arXiv:1009.5331v1 [stat.ME] 27 Sep 2010
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Covariance Matrices

Yilun Chen, Student Member, IEEERAmMi Wiesel, Member, IEEEand Alfred O. Hero lll,Fellow, IEEE

Abstract—We address high dimensional covariance estima- identity matrix and proposed a shrinkage coefficient which i

tion for elliptical distributed samples, which are also known
as spherically invariant random vectors (SIRV) or compound
Gaussian processes. Specifically we consider shrinkage metls
that are suitable for high dimensional problems with a small
number of samples (largep small n). We start from a classical
robust covariance estimator [Tyler(1987)], which is distibution-
free within the family of elliptical distribution but inapp licable
when n < p. Using a shrinkage coefficient, we regularize Tyler's
fixed point iterations. We prove that, for all n and p, the proposed
fixed point iterations converge to a unique limit regardless
of the initial condition. Next, we propose a simple, closed-
form and data dependent choice for the shrinkage coefficient
which is based on a minimum mean squared error framework.
Simulations demonstrate that the proposed method achievdsw
estimation error and is robust to heavy-tailed samples. Figlly, as
a real world application we demonstrate the performance of the
proposed technique in the context of activity/intrusion deection
using a wireless sensor network.

Index Terms—Covariance estimation, largep small n, shrink-
age methods, robust estimation, elliptical distribution, activ-
ity/intrusion detection, wireless sensor network

|. INTRODUCTION

asymptotically optimal for any distribution. However, dgt
Ledoit-Wolf estimator operates on the sample covariarice, i
is inappropriate for heavy tailed non-Gaussian distrimsi

On the other hand, traditional robust covariance estirsator
[B]-[10] designed for non-Gaussian samples generallyirequ

n > p and are not suitable for “large small n” problems.
Therefore, the goal of our work is to develop a covariance
estimator for problems that are both high dimensional and
non-Gaussian. In this paper, we model the samples using the
elliptical distribution [7], which is also referred to aseth
spherically invariant random vector model (SIRV) [26], 27
or the compound-Gaussian process model [13]. As a flexible
and popular alternative, the elliptical family encompasae
large number of important distributions such as Gaussian
distribution, the multivariate Cauchy distribution, theulm
tivariate exponential distribution, the multivariate &mt-T
distribution, the K-distribution and the Weibull distrition.
The capability of modelling heavy-tails makes the elliptic
distribution appealing in signal processing and relateldigie
Typical applications include radar detection [[13], 1[1720],
[22], speech signal processing [23], remote sensing [24],

Estimating a covariance matrix (or a dispersion matrixyireless fading channels modellidg[27], financial engiives
is a fundamental problem in statistical signal processinf25] and so forth.
Many techniques for detection and estimation rely on adeura A well-studied covariance estimator for elliptical distri
estimation of the true covariance. In recent years, esiigat butions is the ML estimator based on normalized samples
a high dimensionalp x p covariance matrix under small[9], [14], [16]. The estimator is derived as the solution to
sample sizen has attracted considerable attention. In thegefixed point equation by using fixed point iterations. It is
“large p small n” problems, the classical sample covariancdistribution-free within the class of elliptical distribons and

suffers from a systematically distorted eigen-struct®jednd
improved estimators are required.

its performance advantages are well known in thes> p
regime. However, it is not suitable for the “large small

Much effort has been devoted to high-dimensional ce’ setting. Indeed, whemm < p, the ML estimator as

variance estimation, which use Steinian shrinkade [1]6]3]

defined does not even exist. To avoid this problem the authors

other types of regularized methods suchlas [4], [5]. Howevef [21] propose an iterative regularized ML estimator that
most of the high-dimensional estimators assume Gauss&nploys diagonal loading and uses a heuristic procedure for

distributed samples. This limits their usage in many imgioirt

selecting the regularization parameter. While they did not

applications involving non-Gaussian and heavy-tailed -samstablish convergence and uniquenéss [21] they empyricall
ples. One exception is the Ledoit-Wolf estimator [2], wherdemonstrated that their algorithm has superior performamc
the authors shrink the sample covariance towards a scalkd context of a radar application. Our approach is similar
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to [21] but we propose a systematic procedure of selecting
the regularization parameter and establish convergende an
uniqueness of the resultant iterative estimator. Spetifica
we consider a shrinkage estimator that regularizes the fixed
point iterations. For a fixed shrinkage coefficient, we prihag

the regularized fixed iterations converge to a unique smiuti
for all n and p, regardless of the initial condition. Next,
following Ledoit-Wolf [2], we provide a simple closed-form
expression for the shrinkage coefficient, based on miningizi
mean-squared-error. The resultant coefficient is a functio
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of the unknown true covariance and cannot be implementtdgt covariance matrix is trace-normalized in the sense that

in practice. Instead, we develop a data-dependent “pluge(X) = p.

in” estimator approximation. Simulation results demosigtr The commonly used sample covariance, defined as

that our estimator achieves superior performance for sesnpl 1

distributed within the elliptical family. Furthermore, rfdhe S=-— inxiT, 3)

case that the samples are truly Gaussian, we report very i

little performance degradation with respect to the shrekais known to be a poor estimator A, especially when the

estimators designed specifically for Gaussian samples [3]. samples are high-dimensional (largg and/or heavy-tailed.
As a real world application we demonstrate the proposagler's method [[9] addresses this problem by working with

estimator for activity/intrusion detection using an aetivire- the normalized samples:

less sensor network. We show that the measured data exhibit X; u;

strong non-Gaussian behavior and demonstrate significant Si = m - m’ (4)

performance advantages of the proposed robust covariapé:e

estimator when used in a covariance-based anomaly detecgglr ﬂgrh the termv in @) drops out. The pdf oé; is given

n

algorithm.
The paper is organized as follows. Section Il provides a ,,(s,: 37) — F(P/Z) VAR SE (sfz‘lsi)f”/r"_ 5)
brief review of elliptical distributions and of Tyler’s caviance 2mp/

estimation method. The regularized covariance estimator Tiaking the derivative and equating to zero, the maximum
introduced and derived in Section Ill. We provide simulagio likelihood estimator based ofs; }i_, is the solution to
and experimental results in Section IV and Section V, respec n T
. . . L . D S;S
tively. Section VI summarizes our principal conclusionbeT Y==- Z T (6)
proof of theorems and lemmas are provided in the Appendix. noS SRS

Notations In the following, we depict vectors in lowercase Whenn > p, the ML estimator can be found using the
boldface letters and matrices in uppercase boldfacesettgt  following fixed point iterations:
denotes the transpose operafbr(-) anddet(-) are the trace n

T
. : . S SiS;
and the determinant of a matrix, respectively. Y= L. Z —_ (7)
no = 5?2;151-
[I. ML COVARIANCE ESTIMATION FOR ELLIPTICAL where the initial £, is usually set to the identity matrix.
DISTRIBUTIONS Assuming that: > p and that any samples out ofs;} ,
A. Elliptical distribution are linearly independent with probability one, it can bevgho

Letx b 1 d ¢ ted by t that the iteration process il (7) converges and that theifigi
follo?/vi)rcw ;?)%:I Zero-mean random vector generated by r‘{?alue is unique up to constant scale, which does not depend on
9 the initial value ofXg. In practice, a final normalization step

is needed, which ensures that the iteration Iii§ji;O satisfies

~

wherev is a positive random variable andis ap x 1 zero- Tr(Zec) =p.

mean, jointly Gaussian random vector with positive definite The ML estimate corresponds to the Huber-type M-

covarianceX. We assume that and u are statistically €stimator and has many good properties whes p, such as

independent. The resulting random vectoris elliptically @Symptotic normality and strong consistency. Furthermibre

distributed and its probability density function (pdf) cae Nas been pointed oltl[9] that the ML estimdk (7) is the “most

expressed by robust” covariance estimator in the class of ellipticaltriis
p(x) = ¢ (XTzflx) : ) butions in the sense of minimizing the maximum asymptotic

variance. We note thal](7) can be also motivated from other

where¢(-) is the characteristic function (Definition 2, pp. 5approaches as proposed [inl[14].][16].

[25]) related to the pdf of. The elliptical family encompasses

many useful distributions in signal processing and related !ll. ROBUST SHRINKAGE COVARIANCE ESTIMATION

fields and includes: the Gaussian distribution itself, thdig Here we extend Tyler's method to the high dimensional

tribution, the Weibull distribution and many others. Aststh setting using shrinkage regularization. It is easy to seg th

above, elliptically distributed samples are also referi@@s there is no solution td{6) when < p (its left-hand-side is

Spherically Invariant Random Vectors (SIRV) or compounfiill rank whereas its right-hand-side of is rank deficieitit)is

Gaussian processes in signal processing. motivates us to develop a regularized covariance estinfiator

elliptical samples. Followindg [2][]3], we propose to regtize

the fixed point iterations as

X = vu, (1)

B. ML estimation

Let {xi_}_?:l be a set ofn independent and identically dis- S = (1— P Z SiSi ol ®)
tributed (i.i.d.) samples drawn accordingfd (1). The peobis n

to estimate the covariance (dispersion) magitrom {x;}.-_,. =

The model[(ll) is invariant to scaling of the covariance matri Y= —=—", (©)]
> of u. Therefore, without loss of generality, we assume that Tr(%j41)/p



where p is the so-called shrinkage coefficient, which is avhere M can be any consistent estimator B, e.g., the
constant between 0 and 1. Whenr- 0 andn > p the proposed trace-normalized Ledoit-Wolf estimator. Another appegli
shrinkage estimator reduces to Tyler's unbiased method dandidate for plug-in is the (trace-normalized) normalize
(® and whenp = 1 the estimator reduces to the trivialsample covarianc® [12] defined by:
uncorrelated case yielding a scaled identity matrix. Thete "
ZsisiT. (14)
=1

pl ensures tha®;,, is always well-conditioned and thus R =
allows continuation of the iterative process without thede
fer resrarts. Therefore, the proposed iteration can b_eexppi e note that the only requirement on the covariance estimato
high dimensional estimation problems. We emphasize tleat . . : S 5
L e is that it provide a good approximation o (X°). It does
normalization[(®) is important and necessary for convergen " )
; . .not have to be well-conditioned nor does it have to be an
We establish provable convergence and uniqueness of tite lim . . :
. . accurate estimator of the true covariance makix
in the following theorem. . . . :
By using the plug-in estimatg in place ofp, the robust
Theorem 1. Let0 < p < 1 be a shrinkage coefficient. Thenshrinkage estimator is computed via the fixed point iteratio
the fixed point iterations ir{8) andl(9) converge to a uniquie (@) and [9).
limit for any positive definite initial matrixZ.

The proof of Theorerfil1 follows directly from the concave IV. NUMERICAL SIMULATION
Perron-Frobenius theory [28] and is provided in the Appendi |n this section we use simulations to demonstrate the su-
We note that the regularization presented[ih (8) ddd (9) frior performance of the proposed shrinkage approacst Fir
similar to diagonal loading [21]. However, unlike the diagb we show that our estimator outperforms other estimators for
loading approach of[[21], the proposed shrinkage approagle case of heavy-tailed samples generated by a multigariat
provides a systematic way to choose the regularization pgtudent-T distribution, where in () is a function of a Chi-

SRS

rameterp, discussed in the next section. square random variable:
A. Choosing the shrinkage coefficient L d (15)
We now turn to the problem of choosing a good, data- X5

dependent, shrinkage coefficiept as as an alternative to
cross-validation schemes which incur intensive com partati

costs. As in Ledoit-Wolf [[2], we begin by assuming w
“know” the true covarianc&.. Then we define the following

The degree-of-freedoi of this multivariate Student-T statis-
tic is set to 3. The dimensionality is chosen to be 100 and
Sve let = be the covariance matrix of an AR(1) process,

clairvoyant “estimator”: (i, ) = rl=l, (16)
~ » 58! . .
S(p)=(1-p Z B § (10) \rvhere 2(2,3) denotes_the entry ok in row and column

n = s; X ls; j, andr is set to 0.7 in this simulation. The sample size

varies from 5 to 225 with step size 10. All the simulations are

where the coefficienp is chosen to minimize the minimum ; P
b repeated for 100 trials and the average empirical perfocean

mean-squared error:

is reported. D
00 = argmin E {Hg(p) _ EH2 } _ (11) We useIIIB) withiM = R and employ iterations defined by
p F (8) and [9) withp = p. For comparison, we also plot the results

The following theorem shows that there is a closed-for@f the trace-normalized oracle i {12), the trace-nornealiz

solution to the probleni{11), which we refer to as the “oracld-edoit-Wolf estimator([2], and the non-regularized saatin
coefficient. (@) (whenn > p). As the Ledoit-Wolf estimator operates on

the sample covariance which is sensitive to outliers, we als

Theorem 2. For i.i.d. elliptical distributed samples the solu-Compare to a trace-normalized version of a clairvoyant itedo

tion to (1) is Wolf estimator implemented according to the proceduré]n [2
- p? + (1 —2/p)Tr(X?) with knownv. More specifically, the samples are firstly nor-
po = (p2—np—2n)+(n+1+2(n—1)/p)Tr(2)’ malized by the known realizations, yielding truly Gaussian
(12) samples; then the sample covariance of the normatizisds
under the conditiorilx(X) = p. computed, which is used to estimate the Ledoit-Wolf shrijgka

The proof of Theorenf]2 requires the calculation of thearameters and estimate the covariance via equation (14) in
fourth moments of an isotropically distributed random wect [2]- The MSE are plotted in Figl L. It can be observed that the
[30]-[32] and is provided in the Appendix. proposed method performs significantly better than the ltedo

The oracle coefficient cannot be implemented sipgeis Wolf estimator, and .the performance is.very close to thelidea
a function of the unknown true covariand Therefore, we Oracle estimator using the optimal shrinkage paraméte. (12
propose a plug-in estimate fpp: Even the clairvoyant Ledoit-Wolf |mplemented V\r|th known
- v; does not outperform the proposed estimator in the small
p*+ (1 —2/p)Tr(M?) (13) sample size regime. These results demonstrate the robastne

(p2—np—2n)+(n+1+2(n— 1)/p)Tr(ﬁ2)’ of the proposed approach.

pA:



As a graphical illustration, in Fidl2 we provide covariancdistributions. Indeed, for small sample size & 20), the

visualizations for a realization of the estimated covarem

proposed method performs even better than the Ledoit-Wolf

using the Ledoit-Wolf method and the proposed approach. Téstimator. This indicates that, although the proposed stobu
sample size in this example is set to 50, which is smaller thamethod is developed for the entire elliptical family, it aally

the dimension 100. Compared to the true covariance, it & cl

esacrifices very little performance for the case that theridist

that the proposed covariance estimator preserves thewsucbution is Gaussian.
of the true covariance, while in the Ledoit-Wolf covariance

procudure produces “block pattern” artifacts caused byyea
tails of the multivariate Student-T.

Whenn > p, we also observe a substantial improvement
the proposed method over the ML covariance estimate, wh
provides further evidence of the power of Steinian shrirka
for reducing MSE.

0.035 . :
—#— Qracle
0.03[4 —e— Proposed i
\ - A - |edoit-Wolf
0.025 n\\ , —o— ML H
" = 8 - Ledoit-Wolf (with known v)
w 0.02f 1
%)
= 0.015} 1
0.01f
0.005f b
0 L L L L
0 50 100 150 200 250

n

Fig. 1.  Multivariate Student-T samples: Comparison of ediht trace-
normalized covariance estimators when= 100.
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(a) Ledoit-Wolf (b) Proposed
Fig. 2. Multivariate Student-T samples: Visualizationdwb estimates using

the Ledoit-Wolf and the proposed approachgs= 100, n = 50. Note that
n < p in this case.

In order to assess the tradeoff between accuracy and
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Fig. 3. Gaussian samples: Comparison of trace-normalifféeteht covari-
ance estimators whem = 100.

V. APPLICATION TO ANOMALY DETECTION IN WIRELESS
SENSOR NETWORKS

In this section we demonstrate the proposed robust covari-
ance estimator in a real application: activity detectiomgs
wireless sensor network.

The experiment was set up on an Mica2 sensor network
platform, as shown in Fig.]4, which consists of 14 sensor
nodes randomly deployed inside and outside a laboratory at
the University of Michigan. Wireless sensors communicated
with each other asynchronously by broadcasting an RF signal
every 0.5 seconds. The received signal strength (RSS), de-
fined as the voltage measured by a receiver’s received signal
strength indicator circuit (RSSI), was recorded for eaah gia
transmitting and receiving nodes. There werex 13 = 182
pairs of RSSI measurements over a 30 minute period, and
samples were acquired every 0.5 sec. During the experiment
p&riod, persons walked into and out of the lab at random times

bustness we investigate the case when the samples are tf@ysing anomaly patterns in the RSSI measurements. Finally
Gaussian distributed. We use the same simulation parasnet@f ground truth, a web camera was employed to record the

as in the previous example, the only difference being th
the samples are now generated from a Gaussian distributi
The performance comparison is shown in K. 3, where fo
different (trace-normalized) methods are included: thacler

estimator derived from Gaussian assumptions (Gaussian
acle) [3], the iterative approximation of the Gaussian lerac
(Gaussian OAS) proposed ial[3], the Ledoit-Wolf estimatc
and the proposed method. It can be seen that for truly Gauss

agtual activity.
on.

samples the proposed method performs very closely to the
Gaussian OAS, which is specifically designed for Gaussi&ig- 4. Experimental platform: wireless Mica2 sensor nodes



Fig.[d shows all the received signals and the ground trultly a Gaussian distribution. As additional evidence, weditie
indicator extracted from the video. The objective of thiStudent-T distribution to the first detrended RSS sequene,
experiment was intrusion (anomaly) detection. We emplkasizsed maximum likelihood to estimate the degree-of-freedom
that, with the exception of the results shown in Higl 10, thesd = 2 with a95% confidence interval (CI)1.8460, 2.2879].
ground truth indicator is only used for performance evatumat
and the detection algorithms presented here were complet
unsupervised

250

.
Anomalies

ool L1 M/ M Sreund

Quantiles of Input Sample
o
T

—AF

-6 i i i i i i i ;
-4 -3 -2 -1 0 1 2 3 4
Standard Normal Quantiles

Fig. 6. QQ plot of data versus the standard Gaussian ditiiibu

0 500 1000 1500 2000 2500 3000 3500
Time sample/0.5 sec

600 30

Fig. 5. Atbottom 182 RSS sequences sampled from each paarafmitting w00 -g:zt"gt’am "
and receiving nodes in intrusion detection experimentu@daruth indicators -
at top are extracted from video captured from a web cametadharded the 400 10
scene. 300 0
200 -10
To remove temperature drifts [36] of receivers we detrend 100 20
the data as follows. Let;[k] be thek-th sample of thei-th o " o
RSS signal and denote
T 30 400
X[k] = (acl [k], ,Tg[k], e, 182 [/C]) . (17) " -3:2:03:3'“
. . 300
The local mean value of[k] is defined by 10
k;k 0 200
_ 1 g 10
xlk] = 5— > X[, (18)
i=k—m -30 0
i . i . i ~40 -20 0 20 40 -50 0 50
where the integem determines local window size and is se
to 50 in this study. We detrend the data by subtracting thus
local mean Fig. 7. Histograms and scatter plots of the first two de-teehdRSS
y[k] = x[k] — x[k], (19) sequences, which are fit by a multivariate Student-T disfion with degree-

of-freedomd = 2.

yielding a detrended sampjgk] used in our anomaly detec-
tion. Consider the following function of the detrended data:

We established that the detrended measurements were T1
heavy-tailed non-Gaussian by performing several stadibsti be = k" 27y K] (20)
tests. First the Lilliefors test[37] of Gaussianity wasfpemed for knownX = E {y[kly[k]” }, t; is a statistic that has been
on the detrended RSS measurements. This resulted in cgjecfireviously proposed for anomaly detectionl[33]. A time sam-
of the Gaussian hypothesis at a level of significancéof®. ple is declared to be anomalous if the test statistiexceeds
As visual evidence, we show the quantile-quantile plot (Q® specified threshold. We then applied our proposed robust
plot) for one of the detrended RSS sequences in[Hig. 6 whichvariance estimator to estimate the unkna®@rand imple-
illustrates that the samples are non-Gaussian. IfFig. plete mented[(2D) for activity detection. Specifically, we consted
the histograms and scatter plots of two of the detrended R8f@ 182 x 182 sample covariance by randomly subsampling 200
sequences, which shows the heavy-tail nature of the samibee slices from the RSS data shown in ib. 5. Note, that these
distribution. This strongly suggests that the RSS sampes 200 samples correspond to a training set that is contantinate
be better described by a heavy-tailed elliptical distitruthan by anomalies at the same anomaly rate (approximately 10%) as



the entire sample set. The detection performance was egdlu: Sample covariance Proposed

using the receiver operating characteristic (ROC) cunfere e

. . 2 - e 2
the averaged curves from 200 independent Monte-Carlstric € |~~~ g
are shown in Fig[]8. For comparison, we also implementc g 051/~ 2
) . . . Q i’ Q
the activity detector[(20) with other covariance estimate g 3
including: the sample covariance, the Ledoit-Wolf estionat o o
and Tyler's ML estimator. 0 0.5 1 0 0.5 1
False alarm rate False alarm rate
Ledoit-Wolf Tyler's ML

Detection rate
Detection rate

0.8F
0 0
0 0.5 1 0 0.5 1
9 - False alarm rate False alarm rate
< 0.6 —— Sample covariance
'5 —e— Proposed
‘g —A— Ledoit-Wolf Fig. 9. Performance comparison for different covariandenedors, including
g 0.4 —e—Tyler's ML 1 the mean value and 90 confidence intervals. (a): Sample covariance. (b):

Proposed. (c): Ledoit-Wolf. (d): Tyler's ML. The 200 trang samples are
randomly selected from the entire data set.

0.2

0 0.2 0.4 0.6 0.8 1

False alarm rate
0.8f 1
Fig. 8. Performance comparison for different covariancémedors,p =
182, n = 200. % 0.6- —— Sample covariance ]
c —e— Proposed
2 —~£— Ledoit-Wolf
From the mean ROCs we can see that the detection perl 2 | —=—Tyler's ML |
go

mances are rank ordered as follows: Propaseldedoit-Wolf

> Tyler's ML > Sample covariance. The sample covarianc
performs poorly in this setting due to the small sample si: 0.21 1
(n = 200,p = 182) and its sensitivity to the heavy-tailed
distribution shown in Fig[16 anfll 7. The Tyler ML methoc ‘ ‘ ‘ ‘
and the Ledoit-Wolf estimator improve upon the sample c 02 2 i o 08 1
variance since they compensate for heavy tails and for sman

sample size, respectively. Our proposed method compensaig 10. Pperformance comparison for different covariansémetors,p =
for both effects simultaneously and achieves the best ti@tec 182, » = 200. The covariance matrix is estimated irsapervisednanner.
performance.

We also plot the 9% confidence envelopes, determined
by cross-validation, on the ROCs in Figl 9. The width of VI. CONCLUSION
the confidence interval reflects the sensitivity of the anlgma |n this paper, we proposed a shrinkage covariance estimator
detector to variations in the training set. Indeed, the uppel which is robust over the class of elliptically distributeahs-
lower endpoints of the confidence interval are the optimistples. The proposed estimator is obtained by fixed point-itera
and the pessimistic predictions of detection performaiibe. tions, and we established theoretical guarantees foresist
proposed method achieves the smallest width among the feghvergence and uniqueness. The optimal shrinkage ceeffici
computedd0% confidence envelopes. was derived using a minimum mean-squared-error framework
Finally, for completeness we provide performance conand has a closed-form expression in terms of the unknown true
parison of covariance-basetipervisedactivity detection al- covariance. This expression can be well approximated by a
gorithms in Fig.[ID. The training period is selected to b&mple plug-in estimator. Simulations suggest that theiiee
[251, 450] based on ground truth where no anomalies appeapproach converges to a limit which is robust to heavy-daile
It can be observed that, by excluding the outliers caused tltivariate Student-T samples. Furthermore, we show that
anomalies, the performance of the Ledoit-Wolf based indrus for the Gaussian case, the proposed estimator performs very
detection algorithm is close to that of the proposed methodosely to previous estimators designed expressly for Sans
We conclude that the activity detection performance of tramples.
proposed covariance estimator is more robust than the otheAs a real world application we demonstrated the perfor-
three estimators with respect to outlier contaminationhi@ t mance of the proposed estimator in intrusion detectiongusin
training samples. a wireless sensor network. Implementation of a standard

(@) -



covariance-based detection algorithm using our robusartov  « ||X||: the normalized nuclear norm &, i.e.,

ance estimator achieved superior performances as compared L2

to conventpnal covariance estimators. _ 1= = - Z I\, (24)
The basis of the proposed method is the ML estimator

originally proposed by Tyler in[]9]. However, the approach

presented in this paper can be extended to other M-estimator
One of the main contributions of our work is the proof ~ Value operator. Note that for an¥ < K, the nuclear

of uniqueness and convergence of the estimator. This proof NO'M | - is identical toTr(-)/p and is increasing;

extends the results of 9] L8] to the regularized case. Re-* U: the setU = {X[% € K, ||X[| = 1};

cently, an alternative proof to the non-regularized cagagus * 1 the mapping fromi' to K defined by

convexity on manifolds was presented|[inl[35]. This latterqfr

Jj=1

where); is thej-th eigenvalue ok and|-| is the absolute

Onve . . Py
highlights the geometrical structure of the problem andgiv TE)=0-p)- ) wisi X)sis; +pI,  (25)
additional insight. We are currently investigating itsengion i=1
to the regularized case. where the weight functiow(s;, ) is defined as
. z' ¥z
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VIIl. A PPENDIX Next, we show thafl" satisfies condition[{22) witle = 1.
A. Proof of Theorerfil1 It is easy to see that
In this appendix we prove Theorelmh 1. The original con- Pl <T(X), (27)

vergence proof for the non-regularized case [ih [B].] [18] is

based on careful exploitation of the specific form [of (6). IfPr any X € U. Then we show that

contrast, our proof for the regularized case is based oreatdir w(si, ) <p (28)
connection from the concave Perron-Frobenius theory [28], T

[29] that is simpler and easier to generalize. We begin Bgr any X € U. Indeed,

summarizing the required concave Perron-Frobenius résult 23 TS, Ao

the following lemma. w(s;, X) = inf = Amax,
g ( i ) 2Ts; 40 (S;-TZ)Q - (SlTSi)Q = SlTSi max

Lemma 1([28]). Let(E, ||-||) be a Banach space with C F (29)
being a closed, convex cone on whijch is increasing, i.e., for Wherel,,.x is the maximum eigenvalue &. The last equality
whichz < y implies||z| < ||y||, where the operatog on the in the right-hand-side of (29) comes from the fact thais of
convex congs means that itz < y theny — = € K. Define unit norm by definition[(#).[(28) is thus obtained by noticing
U = {z|lz € K,||z|| =1}. Let T : K — K be a concave thatX € U andAn.x < p. Substituting[(2B) intd (25) we have

operator such that ()< (1- p)pQﬁ bl < ((1 — )P e + p) L (30)
T(pz + (1 —p)y) = pT'(2) + (1 - p)T(y), (21) where
forall p€10,1], all z,y € K.

ﬁ:

SN

n

2 : T
S:8;

i=1

If for somee € K — {0} and constants > 0, b > 0 there is
ae <T(x) <be, forallzel, (22)  and ay,., is the maximum eigenvalue d&. Again, ass; is

then there exists a unique* € U to which the iteration of Of unit norm,amax < Tr(R) =1 and

the normalized operatof'(z) = T'(z)/||T(x)||,z € K — {0} < (1 — 2
converges: T(®) < (1=pp*+p) L (31)
R _ Therefore, we have shown that satisfies condition[(22),
klggoT (z) =27, forall z € K — {0} (23) wheree = I, a = p andb = (1 — p)p? + p. In addition,

Lemmal[l can be obtained by combining results froféd) establishes that the mappitgfrom U always yields a
Lemma 2 and Theorem in Section 4 bf[28]. Here we show thaesitive definite matrix. Therefore, the convergent linfitioe
the proof of Theorerfil1 is a direct result of applying Lemm#xed-point iteration is positive definite.

[ with proper definitions of?, K, U andT" Finally, we note that, for an¥ > 0, we have

o FE: the set of all symmetric matrices; =] = Tr(X)

o K: the set of all positive semi-definite matrices; p (32)



and Expressingfj in terms ofz;, there is
(5.3) = inf L2 : (33) n
w(s;, = in = .
a0 (52)? | ST TS, — DAY uf AT (46)
The limit (23) is then identical to the limit of proposed "

iterations [(8) and[{9) for any > 0. Therefore, Theorem Then,

[ has been proved. AN - VAT _
E{c} - nA;E{zzzi JAT =3, 47)
B. Proof of Theorerf]2 B and accordingly we have
Proof: To ease the notation we defite as ~
miy = E{T(C)} = Ta(), (48)
C=" Z Ty (34) and .
mis = E {Tr(cz)} — Ty(22). (49)
The shrinkage est~|mator |ﬂ]10) ls then For ms there is
3(p)=(1-p)C+pL (35) ) n n
p TAT TAT
By substituting [3b) into[(10) and taking derivatives gfwe m2 = pE Tr Azzizz‘ A AZZJ'ZJ‘ A
obtain that = =
E{m(1-C)=-0)} P e (SN T AT Ag T AT A
o0 = . =2 T ZZ Z;Z; Z;2Z;
~ i=1 j=1
E HI - CH (50)
{ F (36) 2 n o n
_ my — g — mas + Tr(X) :n2E Tr | > ziz/Dzjz] D
mg —2my1 +p ’ i=1j=1
where . — 2ZZE{ (z] Dz;) }
ma = BE{Tr(C?)}, (37) n? e o
- {ﬁ(é)}7 (38) Now su?stnuteIEM) and_(#5) t6 (50):
P n 9 9 n(n -1)
Next, we calculate the moments. We begin by eigen- 1 9 ) ™ (%)
decomposing® as ; = (1 -t m) (29 + w0l 2/p)
X =UDU", (40) (51)
and denote RecallingTr(X) = p, (I2) is finally obtained by substituting
, and[(51) into[(36).
A_TUD2. wyy @ B9 and(E1) inc36)
Then, we define REFERENCES
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