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Abstract—We address high dimensional covariance estima-
tion for elliptical distributed samples, which are also known
as spherically invariant random vectors (SIRV) or compound-
Gaussian processes. Specifically we consider shrinkage methods
that are suitable for high dimensional problems with a small
number of samples (largep small n). We start from a classical
robust covariance estimator [Tyler(1987)], which is distribution-
free within the family of elliptical distribution but inapp licable
when n < p. Using a shrinkage coefficient, we regularize Tyler’s
fixed point iterations. We prove that, for all n and p, the proposed
fixed point iterations converge to a unique limit regardless
of the initial condition. Next, we propose a simple, closed-
form and data dependent choice for the shrinkage coefficient,
which is based on a minimum mean squared error framework.
Simulations demonstrate that the proposed method achieveslow
estimation error and is robust to heavy-tailed samples. Finally, as
a real world application we demonstrate the performance of the
proposed technique in the context of activity/intrusion detection
using a wireless sensor network.

Index Terms—Covariance estimation, largep small n, shrink-
age methods, robust estimation, elliptical distribution, activ-
ity/intrusion detection, wireless sensor network

I. I NTRODUCTION

Estimating a covariance matrix (or a dispersion matrix)
is a fundamental problem in statistical signal processing.
Many techniques for detection and estimation rely on accurate
estimation of the true covariance. In recent years, estimating
a high dimensionalp × p covariance matrix under small
sample sizen has attracted considerable attention. In these
“large p small n” problems, the classical sample covariance
suffers from a systematically distorted eigen-structure [6], and
improved estimators are required.

Much effort has been devoted to high-dimensional co-
variance estimation, which use Steinian shrinkage [1]–[3]or
other types of regularized methods such as [4], [5]. However,
most of the high-dimensional estimators assume Gaussian
distributed samples. This limits their usage in many important
applications involving non-Gaussian and heavy-tailed sam-
ples. One exception is the Ledoit-Wolf estimator [2], where
the authors shrink the sample covariance towards a scaled
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identity matrix and proposed a shrinkage coefficient which is
asymptotically optimal for any distribution. However, as the
Ledoit-Wolf estimator operates on the sample covariance, it
is inappropriate for heavy tailed non-Gaussian distributions.
On the other hand, traditional robust covariance estimators
[8]–[10] designed for non-Gaussian samples generally require
n ≫ p and are not suitable for “largep small n” problems.
Therefore, the goal of our work is to develop a covariance
estimator for problems that are both high dimensional and
non-Gaussian. In this paper, we model the samples using the
elliptical distribution [7], which is also referred to as the
spherically invariant random vector model (SIRV) [26], [27]
or the compound-Gaussian process model [13]. As a flexible
and popular alternative, the elliptical family encompasses a
large number of important distributions such as Gaussian
distribution, the multivariate Cauchy distribution, the mul-
tivariate exponential distribution, the multivariate Student-T
distribution, the K-distribution and the Weibull distribution.
The capability of modelling heavy-tails makes the elliptical
distribution appealing in signal processing and related fields.
Typical applications include radar detection [13], [17], [20],
[22], speech signal processing [23], remote sensing [24],
wireless fading channels modelling [27], financial engineering
[25] and so forth.

A well-studied covariance estimator for elliptical distri-
butions is the ML estimator based on normalized samples
[9], [14], [16]. The estimator is derived as the solution to
a fixed point equation by using fixed point iterations. It is
distribution-free within the class of elliptical distributions and
its performance advantages are well known in then ≫ p
regime. However, it is not suitable for the “largep small
n” setting. Indeed, whenn < p, the ML estimator as
defined does not even exist. To avoid this problem the authors
of [21] propose an iterative regularized ML estimator that
employs diagonal loading and uses a heuristic procedure for
selecting the regularization parameter. While they did not
establish convergence and uniqueness [21] they empirically
demonstrated that their algorithm has superior performance in
the context of a radar application. Our approach is similar
to [21] but we propose a systematic procedure of selecting
the regularization parameter and establish convergence and
uniqueness of the resultant iterative estimator. Specifically,
we consider a shrinkage estimator that regularizes the fixed
point iterations. For a fixed shrinkage coefficient, we provethat
the regularized fixed iterations converge to a unique solution
for all n and p, regardless of the initial condition. Next,
following Ledoit-Wolf [2], we provide a simple closed-form
expression for the shrinkage coefficient, based on minimizing
mean-squared-error. The resultant coefficient is a function
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of the unknown true covariance and cannot be implemented
in practice. Instead, we develop a data-dependent “plug-
in” estimator approximation. Simulation results demonstrate
that our estimator achieves superior performance for samples
distributed within the elliptical family. Furthermore, for the
case that the samples are truly Gaussian, we report very
little performance degradation with respect to the shrinkage
estimators designed specifically for Gaussian samples [3].

As a real world application we demonstrate the proposed
estimator for activity/intrusion detection using an active wire-
less sensor network. We show that the measured data exhibit
strong non-Gaussian behavior and demonstrate significant
performance advantages of the proposed robust covariance
estimator when used in a covariance-based anomaly detection
algorithm.

The paper is organized as follows. Section II provides a
brief review of elliptical distributions and of Tyler’s covariance
estimation method. The regularized covariance estimator is
introduced and derived in Section III. We provide simulations
and experimental results in Section IV and Section V, respec-
tively. Section VI summarizes our principal conclusions. The
proof of theorems and lemmas are provided in the Appendix.

Notations: In the following, we depict vectors in lowercase
boldface letters and matrices in uppercase boldface letters.(·)T

denotes the transpose operator.Tr(·) anddet(·) are the trace
and the determinant of a matrix, respectively.

II. ML COVARIANCE ESTIMATION FOR ELLIPTICAL

DISTRIBUTIONS

A. Elliptical distribution

Let x be ap×1 zero-mean random vector generated by the
following model

x = νu, (1)

whereν is a positive random variable andu is a p× 1 zero-
mean, jointly Gaussian random vector with positive definite
covarianceΣ. We assume thatν and u are statistically
independent. The resulting random vectorx is elliptically
distributed and its probability density function (pdf) canbe
expressed by

p(x) = φ
(
xTΣ−1x

)
, (2)

whereφ(·) is the characteristic function (Definition 2, pp. 5,
[25]) related to the pdf ofν. The elliptical family encompasses
many useful distributions in signal processing and related
fields and includes: the Gaussian distribution itself, the Kdis-
tribution, the Weibull distribution and many others. As stated
above, elliptically distributed samples are also referredto as
Spherically Invariant Random Vectors (SIRV) or compound
Gaussian processes in signal processing.

B. ML estimation

Let {xi}
n
i=1

be a set ofn independent and identically dis-
tributed (i.i.d.) samples drawn according to (1). The problem is
to estimate the covariance (dispersion) matrixΣ from {xi}

n
i=1

.
The model (1) is invariant to scaling of the covariance matrix
Σ of u. Therefore, without loss of generality, we assume that

the covariance matrix is trace-normalized in the sense that
Tr(Σ) = p.

The commonly used sample covariance, defined as

Ŝ =
1

n

n∑

i=1

xix
T
i , (3)

is known to be a poor estimator ofΣ, especially when the
samples are high-dimensional (largep) and/or heavy-tailed.
Tyler’s method [9] addresses this problem by working with
the normalized samples:

si =
xi

‖xi‖2
=

ui

‖ui‖2
, (4)

for which the termν in (1) drops out. The pdf ofsi is given
by [25]

p(si;Σ) =
Γ(p/2)

2πp/2
·
√
det(Σ−1) ·

(
sTi Σ

−1si
)−p/2

. (5)

Taking the derivative and equating to zero, the maximum
likelihood estimator based on{si}ni=1 is the solution to

Σ =
p

n
·

n∑

i=1

sis
T
i

sTi Σ
−1si

. (6)

When n ≥ p, the ML estimator can be found using the
following fixed point iterations:

Σ̂j+1 =
p

n
·

n∑

i=1

sis
T
i

sTi Σ̂
−1

j si
, (7)

where the initial Σ̂0 is usually set to the identity matrix.
Assuming thatn ≥ p and that anyp samples out of{si}ni=1

are linearly independent with probability one, it can be shown
that the iteration process in (7) converges and that the limiting
value is unique up to constant scale, which does not depend on
the initial value ofΣ̂0. In practice, a final normalization step
is needed, which ensures that the iteration limitΣ̂∞ satisfies
Tr(Σ̂∞) = p.

The ML estimate corresponds to the Huber-type M-
estimator and has many good properties whenn ≫ p, such as
asymptotic normality and strong consistency. Furthermore, it
has been pointed out [9] that the ML estimate (7) is the “most
robust” covariance estimator in the class of elliptical distri-
butions in the sense of minimizing the maximum asymptotic
variance. We note that (7) can be also motivated from other
approaches as proposed in [14], [16].

III. ROBUST SHRINKAGE COVARIANCE ESTIMATION

Here we extend Tyler’s method to the high dimensional
setting using shrinkage regularization. It is easy to see that
there is no solution to (6) whenn < p (its left-hand-side is
full rank whereas its right-hand-side of is rank deficient).This
motivates us to develop a regularized covariance estimatorfor
elliptical samples. Following [2], [3], we propose to regularize
the fixed point iterations as

Σ̃j+1 = (1− ρ)
p

n

n∑

i=1

sis
T
i

sTi Σ̂
−1

j si
+ ρI, (8)

Σ̂j+1 =
Σ̃j+1

Tr(Σ̃j+1)/p
, (9)



3

where ρ is the so-called shrinkage coefficient, which is a
constant between 0 and 1. Whenρ = 0 andn ≥ p the proposed
shrinkage estimator reduces to Tyler’s unbiased method in
(6) and whenρ = 1 the estimator reduces to the trivial
uncorrelated case yielding a scaled identity matrix. The term
ρI ensures that̂Σj+1 is always well-conditioned and thus
allows continuation of the iterative process without the need
for restarts. Therefore, the proposed iteration can be applied to
high dimensional estimation problems. We emphasize that the
normalization (9) is important and necessary for convergence.
We establish provable convergence and uniqueness of the limit
in the following theorem.

Theorem 1. Let 0 < ρ < 1 be a shrinkage coefficient. Then,
the fixed point iterations in (8) and (9) converge to a unique
limit for any positive definite initial matrix̂Σ0.

The proof of Theorem 1 follows directly from the concave
Perron-Frobenius theory [28] and is provided in the Appendix.
We note that the regularization presented in (8) and (9) is
similar to diagonal loading [21]. However, unlike the diagonal
loading approach of [21], the proposed shrinkage approach
provides a systematic way to choose the regularization pa-
rameterρ, discussed in the next section.

A. Choosing the shrinkage coefficient

We now turn to the problem of choosing a good, data-
dependent, shrinkage coefficientρ, as as an alternative to
cross-validation schemes which incur intensive computational
costs. As in Ledoit-Wolf [2], we begin by assuming we
“know” the true covarianceΣ. Then we define the following
clairvoyant “estimator”:

Σ̃(ρ) = (1 − ρ)
p

n

n∑

i=1

sis
T
i

sTi Σ
−1si

+ ρI, (10)

where the coefficientρ is chosen to minimize the minimum
mean-squared error:

ρO = argmin
ρ

E

{∥∥∥Σ̃(ρ)−Σ

∥∥∥
2

F

}
. (11)

The following theorem shows that there is a closed-form
solution to the problem (11), which we refer to as the “oracle”
coefficient.

Theorem 2. For i.i.d. elliptical distributed samples the solu-
tion to (11) is

ρO =
p2 + (1 − 2/p)Tr(Σ2)

(p2 − np− 2n) + (n+ 1 + 2(n− 1)/p)Tr(Σ2)
,

(12)
under the conditionTr(Σ) = p.

The proof of Theorem 2 requires the calculation of the
fourth moments of an isotropically distributed random vector
[30]–[32] and is provided in the Appendix.

The oracle coefficient cannot be implemented sinceρO is
a function of the unknown true covarianceΣ. Therefore, we
propose a plug-in estimate forρO:

ρ̂ =
p2 + (1 − 2/p)Tr(M̂2)

(p2 − np− 2n) + (n+ 1 + 2(n− 1)/p)Tr(M̂2)
, (13)

where M̂ can be any consistent estimator ofΣ, e.g., the
trace-normalized Ledoit-Wolf estimator. Another appealing
candidate for plug-in is the (trace-normalized) normalized
sample covariancêR [12] defined by:

R̂ =
p

n

n∑

i=1

sis
T
i . (14)

We note that the only requirement on the covariance estimator
M̂ is that it provide a good approximation toTr(Σ2). It does
not have to be well-conditioned nor does it have to be an
accurate estimator of the true covariance matrixΣ.

By using the plug-in estimatêρ in place ofρ, the robust
shrinkage estimator is computed via the fixed point iteration
in (8) and (9).

IV. N UMERICAL SIMULATION

In this section we use simulations to demonstrate the su-
perior performance of the proposed shrinkage approach. First
we show that our estimator outperforms other estimators for
the case of heavy-tailed samples generated by a multivariate
Student-T distribution, whereν in (1) is a function of a Chi-
square random variable:

ν =

√
d

χ2
d

; (15)

The degree-of-freedomd of this multivariate Student-T statis-
tic is set to 3. The dimensionalityp is chosen to be 100 and
we letΣ be the covariance matrix of an AR(1) process,

Σ(i, j) = r|i−j|, (16)

whereΣ(i, j) denotes the entry ofΣ in row i and column
j, and r is set to 0.7 in this simulation. The sample sizen
varies from 5 to 225 with step size 10. All the simulations are
repeated for 100 trials and the average empirical performance
is reported.

We use (13) witĥM = R̂ and employ iterations defined by
(8) and (9) withρ = ρ̂. For comparison, we also plot the results
of the trace-normalized oracle in (12), the trace-normalized
Ledoit-Wolf estimator [2], and the non-regularized solution in
(7) (whenn > p). As the Ledoit-Wolf estimator operates on
the sample covariance which is sensitive to outliers, we also
compare to a trace-normalized version of a clairvoyant Ledoit-
Wolf estimator implemented according to the procedure in [2]
with knownν. More specifically, the samplesxi are firstly nor-
malized by the known realizationsνi, yielding truly Gaussian
samples; then the sample covariance of the normalizedxi’s is
computed, which is used to estimate the Ledoit-Wolf shrinkage
parameters and estimate the covariance via equation (14) in
[2]. The MSE are plotted in Fig. 1. It can be observed that the
proposed method performs significantly better than the Ledoit-
Wolf estimator, and the performance is very close to the ideal
oracle estimator using the optimal shrinkage parameter (12).
Even the clairvoyant Ledoit-Wolf implemented with known
νi does not outperform the proposed estimator in the small
sample size regime. These results demonstrate the robustness
of the proposed approach.



4

As a graphical illustration, in Fig. 2 we provide covariance
visualizations for a realization of the estimated covariances
using the Ledoit-Wolf method and the proposed approach. The
sample size in this example is set to 50, which is smaller than
the dimension 100. Compared to the true covariance, it is clear
that the proposed covariance estimator preserves the structure
of the true covariance, while in the Ledoit-Wolf covariance
procudure produces “block pattern” artifacts caused by heavy-
tails of the multivariate Student-T.

Whenn > p, we also observe a substantial improvement of
the proposed method over the ML covariance estimate, which
provides further evidence of the power of Steinian shrinkage
for reducing MSE.
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Fig. 1. Multivariate Student-T samples: Comparison of different trace-
normalized covariance estimators whenp = 100.
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Fig. 2. Multivariate Student-T samples: Visualizations oftwo estimates using
the Ledoit-Wolf and the proposed approaches.p = 100, n = 50. Note that
n < p in this case.

In order to assess the tradeoff between accuracy and ro-
bustness we investigate the case when the samples are truly
Gaussian distributed. We use the same simulation parameters
as in the previous example, the only difference being that
the samples are now generated from a Gaussian distribution.
The performance comparison is shown in Fig. 3, where four
different (trace-normalized) methods are included: the oracle
estimator derived from Gaussian assumptions (Gaussian or-
acle) [3], the iterative approximation of the Gaussian oracle
(Gaussian OAS) proposed in [3], the Ledoit-Wolf estimator
and the proposed method. It can be seen that for truly Gaussian
samples the proposed method performs very closely to the
Gaussian OAS, which is specifically designed for Gaussian

distributions. Indeed, for small sample size (n < 20), the
proposed method performs even better than the Ledoit-Wolf
estimator. This indicates that, although the proposed robust
method is developed for the entire elliptical family, it actually
sacrifices very little performance for the case that the distri-
bution is Gaussian.
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Fig. 3. Gaussian samples: Comparison of trace-normalized different covari-
ance estimators whenp = 100.

V. A PPLICATION TO ANOMALY DETECTION IN WIRELESS

SENSOR NETWORKS

In this section we demonstrate the proposed robust covari-
ance estimator in a real application: activity detection using a
wireless sensor network.

The experiment was set up on an Mica2 sensor network
platform, as shown in Fig. 4, which consists of 14 sensor
nodes randomly deployed inside and outside a laboratory at
the University of Michigan. Wireless sensors communicated
with each other asynchronously by broadcasting an RF signal
every 0.5 seconds. The received signal strength (RSS), de-
fined as the voltage measured by a receiver’s received signal
strength indicator circuit (RSSI), was recorded for each pair of
transmitting and receiving nodes. There were14 × 13 = 182
pairs of RSSI measurements over a 30 minute period, and
samples were acquired every 0.5 sec. During the experiment
period, persons walked into and out of the lab at random times,
causing anomaly patterns in the RSSI measurements. Finally,
for ground truth, a web camera was employed to record the
actual activity.

Fig. 4. Experimental platform: wireless Mica2 sensor nodes.
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Fig. 5 shows all the received signals and the ground truth
indicator extracted from the video. The objective of this
experiment was intrusion (anomaly) detection. We emphasize
that, with the exception of the results shown in Fig. 10, the
ground truth indicator is only used for performance evaluation
and the detection algorithms presented here were completely
unsupervised.

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

200

250

Time sample/0.5 sec

Anomalies

Ground
truth

RSS
data

Fig. 5. At bottom 182 RSS sequences sampled from each pair of transmitting
and receiving nodes in intrusion detection experiment. Ground truth indicators
at top are extracted from video captured from a web camera that recorded the
scene.

To remove temperature drifts [36] of receivers we detrended
the data as follows. Letxi[k] be thek-th sample of thei-th
RSS signal and denote

x[k] = (x1[k], x2[k], . . . , x182[k])
T
. (17)

The local mean value ofx[k] is defined by

x̄[k] =
1

2m+ 1

k+m∑

i=k−m

x[k], (18)

where the integerm determines local window size and is set
to 50 in this study. We detrend the data by subtracting this
local mean

y[k] = x[k]− x̄[k], (19)

yielding a detrended sampley[k] used in our anomaly detec-
tion.

We established that the detrended measurements were
heavy-tailed non-Gaussian by performing several statistical
tests. First the Lilliefors test [37] of Gaussianity was performed
on the detrended RSS measurements. This resulted in rejection
of the Gaussian hypothesis at a level of significance of10−6.
As visual evidence, we show the quantile-quantile plot (QQ
plot) for one of the detrended RSS sequences in Fig. 6 which
illustrates that the samples are non-Gaussian. In Fig. 7, weplot
the histograms and scatter plots of two of the detrended RSS
sequences, which shows the heavy-tail nature of the sample
distribution. This strongly suggests that the RSS samples can
be better described by a heavy-tailed elliptical distribution than

by a Gaussian distribution. As additional evidence, we fitted a
Student-T distribution to the first detrended RSS sequence,and
used maximum likelihood to estimate the degree-of-freedom
asd = 2 with a 95% confidence interval (CI)[1.8460, 2.2879].
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Fig. 6. QQ plot of data versus the standard Gaussian distribution.
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Fig. 7. Histograms and scatter plots of the first two de-trended RSS
sequences, which are fit by a multivariate Student-T distribution with degree-
of-freedomd = 2.

Consider the following function of the detrended data:

tk = y[k]TΣ−1y[k]. (20)

for knownΣ = E
{
y[k]y[k]T

}
, tk is a statistic that has been

previously proposed for anomaly detection [33]. A time sam-
ple is declared to be anomalous if the test statistictk exceeds
a specified threshold. We then applied our proposed robust
covariance estimator to estimate the unknownΣ and imple-
mented (20) for activity detection. Specifically, we constructed
the182×182 sample covariance by randomly subsampling 200
time slices from the RSS data shown in Fig. 5. Note, that these
200 samples correspond to a training set that is contaminated
by anomalies at the same anomaly rate (approximately 10%) as
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the entire sample set. The detection performance was evaluated
using the receiver operating characteristic (ROC) curve, where
the averaged curves from 200 independent Monte-Carlo trials
are shown in Fig. 8. For comparison, we also implemented
the activity detector (20) with other covariance estimates
including: the sample covariance, the Ledoit-Wolf estimator
and Tyler’s ML estimator.
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Fig. 8. Performance comparison for different covariance estimators,p =

182, n = 200.

From the mean ROCs we can see that the detection perfor-
mances are rank ordered as follows: Proposed> Ledoit-Wolf
> Tyler’s ML > Sample covariance. The sample covariance
performs poorly in this setting due to the small sample size
(n = 200, p = 182) and its sensitivity to the heavy-tailed
distribution shown in Fig. 6 and 7. The Tyler ML method
and the Ledoit-Wolf estimator improve upon the sample co-
variance since they compensate for heavy tails and for small
sample size, respectively. Our proposed method compensates
for both effects simultaneously and achieves the best detection
performance.

We also plot the 90% confidence envelopes, determined
by cross-validation, on the ROCs in Fig. 9. The width of
the confidence interval reflects the sensitivity of the anomaly
detector to variations in the training set. Indeed, the upper and
lower endpoints of the confidence interval are the optimistic
and the pessimistic predictions of detection performance.The
proposed method achieves the smallest width among the four
computed90% confidence envelopes.

Finally, for completeness we provide performance com-
parison of covariance-basedsupervisedactivity detection al-
gorithms in Fig. 10. The training period is selected to be
[251, 450] based on ground truth where no anomalies appear.
It can be observed that, by excluding the outliers caused by
anomalies, the performance of the Ledoit-Wolf based intrusion
detection algorithm is close to that of the proposed method.
We conclude that the activity detection performance of the
proposed covariance estimator is more robust than the other
three estimators with respect to outlier contamination in the
training samples.
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Fig. 9. Performance comparison for different covariance estimators, including
the mean value and 90% confidence intervals. (a): Sample covariance. (b):
Proposed. (c): Ledoit-Wolf. (d): Tyler’s ML. The 200 training samples are
randomly selected from the entire data set.
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Fig. 10. Performance comparison for different covariance estimators,p =

182, n = 200. The covariance matrix is estimated in asupervisedmanner.

VI. CONCLUSION

In this paper, we proposed a shrinkage covariance estimator
which is robust over the class of elliptically distributed sam-
ples. The proposed estimator is obtained by fixed point itera-
tions, and we established theoretical guarantees for existence,
convergence and uniqueness. The optimal shrinkage coefficient
was derived using a minimum mean-squared-error framework
and has a closed-form expression in terms of the unknown true
covariance. This expression can be well approximated by a
simple plug-in estimator. Simulations suggest that the iterative
approach converges to a limit which is robust to heavy-tailed
multivariate Student-T samples. Furthermore, we show that
for the Gaussian case, the proposed estimator performs very
closely to previous estimators designed expressly for Gaussian
samples.

As a real world application we demonstrated the perfor-
mance of the proposed estimator in intrusion detection using
a wireless sensor network. Implementation of a standard
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covariance-based detection algorithm using our robust covari-
ance estimator achieved superior performances as compared
to conventional covariance estimators.

The basis of the proposed method is the ML estimator
originally proposed by Tyler in [9]. However, the approach
presented in this paper can be extended to other M-estimators.

One of the main contributions of our work is the proof
of uniqueness and convergence of the estimator. This proof
extends the results of [9], [18] to the regularized case. Re-
cently, an alternative proof to the non-regularized case using
convexity on manifolds was presented in [35]. This latter proof
highlights the geometrical structure of the problem and gives
additional insight. We are currently investigating its extension
to the regularized case.
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VIII. A PPENDIX

A. Proof of Theorem 1

In this appendix we prove Theorem 1. The original con-
vergence proof for the non-regularized case in [9], [18] is
based on careful exploitation of the specific form of (6). In
contrast, our proof for the regularized case is based on a direct
connection from the concave Perron-Frobenius theory [28],
[29] that is simpler and easier to generalize. We begin by
summarizing the required concave Perron-Frobenius resultin
the following lemma.

Lemma 1 ( [28]). Let (E, ‖·‖) be a Banach space withK ⊂ E
being a closed, convex cone on which‖·‖ is increasing, i.e., for
whichx ≤ y implies‖x‖ ≤ ‖y‖, where the operator≤ on the
convex coneK means that ifx ≤ y theny − x ∈ K. Define
U = {x|x ∈ K, ||x|| = 1}. Let T : K → K be a concave
operator such that

T (µx+ (1 − µ)y) ≥ µT (x) + (1− µ)T (y),

for all µ ∈ [0, 1], all x, y ∈ K.
(21)

If for somee ∈ K − {0} and constantsa > 0, b > 0 there is

ae ≤ T (x) ≤ be, for all x ∈ U, (22)

then there exists a uniquex∗ ∈ U to which the iteration of
the normalized operator̃T (x) = T (x)/‖T (x)‖, x ∈ K − {0}
converges:

lim
k→∞

T̃ k(x) = x∗, for all x ∈ K − {0}. (23)

Lemma 1 can be obtained by combining results from
Lemma 2 and Theorem in Section 4 of [28]. Here we show that
the proof of Theorem 1 is a direct result of applying Lemma
1 with proper definitions ofE, K, U andT :

• E: the set of all symmetric matrices;
• K: the set of all positive semi-definite matrices;

• ‖Σ‖: the normalized nuclear norm ofΣ, i.e.,

‖Σ‖ =
1

p

p∑

j=1

|λj |, (24)

whereλj is thej-th eigenvalue ofΣ and|·| is the absolute
value operator. Note that for anyΣ ∈ K, the nuclear
norm ‖ · ‖ is identical toTr(·)/p and is increasing;

• U : the setU = {Σ|Σ ∈ K, ‖Σ‖ = 1};
• T : the mapping fromK to K defined by

T (Σ) = (1− ρ)
p

n

n∑

i=1

w(si,Σ)sis
T
i + ρI, (25)

where the weight functionw(si,Σ) is defined as

w(si,Σ) = inf
z
T
si 6=0

zTΣz

(sTi z)
2
, (26)

for anyΣ ∈ K.

Proof: With the above definitions we show that Theorem
1 is a direct result of Lemma 1. We begin by showing that
the mapping operatorT is concave. Indeed, it is sufficient to
show thatw(si,Σ) in concave inΣ, which is true because it
is the infinimum of affine functions ofΣ.

Next, we show thatT satisfies condition (22) withe = I.
It is easy to see that

ρI ≤ T (Σ), (27)

for anyΣ ∈ U . Then we show that

w(si,Σ) ≤ p, (28)

for anyΣ ∈ U . Indeed,

w(si,Σ) = inf
z
T
si 6=0

zTΣz

(sTi z)
2
≤

sTi Σsi

(sTi si)
2
≤

λmax

sTi si
= λmax,

(29)
whereλmax is the maximum eigenvalue ofΣ. The last equality
in the right-hand-side of (29) comes from the fact thatsi is of
unit norm by definition (4). (28) is thus obtained by noticing
thatΣ ∈ U andλmax ≤ p. Substituting (28) into (25) we have

T (Σ) ≤ (1− ρ)p2R̂+ ρI ≤
(
(1− ρ)p2αmax + ρ

)
I, (30)

where

R̂ =
1

n

n∑

i=1

sis
T
i ,

andαmax is the maximum eigenvalue of̂R. Again, assi is
of unit norm,αmax ≤ Tr(R̂) = 1 and

T (Σ) ≤
(
(1 − ρ)p2 + ρ

)
I. (31)

Therefore, we have shown thatT satisfies condition (22),
where e = I, a = ρ and b = (1 − ρ)p2 + ρ. In addition,
(22) establishes that the mappingT from U always yields a
positive definite matrix. Therefore, the convergent limit of the
fixed-point iteration is positive definite.

Finally, we note that, for anyΣ ≻ 0, we have

‖Σ‖ =
Tr(Σ)

p
, (32)
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and

w(si,Σ) = inf
z
T
si 6=0

zTΣz

(sTi z)
2
=

1

sTi Σ
−1si

. (33)

The limit (23) is then identical to the limit of proposed
iterations (8) and (9) for anyΣ ≻ 0. Therefore, Theorem
1 has been proved.

B. Proof of Theorem 2

Proof: To ease the notation we definẽC as

C̃ =
p

n

n∑

i=1

sis
T
i

sTi Σ
−1si

. (34)

The shrinkage estimator in (10) is then

Σ̃(ρ) = (1− ρ)C̃+ ρI. (35)

By substituting (35) into (10) and taking derivatives ofρ, we
obtain that

ρO =
E
{
Tr

(
(I− C̃)(Σ− C̃)

)}

E

{∥∥∥I− C̃

∥∥∥
2

F

}

=
m2 −m11 −m12 +Tr(Σ)

m2 − 2m11 + p
,

(36)

where
m2 = E

{
Tr(C̃2)

}
, (37)

m11 = E
{
Tr(C̃)

}
, (38)

and
m12 = E

{
Tr(C̃Σ)

}
. (39)

Next, we calculate the moments. We begin by eigen-
decomposingΣ as

Σ = UDUT , (40)

and denote
Λ = UD1/2. (41)

Then, we define

zi =
Λ−1si

‖Λ−1si‖2
=

Λ−1ui

‖Λ−1ui‖2
. (42)

Noting thatui is a Gaussian distributed random vector with
covarianceΣ, it is easy to see that‖zi‖2 = 1 andzi andzj
are independent with each other fori 6= j. Furthermore,zi is
isotropically distributed [30]–[32] and satisfies [3], [34]

E
{
ziz

T
i

}
=

1

p
I, (43)

E
{(

zTi Dzi
)2}

=
1

p(p+ 2)

(
2Tr(D2) + Tr2(D)

)

=
1

p(p+ 2)

(
2Tr(Σ2) + Tr2(Σ)

)
,

(44)

and

E
{(

zTi Dzj
)2}

=
1

p2
Tr(D2) =

1

p2
Tr(Σ2), i 6= j. (45)

ExpressingC̃ in terms ofzi, there is

C̃ =
p

n
Λ

n∑

i=1

ziz
T
i Λ

T . (46)

Then,

E
{
C̃
}
=

p

n
Λ

n∑

i=1

E
{
ziz

T
i

}
ΛT = Σ, (47)

and accordingly we have

m11 = E
{
Tr(C̃)

}
= Tr(Σ), (48)

and
m12 = E

{
Tr(C̃Σ)

}
= Tr(Σ2). (49)

For m2 there is

m2 =
p2

n2
E



Tr


Λ

n∑

i=1

ziz
T
i Λ

TΛ

n∑

j=1

zjz
T
j Λ

T







=
p2

n2
E



Tr




n∑

i=1

n∑

j=1

ziz
T
i Λ

TΛzjz
T
j Λ

TΛ







=
p2

n2
E



Tr




n∑

i=1

n∑

j=1

ziz
T
i Dzjz

T
j D







=
p2

n2

n∑

i=1

n∑

j=1

E
{(

zTi Dzj
)2}

.

(50)

Now substitute (44) and (45) to (50):

m2 =
p2

n2

(

n

p(p+ 2)

(

2Tr(Σ2) + Tr2(Σ)
)

+
n(n− 1)

p2
Tr(Σ2)

)

=
1

n(1 + 2/p)

(

2Tr(Σ2) + Tr2(Σ)
)

+ (1−
1

n
)Tr(Σ2)

=

(

1−
1

n
+

2

n(1 + 2/p)

)

Tr(Σ2) +
Tr2(Σ)

n(1 + 2/p)
.

(51)
RecallingTr(Σ) = p, (12) is finally obtained by substituting

(48), (49) and (51) into (36).

REFERENCES

[1] C. Stein, “Estimation of a covariance matrix,” InRietz Lecture, 39th
Annual Meeting, IMS, Atlanta, GA, 1975.

[2] O. Ledoit, M. Wolf, “A Well-Conditioned Estimator for Large-
Dimensional Covariance Matrices”,Journal of Multivariate Analysis,
vol. 88, iss. 2, Feb. 2004.

[3] Y. Chen, A. Wiesel, Y. C. Eldar, A. O. Hero III, “ShrinkageAlgorithms
for MMSE Covariance Estimation ,”IEEE Trans. on Sig. Process., vol.
58, iss. 10, pp. 5016 - 5029, 2010.

[4] J. Friedman, T. Hastie, R. Tibshirani, “Sparse inverse covariance esti-
mation with the graphical lasso,”Biostatistics, 2008.

[5] P. Bickel, E. Levina, “Regularized estimation of large covariance matri-
ces,” The Annals of Statistics, vol. 36, pp. 199-227, 2008.

[6] I. M. Jonestone, “On the distribution of the largest eigenvalue in
principal components analysis,”The Annals of Statistics, vol. 29, pp.
295 - 327, 2001.

[7] D. Kelker, “Distribution Theory of Spherical Distributions and a
Location-Scale Parameter Generalization.”SankhyaA32, pp. 419 - 430,
1970.

[8] P.J. Huber, “Robust statistics,” Wiley, 1981.
[9] D.E. Tyler, “A distribution-free M-estimator of multivariate scatter,”The

Annals of Statistics, 1987.
[10] P. Rousseeuw, “Multivariate estimation with high breakdown point,”

Mathematical Statistics and Applications, Reidel, 1985.



9

[11] E. Conte and M. Longo, “Characterization of radar clutter as a spheri-
cally invariant random process, inProc. Inst. Elect. Eng., vol. 134, Apr.
1987, pp. 191 - 197.

[12] E. Conte, M. Lops, and G. Ricci, “Adaptive radar detection in
compound- Gaussian clutter,Proc. Eusipco94, Edinburgh, U.K., Sep.
1994, pp. 526 - 529.

[13] E. Conte, M. Lops, and G. Ricci, Asymptotically optimumradar
detection in compound-Gaussian clutter, IEEE Trans. Aerosp. Electron.
Syst., vol. 31, pp. 617 - 625, Apr. 1995.

[14] E. Conte, A. De Maio and G. Ricci, “Recursive Estimationof the
Covariance Matrix of a Compound-Gaussian Process and its Application
to Adaptive CFAR Detection,IEEE Trans. on Sig. Process., vol. 50, no.
8, pp. 1908 - 1915, Aug. 2002.

[15] F. Gini, “Sub-optimum Coherent Radar Detection in a Mixture of Kdis-
tributed and Gaussian Clutter,IEE Proc. Radar, Sonar and Navigation,
vol. 144, no. 1, pp. 39 - 48, Feb. 1997.

[16] F. Gini and M. V. Greco, “Covariance matrix estimation for CFAR
detection in correlated heavy tailed clutter,Signal Process. (Special
Section on Signal Processing with Heavy Tailed Distributions), vol. 82,
no. 12, pp. 1847 - 1859, Dec. 2002.

[17] J. Wang, A. Dogandzic, A. Nehorai, “Maximum LikelihoodEstimation
of Compound-Gaussian Clutter and Target Parameters,”IEEE Trans. on
Sig. Process., vol. 54, no. 10, 2006.

[18] F. Pascal, Y. Chitour, J.-P. Ovarlez, P. Forster, and P.Larzabal, “Covari-
ance Structure Maximum-Likelihood Estimates in Compound Gaussian
Noise: Existence and Algorithm Analysis,”IEEE Trans. on Sig. Process.,
vol. 56, no. 1, Jan. 2008.

[19] Y. Chitour, F. Pascal, “Exact Maximum Likelihood Estimates for SIRV
Covariance Matrix: Existence and Algorithm Analysis,”IEEE Trans. on
Sig. Process., vol. 56, no. 10, Oct. 2008.

[20] M. Rangaswamy, “Statistical analysis of the nonhomogeneity detector
for non-Gaussian interference backgrounds,”IEEE Trans. on Sig. Pro-
cess., vol. 53, no. 1, May 2005.

[21] B. A. Johnson, Y. L. Abramovich, “Diagonally loaded normalised
sample matrix inversion (LNSMI) for outlier-resistant adaptive filtering,”
IEEE Intl Conf. on Acoust., Speech, and Signal Processing, vol. 3, pp.
1105 - 1108, 2007.

[22] J.B. Billingsley, “Ground Clutter Measurements for Surface-Sited Radar,
Technical Report 780, MIT, Feb. 1993.

[23] H. Brehm, W. Stammler, “Description and generation of spherically
invariant speech-model signals,”Signal Processing, vol. 12, iss. 2, Mar.
1987.

[24] G. Vasile, et al., “Normalized Coherency Matrix Estimation Under the
SIRV Model. Alpine Glacier Polsar Data Analysis,”IEEE International
Geoscience and Remote Sensing Symposium, 2008.

[25] G. Frahm, “Generalized Elliptical Distributions: Theory and Applica-
tions,” Dissertation, 2004.

[26] K. Yao, “A representation theorem and its applicationsto spherically
invariant random processes,IEEE Trans. Inf. Theory, vol. IT-19, pp.
600 - 608, Sep. 1973.

[27] K. Yao, M.K. Simon and E. Biglieri, “A Unified Theory on Wireless
Communication Fading Statistics based on SIRV,Fifth IEEE Workshop
on SP Advances in Wireless Communications, 2004.

[28] U. Krause, “Relative stability for ascending and positively homogeneous
operators on Banach spaces,”J. Math. Anal. Appl.pp. 182 - 202, 1994.

[29] U. Krause, “Concave Perron-Frobenius theory and applications,” Non-
linear Analysis,vol. 47, iss. 3, pp. 1457 - 1466, 2001.

[30] T. L. Marzetta and B. M. Hochwald, “Capacity of a mobile multiplean-
tenna communication link in Rayleigh flat fading,”IEEE Trans. Inf.
Theory, vol. 45, no. 1, pp. 139 - 157, 1999.

[31] B. Hassibi and T. L. Marzetta,“Multiple-antennas and isotropically
random unitary inputs: the received signal density in closed form,” IEEE
Trans. Inf. Theory, vol. 48, no. 6, pp. 1473 - 1484, Jun. 2002.

[32] Y. C. Eldar and S. Shamai, “A covariance shaping framework for linear
multiuser detection,”IEEE Trans. Inf. Theory, vol. 51, no. 7, pp. 2426
- 2446, 2005.

[33] V. Chandola, A. Banerjee, V. Kumar, “Anomaly detection: a survey,”
ACM Computing Surveys, vol. 41, no. 15, Jul. 2009.

[34] A. Tulino, S. Verdu, “Random matrix theory and wirelesscommuncia-
tions,” Now Publishers Inc, 2004.

[35] C. Auderset, C. Mazza, E. A. Ruh, “Angular Gaussian and Cauchy
distribution,” Journal of Multivariate Analysis, vol. 93, iss. 1, 2005.

[36] D. A. Johns, K. Martin, “Analog integrated circuit design,” Wiley, 1997.
[37] H. W. Lilliefors, “On the Kolmogorov-Smirnov test for normality with

mean and variance unknown,”Journal of the American Statistical
Association, Vol. 62, pp. 399 - 402, 1967.

[38] M. Finegold, M. Drton, “Robust Graphical Modeling withClassical and
Alternative T-Distributions,”preprint available in arXiv:1009.3669.

http://arxiv.org/abs/1009.3669

	I Introduction
	II ML covariance estimation for elliptical distributions
	II-A Elliptical distribution
	II-B ML estimation

	III Robust shrinkage covariance estimation
	III-A Choosing the shrinkage coefficient

	IV Numerical simulation
	V Application to anomaly detection in wireless sensor networks
	VI Conclusion
	VII Acknowledgement
	VIII Appendix
	VIII-A Proof of Theorem ??
	VIII-B Proof of Theorem ??

	References

