning the transmit array into overlapped subarrays nehhe antennas that belong to each
subarray are used to coherently transmit an independergfarav [22], [23]. We refer to this
technique as transmit array partitioning (TAP). Note thatTAP technique has transmit coherent
gain while the TS technique does not have such a coherersntitigain.

In the following subsection, we compare between the aforgimreed techniques in terms
of the effective aperture of the corresponding virtual arthe SNR gain per virtual element,

and the computational complexity associated with eigeniposition based DOA estimation

October 23, 2018 DRAFT



14

techniques. In the next subsection, we express/discusSRiezfor all considered techniques.

A. Colocated Uniform Linear Transmit Array

Consider the case of a ULA at the transmitter witf2 spacing between adjacent antennas,
where ) is the propagation wavelength. Taking the first antenna asfexence, the transmit

steering vector can be expressed as
a(f) = [1,e‘j”i“9, .. .,e‘j’r(M‘”Si“e]T. (40)

Also, the receive antennas are assumed to be grouped in a WbAalf a wavelength interele-

ment spacing. Then, the receive steering vector is given as
b(e) AL [17 6—j7rsint97 — 6—j7r(N—1)sin9}T ) (41)

It is worth noting that the transmit and receive array apedware(M —1)A\/2 and (N —1)\/2,
respectively. In light of[(40) and(#1), we discuss/analffze following cases.
1) Traditional MIMO radar: Substituting[(4D) and (41) in{6), the MIMO radar virtualetieg

vector can be expressed as

—jmsind

—jT((N—l)SlIl@)e e

unmio(0) = [1’.“76 —jmNsin0.

—j7r(]\/[—1)sin€7 y —j27r(]\/[—1+N—1)sin€:|T. (42)

NG e

From (42), we observe that the effective virtual array aperis (M + N — 2)\/2. Note that
the virtual steering vectai(f) @ a(f) is of dimensionM/ N x 1, yet it only containsM/ + N — 1
distinct elements. Moreover, the SNR gain per virtual eletms proportional in this case to
E/M. This low SNR gain can lead to poor DOA estimation perforneaespecially at low SNR
region. The computational complexity of applying eigemmamposition based DOA estimation
techniques is of) (M3 N?) in this case.

2) Transmit subaperturing based MIMO rada&s compared to the traditional MIMO radar,
TS-based MIMO radar employs™ subapertures instead @f. This results in higher SNR per
virtual element in the corresponding virtual array at theereer. To capitalize on the effect of
this factor on the DOA estimation performance, we consitieréxtreme case when only two

transmit subapertuv@are used to radiate the total transmit enefgyin this case, each transmit

20One can think of a subaperture as a large omni-directionnaa which is capable of radiating energly2 instead of
E/M. This case might be practically unattractive as it will regupower amplifier of much higher amplifying gain as comphlre

to the case of using/ transmit antennas. However, for the sake of theoreticdlyaisécomparison we consider it in this paper.
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subaperture radiates a waveform of enefgy2. Assume that the two transmit subapertures are
separated in space ljywavelength and that the first transmit subaperture is takenraference.

Then, the MIMO radar data modell (5) becomes of dimengidnx 1 and can be expressed as

yrs(T \/7 Z ar(7) ([1, e 2T @ b(6)) + z1s(7) (43)

wherezrg(7) = [z1(7), z2(7)]7.

Comparing[(b) to[(43), we observe that the signal strengttMidO radar with M transmit
antennas is proportional tg/W while the signal strength for the TS-based MIMO radar is
proportional tom. This means tha{ (43) offers an SNR gain that\ig2 times the SNR
gain offered by[(b). We also observe from|(43) that the effectirtual array aperture is given
by ((+ N —1)\/2. Therefore, the effective aperture for this case can beralbed by selecting
¢. For example, selecting = \/2 yields a virtual array steering vector of dimensi@N that
contains onlyN + 1 distinct elements, i.e, the effective aperture would ¥&/2. This case
is particularly important when performing DOA estimatiosing search free techniques such
as ESPRIT. Another important case is the chajce NA/2 which yields a virtual array that
is equivalent to &/N-element ULA. In this case, the effective array aperturd v (2N —
1)A/2. The computational complexity of applying eigen-deconitims based DOA estimation
techniques is of)(23N?) in this case.

3) Transmit array partitioning based MIMO radarFollowing the guidelines of [23] and
selecting K = 2, the M-antenna transmit array is assumed to be partitioned into fthty
overlapped subarrays dff — 1 antenna each. TheM/ — 1) x 1 beamforming weight vectors
wi = wy = w are used to form transmit beams that cover the spatial s€ctdwo independent
waveforms are radiated. Each waveform g2 energy per pulse. The transmit weight vector
w can be designed such that the transmit gain is approxim#telysame within the desired
sector®, i.e., |[wfa(d)| = Grap, V0 € © wherea(f) contains the firstV/ — 1 elements of
the vectora(f) and Grap is the TAP transmit coherent processing gain. Then, the Based

MIMO radar data model becomes of dimensiiN x 1 and can be formally expressed as

yrap(T) = \/7Zaz (w"a(6;)) urap(6:) + zrap(7)
= GTAP[ZQZ T)urap(0) + Zrap(7) (44)
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where urap(f) 2 [1, e 79T @ b(f) is the 2N x 1 steering vector of the corresponding
virtual array. Note that the TAP-based MIMO radar has trahgmherent gainGap Which
results in improvement in SNR per virtual element. Howevee, corresponding virtual array
containsN + 1 distinct elements, i.e., the effective virtual array apertis limited toN /2. The
computational complexity of applying eigen-decompositimsed DOA estimation techniques is
of O(23N?) in this case.

4) Transmit beamspace based MIMO raddfor the proposed transmit beamspace MIMO
radar, we choos&™ = 2 and use[(22)£(23) for designing = [c; c»] such that

d(0) = Gpeam - [1, e 2™VsIT  wpc (45)

where Gy IS the transmit beamspace gain, i.gla(d)| ~ |cfa(d)| ~ Gueam, V0 € O.
This yields a virtual array witl2V distinct elements an(RN — 1)\/2 effective array aperture.
Moreover, the proposed transmit beamspace techniques@f&R gain ofGyc.n - F/M, i.e., it
combines all the benefits of all other aforementioned tephes. The computational complexity
of applying eigen-decomposition based DOA estimationn@pkes is ofO(22N?) in this case.

A comparison between all methods considered is summarizdakei following table.

Tablel: Comparison between transmit beamspace-based M#d& and other existing tech-

niques.
Effective aperture] SNR gain per virtual element Computational complexity
Traditional MIMO (5) (M+N-2)3 £ O(M3N?)
Transmit subaperturing( (= 3) N3 £ O(22N?)
Transmit subaperturing; (= N3) (2N —-1)3 £ O(23N?)
Transmit array partitionind (44) N3 Giap - £ O(2°N?)
Transmit beamspace MIMQ_(#5)] (2N —1)3 Gream * 2 O(22N?)

B. Craner-Rao Bound

In this section, we discuss the CRB on DOA estimation acguiratransmit beamspace-based
MIMO radar.

In the case of transmit beamspace-based MIMO radar, thealidata model[(14) satisfies
the following statistical model:

Yoeam (7) ~ Ne (p(7), R) (46)
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where N denotes the complex multivariate circularly Gaussian abillty density function,
(1) is the mean ofype.m (7), @andR is its covariance matrix.

1) Stochastic CRBThe stochastic CRB on estimating the DOAs using the data h{idg
is derived by assuming(7) = 0 and R = Ryeam, WhereRy,c., i given by [28). Note that
under these assumptions, the virtual array signal mddél (@®its equivalent representation
(24)) has the same form as the signal model used in [32] to@éne stochastic CRB for DOA
estimation in conventional array processing. Therefdre,GRB expressions in its general form
derived in [32] can be used for computing the stochastic C&Bebtimating the DOAs based
on (24), that is,

CRB(6) = % {Re(DPYD) © GT} ! (47)

wherePy = V(VHV)~'V# is the projection matrix onto the space spanned by the caumn
of V, andG £ (SVIR-'VS). In @17),D = [d(6,),...,d(d;)] is the matrix whoséth column

is given by the derivative of thigh column of V with respect to,, i.e.,

() 2 dv(0) _ \/gd [(CMa(8)) © b(0)]

a4 a6
_ % ((CHal(9)) @ b(8) + (CTa(0)) @ b()) (48)

wherea’(0) = da(f)/df andb’(0) = db(0)/db.

2) Deterministic CRB:The deterministic CRB is derived by assumipgr) = Va(7) and
R = %I y. Under these statistical assumptions, the virtual dataein@d) is similar to the
general model used in [33] to find the deterministic CRB. Adawg to [33], the deterministic
CRB expression can be obtained froml1(47) by repladignith S, where S is the sample
estimate ofS.

It is worth noting that the expressidn {47) can be used not fumlcomputing the CRB for the
proposed transmit beamspace technique but also for the tetfeniques summarized in Table 1.
Indeed, the following cases show how these techniques caneled as special cases of the
proposed model (14).

1) ChoosingC = I,,, the transmit beamspace signal model (14) simplifies to rduditional
MIMO radar signal model(5). Therefore, the CRB for the ttimtial MIMO radar can be
obtained by substituting@ = I,,; in (47) and [(48).

2) The TS-based MIMO radar signal model with= \/2 can be obtained fronl_(14) by
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choosingC in the following format

T

1 00
C = ) (49
010

3) The TS-based MIMO radar signal modal for= N)\/2 can be obtained from_(14) by

choosingC in the following format

T

1 00
C= . (50)
00 1

4) Finally, the TAP-based MIMO radar signal modgll(44) candieained from [(I4) by

choosingC in the following format

W1 0
C= . (51)

0 Wo

VIl. SIMULATION RESULTS

Throughout our simulations, we assume a uniform linearstranarray of M/ = 10 omni-
directional antennas spaced half a wavelength apart. Atdbeiver, N =10 omni-directional
antennas are also assumed. The additive noise is Gausstamean unit-variance spatially and
temporally white. Two targets are located at directieris and 1°, respectively. The sector of
interest® = [—5°, 5°| is taken. Several examples are used to compare the perfoesanf the
following methods: (i) The traditional MIMO radall(5); (iifhe TS-based MIMO radaf_(49)
with ¢ = A\/2; (iii) The TS-based MIMO radaf (49) with = N\ /2; (iv) the TAP-based MIMO
radar [(51); and (v) The proposed transmit beamspace MIM@rréd!). For all methods tested,
the total transmit energy is fixed t6 = M. For the traditional MIMO radar {5), each transmit

antenna is used for omni-directional radiation of one of lhseband waveforms

1 m
Om(t) = \/;ejszt, m=1,...,M. (52)

For all methods that radiate two waveforms only, the first aadond waveforms of (52) are
used. The total number of virtual snapshots used to competesample covariance matrix is
@ = 300. In all examples, the RMSEs and the probability of sourceltg®n for all methods
tested are computed based @it independent runs.
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A. Example 1: Stochatstic and Deterministic CRBs

For the proposed spheroidal sequences based transmit fezenglIMO radar[(18), the non-
negative matrixA = [ a(¢)a’ (9)d0 is built. The two eigenvectors associated with the largest
two eigenvalues are taken as the principle eigenvecters(i.= [u; u,] is used. Two waveforms
are assumed to be radiated where each colunt isfused to form a transmit beam for radiating
a single waveform. Fid.]1 shows the transmit power distiitbubf the individual waveforms
lcra(f)|?, k = 1,2 as well as the distribution of the total transmitted powe)(As we can see
from this figure, the individual waveform power is not unifdy distributed within the sector
© while the distribution of the total transmitted power is fonm. To achieve uniform transmit
power distribution for each waveform a simple modificatibattinvolves vector rotation to the

transmit beamspace matnX can be performed. This means ti@tcan be modified as
C=CQ (53)

whereQ is a2 x 2 unitary matrix defined as

g |V VI
ViR -viR|

Fig.[2 shows the transmit power distribution for the indivadl waveformgc,a(9)|?, k = 1,2 as

(54)

well as for the total transmitted power (19). It can be seemfthis figure that the distribution
of individual waveforms is uniform within the desired sacto

For the TAP-based method, the transmit array is partitioméal two overlapped subarrays
of 9 antennas each. Each subarray is used to focus the radidtiomeowaveform within the
sector®. The transmit weight vectors are chosenvas= w, = [—0.5623 —0.5076 —0.4358
—0.3501 —0.2542 —0.1524 —0.0490 0.0512 0.1441])T. This specific selection is obtained by
averaging the two eigenvectors associated with the maxirwmneignevalues of the matrix
Jo a1(0)af’ (0)d6, wherea, (0) is the9 x 1 steering vector associated with the first subaHray.
The transmit power distribution of both waveforms is exattle same as shown in Figl 3.

The stochastic CRBs for all methods considered are plotesligSNR = 02 /02 in Fig.[4. It
can be seen from this figure that the TS-based MIMO radar githA/2 has the highest/worst
CRB as compared to all other methods. Its poor CRB performasnattributed to the omni-

directional transmission, i.e., wasting a considerabéetion of the transmitted energy within

Note that if the transmit array is not a ULA, them andw- can be designed independently using classic FIR filter desig

techniques.

October 23, 2018 DRAFT



20

the out-of-sector region, and to the small effective apertf the corresponding virtual array.
We can also see from the figure that the TS-based MIMO raddr gvt N /2 exhibits much
lower stochastic CRB as compared to the case With /2. The reason for this improvement
is the larger effective aperture of the corresponding sirarray. The traditional MIMO radar
with M transmit antennas has the same effective aperture as thia¢ GiS-based MIMO radar
with ¢ = N\ /2 but lower SNR per virtual element. Therefore, the stocha3RB for traditional
MIMO radar is higher than the CRB for the TS-based MIMO radé@hw = NA/2. At the
same time, it is better than the CRB of the TS-based MIMO radtr ( = A\/2 due to larger
effective aperture. The TAP-based MIMO radar has the safeetefe aperture as that of the TS-
based MIMO radar witi{ = A/2 but higher SNR per virtual element due to transmit coherent
processing gain. It yields lower CRB. In fact, the CRB for th&P-based MIMO radar is
comparable to that of the traditional MIMO radar. Finallygttransmit beamspace MIMO radar
with spheroidal sequences based transmit weight matritHetwest CRB as compared to all
other methods. This can be attributed to the fact that theqe®ed transmit beamspace-based
MIMO radar combines the benefits of having high SNR due tognércusing, high power of
individual waveforms, and large effective aperture of theresponding virtual array.

The deterministic CRBs for all methods considered are gdbith Fig.[5. As can be seen from
this figure, the same observations and conclusion that akendirom the stochastic CRB curves

also apply to the deterministic CRB.

B. Example 2: MUSIC-based DOA Estimation

In this example, the MUSIC algorithm is used to estimate tl@ACfor all aforementioned
methods. Note that the targets are considered to be resiltveere are at least two peaks in
the MUSIC spectrum and the following is satisfied|[21]

‘él—el‘gg, [=1,2 (55)

where A9 = |0, — 6,|. Fig.[8 shows the probability of source resolution versusRShr all
methods tested. It can be seen from this figure that all metleatibit a100% correct source
resolution at high SNR values. As the SNR decreases, thabpildlp of source resolution starts
dropping for each method at a certain point until it everiyjubecomes zero. The SNR level
at which this transition happens is known as SNR thresholdah be seen from Fidl 6 that
the TS-based MIMO radar with = A/2 has the highest SNR threshold while the traditional
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MIMO radar and the TAP-based MIMO radar have the second andi highest SNR thresholds,
respectively. The SNR threshold of the TS-based MIMO rad#r v= N /2 is lower than the
aforementioned three methods while the proposed transsaimnbpace-based MIMO radar has
the lowest SNR threshold, i.e., the best probability of seuesolution performance.

Fig.[4 shows the RMSEs for the MUSIC-based DOA estimatorsugeNR for all methods
tested. It can be seen from this figure that the TS-based Mlidar with( = \/2 has
the highest/poorest RMSE performance. It can also be sesnthth TAP-based MIMO radar
outperforms the traditional MIMO radar at low SNR region lghithe opposite occurs at high
SNR region. This means that the influence of having largecefie aperture is prominent at
high SNR region, while the benefit of having high SNR gain peetual antenna (even if the
effective aperture is small) is feasible at low SNR regidrncdn also be observed from Fig. 7
that the estimation performance of the TS-based MIMO radén & = NJA/2 is better than
that of both the traditional MIMO radar and the TAP-based MiMadar. Finally, the proposed
transmit beamspace-based MIMO radar outperforms all afentioned methods.

It is worth noting that the width of the desired sectoi (. Therefore, the parts of the RMSE
curves where the RMSEs exce&@ in Fig.[d are not important. Thus, the comparison between

different methods within that region is meaningless.

C. Example 3: ESPRIT-based DOA Estimation

In this example, all parameters for all methods are the same the previous example except
for the M x 2 transmit weight matrix associated with transmit beamsijiased MIMO radar
which is designed usindg (22)—(23). The out-of-sector negiotaken as®® = [-90°, —15°] U
[15°, 90°] and the parameter that controls the level of radiation witRiis taken asy = 0.38.
Each column of the resulting matrf¥ is scaled such that it has unit norm. The transmit power
distribution for this case is similar to the one shown in Eigand, therefore, is not shown here.
ESPRIT-based DOA estimation is performed for all aforenoer@d methods. For the traditional
MIMO radar-based method, the IV x 1 virtual array is partitioned into two overlapped subarrays
of size (M — 1)N x 1 each, i.e., the first subarray contains the fitst — 1) N elements while
the second subarray contains the lgst — 1)V elements. For all other methods, th& x 1
virtual array is partitioned into two non-overlapped subgs, i.e., the first subarray contains the
first N elements while the second subarray contains theNastements.

The probability of source resolution and the DOA estimaRMSESs versu$SNR are shown

October 23, 2018 DRAFT



22

for all methods tested in Figsl 8 ahd 9, respectively. It carsden from Fid.18 that the ESPRIT-
based DOA estimator for the TS-based MIMO radar with \/2 has the highest/poorest SNR
threshold while the ESPRIT-based DOA estimator for theiti@thl MIMO radar has the second
highest SNR threshold. The ESPRIT-based DOA estimatorhi®TAP-based MIMO radar has
SNR threshold that is lower than the previous two estimatdigreover, the SNR threshold of
the ESPRIT-based DOA estimator for the TS-based MIMO raddr v= N /2 is lower than
the SNR threshold of the ESPRIT-based DOA estimator for thie-hased MIMO radar. Finally,
the ESPRIT-based DOA estimator for the proposed transnamipace-based MIMO radar has
the lowest SNR threshold, i.e., the best probability of seuesolution performance.

It can be seen from Fid.] 9 that the ESPRIT-based DOA estinfatothe TS-based MIMO
radar with¢ = A/2 has the highest/poorest RMSE performance. Also this fighosvs that the
ESPRIT-based DOA estimator for the TAP-based MIMO radaperibrms the ESPRIT-based
DOA estimator for the traditional MIMO radar at low SNR regiwhile the opposite occurs at
high SNR region. This confirms again the observation fromprevious example that having
large effective aperture is more important at high SNR negubile having high SNR gain per
virtual antenna is more important at low SNR region. It caodle observed from Fig] 9 that the
ESPRIT-based DOA estimator for the TS-based MIMO radar ita N)/2 outperforms the
ESPRIT-based DOA estimator for both the traditional MIM@araand the TAP-based MIMO
radar. Finally, the ESPRIT-based DOA estimator for the psga transmit beamspace-based

MIMO radar outperforms all aforementioned estimators.

VIII. CONCLUSION

A transmit beamspace energy focusing technique for MIMQ@uradth application to direction
finding for multiple targets is proposed. Two methods forusing the energy of multiple (two
or more) transmitted orthogonal waveforms within a cerspatial sector are developed. The
essence of the first method is to employ spheroidal sequdacdssigning transmit beamspace
weight matrix so that the SNR gain at each receive antennaasimized. The subspace
decomposition-based techniques such as MUSIC can then dxk fos direction finding for
multiple targets. The second method uses convex optiroizdat control the amount of dissi-
pated energy in the out-of-sector at the transmitter andhiese/maintain rotational invariance
property at the receiver. This enables the application afcdefree DOA estimation techniques

such as ESPRIT. Performance analysis of the proposed titalbsamspace-based MIMO radar
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and comparison to existing MIMO radar techniques with cated antennas are given. Stochastic

and deterministic CRB expressions as functions of the ménseamspace weight matrix are

found. It is shown that the proposed technique has the lo@8& as compared to all other

techniques. The computational complexity of the proposethod can be controlled by selecting

the transmit beamspace dimension, i.e., by selecting the&bauof transmit beams. Simulation

examples show the superiority of the proposed technique theeexisting techniques.
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— — — Transmit power distribution of(pl(t)
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Overall transmit power distribution
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Fig. 1. Transmit beamspace beampattern using spheroidakesees without rotation. Total transmit power is unifgrml
distributed within the desired spatial sector, howeveifedint transmitted waveforms have different power disttion.
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— — — Transmit power distribution of(pl(t)
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Overall transmit power distribution
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Fig. 2. Transmit beamspace beampattern using spheroigaésees with rotation. Total transmit power as well as iidgisl

waveform powers are uniformly distributed within the dedirspatial sector.
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Fig. 3. TAP-based MIMO radar transmit beampattern using fily overlapped subarrays.
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Fig. 4. Stochastic CRB versus SNR.
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Fig. 5. Deterministic CRB versus SNR.
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Fig. 6. Probability of target resolution versus SNR for M@Sdased DOA estimators.
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Fig. 7. RMSE versus SNR for MUSIC-based DOA estimators.
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Fig. 8. Probability of target resolution versus SNR for ESPBased DOA estimators.
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Fig. 9. RMSE versus SNR for ESPRIT-based DOA estimators.
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