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Abstract

One of the key challenges in sensor networks is the extracidnformation by fusing data from
a multitude of distinct, but possibly unreliable sensorec®ering information from the maximum
number of dependable sensors while specifying the uniteliabes is critical for robust sensing. This
sensing task is formulated here as that of finding the maximumber of feasible subsystems of linear
equations, and proved to be NP-hard. Useful links are eskedal with compressive sampling, which
aims at recovering vectors that are sparse. In contrastsitirals here are not sparse, but give rise
to sparse residuals. Capitalizing on this form of spardityr sensing schemes with complementary
strengths are developed. The first scheme is a convex riglaxa@itthe original problem expressed as a
second-order cone program (SOCP). It is shown that whenntf@vied sensing matrices are Gaussian
and the reliable measurements are sufficiently many, thePS€ad recover the optimal solution with
overwhelming probability. The second scheme is obtaineckpyacing the initial objective function with
a concave one. The third and fourth schemes are tailoreddisy rsensor data. The noisy case is cast
as a combinatorial problem that is subsequently surroghayed (weighted) SOCP. Interestingly, the
derived cost functions fall into the framework of robust tivariate linear regression, while an efficient
block-coordinate descent algorithm is developed for th@mimization. The robust sensing capabilities

of all schemes are verified by simulated tests.
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. INTRODUCTION

Recent advances in sensor technology have made it feagibptoy a network of inexpensive sensors
for carrying out synergistically even sophisticated iefeze tasks. In applications such as environmental
monitoring, surveillance of critical infrastructure, amidture, or medical imaging, the typical concept
of operation involves a large and possibly heterogeneotu®fseensors locally observing the signal
of interest, and transmitting their measurements to a Initgtyer agent (fusion center). This so-termed
layered sensing apparatus entails three operational tiamsli
(cl) Each node’s measurement vector comprising either laatiain of scalar observations across time,
or a snapshot of different sensor readings, is typicalljumesl to be linearly related to the unknown
variable(s). Such Bnear model can arise when the sensing system is viewed as a litteamfith known
impulse response. Even when the underlying model is naatinthe observations are approximately
modeled as adhering to a (multivariate) linear regression;

(c2) Either because readings are costly to sense and trartkraito delay or stationarity constraints, or
simply because dimensionality reduction is invoked to cafib the “curse of dimensionality,” the linear
model is oftentimesinder-determinedi.e., the dimension of the unknown vector is larger than tfa
each sensor’s vector observation; and

(c3) Not all sensors areeliable because failures in the sensing devices, fades of the sageat
communication link, physical obstruction of the scene déiiast, and (un)intentional interference, all
can severely deteriorate the consistency and reliabifityemsor data.

Conditions (c1)-(c3) suggest that the fusion center shootgimply aggregate all sensor measurements,
but instead identify and discard unreliable sensors befstienating the unknown vector based on reliable
sensor data. This task is henceforth referred tmbast sensingRS), and provides context of the present
paper. Discerning the unreliable sensors not only pronfiggiser estimation accuracy, but also enables
corrective actions to re-establish a sensor’s reliabibty e.g., remotely directing the sensor to the area
of interest, or, increasing its sensitivity. Even though telated problem of outlier detection in sensor
networks has been studied extensively (see é.d., [33] fecent survey), the RS setup and the approaches
described here have not been considered before.

The first contribution of this work is to formulate the RS teek an optimization problem based on
the sensor data, and show it to be NP-hard (Setion Il). Themngseone consists of two (sub)-optimum
RS solvers (Section1ll). The first solver is expressed ascargkorder cone program (SOCP) through a

convex relaxation of the original NP-hard problem. The idéaonvex relaxation has been employed in
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the emerging area of compressive sampling (CS) [9], [2§], (& asserts that a sparse vector (i.e., one
having many zero entries) can be recovered with overwhgrpiobability as the vector with minimum
¢1-norm satisfying an under-determined system of linear g#gus; a setup known as basis pursuit (BP)
[@], [B], [29]. CS has been generalized to block-sparse aggnwvhere the unknown vector comprises
predetermined subsets of variables that are (non) zero asup @27], [26], [11], [5]. Block sparsity
emerges also in the RS formulation herein, not in the unkneector though, but in the per-sensor
residual error vectors. The relation between recoveringlebkparse signals and the developed RS solver
nicely generalizes the equivalence of BP witherror regression from the scalar to the vector case.
As an alternative to convex relaxation, the(pseudo)norm of the wanted vector can be replaced by a
concave approximation to further promote sparsity [17]}, This constitutes the second RS solver, which
surrogates the original objective by a concave functiod, mmimizes it through a sequence of weighted
SOCPs.

The third contribution consists in analyzing the perforegmifidentifiability) of the convex relaxation
approach to recover the unknown vector, and successflégtshe reliable sensors in the noise-free case
(SectionIV). The analysis hinges on a set of necessary dffidisat conditions on the involved matrix
range space, which appear also in the context of [27]. Hemvarl bound expressed in closed form is
established on the probability of success when the desidrixmg drawn from the Gaussian ensemble;
see also[[24]. It is shown that whenever there is sufficienjprita of reliable sensors and quantifiably
enough per-sensor measurements, the solution of the SO&®ds with overwhelming probability.

In real-world applications, sensor readings are contatathdy additive noise due to quantization,
communication noise, and/or unmodeled dynamics. Besik#tifiability, the aforementioned schemes
are thus appropriate only for the high signal-to-noiseor@8NR) regime. When the sparse vector in CS
is observed in noise, its recovery is based on methods sutheasasso[[28], or the group Lasso for
vectors that are block-sparse [32]. Different from CS, thpraach here views the unreliable sensors as
outliers, thus placing the sensing in the presence of n&®S&N] task under a robust multivariate linear
regression framework [2]_[4]. The fourth contribution i work (Sectior V) is initially formulating
RSN as a combinatorial optimization problem that is subsatiy surrogated by a convex approximation.
Interestingly, the novel cost function turns out to be a kleersion of Huber’s functiori [17]. The resultant
optimization problem is transformed to a group Lasso-ty@€8, and a computationally attractive block-
coordinate descent algorithm is developed. An alternd&8& solver is also offered after replacing the
previously derived convex problem with a non-convex onee $imulated tests presented in Secfioh VI

corroborate the proposed schemes, and the paper is coddlu@&ectior V1.
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Notation: Lowercase (upper-case) boldface letters are reserveddioma vectors (matrices), and
calligraphic letters for sets)” denotes transpositiony/(m, ) stands for the multivariate Gaussian
probability density with meamn and covariance matrix:, while E[-] denotes the expectation operator.
The notation||x[, := (3.1, yxz-yp)l/” for p = 1(2) stands for the/;(¢2)-norm in R™, and ||x||p the

{p-(pseudo)norm which equals the number of nonzero entries of

Il. PRELIMINARIES AND PROBLEM STATEMENT

Consider an agent, e.g., an unmanned aerial vehicle, tintiedata vectordb;}%_, of sizem; x 1,
and corresponding:; x n regression matrice§A;}%_, from k sensors. The goal is to find an unknown
vectorx € R", possibly satisfying the linear subsystems of equatlens A;x for somei € {1,...,k}.
This goal is challenging since the unknown vectosatisfies only arunknownsubset of sensors. The

RS problem can be compactly stated as follows.

Problem Statement 1 (Robust sensing (RS)Givenk vector-matrix pairs{b;, Ai}le, whereb, € R
and A; € R™*" find a vectorx € R" that maximizes the number of feasible linear subsystems
{bl = AZ'X}.

Vector x could model a scene (lexicographically ordered image) tdrast viewed by multiple and
possibly heterogeneous, e.g., Infrared, SAR, or, Lidagingsystems. MatriceA; may capture variable
fields of view, different perspectives and resolutions imeo(e.g., wavelet) domain, or, calibration
parameters of the respective sensors. Alternatively, ieratironmental monitoring applicatios, could
represent the unknown parameters of a chemical/biologicaipound diffusion field described by the
Green’s function captured by the matrices; }¥_,, and measured by a wireless sensor network deployed
over a region of interest. In such sensing applications,rea@emay reckoned unreliable or irrelevant
due to obstruction, fading propagation effects, deviclifas, jamming, or, even because it collects data
corresponding to an irrelevast # x; see Fig[lL.

The RS task is different for over- and under-determinedaliribsystems. Assume that All's are
full rank, i.e.,rank(A;) = min{m;,n} for all zH Then, suppose that theth linear subsystem is over-
determined(m; > n). This subsystem is either infeasible and can be ignoredit agmits a unique

solution x;. In the latter case, it can be easily checked whethesatisfies any other subsystem. The

This is without loss of generality (w.l.0.g.), because gveensor withrank(A;) < min{m;,n} will be either infeasible,

or, it can be transformed to an under-determined subsystigmfu¥l row rank.
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solutionx; together with the total number of subsystems it satisfiesetadned, and the method proceeds
similarly with all other over-determined subsystems. Hegrechecking the under-determined subsystems
(m; < m) is more challenging, since each one of them admits infiniteny solutions. Recognizing
that over-determined subsystems can be easily handladpdipier focuses on the RS task when< n
for all 7. Note that under-determinacy may arise naturally becatis&ringent power, bandwidth, delay,
or stationarity constraints. Given that theg's (A;'s) can be padded with zero entries (rows) to match
the dimensionmax; m;, it will be henceforth assumed w.l.o.gn; = m < n for all 7.

Before proceeding, it is useful to introduce some pararaefére set of all subsystem indices is denoted
by Z := {1,...,k}, whereas the paiiS, S) denotes a partition ¢f into the subse$ and its complement
S (SUS=1Z, §SnS=10). Consider now theS|m x n matrix As constructed by concatenating the
matrices{A; };cs, and likewise for the vectobs. The aggregate regression matrix and data vector are
defined asA” := [AT ... A]] andb” := [b] ... b]], respectively.

Upon introducing an auxiliary vectar e R¥, the RS problem can be rigorously posed as

min [[t||o (Po)
x,t

S.t. Hbl — Aix”g <t i=1,... k.

If the i-th subsystem is deemed feasible, thier- 0; otherwise,t; is strictly positive and the coditt||o
increases. In a nutshel[Pf) minimizes the number of infeasible linear subsystems, lagnce solves
RS. Note also that the constraints are satisfied as eqgsaditithe optimum. Thus, if the optimumn is
given, the optimunt is readily available. This implies that the solution p@i; t) is identified solely by
x, which will be henceforth called thsolution of ().

Even though the constraints ifi%f) are convex, the problem is non-convex. A greedy approach to
solving it would be to assume there ardeasible subsystems, and letrange fromk down to 1. For
each value ofs, one can check feasibility of the linear systems = Asx for each of the(*) subsets
S C 7 having cardinalitylS| = s, until a feasible subset is found. But this approach incoralwnatorial
complexity, and can be computationally feasible only foraifeize problems. In fact, it is not difficult

to establish the following result.
Proposition 1. The RS problem is NP-hard.

Proof: Consider first the following problem of maximizing the numloé consistent linear equations
(MCLE): “Given a system of linear equationSx = d, whereC € R**™ andd < RF, find a vector

x € R" satisfying as many equations as possiblEtfie MCLE problem is known to be NP-hard [3,
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Th. 1]. Consider an instance of the MCLE problem. Choose &germ > 2 and define the instance
of RS with parametergb, A) selected a$(;_1),+1 = d; and A1), 41,; = Ci; fori=1,... k and
j=1,...,n;and 0 for their remaining entries. Solving an MCLE problenhénce equivalent to solving
an instance of an RS. This simple reduction of MCLE to RS distads the proposition. [ |
In search of sub-optimum yet computationally affordablvess of [/), one could adopt the least-

squares (LS) approach, which amounts to

min b — Ax|3. (1)
Alternatively, one could consider minimizing thlg-norm of the error, namely

min [b — Ax]. ?)

Unfortunately, both approaches handle separately eveealiequation, and thus ignore the underlying

per-sensor linear subsystem. In addition, they cannatb®liidentify the unreliable sensors.

I1l. RS SOLVERS
A. A Convex Relaxation Solver

It is known that if the infinity norm satisfie§t||.. := max; [¢t;| < 1, then the/;-norm |[|t||; is the
convex envelope (the largest convex under-approximant f; see e.g.,[16, p. 119]. This property is

used also in C9[29], and prompts one to relax the NP-hardigmol) to
min - [[t]; (3)
s.t. Hbz_A2X||2 <t 1= 1,...,](3.

Note though thak here does not have to be sparse. The problef in (3) is an SQCEaarbe efficiently
solved by several existing algorithnis [6]. Invoking the lioip constraintt > 0 and the definition of the

¢1-norm ||t]y = Zle |ti], the problem[(B) is equivalent to

k
m}gnz ||b2 — AZXHQ (Pl)
i=1

which is still an SOCP, albeit unconstrained.

The cost in[P) is the sum of thés-norms of the residual vectors associated with the linelasystems,
which is continuous, but not differentiable. In the optiatinn circles,[P;) is known as the minimization
of the sum of (Euclidean) norms problefd [6, Sec. 6.4]. It eyasralso when solving problems related

to Steiner trees, optimal location, and image restorati@dehconstraints; see e.d., [20, Sec. 2.2], and
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references therein. Algorithmically/) is tackled either by generic SOCP solvers, or, by intgpioint
algorithms customized to its specific form [20].

Having relaxed the RS probler®) to its closest convex approximatid®)) which is tractable, it is
of interest to reflect on various links and interpretatidmst {P;) can afford, postponing its performance

analysis to Sectiop V.

Remarkl ({(P) versus LS) Clearly, the LS problem in{1) can be rewritten as
Iilitn{HtHQ sy — Ayxlle <ty i=1,...,k}
which is again a convex approximation @fj, though, as mentioned earlier, not the closest one.

Remark2 ((P) versus block-sparse signal reconstructiond establish this connection, assume that
null(AT) is non-empty. Let; :== b, — A;x denote the residual error vectors, arfd:= [r7 --- rl].
Upon defining matrixC such that its null space is spannediayge(A), i.e., CA = 0, andd := Cb,

the problem[P}) can be rendered equivalent to

k
mrin Z l|lri]l2 (4a)
i=1
st Cr=d (4b)

which emerges when reconstructinglack-sparsevectorr satisfying the under-determined systen{inl (4b)
[27], [26], [11], [5]. To establish the equivalence, wrifE}f asmin, Zle |lr;|l2 subject tor = b — Ax.
Premultiplying both sides of the last equality &y, one arrives at{4). The same equality couples the
minimizers of the two problems: if, solves [#) andA' is the pseudo-inverse ok, then AT(b — ry)
solves [P{). The optimization in[(#) relies on the prior informationathr is block sparse. For the RS

problem, the vector of interest is not (block) sparse; but the residual error vector is blggérse.

Remark3 ((P;) versus/;-error regression)in the degenerate case = 1, where every subsystem reduces
to a single equation|f) reduces to thé,-error minimization problen{2), which is known to be robust
to outliers [22, Ch. 4],[16],[I8]. Under the conditions sthta?n Remark 2, the unconstraingg-error

regression problem is equivalent to the constrained optéitiin (cf. (4))
mrin l|r]l1 (5)
s.t. Cr=d.

The problem in[(b) is widely known in the CS literature as basirsuit (BP); for a thorough treatment

on this pair of problems see al<d [8].
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B. A Concave Surrogate for RS

Instead of substituting the cokt||, of () by its closest convex approximation, namghy

1, letting

the surrogate function be non-convex can yield tighter axprations. For example, th&-norm of a
vectorx € R™ was surrogated in_[7] by the logarithm of the geometric mehitsoelements, or, by

> i, log|x;|. In rank minimization problems, apart from the nuclear noetaxation, minimizing the
logarithm of the determinant of the unknown matrix has beep@sed as an alternative surrogate; see

[12, Sec. 5.2]. Building on this line of thought, considerrsgating by

x,t

k
min Z log (t; + 6) (P)
i=1

s.t. ||b2 — AZ'XHQ <t, 1=1,..., k

whereé is a sufficiently small but strictly positive constant pretiag the cost from tending te-cc. The
cost in [B) is concave, but since it is smooth wre R¥ | iterative linearization may be utilized to obtain
a local minimum[12],[7]. Specifically, letx), t()) denote a tentative solution at the¢h iteration. Due

to the concavity of the logarithm, the first-order approxiio@ of log (¢; + ¢) aroundtf—l_l) + ¢ yields
log (t; + 8) < log (tEO) + 5) + ﬁ (ti — tEO)) . (6)
Thinking along the majorization-minimization approaQ;]Llone can instead of minimizing the original
cost on the left-hand side, minimize the majorizing cost be tight-hand side of[{6), and iterate.
Specifically, the minimization i) can be iteratively driven to a local minimum [12] as

k
t.
O ¢O) .= i " b — AL =
(x .t ).—argn):(l’ltn{g ;5 Ib; AZXHQStZ,z—l,...,k}

i—1 t;

or equivalently,

k
W ._ - [bi — Aix||2
T e ; [bi — Ax(=Dly +6 @

The iterative scheme can be terminated as soon as the eetatior | x() — x(=D ||, /[|x¢=V||, becomes
smaller than some chosen equal to say0~5. The cost in[{¥) has the form of a weighted version of
(P1), where each of the error norms is Weighteddgsl) = (b; — AxV |5 + 5)_1. When the residual
error of a subsystem is small, then the error of this systemeighted more during the minimization
of the next iteration. A good initialization point for theeration in [T) is the solution offf)) that is
equivalent to one iteration of](7) with all weights chosema@q The simulated tests in Sectibnl VI will

indicate that[([7) can provide higher probability of ideyitiig reliable sensors thaf?{).
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IV. UNIQUENESS ANDIDENTIFIABILITY

Let s denote the minimum cost o). Then, there exists at least one unknaxyne R™ such that
bs, = As,xp for an unknown subset of sens&g with |Sy| = s. The sensors &, will be referred to
asreliable or consistentwith respect to (w.r.t.xq. Also, let 3 := s/k denote the number of consistent
sensors over the total number of sensors; anég n/(km) the ratio of the size of the unknown vector
over the total number of measurements.

Whether has a unique minimizer, and hence an underlyiggcan be uniquely recovered by
(P), is considered next. The first thing to note at the outsehad when the consistent sensors w.r.t.
xo are outnumbered by the unreliable ones, uniquely recayetinis not guaranteed. This is because
with s < k/2, there may exist ax; # xo and anS; C Z with |S;| = [Sp| = s andS; NSy = 0 such
thatbs, = As, x1; thus,xy andx; are both minimizers off). It is henceforth assumed that> /2
or 5 € (1/2,1]. Under this assumption, uniqueness of {fig) (minimizer is further characterized in the

following lemma.

Lemma 1. Let vectorx, be a minimizer of() satisfyings > k/2 out of thek subsystems. This
minimizer is unique if and only if
rank(Ag ) =n (8)

for everyS. C Z with cardinality |S.| = 2s — k.

Proof: Vector x, is not the unique minimizer offf) if and only if there exists at least ong # xq
such thabs, = A, x; foranS; C Z with |S;| = |Sp| = s. Given thats > k/2, the two subsets cannot be
disjoint; hence, they must have a non-empty intersecion= SyNS; with cardinality2s—k < |S.| < s.
The subsystems belonging & are satisfied by both solutions; that lss, = As %o = As x1, which
is equivalent to the existence of a nonzere R" such thatAs .z = 0 or rank(Ag,) < n. Multiple
minimizers of [%;) can thus be avoided if and onlyifink(A s ) = n. Note that whenevemnk(As. ) =n
for every S, with |S.| = 2s — k, it holds for everyS, of larger cardinality as well. [ |

Lemmall reveals two interesting points on uniquely reconexi, by (7). First, the reliable sensors
should not only outnumber the unreliable ones, i®.> 1/2; condition [8) implies additionally that
(2s —k)m >n, or 3 > (y+1) /2. Second, because < 1, the inequalityd > (v + 1) /2 impliesy < 1
or km > n, requiring the total number of equations to be at least egudie number of unknowns.

Uniqueness of thdf) minimizer is also implied by the conditions stated in thextlemma. These

conditions will be used in the next subsection.
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Lemma 2. If for any nonzerov € range(A) and any partition(S, S) of Z with |S| = s > k/2 it holds
that

D lvillz > lIvillz ©)
€S i€S
wherev; is thei-th m x 1 block subvector of,, then () is satisfied.

Proof: Arguing by contradiction, suppose thal (9) holds, wher@sdpes not hold; or, in other
words there exists a§. C Z with |S.| = 2s — k < s andrank(As,) < n. Consequently, there exists
a nonzero vecton € R™ such thatAs u = 0. Next, partitionZ into three collectively exhaustive and
mutually exclusive subsetS,, S;, andS,, with |S;| = |S2| = k — s. Define alsov := Au for which
vs, = 0 by the definition ofu.

Consider first[(R) withS = S, U S; andS = S,, to deduce that

S Ivilla > 3 Iiville

€Sy 1€Ss

Apply @) again forS = S.U S, andS = Sy, to arrive at

> Ivillz> D lIvill2

1€Ss €S,
which clearly contradicts the previous inequality and ctatgs the proof. |

Having introduced the convex relaxatidR]j of (7)), the next critical question is whether the solution
of the former coincides with the solution of the latter. Exbough the NP-hardness forejudges
that this cannot hold in general, the ensuing results shawftn random Gaussian matricdsand under
reasonable assumptions on the problem dimensions, eguno@bf [P;) and occurs with probability
exponentially decaying in. The analysis starts by characterizing this equivalencegusset of necessary

and sufficient conditions.

A. Necessary and Sufficient Conditions

The conditions under which the convex optimization probl@) yields the same solution as the
NP-hard problem[f) are provided in the following theorem. Using the equivakebetween[l;) and
(4) under the conditions of Remark 2, this theorem is relatef@7, Th. 2], which in turn, generalizes

results from [[10] to the block-sparse signal case.

Theorem 1 (Range space conditionsfEvery xo, minimizing (%) by satisfyings > k/2 out of thek

subsystems is the unique minimizer(&f) if and only if

> lvilla > vl (10)

€S ieS
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for any nonzerov € range(A), and for any partition(S, S) of Z with |S| = s.

Proof: See Appendix. [ |
In words, Theorenh]1 asserts that for every nonzere range(A), the sum of thes smallest||v;||2
components should be larger than the sum of the remaifiings) components. It is worth mentioning
that the range space conditions are impossible to checkaictipe; but they are useful in establishing
identifiability, as it will be the case for the probabilistiharacterization of thé[{)—(P,) equivalence
when A is random (cf. Subsectidn TViB).
Another set of [))—(P) equivalence conditions can be derived from the block idstt isometry

properties of matriC as defined in RematK 2; sée [11]] [5]. However, these conditaze only sufficient.

Remark4. Conditions [1D) do not depend ds but only on the range space &f. Thus, wheneveA

satisfies[(I0), any matriA’ := AG for any nonsingulaiG € R"*" satisfies[(I0) as well.

Remarks. Sufficiency of the conditions if (10) remains valid even ifradditional constraints of the
generic formx € C are present in the original problef®y). In certain applications for instance, the
unknownx may be non-negative so that= R ; or, there may be a priori information of the form
C = {x:||x —x.||]2 < R}, dictating the unknown vector to lie in a ball of radié&around a known
centerx. € R™. Even though the extra constraints generally reduce trelfessets of[[%) and [P), the
conditions remain sufficient. Hence, the probabilistic o be developed in Subsection IV-B remains

valid even when extra constraints are imposed.

B. Probability Bound

As commented earlier, the conditions in Lemia 2 are prdbti¢afeasible to check for a given
sensing matrixA. However, similar to CS[]8], it will be possible to prove thiie conditions in[(9)
hold with overwhelming probability [8], i.e., probabilitgyecaying exponentially im when~ and k are
fixed, assumingA has i.i.d. Gaussian entries. The main result, summarizétheaoren{2, is based on

the following lemma.

Lemma 3 (Deviation Inequality [[189]) Considerx ~ A(0,,1I,), and a Lipschitz continuous function

f : RP — R with Lipschitz constanL. Then for anyt > 0, it holds that

2
Pr(£(x) —~E[f(x)] < —1) < exp (—2%) | (11)

This deviation inequality is a special case of more geneoalcentration resultd [19, Sec. 1.1]. It
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provides exponentially decreasing bounds on the tail idigion for any sufficiently smooth function
f(x) of a multivariate Gaussiar, thus generalizing the Chernoff bound to nonlinear funtdio
Capitalizing on Lemmal3, the next theorem extends the siilf27, Th. 4] and its refined version
[26, Th. 3]. Focusing on the Gaussian case and following fereift line of proof, neat closed-form
expressions will emerge not only for the valuesfand ~, for which the probabilistic bound is valid,
but also for the bound itself. The proof is based partly onrtiegthodology of[[25], where the minimum
nuclear norm relaxation of the rank minimization problemaisalyzed under linear constraints on the
unknown matrix. In contrast, related probabilistic analys [11] and [5] is based on a generalization of
the restricted isometry property & that serves only as a sufficient condition for the exactnésbeo

convex relaxation; see alsol [8].

Theorem 2. Let vectorx, be a minimizer of(P) satisfyings > k/2 out of thek subsystems, and

assume that the entries & ¢ R*"*" are independently drawn frooV (0, 1). If

5> VI (12

then whenevem > %, the vectorxg is the unique minimizer ofP;) with probability exceeding

2
1 — emaco(Bynton(n) wherecy(8,7) := 1 (ﬂ\/gl — ) anda € (0,1).

Proof: To lower bound the probability of success for tff&)( problem, it suffices to upper bound the
probability that the conditions in_(10) fail, an event destbby £. Let {S;} be all theN := (’;) subsets
of Z having cardinalitys. Moreover, letf; denote the event of having the conditions[inl (10) failing for

the partition(S;, S;)

£; = v € range(A) \ {0} such that ) [|villa < > [[villz (13)
iESj ieS‘j
for j = 1,...,N. The probability of failure can be expressedRs(¢) = Pr (Uj é’j). The events

{8j}§.V:1 are not independent, bitr(£) can be bounded as

@ XN ©)
Pr(€) < Y Pr(g) ¥ <§> Pr(&;) < e*178P) pr(g)) (14)

j=1
where inequality(a) comes from the union bound)) is due to the symmetry of the distribution &f

which implies that all the€;’s are equiprobable; antt) is the standard upper bound of the binomial

coefficient <k> < <@> . Based on[(14), the goal now is to upper bound the probali#lity;). For
S

S
notational simplicity, the partition corresponding&p will be denoted by(S,S) instead of(S;, S;).

October 22, 2018 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING (REVISED) 13

Given thatv € range(A) \ {0}, there exists a nonzen € R™ such thatv; = A;u fori=1,... k.
To render the inequality in.(13) scale-invariant, one camgonly the cases for whiclu||; = 1; hence,
Pr(&;) = Pr | Ju with |[ufly = 1 such that) " A;ulls = > [|Asull; <0 (15)

i€S i€S
— P <f(A) < o) (16)

where

ull2=1 p
[lull2 ics

The equality from [(I5) to[(16) comes from the fact that if thexists a unit/s-norm u satisfying

f(A):= inf {Z [Aulls =) Aiuz} - (17)
ies

the inequality in[(Ib), then the minimizer gf(A) should also satisfy this property. The functignA )
possesses convenient properties which facilitate thecgtioin of LemmaB. Specifically, it is shown in the
Appendix that:f (A) is Lipschitz continuous with constait< v/ (cf. Lemmd4); and the expected value
of the function is lower bounded (cf. Lemrha 5), thatfs$f(A)] > u = (M - 1) VEn (1 + 0,(1)).

\/,\_/
Hence, for every > 0, Lemmal[3B implies that

Pr(£(8) < - t) < Pr(F(8) SEA) 1) <./ 18)
Upon focusing orp: and ignoring theo,, (1) term, whenevep > (/7 +1)/2 so thatu > 0, and setting
t = p in (I8), yields the bound

Pr(€;) < Pr <f(A) < 0) < e~ (By)nton(n) (19)

2
wherecy(5,7) == (% - 1) /2.
Substituting the bound (19) int6(114), it follows that

Pie) < exp (— (a(p7) - 2L ) 0, )

< exp (—c1(B,7)n + on(n)) . (20)

For every3 > (/7 + 1) /2, chooseci (3,7) = aco(B,7), and definecs(8,7) := ((1 — a)eo(B,7)) "
for any a € (0,1). Then, whenevem > co(5,7)8 log(e/B)/~, the bound in[(20) is nontrivial. [ |

Remarké. As a sanity test, the conditiof > (/7 + 1)/2 posed by Theorern 2 coincides with that in
[26], Th. 3] after the appropriate mapping of dimensions. Eloev, in Theorem]2, both the valuesaf

over which the bound holds, as well as the bound itself ardicitip defined.

Remark?. As expected, the conditiof > (,/7+1)/2 is clearly stronger than the conditigh> (y+1)/2
implied by the uniqueness of thg{) solution in Lemmall.
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V. ROBUSTNESS TONOISE

In a more realistic sensing scenario, the acquired measumtsnare corrupted by additive noise 8§

denotes the unknown subset of reliable sensors, the petrtnedel is
bs, = As,xo + ns, (21)

whereng, stands for zero-mean noise assumed independent acrosssséretorns, models ambient
noise, finite precision, analog-to-digital conversiond ajuantization effects, communication noise, or
even, the inadequacy of linear regression to fully captobeemeasured dafas, .

In this noisy case, the unknowy does not exactly satisfy the linear subsystemSynin an attempt to
exploit the link betweer{®;) and [4) when noise is present, one may be tempted to appiyrthup-Lasso
regularization, which was originally proposed for recangrblock-sparse vectors in a linear regression
setup([32]. However, this approach is not applicable bezaisnot block sparse when noise is present. In
fact, solvers of the noise-free setufig)( and [%) are useful for analyzing uniqueness and identifiability
issues. In addition[ff;) and [P) solvers are practically suitable for high-SNR sensingliappons. This
motivates the ensuing framework which is suitable for RShie presence of noise. Without additional
prior information on the model describing the unreliablass®s, the noisy counterpart of the RS problem

can be stated as follows.

Problem Statement 2 (Robust sensing in noise (RSN)given {b;, A;},.; whereb; € R™ and A;
R™>"for which an unknown subsé} C Z of known cardinalitys follows the model irf21), estimate

the unknowrx, by minimizing the least-squares error over afiyC Z with |S| = s.

The aforementioned problem statement lends itself ndyut@lthe following optimization problem

min min |bs — Agsx||3. (22)

X |S|=s
The function ofx defined by the inner minimization is the pointwise minimunefinitely many convex
functions, and as such, it is non-convex. Solvingl (22) isaombinatorial complexity since one has to
solve all the(*) LS problems before solving the outer minimization.

An optimization problem related to that ih{22) is the foliogy
k

min Y h(b; — Aix) (23a)
i=1
sleill3 o feifl2 < A
st hiry) = | 2Fll ol =A (23b)
A7 el > A
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Functionalh(r;) amounts to the LS cost for residuals smaller than the thidskoand ignores sensors
attaining larger residuals. In the scalar case fof.= 1), problem [2B8) has been considered lin [6,
Sec. 6.1.2]. Problem§ (P2) arld [23) are related as followgpase that for a specifik the solution of
(23) is x* for which there ares* residuals satisfying the upper branch of (23b). Then it camdadily
shown thatx* is a solution of [(2R) fors = s*. Unfortunately thoughh(r;) is non-convex as well. The
problem in [28) can be surrogated by replacing@;) by its closest convex approximation, which is
pursued in the next subsection by establishing a neat litkd®n the RSN problem at hand and robust
estimation methods [17, Ch. 7[,[22, Ch. 4].

A. RSN and Robust Linear Multivariate Regression

Building on RemarK B of Subsectidn 1II}A, the unreliable sers can be viewed as giving rise to
outlier-corrupted equations in a linear regression sgttiRobust linear regression has been extensively
studied over the past decades|[17],1[22].

Whenm = 1, the RSN problem can be solved by Huber's M-estimator
k

X = arg min Z p(b; — al x) (24a)
i=1
37 Il <
s.t. p(r) := ) (24b)
Al =2l > 7

where p(r) is the Huber function forr > 0. The problem in[(24) is convex, and can be cast as an
SOCP [15], [21],[[6, p. 190]. Regarding the cutoff parametewhen the outliers’ distribution is known

a priori, its value is available in closed form so that Hubdév-estimator is asymptotically optimal; see
[17, Sec. 4.5]. Alternatively, assuming that the noise @dard Gaussiarm, is usually set tor = 1.34
such that the estimator il (24) is 95% asymptotically effitigt the normal distributior [22, p. 26]. To
render Huber’s M-estimator invariant to any noise varianégone has to multiplyr by o in (248). If

o is unknown, a robust estimate of it is commonly used inst22d $ec. 4.4].

The casen > 1, which is of interest here falls under the realm of robusttivatiate linear regression
[2], [4]. The novel approach to tackle it will be to postulaenodel accommodating inconsistent sensors,
approximate the meaningful cost df {23) by a convex one, asdesit using an efficient globally
convergent algorithm.

Consider modeling the unreliable sensors using the auxitiaitlier vectors{u; € R™}%_ . Vector

u; = 0 if the i-th sensor is reliable; and; # 0 deterministically, otherwise. Mode[ (1) can now be
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extended to incorporate the unreliable sensors as
b,=Ax+u,+n;, i=1,...,k. (25)

Since somay,’s are zero, the aggregate outlier vectdr := [uf --- u]] is block sparse. Hence, using

the aggregate modé = Ax + u + n, the novel RSN solver amounts to

k
1 2
min §Hb—AX—uH2+AZZ_;Huin (Fs)

where) > 0 is an appropriately chosen tuning parameter. Among the @ionization variables of ),
only the outlier vectoru is block sparse. Fom = 1, (P3) reduces to the cost proposed inl[15] and
shown to be equivalent td (P4). Even when the initial matfixneerestA is tall, (P;) always entails the
fat matrix [A I,,] € RF™*(+km) The second part is a regularization term, reminiscent efgtoup
Lasso penalty functiori [32], which is known to promote blaparsity in theu vector. The latter will

be explicitly accounted for in the forthcoming analysis.

B. Solving(Ps)
To better understandPf) and develop an efficient solver, it is prudent to explore fibven of its
minimizer(s). Let[(x*)” (u*)”]” denote a minimizer off), and define the associated residual vector

r* := b — Ax*. Givenx*, the vectors{u}}*_, in (P3) can be found separately as the minimizers of
min - ¢(u;) (26)
1, .
s.t. ¢(u;) := EHFZ — w5+ N2, i=1,...,k.
Although ¢(u;) is not everywhere differentiable, its subdifferential(u;) can be defined [6]. Fau; # 0,
where¢(u;) is differentiable, the subdifferential is simply (1 + A\/|lu;||2) —r}. Otherwise, by definition
and after using[(36))¢(u;) can be shown to be the sgkg;, — ri} V ||gil|2 < 1. Compactly,
, A ) .
u; (1 + Hui”2> r; ,w; #0
{Agi—r7: [lgill2 <1} , w;=0.
Vector u? is a minimizer of [26) if and only i0 € 9¢(u}). Based on[(27), two cases are considered.
First, if uf # 0, the condition0 € d¢(u}) yields

0p(u;) = (27)

ui (14 M [ull2) = rj (28)

which means thatif is a positively scaled version ef. Considering thé;-norm in both sides of(28),
it follows that ||uf||2 = [|rf|l2 — A. Plugging||u}|]> back into [ZB), yieldsu} = r} (1 - ﬁ) Since

|uf|]2 > 0, this holds if and only iff|r¥[jz > .
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Second, for the minimizer to be; = 0, there should be g for which ||g¥|l» < 1 and g} = r}, or
equivalently,||r7||2 < A. The latter proves thalff) indeed admits a block-sparse minimiaet.
Substitutingu? into (28), yields¢(u?) = |[rF]|3/2, when|r]l2 < A; and ¢(u}) = A|r}ll2 — A?/2,

otherwise. Having minimizedr) over theu;’s, the minimizerx* can now be found as

k
min va(bi—Aix) (29a)
i=1
1 2
5|13 , 1T S A
ot migim | Rl oo
Alrilla =5, lrill2 > A

wherep, (r;) is a vector-generalized Huber function. It is now evideat {i5) is equivalent to[(29), which
rather surprisingly turns out to be a generalization of Hisbil-estimator [24) to the vector case. The
sensors capable of achieving a lovwer||» value, and are more likely to be reliable, appeafid (29) unde
the conventional LS criterion. But the sensors havjiag|> > A, contribute(A||r; |2 — A\2/2) < ||r;]|3/2

to the cost, and are deemed “less important” in specifgnéor the latter set of sensons; # 0 holds
too. Thus, [3) not only estimates the unknown vectoy but also reveals the sensors most likely to be
unreliable in the presence of noise.

Regarding the cutoff parametarin () and [29b), it is worth noting that whex— 0T, the costs of
(29) and tend to the cost off}). Consequently, foh — 0T the data of all sensors are declared to
contain outliers; and according to the previous analydis— A;x*) — u; # 0 for all ;. This suggests
that the solution of[;) does not provide zero residuals anymore. On the other resWl,— oo, the
same costs reduce to the LS criterion, and all sensors assif@a as reliable, on; = 0 for all :.

A heuristic rule of thumb for practically selectingis setting it tor/m, wherer is the equivalent
parameter for the scalar case and has been selected acctrdine techniques mentioned afteri(24).
If the number of reliable sensors is roughly known (e.g.,eblasn prior operation of the network), an
alternative approach is solvind) for a grid of A values and selecting the one identifying the prescribed
number of outliers. Note that solvin@?{) for several values of can be efficiently performed either
through the group-LARS algorithm [32], or, by using the lamordinate descent algorithm of the next
subsection with what is called “warm startup” [14]. Thedatinitializes the tentative solutions for
a grid value of\ with the solution derived for the previous grid value)ofThe computational efficiency

of such an approach has been numerically verified for thed_pssblem [14], [28].

Remark8. In Problem Statemeri] 2, the noise term was assumed to beendept across sensors.

Specifications such as the geographical distribution of@enmay impose correlation across different
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sensor readings. In this case, if the covariance mairof the aggregate noise vectaf := [n] ... n{]

is known, a standard preprocessing step is to prewhitenadte akb’ := X ~'/?b and A’ := X ~1/2A.
Prewhitening “spreads” the influence of unreliable sensarsss the entries d¥’. As a result, the LS
and ¢, -error regression estimators and even the robust HubertiMia®r are not applicable; see also
[15] for similar observations in the scalar case £ 1). On the contrary, given thai remains block
sparse, thdlf) estimator can successfully handle a colored noise setuginply modifying its cost to
b — Al =37 ul3/2 4+ AL [l

C. A Block Coordinate Descent Algorithm

As mentioned earlier[If5) is convex. It can be cast as an SOCP and solved by stand&doirpoint-
based solvers. An alternative solver exploiting the problem structure and offering computadib
advantages is block coordinate descent, which has beeresafally applied to related optimization
problems|[[13],[[31]. The core idea behind this solver is tdipan the optimization variable into blocks,
and minimize iteratively the cost w.r.t. one block variallkile keeping the rest fixed.

To apply block coordinate descent to the RSN problem at heorsider minimizing the cost separately
w.r.t. x and u. Each iteration involves two steps: In the first step, thesdije is minimized w.r.tx,
while keepingu fixed, whereas in the second step the roles are interchaBgedifically, letx(!~1) and
u~1 denote the tentative solutions at tie- 1)-th iteration. During the first step of thieth iteration,

fix u = ul~Y, and findx() as the minimizer of the resultant quadratic; that is,
xO = (ATA)"TAT (b — u=Y). (30)
In the second step, fix=x") and find theuz(.l)’s as the minimizers of the per-sensor optimization prolsiem
min 2" — w3+ Al 31)

wherergl) = b; — A;x" for i = 1,...,k. As per [28), the solutions of (B1) are provided neatly in
closed form as
0 Pl < A
u: =
i (1 _ _a 0
(1= oas) >

[
BRE

(32)
The solution in[[(3R) does not requise!, but onlyr). Combining [30) and(31), it follows that
rl) = P4ib + P ul~ (33)

2This is not the case for the colored noise scenario disctissRémark 8, where the vectofsi; } can then be jointly found

by any group Lasso algorithm instead[32].
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whereP 4 := A(ATA)"'AT andP =1 P.

Summarizing, the iterations entail: (a) updating the nesisl based o (33); and (b) applying the thresh-
olding rule in [32). As matrixP 4 and vectorP;b can be computed offline, the most computationally
demanding operation is the matrix-vector product in stgp $cekm > n, this product would better
be implemented agA(AA”)~!) (ATu) in O(kmn) operations. The developed algorithm has overall
complexity O(kmn) per iteration. The presence of zero blocksuncan be further exploited to save
computations. Numerical simulations demonstrate thatoterall complexity of this block-coordinate
approach is much lower than the complexity of the interioinpbased algorithms.

Due to the specific form offf3), convergence of the block coordinate descent iteratitioviis readily
from the results of[[30]. The algorithm can be initializedwd?) = 0, so thatx(!) is the conventional
LS solution. It is terminated when the relative erfar) — u(=1|5/||u®|, becomes smaller than a
predefined threshold, e.g.= 10~5. Upon termination, the output is the solution veatgwhich reveals

the sensors affected by outliers, whereas the solutican be obtained directly frond (B0).

D. A Non-Convex Surrogate for RSN

In the context of robust linear regression, Huber's M-eatonis just one choice from the class of robust
estimators defined as the minimizers bf](24) for appropsiatboseny functions. It has been argued
that estimators corresponding to non-conyefunctions, such as the bisquare (Tukey's), Hampel's, or
Andrew’s estimators, yield improved robustness-efficjetmade-offs in practice [22, p. 99]. Similarly in
the multivariate case, convex M-estimatadrs [4] are pratifiaeplaced by non-convex M- or S-estimators
appropriately initialized([2].

Alternatively, it is of interest to explore a non-convexmgate of [%;) paralleling that of Subsection
[-B] Recall that the RSN solver i) seeksx andu based on fewer observations than unknowns, but
taking advantage ofi's block sparsity. To further promote block sparsityun the ||u;||2 terms in

can be replaced bipg(||u;||2 + 0) for a small positivey, to end up with the non-convex problem

k
o1
i 3l — Ax =l + A3 log( sl +9). (P

Following the majorization-minimization rationale presed in Subsection III-B [Fy) can be driven to

a stationary point [18] using the iterations

k
xO u®) .= ar minl b—Ax—ul2+ 25 w? u; |2 (34)
( ) g xu 2 2 7 ’
’ i=1
-1
w® = (Hu“—l>|yz+5) Li=1,....k

7 7
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The optimization per iteration of (B4) is a weighted versan{F%)), and thus can be efficiently solved
using the stepd (80) and (32) after replacign (32) with /\El) = /\wgl) for all 7 at thel-th iteration.
The iterations can be initialized with th®4) solution which corresponds to setting all weights to unity
The simulations of Section VI will demonstrate that th&]( solver outperforms that offf) in terms
of the mean-square error (MSE) even after a single iterafiote that as with[(34), single-iteration
methods based on non-convex surrogates of the (group) lastdfunction have been proposed with
well documented properties [34], [23].

VI. SIMULATED TESTS
A. Checking the Weak Bound

Among the results of Sectidn]V, the one that can be numédyicallidated is the weak bound of
(19). This bound is termed weak because it refers to the omoce of a single everd;, namely, to a
single partition(S,S) with S = s. According to this bound, if3 and~ are kept fixed and as long as
B> (/7 +1)/2, the probabilityPr(&,) is arbitrarily small for largen.

To validate this result, the entries &f are drawn independently from’(0, 1), and the unknown vector
is modeled asy ~ n~ /2N (0,1,,). Given thatPr(E,) is invariant to the permutations of the subsystems,
the partition(Sy, Sp) with Sy = {1,. .., s} is simply selected. The output of the consistent subsystems
bs, = As,x0; Whereas for the inconsistent onleg, = w is simulated withw ~ N(0,I(;_),,). Notice
that due to the selected normalization, the observatiotovehave equal variance, i.&€[||b;||3] = m
for all i € Z. For severaln,m) pairs, ten values of; are selected uniformly over the intervdl.1, 1]
that correspond to ten values lf And for every~(k), the number of consistent subsystesnis chosen
such that3(s,k) = s/k € [0.5,1]. For each pair(v(k),5(s, k)), the probability of [P;) identifying
uniquely the[P) solution is empirically evaluated through 100 Monte Catlas. For each experiment,
the solution of [P;) is deemed successful whenevesatisfies||x — xg||oo < 1074

The results are depicted in Figl 2. Every pé&ir(k), 3(s,k)) corresponds to a circle whose face
intensity indicates the probability of recovery as expdairin the caption. The east and south-east parts
of Figs.[2(a)-2(d) are not as crowded, since4oclose to 1, the integet becomes small, which implies
that there are not many choices for an integer [k/2, k]. The condition for highly probable recovery
in the weak sensef = (\ﬁ + 1) /2, is also shown as a black solid curve. According to the wealto
(I9), the circles above this curve correspond to dimensanps with high probability of success for

largen. The empirically evaluated probabilities validate theuiesven for moderate values of
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B. Test Cases for RS

The RS solvers developed are numerically compared in thisesttion. The setup involves a network
of k£ = 16 sensors collecting observation vectors of size= 4, and an unknown vector of size= 20.
Quantitiesxg, A, andb, all follow the model of the previous experiment, and the bemof consistent
sensors ranges from 8 to 16.

The comparison includes: (i) the LS solution bf (1); (ii) theerror regression solution of1(2); (iii)
the [P) solver; and (iv) the[[5) solver obtained after one iteration @1 (7). In addition,enig-aided LS
(GA-LS) solver knowing a priori the reliable sensoks;a—rs := (A% As,) 'A% bs,, is implemented
to serve as a benchmark. The paraméten (7)) is set to10~*, whereas the simulation results were
insensitive to the range of values fromi—2 to 1075,

The sensor detection probability is empirically estimatedugh 1,000 Monte Carlo experiments. An
estimatex is considered to have successfully classified the senscesevier the residudlb; — A;X||«
is smaller than or equal to0—* for i € Sy, and larger thari0—* for i € Sy. As evidenced by Table
(@), the LS solution fails to identify the reliable subset.contrast, the nove[lf;) scheme shows a clear
advantage over thg-error regression solution, while the empirical detecfioobability further improves

for the [%) method, even after a single iteration.

C. Test Cases for RSN

To evaluate the developed RSN solvers, the unknown vecterfixad atx, = 1,/v/n, while the
reliable sensors followed the modbk, = As,Xo + ns,, With ns, ~ N(0,0%I,,,) and knowno. A
plausible figure of merit in this scenario is the MSE||x, — %3], which was empirically estimated by
averaging over 1,000 Monte Carlo experiments.

Comparisons included: (i) the LS estimator; (ii) the GA-LSlimator; (iii) the ¢;-error estimator of
@); (iv) the conventional (scalar) Huber's M-estimator(&%); (v) the [P;) solver; (vi) the one-iteration
solution of [%); (vii) the (%) solver; and (viii) the one-iteration solution dP{). The value of§
parameters inff) and [P turned out to be not critical, and were setlt@*. The cutoff parameter
for the Huber’s M-estimator was selectedla®io, whereas\ in both [P5) and [Py) was set tal.340+/m.

It is worth noting that the average number of iterations fug block-coordinate descent algorithm of
Subsection V-C was between 16 (for SNR0 dB) and 30 (for SNR: 25 dB), while its execution time
was 1,000 times lower than that of a standard SOCP solver.

In Fig.[3(a), the MSE achieved by each method is plotted wetha number of consistent sensors

s for SNR = 10 dB. The curves show that the block-sparsity ignorant £5S$,and Huber's estimators
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are generally outperformed by the novel schemes. [fhi dnd [P;) solvers, originally designed for the
RS task, still exhibit reasonable performance that worsens— k. The [P5) estimator shows a slight
improvement; but its solution serves as a good initial@atpoint for the one-iteration estimates [@1J.
Note that the derived RSN solvers combine robustness wittiezfcy in the absence of outliers.

To test the effect of correlated sensor measurements, tlosvilng experiment was performed. The
reliable sensors were modeled againbas = As, X + ns,, the unreliable ones dsg, = n, + ng,
wheren,, ~ N(0,1(;_y),,), while [ng0 ngo]T ~ N(0,X) and X is a symmetric Toeplitz matrix with
first column[1 0.9 0.92 --- 0.9*"~1]T, The two RSN solvers were modified according to Renark 8.
Fig.[3(b) shows the MSE curves obtained at SNRO dB. In this correlated noise setup, the superiority
of RSN solvers is even more prominent.

Correctly classifying the sensors as reliable/unreliableritical. Once a method has completed this
classification task, the estimationxf can be performed based solely on the sensors classifiedaseel
Assuming successful classification, the MSE performand8AiLS can be attained. The probability of
correct sensor classification was evaluated in anotherlaiion setup that differs from the previous ones
in the following ways: problem dimensions wepe, m, k) = (80, 8, 32); the reliable sensors followed the
linear white Gaussian model at SNR5 dB; bg, had entries independently drawn from the zero mean
Laplacian distribution with variander?+1); andr and\ parameters were setdoando/m, respectively.
The solvers (i)-(iii) and (iv)-(v) do not provide a class#tion mechanism, hence, a sensor was deemed
reliable when its residudh-norm was smaller thah0—*. The Huber’s estimator (iv) can identify outlying
scalar measurements and a sensor was considered cordestgyfied when all its measurements were
correctly classified. FofP;) and (Py), the identification followed naturally from tha; vectors. The
results are listed in Table T(b). The majority of methods faiidentify the reliable sensors and yield
an empirical probability close t¢1 — s/k), which is the ratio of unreliable sensors. The improvement

offered by Huber’s estimator is marginal, whil€s) and in particular £,) outperform all others.

VIlI. CONCLUSIONS

Contemporary approaches to compressive sampling andiasalection in linear regression problems
exploit (block) sparsity present in the signal of inter@ste fresh perspective offered in this work broadens
the scope of sparsity-exploiting algorithms to settingsesghmodel mismatch induced by unreliable
sensors or outliers gives rise to (block) sparse resideaks when the signal of interest is not sparse.
This perspective links compressive sampling and sparsadiregression with two important problems:

(i) finding the maximum number of feasible subsystems ofdinequations; and (ii) robust multivariate
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linear regression. Capitalizing on these links, robusssenalgorithms were developed to reveal unreliable
sensors and recover the signal of interest based on reBebkors. In the absence of noise, necessary and
sufficient conditions were provided for exact recovery (fiféability). Their probabilistic characterization
showed that they hold with overwhelming probability whea thgression matrix is Gaussian distributed.
In the presence of noise, the RS task was reformulated to &ioatorial problem that was subsequently
surrogated by (non-)convex costs. The two subsystem-avedngst estimators derived can be solved
by an efficient block coordinate descent algorithm. The &ated tests demonstrated that all proposed

schemes succeed in the task for which they have been dedigned

APPENDIX

Proof of Theorenl1:The sufficiency of the conditions i (ILO) is shown first. Réfrmim Lemmal2
that the conditions i (10) imply that, is the unique minimizer offfy). Let S denote the set of reliable
wrt xo sensors withS| = s > k/2 for which bs = Asxg. Vectorx, is the unique minimizer of ;)
too if and only if the vectorfx, — u) for any nonzerou € R™ yields a strictly larger[;) cost thanx,

does. Indeed, letting := Au, the cost attained byxy — u) is

k
Z [bi — Aixo + vill2 = Z [bi — Aixo + vill2 + Z [bi — Aixo + vill2

i=1 i€S ieS

DS vills 4+ 3 by — Agxo + villz
i€S €S

(®) (©) &

> villa+ )b = Aixolla = > [[villa > > by — Aixoll2
i€S i€S i€S i=1

where equality(a) uses thabs = Asxg, inequality (b) stems from the reverse triangle inequality, and
inequality (c) is due to the assumed conditions of the theorem, and agaifath¢hatbs = A sxq.
Necessity is shown by proving the contrapositive. Spedificd must be shown that if there exists

av € range(A) and an(S,S) partition of Z with |S| = s for which =, s [[vill2 < > .csllvill2,
then there exists ar, that attains a minimun{f{) cost ofs, but is not the unique minimizer offy).
Suppose thabs := Asxp andbg := Agxo/2 for an (S,S) partition with |S| = s > k/2. Vector
xo obviously minimizes[[%), whereasx,/2 does not sincéS| < |S|. Assumev := Ax, € range(A)
and >, s [villa < >icsllville. It is easy to check that th@P() costs attained by,/2 andx, are
respectively) ", s [|vill2/2 and )", s [|vil|2/2. Hence, it has been shown thef/2 attains a[Py)) cost

not greater than that ofy, i.e., xq is not the unique minimizer offf). This concludes the proof. m
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Lemma 4 (Lipschitz continuity off(A)). The functionf(A) defined in(I7) is Lipschitz continuous with
Lipschitz constant at most'k.

Proof: Let A, A’ ¢ R**" andw, w’ € R" be the minimizing arguments gf(A) and f(A’),

respectively. The difference of the function at these twmnisois

f(A) = f(A) = (Z ESIEDY Amfz) - (Z EVAEEDYS AéW’z)

i€S ieS i€eS i€S

(a)
< (Z 1AWz = Aiw/z) - (Z 1AWl = Aéw/z)

i€S ieS i€S ie€S
®) l ! / ! (©) . A
< > A= ADW2 + Y (Ai = ADW[2 < sup > [[Asuls
€S icS [lall=13=4
where inequality(a) holds becausev is by definition the minimizer off(A); (b) follows from the
reverse triangle inequality applied on each subggtholds trivially for [|w’|ls = 1; andA; := A; — A,
Now, define the function appearing in the right-hand sideheflast inequality as
k
g(A) := sup ZHAiqu (35)
[lullo=1725
so that/(A) — f(A’) < g(A). Sincef(A) — f(A) < g(~A) = g(A), it holds that|f(A) — f(A")| <
g(A). Given thatg(0) = 0, if g(A) is Lipschitz continuous with constant at makt i.e., [g(A)| <
L||A||r, where||A||r is the Frobenius norm of matriA, then f(A) is also Lipschitz continuous and

its constant is at most. Hence, it suffices to show thg{A) is Lipschitz continuous and its constant
is upper bounded by/k.

To proceed, recall first that th&-norm of a vectorx € R™ can be written ad [6, p. 637]
Ix[l2 = sup{x"y : [ly[l2 < 1}. (36)

Using (36),9(A) can alternatively be expressed as

k

g(A) = sup sup ZviTAZ-u (37)
lalla=1 fIvill-<15=4

which is a supremum over infinitely many linear functionsff and as such it is convex. Recall that
if a function f : R? — R is convex with a subgradienix) for which || sup, s(x)||2 is finite, thenf is
Lipschitz with constanf < || sup, s(x)||2. This claim can be proved by the definitions of the subgradien

and the Lipschitz constant. Thus, it suffices to find a suligradf g(A) and upper bound its norm.
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If u. and{v.;}%_, are the maximizers of(A), then a subgradient is given by the matGx A) =

[u*v:{l u*v:{k] with |lusfle = 1 and|v.;ls <1 for i = 1,...,k. The norm of this subgradient is

k k k
IGA)IF = | D IuavTillE = | D lulBlvesld = 4| D Ivaill < VE.
=1 =1 =1
The bound is independent &, and the proof is complete. [ |

Lemma 5 (Expected value lower boundfor the random matrixA € R¥™*™ with entries drawn

independently frorV" (0, 1), it holds thatE [f(A)] > u with p := (% - ) VEn (1 + o0,(1)).

Proof: Consider rewritingf (A) using [36) as

f(A)= inf sup inf vIiAu+ zl A;u. (38)
(4) IIUI|2—1|\WII2<1 Hz1||2<1z %
Next, introduce auxiliary random vectogs€ R", s; € R™, t; € R™ fori = 1,...,k, andw € R

having their entries drawn independently fro¥(0, 1), and define the functionals

hy (u,v;,2;) := Z vIiAju+ Z zl Aju + VEw (39a)
€S ieS
hy (u,v;,2;) == Z V;-FSZ‘ + Z z;fpti + \/EuTy, for (39b)
€S ieS
[ullz =1, {|[vills < 1}, and {[|z[l < 1} (40)

Consider now the tripletéu, v;, z;) and(u’, v/, z.). By using the i.i.d. property of the random variables

Vg

appearing in the functionals, it holds that

E [hy (0, vi, 2;) hy (0, v}, 27) ] = ulv’ ng‘rvg + Zz?z'
i€S ieS
E [he (u,v4,2;) hy (W, V], 2}) ] ZVTV' +ZZTZ + kuTu’
€S i€S
whereas the difference of the two expectations is

E [hy (0, vi, 2;) by (0, v],2))] —E [he (u,v4,2;) he (0, v, 2})] = u u'—1) ZVTV'—i—Zz z,
€S i€S

By exploiting the properties of vectors, v;, andz; in (40), it follows readily that

E [hx (u,v;,z;) hy (u v,z )]

s Vi 4ag

E [h (u,vi,z;) hy (u A )] , (41a)

s Vi 4dyg

E [he (u,vi,2;) by (W, V], 2})] <E [hy (u,v;,2;) by (0, V], 2])] . (41b)

s Vi “g R S A}

October 22, 2018 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING (REVISED) 26

To proceed, the following lemma is needed![16, Cor. 10].

Lemma 6 ([16]). Let {X;;;} and {Y;;;} be two zero-mean Gaussian processes indexed,byk) for
i=1,...,n,7=1,...,m,andk = 1,...,p, which satisfy the following conditions:
(1) E[x2,|=E[v2] forall (ijk).
(c2) For any two tripletsa = (i,5,k) and o’ = (', ', k'), E[XoXo] > E[Y,Yy] if i =4 and
j#j,andE|[X,X,]| <E[Y,Y,] in all other cases.

Under (c1) and (c2), it holds that

E [max min max Xijk] >E [max min max Yijk| - (42)
7 7 1 J

Even though the index€s, j, k) are denumerable, by using the compactness argument lof [25], P
the comparison in(42) extends to minimizations/maximizet over compact sets as well. Mapping the
Xijr (Yiji) variables of Lemmal6 te-h, (u, v;, z;) (—hy(u, v4,2;)), it can be verified that the conditions
of the lemma are met (cfi{#1)), and upon usihgl (42) deduce tha

E| sup inf sup —hgy(u,v;,z;)| >E | sup inf sup —hy(u,v;,z)]|.
[ufla=1 12:ll2<1 |||, <1 lullo=1 llZill2<1 v, [|2<1

Given thatsup, — f(xz) = —inf, f(z), the previous inequality is equivalent to

E| inf inf sup hy(u,v4,2z;)| <E| inf inf sup hy(u,vi,z)]|.
[lull=1flzill2<1 ||y, ||l,<1 llullz=1[|z:[l2<1 ||v, ||, <1

But since the random variabte in (393) is zero mean, the right-hand side of the last inetyuial equal
to the desired expected valug|f (A)]. Thus, it has been established that
E[f(A)>E | inf inf sup hy(u,vi,z)|.
lallz=1lz:ll2<1 |jv, ||, <1

Using the definition ofh, (u,v;,z;) and exploiting the separability of the optimization, as Ivas the

properties in[(40), one arrives at
E[f (A)] = sE[[|si]|2] — (k — $)E[|[t:ll2] — VFE [|lyll2] - (43)

Recall that ifx ~ N (0,,1,), then|x||2 is chi-distributed withn degrees of freedom, and mean value

V2
E{[[x[l2] = Wﬂl) (44)
272
whereB (-, -) denotes the Beta function. Applying_{44) three timesLid (#i&)ds
V2 V2
E[f (A)] 2 H = (23 - k)B (mﬂl) - \/EB (ﬂﬂl)
2772 272
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Using the standard approximatioéq(\/j_—’g) = \/ﬁ(l + on(l)) [1, Formulas 6.1.46 and 6.2.2], and for
fixed v = n/(km) andk, it also holds thaﬁ% = /n/v/7k(1 + o,(1)). Thus, the boung: can be

compactly expressed as= (ﬂ\/gl — 1) Vkn (1+ 0,(1)), which concludes the proof. [ |
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Fig. 1. A wireless sensor network linked with a fusion cengein)reliable sensors are color coded as (red) green.

TABLE |

EMPIRICAL PROBABILITY OF SUCCESSFUL SENSOR CLASSIFICATIO0).

(a) RS task with(n, m, k) = (20, 4, 16). (b) RSN task with(n, m, k) = (80, 8,32).
Number of consistent sensors s Number of consistent sensors s
M ethod 8 10 12 14 16 M ethod 16| 20| 24| 28 32
GA-LS | 100.0| 100.0| 100.0| 100.0| 100.0| | GA-LS | 50.0| 37.5| 25.0| 12.5| 0.0
LS 50.0| 37.5| 25.0| 12.5| 100.0 LS 50.0| 37.5| 25.0| 12.5| 0.0
Iy 51.4| 46.3| 94.6| 100.0| 100.0| | Iy 50.0| 37.5| 25.0| 12.5| 0.0
P, 53.5| 67.4| 99.6| 100.0| 100.0 Huber's | 53.2| 43.9| 36.0| 27.9| 20.1
Py(1) 81.5| 99.3| 100.0| 100.0| 100.0| | P, 50.1| 37.6| 25.1| 126| 0.1
Py(1) 55.0| 44.1| 31.8| 185| 5.3
Py 68.7| 73.9| 79.6 | 83.5| 84.4
Py(1) 72.6| 82.8|90.7| 96.1| 99.1

29
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(c) n =20, m = 10. (d)y n =20, m = 2.

Fig. 2. Empirical probability of success fdP{) and the weak bound of (1L9) (solid black line). Empty circtesrespond to

quadrupletgn, m, k, s) with perfect empirical recovery and solid black circles tolgem setups having failed in all experiments.
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10 11 12 13 14 15 16

Number of Consistent Sensors, s

(a) White noise.

—y— P4(1)

MSE

i i i
10 11 12 13 14 15 16
Number of Consistent Sensors, s

(b) Colored noise.

Fig. 3. MSE performance for RSN witm(m, k) = (20, 4, 16).
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