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From Sparse Signals to Sparse Residuals
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Abstract

One of the key challenges in sensor networks is the extraction of information by fusing data from

a multitude of distinct, but possibly unreliable sensors. Recovering information from the maximum

number of dependable sensors while specifying the unreliable ones is critical for robust sensing. This

sensing task is formulated here as that of finding the maximumnumber of feasible subsystems of linear

equations, and proved to be NP-hard. Useful links are established with compressive sampling, which

aims at recovering vectors that are sparse. In contrast, thesignals here are not sparse, but give rise

to sparse residuals. Capitalizing on this form of sparsity,four sensing schemes with complementary

strengths are developed. The first scheme is a convex relaxation of the original problem expressed as a

second-order cone program (SOCP). It is shown that when the involved sensing matrices are Gaussian

and the reliable measurements are sufficiently many, the SOCP can recover the optimal solution with

overwhelming probability. The second scheme is obtained byreplacing the initial objective function with

a concave one. The third and fourth schemes are tailored for noisy sensor data. The noisy case is cast

as a combinatorial problem that is subsequently surrogatedby a (weighted) SOCP. Interestingly, the

derived cost functions fall into the framework of robust multivariate linear regression, while an efficient

block-coordinate descent algorithm is developed for theirminimization. The robust sensing capabilities

of all schemes are verified by simulated tests.
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Sensor networks, robust methods, multivariate regression, convex relaxation, compressive sampling,

coordinate descent.
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I. INTRODUCTION

Recent advances in sensor technology have made it feasible to deploy a network of inexpensive sensors

for carrying out synergistically even sophisticated inference tasks. In applications such as environmental

monitoring, surveillance of critical infrastructure, agriculture, or medical imaging, the typical concept

of operation involves a large and possibly heterogeneous set of sensors locally observing the signal

of interest, and transmitting their measurements to a higher-layer agent (fusion center). This so-termed

layered sensing apparatus entails three operational conditions:

(c1) Each node’s measurement vector comprising either a collection of scalar observations across time,

or a snapshot of different sensor readings, is typically assumed to be linearly related to the unknown

variable(s). Such alinear model can arise when the sensing system is viewed as a linear filter with known

impulse response. Even when the underlying model is non-linear, the observations are approximately

modeled as adhering to a (multivariate) linear regression;

(c2) Either because readings are costly to sense and transmit, due to delay or stationarity constraints, or

simply because dimensionality reduction is invoked to copewith the “curse of dimensionality,” the linear

model is oftentimesunder-determined, i.e., the dimension of the unknown vector is larger than that of

each sensor’s vector observation; and

(c3) Not all sensors arereliable because failures in the sensing devices, fades of the sensor-agent

communication link, physical obstruction of the scene of interest, and (un)intentional interference, all

can severely deteriorate the consistency and reliability of sensor data.

Conditions (c1)-(c3) suggest that the fusion center shouldnot simply aggregate all sensor measurements,

but instead identify and discard unreliable sensors beforeestimating the unknown vector based on reliable

sensor data. This task is henceforth referred to asrobust sensing(RS), and provides context of the present

paper. Discerning the unreliable sensors not only promiseshigher estimation accuracy, but also enables

corrective actions to re-establish a sensor’s reliability, by e.g., remotely directing the sensor to the area

of interest, or, increasing its sensitivity. Even though the related problem of outlier detection in sensor

networks has been studied extensively (see e.g., [33] for a recent survey), the RS setup and the approaches

described here have not been considered before.

The first contribution of this work is to formulate the RS taskas an optimization problem based on

the sensor data, and show it to be NP-hard (Section II). The second one consists of two (sub)-optimum

RS solvers (Section III). The first solver is expressed as a second-order cone program (SOCP) through a

convex relaxation of the original NP-hard problem. The ideaof convex relaxation has been employed in
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the emerging area of compressive sampling (CS) [9], [28], [8]. CS asserts that a sparse vector (i.e., one

having many zero entries) can be recovered with overwhelming probability as the vector with minimum

ℓ1-norm satisfying an under-determined system of linear equations; a setup known as basis pursuit (BP)

[9], [8], [29]. CS has been generalized to block-sparse signals, where the unknown vector comprises

predetermined subsets of variables that are (non) zero as a group [27], [26], [11], [5]. Block sparsity

emerges also in the RS formulation herein, not in the unknownvector though, but in the per-sensor

residual error vectors. The relation between recovering block-sparse signals and the developed RS solver

nicely generalizes the equivalence of BP withℓ1-error regression from the scalar to the vector case.

As an alternative to convex relaxation, theℓ0-(pseudo)norm of the wanted vector can be replaced by a

concave approximation to further promote sparsity [12], [7]. This constitutes the second RS solver, which

surrogates the original objective by a concave function, and minimizes it through a sequence of weighted

SOCPs.

The third contribution consists in analyzing the performance (identifiability) of the convex relaxation

approach to recover the unknown vector, and successfully select the reliable sensors in the noise-free case

(Section IV). The analysis hinges on a set of necessary and sufficient conditions on the involved matrix

range space, which appear also in the context of [27]. Here a lower bound expressed in closed form is

established on the probability of success when the design matrix is drawn from the Gaussian ensemble;

see also [24]. It is shown that whenever there is sufficient majority of reliable sensors and quantifiably

enough per-sensor measurements, the solution of the SOCP isexact with overwhelming probability.

In real-world applications, sensor readings are contaminated by additive noise due to quantization,

communication noise, and/or unmodeled dynamics. Besides identifiability, the aforementioned schemes

are thus appropriate only for the high signal-to-noise ratio (SNR) regime. When the sparse vector in CS

is observed in noise, its recovery is based on methods such asthe Lasso [28], or the group Lasso for

vectors that are block-sparse [32]. Different from CS, the approach here views the unreliable sensors as

outliers, thus placing the sensing in the presence of noise (RSN) task under a robust multivariate linear

regression framework [2], [4]. The fourth contribution of this work (Section V) is initially formulating

RSN as a combinatorial optimization problem that is subsequently surrogated by a convex approximation.

Interestingly, the novel cost function turns out to be a block version of Huber’s function [17]. The resultant

optimization problem is transformed to a group Lasso-type SOCP, and a computationally attractive block-

coordinate descent algorithm is developed. An alternativeRSN solver is also offered after replacing the

previously derived convex problem with a non-convex one. The simulated tests presented in Section VI

corroborate the proposed schemes, and the paper is concluded in Section VII.
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Notation: Lowercase (upper-case) boldface letters are reserved for column vectors (matrices), and

calligraphic letters for sets;(·)T denotes transposition;N (m,Σ) stands for the multivariate Gaussian

probability density with meanm and covariance matrixΣ, while E[·] denotes the expectation operator.

The notation‖x‖p := (
∑n

i=1 |xi|p)
1/p for p = 1(2) stands for theℓ1(ℓ2)-norm in R

n, and ‖x‖0 the

ℓ0-(pseudo)norm which equals the number of nonzero entries ofx.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider an agent, e.g., an unmanned aerial vehicle, collecting data vectors{bi}ki=1 of sizemi × 1,

and correspondingmi × n regression matrices{Ai}ki=1 from k sensors. The goal is to find an unknown

vectorx ∈ R
n, possibly satisfying the linear subsystems of equationsbi = Aix for somei ∈ {1, . . . , k}.

This goal is challenging since the unknown vectorx satisfies only anunknownsubset of sensors. The

RS problem can be compactly stated as follows.

Problem Statement 1 (Robust sensing (RS)). Givenk vector-matrix pairs,{bi,Ai}ki=1, wherebi ∈ R
mi

and Ai ∈ R
mi×n, find a vectorx ∈ R

n that maximizes the number of feasible linear subsystems

{bi = Aix}.

Vector x could model a scene (lexicographically ordered image) of interest viewed by multiple and

possibly heterogeneous, e.g., Infrared, SAR, or, Lidar imaging systems. MatricesAi may capture variable

fields of view, different perspectives and resolutions in some (e.g., wavelet) domain, or, calibration

parameters of the respective sensors. Alternatively, in anenvironmental monitoring application,x could

represent the unknown parameters of a chemical/biologicalcompound diffusion field described by the

Green’s function captured by the matrices{Ai}ki=1, and measured by a wireless sensor network deployed

over a region of interest. In such sensing applications, a sensor may reckoned unreliable or irrelevant

due to obstruction, fading propagation effects, device failures, jamming, or, even because it collects data

corresponding to an irrelevantx′ 6= x; see Fig. 1.

The RS task is different for over- and under-determined linear subsystems. Assume that allAi’s are

full rank, i.e., rank(Ai) = min{mi, n} for all i.1 Then, suppose that thei-th linear subsystem is over-

determined(mi > n). This subsystem is either infeasible and can be ignored, or,it admits a unique

solution x̌i. In the latter case, it can be easily checked whetherx̌i satisfies any other subsystem. The

1This is without loss of generality (w.l.o.g.), because every sensor withrank(Ai) < min{mi, n} will be either infeasible,

or, it can be transformed to an under-determined subsystem with full row rank.
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solutionx̌i together with the total number of subsystems it satisfies areretained, and the method proceeds

similarly with all other over-determined subsystems. However, checking the under-determined subsystems

(mi < n) is more challenging, since each one of them admits infinitelymany solutions. Recognizing

that over-determined subsystems can be easily handled, this paper focuses on the RS task whenmi < n

for all i. Note that under-determinacy may arise naturally because of stringent power, bandwidth, delay,

or stationarity constraints. Given that thebi’s (Ai’s) can be padded with zero entries (rows) to match

the dimensionmaxi mi, it will be henceforth assumed w.l.o.g.mi = m < n for all i.

Before proceeding, it is useful to introduce some parameters. The set of all subsystem indices is denoted

by I := {1, . . . , k}, whereas the pair(S, S̄) denotes a partition ofI into the subsetS and its complement

S̄
(

S ∪ S̄ = I, S ∩ S̄ = ∅
)

. Consider now the|S|m × n matrix AS constructed by concatenating the

matrices{Ai}i∈S , and likewise for the vectorbS . The aggregate regression matrix and data vector are

defined asAT :=
[

AT
1 . . . AT

k

]

andbT :=
[

bT
1 . . . bT

k

]

, respectively.

Upon introducing an auxiliary vectort ∈ R
k, the RS problem can be rigorously posed as

min
x,t

‖t‖0

s.t. ‖bi −Aix‖2 ≤ ti, i = 1, . . . , k.

(P0)

If the i-th subsystem is deemed feasible, thenti = 0; otherwise,ti is strictly positive and the cost‖t‖0
increases. In a nutshell, (P0) minimizes the number of infeasible linear subsystems, andhence solves

RS. Note also that the constraints are satisfied as equalities at the optimum. Thus, if the optimumx is

given, the optimumt is readily available. This implies that the solution pair(x, t) is identified solely by

x, which will be henceforth called thesolutionof (P0).

Even though the constraints in (P0) are convex, the problem is non-convex. A greedy approach to

solving it would be to assume there ares feasible subsystems, and lets range fromk down to 1. For

each value ofs, one can check feasibility of the linear systemsbS = ASx for each of the
(k
s

)

subsets

S ⊂ I having cardinality|S| = s, until a feasible subset is found. But this approach incurs combinatorial

complexity, and can be computationally feasible only for small-size problems. In fact, it is not difficult

to establish the following result.

Proposition 1. The RS problem is NP-hard.

Proof: Consider first the following problem of maximizing the number of consistent linear equations

(MCLE): “Given a system of linear equationsCx = d, whereC ∈ R
k×n and d ∈ R

k, find a vector

x ∈ R
n satisfying as many equations as possible.”The MCLE problem is known to be NP-hard [3,
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Th. 1]. Consider an instance of the MCLE problem. Choose an integerm ≥ 2 and define the instance

of RS with parameters(b,A) selected asb(i−1)m+1 = di andA(i−1)m+1,j = Ci,j for i = 1, . . . , k and

j = 1, . . . , n; and 0 for their remaining entries. Solving an MCLE problem is hence equivalent to solving

an instance of an RS. This simple reduction of MCLE to RS establishes the proposition.

In search of sub-optimum yet computationally affordable solvers of (P0), one could adopt the least-

squares (LS) approach, which amounts to

min
x

‖b−Ax‖22. (1)

Alternatively, one could consider minimizing theℓ1-norm of the error, namely

min
x

‖b−Ax‖1. (2)

Unfortunately, both approaches handle separately every linear equation, and thus ignore the underlying

per-sensor linear subsystem. In addition, they cannot reliably identify the unreliable sensors.

III. RS SOLVERS

A. A Convex Relaxation Solver

It is known that if the infinity norm satisfies‖t‖∞ := maxi |ti| ≤ 1, then theℓ1-norm ‖t‖1 is the

convex envelope (the largest convex under-approximant) of‖t‖0; see e.g., [6, p. 119]. This property is

used also in CS [29], and prompts one to relax the NP-hard problem (P0) to

min
x,t

‖t‖1 (3)

s.t. ‖bi −Aix‖2 ≤ ti, i = 1, . . . , k.

Note though thatx here does not have to be sparse. The problem in (3) is an SOCP and can be efficiently

solved by several existing algorithms [6]. Invoking the implicit constraintt ≥ 0 and the definition of the

ℓ1-norm ‖t‖1 :=
∑k

i=1 |ti|, the problem (3) is equivalent to

min
x

k
∑

i=1

‖bi −Aix‖2 (P1)

which is still an SOCP, albeit unconstrained.

The cost in (P1) is the sum of theℓ2-norms of the residual vectors associated with the linear subsystems,

which is continuous, but not differentiable. In the optimization circles, (P1) is known as the minimization

of the sum of (Euclidean) norms problem [6, Sec. 6.4]. It emerges also when solving problems related

to Steiner trees, optimal location, and image restoration model constraints; see e.g., [20, Sec. 2.2], and
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references therein. Algorithmically, (P1) is tackled either by generic SOCP solvers, or, by interior-point

algorithms customized to its specific form [20].

Having relaxed the RS problem (P0) to its closest convex approximation (P1) which is tractable, it is

of interest to reflect on various links and interpretations that (P1) can afford, postponing its performance

analysis to Section IV.

Remark1 ((P1) versus LS). Clearly, the LS problem in (1) can be rewritten as

min
x,t

{‖t‖2 : ‖bi −Aix‖2 ≤ ti, i = 1, . . . , k}

which is again a convex approximation of (P0), though, as mentioned earlier, not the closest one.

Remark2 ((P1) versus block-sparse signal reconstruction). To establish this connection, assume that

null(AT ) is non-empty. Letri := bi −Aix denote the residual error vectors, andrT := [rT1 · · · rTk ].

Upon defining matrixC such that its null space is spanned byrange(A), i.e., CA = 0, andd := Cb,

the problem (P1) can be rendered equivalent to

min
r

k
∑

i=1

‖ri‖2 (4a)

s.t. Cr = d (4b)

which emerges when reconstructing ablock-sparsevectorr satisfying the under-determined system in (4b)

[27], [26], [11], [5]. To establish the equivalence, write (P1) asminr
∑k

i=1 ‖ri‖2 subject tor = b−Ax.

Premultiplying both sides of the last equality byC, one arrives at (4). The same equality couples the

minimizers of the two problems: ifr0 solves (4) andA† is the pseudo-inverse ofA, thenA†(b − r0)

solves (P1). The optimization in (4) relies on the prior information that r is block sparse. For the RS

problem, the vector of interestx is not (block) sparse; but the residual error vector is blocksparse.

Remark3 ((P1) versusℓ1-error regression). In the degenerate casem = 1, where every subsystem reduces

to a single equation, (P1) reduces to theℓ1-error minimization problem (2), which is known to be robust

to outliers [22, Ch. 4], [6], [8]. Under the conditions stated in Remark 2, the unconstrainedℓ1-error

regression problem is equivalent to the constrained optimization (cf. (4))

min
r

‖r‖1 (5)

s.t. Cr = d.

The problem in (5) is widely known in the CS literature as basis pursuit (BP); for a thorough treatment

on this pair of problems see also [8].
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B. A Concave Surrogate for RS

Instead of substituting the cost‖t‖0 of (P0) by its closest convex approximation, namely‖t‖1, letting

the surrogate function be non-convex can yield tighter approximations. For example, theℓ0-norm of a

vector x ∈ R
n was surrogated in [7] by the logarithm of the geometric mean of its elements, or, by

∑n
i=1 log |xi|. In rank minimization problems, apart from the nuclear normrelaxation, minimizing the

logarithm of the determinant of the unknown matrix has been proposed as an alternative surrogate; see

[12, Sec. 5.2]. Building on this line of thought, consider surrogating (P0) by

min
x,t

k
∑

i=1

log (ti + δ)

s.t. ‖bi −Aix‖2 ≤ ti, i = 1, . . . , k

(P2)

whereδ is a sufficiently small but strictly positive constant preventing the cost from tending to−∞. The

cost in (P2) is concave, but since it is smooth wrtt ∈ R
k
+, iterative linearization may be utilized to obtain

a local minimum [12], [7]. Specifically, let(x(l), t(l)) denote a tentative solution at thel-th iteration. Due

to the concavity of the logarithm, the first-order approximation of log (ti + δ) aroundt(l−1)
i + δ yields

log (ti + δ) ≤ log
(

t
(0)
i + δ

)

+
1

t
(0)
i + δ

(

ti − t
(0)
i

)

. (6)

Thinking along the majorization-minimization approach [18], one can instead of minimizing the original

cost on the left-hand side, minimize the majorizing cost on the right-hand side of (6), and iterate.

Specifically, the minimization in (P2) can be iteratively driven to a local minimum [12] as

(

x(l), t(l)
)

:= argmin
x,t

{

k
∑

i=1

ti

t
(l−1)
i + δ

: ‖bi −Aix‖2 ≤ ti, i = 1, . . . , k

}

or equivalently,

x(l) := argmin
x

k
∑

i=1

‖bi −Aix‖2
‖bi −Aix(l−1)‖2 + δ

. (7)

The iterative scheme can be terminated as soon as the relative error‖x(l) −x(l−1)‖2/‖x(l−1)‖2 becomes

smaller than someǫ chosen equal to say10−6. The cost in (7) has the form of a weighted version of

(P1), where each of the error norms is weighted byw
(l)
i =

(

‖bi −Aix
(l−1)‖2 + δ

)−1
. When the residual

error of a subsystem is small, then the error of this system isweighted more during the minimization

of the next iteration. A good initialization point for the iteration in (7) is the solution of (P1) that is

equivalent to one iteration of (7) with all weights chosen equal. The simulated tests in Section VI will

indicate that (7) can provide higher probability of identifying reliable sensors than (P1).
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IV. U NIQUENESS ANDIDENTIFIABILITY

Let s denote the minimum cost of (P0). Then, there exists at least one unknownx0 ∈ R
n such that

bS0
= AS0

x0 for an unknown subset of sensorsS0 with |S0| = s. The sensors inS0 will be referred to

as reliable or consistentwith respect to (w.r.t.)x0. Also, let β := s/k denote the number of consistent

sensors over the total number of sensors; andγ := n/(km) the ratio of the size of the unknown vector

over the total number of measurements.

Whether (P0) has a unique minimizer, and hence an underlyingx0 can be uniquely recovered by

(P0), is considered next. The first thing to note at the outset is that when the consistent sensors w.r.t.

x0 are outnumbered by the unreliable ones, uniquely recovering x0 is not guaranteed. This is because

with s ≤ k/2, there may exist anx1 6= x0 and anS1 ⊂ I with |S1| = |S0| = s andS1 ∩ S0 = ∅ such

thatbS1
= AS1

x1; thus,x0 andx1 are both minimizers of (P0). It is henceforth assumed thats > k/2

or β ∈ (1/2, 1]. Under this assumption, uniqueness of the (P0) minimizer is further characterized in the

following lemma.

Lemma 1. Let vectorx0 be a minimizer of(P0) satisfyings > k/2 out of thek subsystems. This

minimizer is unique if and only if

rank(ASc
) = n (8)

for everySc ⊂ I with cardinality |Sc| = 2s− k.

Proof: Vectorx0 is not the unique minimizer of (P0) if and only if there exists at least onex1 6= x0

such thatbS1
= AS1

x1 for anS1 ⊂ I with |S1| = |S0| = s. Given thats > k/2, the two subsets cannot be

disjoint; hence, they must have a non-empty intersectionSc := S0∩S1 with cardinality2s−k ≤ |Sc| ≤ s.

The subsystems belonging toSc are satisfied by both solutions; that is,bSc
= ASc

x0 = ASc
x1, which

is equivalent to the existence of a nonzeroz ∈ R
n such thatASc

z = 0 or rank(ASc
) < n. Multiple

minimizers of (P0) can thus be avoided if and only ifrank(ASc
) = n. Note that wheneverrank(ASc

) = n

for everySc with |Sc| = 2s− k, it holds for everySc of larger cardinality as well.

Lemma 1 reveals two interesting points on uniquely recovering x0 by (P0). First, the reliable sensors

should not only outnumber the unreliable ones, i.e.,β > 1/2; condition (8) implies additionally that

(2s− k)m ≥ n, or β ≥ (γ + 1) /2. Second, becauseβ ≤ 1, the inequalityβ ≥ (γ + 1) /2 implies γ ≤ 1

or km ≥ n, requiring the total number of equations to be at least equalto the number of unknowns.

Uniqueness of the (P0) minimizer is also implied by the conditions stated in the next lemma. These

conditions will be used in the next subsection.
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Lemma 2. If for any nonzerov ∈ range(A) and any partition(S, S̄) of I with |S| = s > k/2 it holds

that
∑

i∈S
‖vi‖2 >

∑

i∈S̄
‖vi‖2 (9)

wherevi is the i-th m× 1 block subvector ofv, then(8) is satisfied.

Proof: Arguing by contradiction, suppose that (9) holds, whereas (8) does not hold; or, in other

words there exists anSc ⊂ I with |Sc| = 2s − k ≤ s and rank(ASc
) < n. Consequently, there exists

a nonzero vectoru ∈ R
n such thatASc

u = 0. Next, partitionI into three collectively exhaustive and

mutually exclusive subsetsSc, S1, andS2, with |S1| = |S2| = k − s. Define alsov := Au for which

vSc
= 0 by the definition ofu.

Consider first (9) withS = Sc ∪ S1 and S̄ = S2, to deduce that
∑

i∈S1

‖vi‖2 >
∑

i∈S2

‖vi‖2.

Apply (9) again forS = Sc ∪ S2 and S̄ = S1, to arrive at
∑

i∈S2

‖vi‖2 >
∑

i∈S1

‖vi‖2

which clearly contradicts the previous inequality and completes the proof.

Having introduced the convex relaxation (P1) of (P0), the next critical question is whether the solution

of the former coincides with the solution of the latter. Eventhough the NP-hardness of (P0) forejudges

that this cannot hold in general, the ensuing results show that for random Gaussian matricesA and under

reasonable assumptions on the problem dimensions, equivalence of (P1) and (P0) occurs with probability

exponentially decaying inn. The analysis starts by characterizing this equivalence using a set of necessary

and sufficient conditions.

A. Necessary and Sufficient Conditions

The conditions under which the convex optimization problem(P1) yields the same solution as the

NP-hard problem (P0) are provided in the following theorem. Using the equivalence between (P1) and

(4) under the conditions of Remark 2, this theorem is relatedto [27, Th. 2], which in turn, generalizes

results from [10] to the block-sparse signal case.

Theorem 1 (Range space conditions). Every x0 minimizing (P0) by satisfyings > k/2 out of thek

subsystems is the unique minimizer of(P1) if and only if
∑

i∈S
‖vi‖2 >

∑

i∈S̄
‖vi‖2 (10)

October 22, 2018 DRAFT
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for any nonzerov ∈ range(A), and for any partition(S, S̄) of I with |S| = s.

Proof: See Appendix.

In words, Theorem 1 asserts that for every nonzerov ∈ range(A), the sum of thes smallest‖vi‖2
components should be larger than the sum of the remaining(k− s) components. It is worth mentioning

that the range space conditions are impossible to check in practice; but they are useful in establishing

identifiability, as it will be the case for the probabilisticcharacterization of the (P0)–(P1) equivalence

whenA is random (cf. Subsection IV-B).

Another set of (P0)–(P1) equivalence conditions can be derived from the block restricted isometry

properties of matrixC as defined in Remark 2; see [11], [5]. However, these conditions are only sufficient.

Remark4. Conditions (10) do not depend onb, but only on the range space ofA. Thus, wheneverA

satisfies (10), any matrixA′ := AG for any nonsingularG ∈ R
n×n satisfies (10) as well.

Remark5. Sufficiency of the conditions in (10) remains valid even if some additional constraints of the

generic formx ∈ C are present in the original problem (P0). In certain applications for instance, the

unknownx may be non-negative so thatC = R
n
+; or, there may be a priori information of the form

C = {x : ‖x− xc‖2 ≤ R}, dictating the unknown vector to lie in a ball of radiusR around a known

centerxc ∈ R
n. Even though the extra constraints generally reduce the feasible sets of (P0) and (P1), the

conditions remain sufficient. Hence, the probabilistic bound to be developed in Subsection IV-B remains

valid even when extra constraints are imposed.

B. Probability Bound

As commented earlier, the conditions in Lemma 2 are practically infeasible to check for a given

sensing matrixA. However, similar to CS [8], it will be possible to prove thatthe conditions in (9)

hold with overwhelming probability [8], i.e., probabilitydecaying exponentially inn whenγ andk are

fixed, assumingA has i.i.d. Gaussian entries. The main result, summarized inTheorem 2, is based on

the following lemma.

Lemma 3 (Deviation Inequality [19]). Considerx ∼ N (0p, Ip), and a Lipschitz continuous function

f : Rp → R with Lipschitz constantL. Then for anyt ≥ 0, it holds that

Pr (f(x)− E [f(x)] ≤ −t) ≤ exp

(

− t2

2L2

)

. (11)

This deviation inequality is a special case of more general concentration results [19, Sec. 1.1]. It
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provides exponentially decreasing bounds on the tail distribution for any sufficiently smooth function

f(x) of a multivariate Gaussianx, thus generalizing the Chernoff bound to nonlinear functions.

Capitalizing on Lemma 3, the next theorem extends the results of [27, Th. 4] and its refined version

[26, Th. 3]. Focusing on the Gaussian case and following a different line of proof, neat closed-form

expressions will emerge not only for the values ofβ andγ, for which the probabilistic bound is valid,

but also for the bound itself. The proof is based partly on themethodology of [25], where the minimum

nuclear norm relaxation of the rank minimization problem isanalyzed under linear constraints on the

unknown matrix. In contrast, related probabilistic analysis in [11] and [5] is based on a generalization of

the restricted isometry property ofA that serves only as a sufficient condition for the exactness of the

convex relaxation; see also [8].

Theorem 2. Let vectorx0 be a minimizer of(P0) satisfyings > k/2 out of thek subsystems, and

assume that the entries ofA ∈ R
km×n are independently drawn fromN (0, 1). If

β >

√
γ + 1

2
(12)

then wheneverm ≥ β log(e/β)
(1−α)c0(β,γ)γ

, the vectorx0 is the unique minimizer of(P1) with probability exceeding

1− e−αc0(β,γ)n+on(n), wherec0(β, γ) := 1
2

(

2β−1√
γ − 1

)2
andα ∈ (0, 1).

Proof: To lower bound the probability of success for the (P1) problem, it suffices to upper bound the

probability that the conditions in (10) fail, an event denoted byE . Let {Sj} be all theN :=
(

k
s

)

subsets

of I having cardinalitys. Moreover, letEj denote the event of having the conditions in (10) failing for

the partition(Sj , S̄j)

Ej :=







∃v ∈ range(A) \ {0} such that
∑

i∈Sj

‖vi‖2 ≤
∑

i∈S̄j

‖vi‖2







(13)

for j = 1, . . . , N . The probability of failure can be expressed asPr (E) = Pr
(

⋃

j Ej
)

. The events

{Ej}Nj=1 are not independent, butPr(E) can be bounded as

Pr (E)
(a)

≤
N
∑

j=1

Pr (Ej)
(b)
=

(

k

s

)

Pr (Ej)
(c)

≤ es(1−log β) Pr (Ej) (14)

where inequality(a) comes from the union bound;(b) is due to the symmetry of the distribution ofA

which implies that all theEj ’s are equiprobable; and(c) is the standard upper bound of the binomial

coefficient

(

k

s

)

≤
(

ke

s

)s

. Based on (14), the goal now is to upper bound the probabilityPr(Ej). For

notational simplicity, the partition corresponding toEj will be denoted by(S, S̄) instead of(Sj, S̄j).
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Given thatv ∈ range(A) \ {0}, there exists a nonzerou ∈ R
n such thatvi = Aiu for i = 1, . . . , k.

To render the inequality in (13) scale-invariant, one can study only the cases for which‖u‖2 = 1; hence,

Pr (Ej) = Pr



∃u with ‖u‖2 = 1 such that
∑

i∈S
‖Aiu‖2 −

∑

i∈S̄
‖Aiu‖2 ≤ 0



 (15)

= Pr

(

f(A) ≤ 0

)

(16)

where

f (A) := inf
‖u‖2=1







∑

i∈S
‖Aiu‖2 −

∑

i∈S̄
‖Aiu‖2







. (17)

The equality from (15) to (16) comes from the fact that if there exists a unitℓ2-norm u satisfying

the inequality in (15), then the minimizer off (A) should also satisfy this property. The functionf(A)

possesses convenient properties which facilitate the application of Lemma 3. Specifically, it is shown in the

Appendix that:f(A) is Lipschitz continuous with constantL ≤
√
k (cf. Lemma 4); and the expected value

of the function is lower bounded (cf. Lemma 5), that isE [f(A)] ≥ µ =
(

2β−1√
γ − 1

)√
kn (1 + on(1)).

Hence, for everyt ≥ 0, Lemma 3 implies that

Pr

(

f(A) ≤ µ− t

)

≤ Pr

(

f(A) ≤ E [f(A)]− t

)

≤ .e−t2/(2k) (18)

Upon focusing onµ and ignoring theon(1) term, wheneverβ > (
√
γ + 1)/2 so thatµ > 0, and setting

t = µ in (18), yields the bound

Pr(Ej) ≤ Pr

(

f(A) ≤ 0

)

≤ e−c0(β,γ)n+on(n) (19)

wherec0(β, γ) :=
(

2β−1√
γ − 1

)2
/2.

Substituting the bound (19) into (14), it follows that

Pr(E) ≤ exp

(

−
(

c0(β, γ) −
s log(e/β)

n

)

n+ on(n)

)

≤ exp (−c1(β, γ)n + on(n)) . (20)

For everyβ >
(√

γ + 1
)

/2, choosec1(β, γ) = αc0(β, γ), and definec2(β, γ) := ((1− α)c0(β, γ))
−1

for anyα ∈ (0, 1). Then, wheneverm ≥ c2(β, γ)β log(e/β)/γ, the bound in (20) is nontrivial.

Remark6. As a sanity test, the conditionβ > (
√
γ + 1)/2 posed by Theorem 2 coincides with that in

[26, Th. 3] after the appropriate mapping of dimensions. However, in Theorem 2, both the values ofm

over which the bound holds, as well as the bound itself are explicitly defined.

Remark7. As expected, the conditionβ > (
√
γ+1)/2 is clearly stronger than the conditionβ > (γ+1)/2

implied by the uniqueness of the (P0) solution in Lemma 1.
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V. ROBUSTNESS TONOISE

In a more realistic sensing scenario, the acquired measurements are corrupted by additive noise. IfS0

denotes the unknown subset of reliable sensors, the pertinent model is

bS0
= AS0

x0 + nS0
(21)

wherenS0
stands for zero-mean noise assumed independent across sensors. VectornS0

models ambient

noise, finite precision, analog-to-digital conversion, and quantization effects, communication noise, or

even, the inadequacy of linear regression to fully capture the measured databS0
.

In this noisy case, the unknownx0 does not exactly satisfy the linear subsystems inS0. In an attempt to

exploit the link between (P1) and (4) when noise is present, one may be tempted to apply thegroup-Lasso

regularization, which was originally proposed for recovering block-sparse vectors in a linear regression

setup [32]. However, this approach is not applicable becauser is not block sparse when noise is present. In

fact, solvers of the noise-free setups (P1) and (P2) are useful for analyzing uniqueness and identifiability

issues. In addition, (P1) and (P2) solvers are practically suitable for high-SNR sensing applications. This

motivates the ensuing framework which is suitable for RS in the presence of noise. Without additional

prior information on the model describing the unreliable sensors, the noisy counterpart of the RS problem

can be stated as follows.

Problem Statement 2 (Robust sensing in noise (RSN)). Given{bi,Ai}i∈I wherebi ∈ R
m andAi ∈

R
m×n, for which an unknown subsetS0 ⊂ I of known cardinalitys follows the model in(21), estimate

the unknownx0 by minimizing the least-squares error over anyS ⊂ I with |S| = s.

The aforementioned problem statement lends itself naturally to the following optimization problem

min
x

min
|S|=s

‖bS −ASx‖22. (22)

The function ofx defined by the inner minimization is the pointwise minimum over finitely many convex

functions, and as such, it is non-convex. Solving (22) incurs combinatorial complexity since one has to

solve all the
(

k
s

)

LS problems before solving the outer minimization.

An optimization problem related to that in (22) is the following

min
x

k
∑

i=1

h(bi −Aix) (23a)

s.t. h(ri) :=







1
2‖ri‖22 , ‖ri‖2 ≤ λ

1
2λ

2 , ‖ri‖2 > λ
, λ ≥ 0. (23b)
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Functionalh(ri) amounts to the LS cost for residuals smaller than the threshold λ, and ignores sensors

attaining larger residuals. In the scalar case (cf.m = 1), problem (23) has been considered in [6,

Sec. 6.1.2]. Problems (22) and (23) are related as follows: suppose that for a specificλ the solution of

(23) is x⋆ for which there ares⋆ residuals satisfying the upper branch of (23b). Then it can be readily

shown thatx⋆ is a solution of (22) fors = s⋆. Unfortunately though,h(ri) is non-convex as well. The

problem in (23) can be surrogated by replacingh(ri) by its closest convex approximation, which is

pursued in the next subsection by establishing a neat link between the RSN problem at hand and robust

estimation methods [17, Ch. 7], [22, Ch. 4].

A. RSN and Robust Linear Multivariate Regression

Building on Remark 3 of Subsection III-A, the unreliable sensors can be viewed as giving rise to

outlier-corrupted equations in a linear regression setting. Robust linear regression has been extensively

studied over the past decades [17], [22].

Whenm = 1, the RSN problem can be solved by Huber’s M-estimator

x̂ = argmin
x

k
∑

i=1

ρ(bi − aTi x) (24a)

s.t. ρ(r) :=







1
2r

2 , |r| ≤ τ

τ |r| − τ2

2 , |r| > τ
(24b)

where ρ(r) is the Huber function forτ > 0. The problem in (24) is convex, and can be cast as an

SOCP [15], [21], [6, p. 190]. Regarding the cutoff parameterτ , when the outliers’ distribution is known

a priori, its value is available in closed form so that Huber’s M-estimator is asymptotically optimal; see

[17, Sec. 4.5]. Alternatively, assuming that the noise is standard Gaussian,τ is usually set toτ = 1.34

such that the estimator in (24) is 95% asymptotically efficient at the normal distribution [22, p. 26]. To

render Huber’s M-estimator invariant to any noise varianceσ2, one has to multiplyτ by σ in (24b). If

σ is unknown, a robust estimate of it is commonly used instead [22, Sec. 4.4].

The casem > 1, which is of interest here falls under the realm of robust multivariate linear regression

[2], [4]. The novel approach to tackle it will be to postulatea model accommodating inconsistent sensors,

approximate the meaningful cost of (23) by a convex one, and solve it using an efficient globally

convergent algorithm.

Consider modeling the unreliable sensors using the auxiliary outlier vectors{ui ∈ R
m}ki=1. Vector

ui = 0 if the i-th sensor is reliable; andui 6= 0 deterministically, otherwise. Model (21) can now be
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extended to incorporate the unreliable sensors as

bi = Aix+ ui + ni, i = 1, . . . , k. (25)

Since someui’s are zero, the aggregate outlier vectoruT := [uT
1 · · · uT

k ] is block sparse. Hence, using

the aggregate modelb = Ax+ u+ n, the novel RSN solver amounts to

min
x,u

1

2
‖b−Ax− u‖22 + λ

k
∑

i=1

‖ui‖2 (P3)

whereλ > 0 is an appropriately chosen tuning parameter. Among the two optimization variables of (P3),

only the outlier vectoru is block sparse. Form = 1, (P3) reduces to the cost proposed in [15] and

shown to be equivalent to (24). Even when the initial matrix of interestA is tall, (P3) always entails the

fat matrix [A Ikm] ∈ R
km×(n+km). The second part is a regularization term, reminiscent of the group

Lasso penalty function [32], which is known to promote blocksparsity in theu vector. The latter will

be explicitly accounted for in the forthcoming analysis.

B. Solving(P3)

To better understand (P3) and develop an efficient solver, it is prudent to explore theform of its

minimizer(s). Let[(x⋆)T (u⋆)T ]T denote a minimizer of (P3), and define the associated residual vector

r⋆ := b−Ax⋆. Givenx⋆, the vectors{u⋆
i }ki=1 in (P3) can be found separately as the minimizers of

min
ui

φ(ui) (26)

s.t. φ(ui) :=
1

2
‖r⋆i − ui‖22 + λ‖ui‖2, i = 1, . . . , k.

Althoughφ(ui) is not everywhere differentiable, its subdifferential∂φ(ui) can be defined [6]. Forui 6= 0,

whereφ(ui) is differentiable, the subdifferential is simplyui (1 + λ/‖ui‖2)−r⋆i . Otherwise, by definition

and after using (36),∂φ(ui) can be shown to be the set{λgi − r⋆i } ∀ ‖gi‖2 ≤ 1. Compactly,

∂φ(ui) :=







ui

(

1 + λ
‖ui‖2

)

− r⋆i , ui 6= 0

{λgi − r⋆i : ‖gi‖2 ≤ 1} , ui = 0.
(27)

Vectoru⋆
i is a minimizer of (26) if and only if0 ∈ ∂φ(u⋆

i ). Based on (27), two cases are considered.

First, if u⋆
i 6= 0, the condition0 ∈ ∂φ(u⋆

i ) yields

u⋆
i (1 + λ/‖u⋆

i ‖2) = r⋆i (28)

which means thatu⋆
i is a positively scaled version ofr⋆i . Considering theℓ2-norm in both sides of (28),

it follows that ‖u⋆
i ‖2 = ‖r⋆i ‖2 − λ. Plugging‖u⋆

i ‖2 back into (28), yieldsu⋆
i = r⋆i

(

1− λ
‖r⋆i ‖2

)

. Since

‖u⋆
i ‖2 > 0, this holds if and only if‖r⋆i ‖2 > λ.
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Second, for the minimizer to beu⋆
i = 0, there should be ag⋆

i for which ‖g⋆
i ‖2 ≤ 1 andλg⋆

i = r⋆i , or

equivalently,‖r⋆i ‖2 ≤ λ. The latter proves that (P3) indeed admits a block-sparse minimizeru⋆.

Substitutingu⋆
i into (26), yieldsφ(u⋆

i ) = ‖r⋆i ‖22/2, when‖r⋆i ‖2 ≤ λ; andφ(u⋆
i ) = λ‖r⋆i ‖2 − λ2/2,

otherwise. Having minimized (P3) over theui’s, the minimizerx⋆ can now be found as

min
x

k
∑

i=1

ρv(bi −Aix) (29a)

s.t. ρv(ri) :=







1
2‖ri‖22 , ‖ri‖2 ≤ λ

λ‖ri‖2 − λ2

2 , ‖ri‖2 > λ
(29b)

whereρv(ri) is a vector-generalized Huber function. It is now evident that (P3) is equivalent to (29), which

rather surprisingly turns out to be a generalization of Huber’s M-estimator (24) to the vector case. The

sensors capable of achieving a lower‖ri‖2 value, and are more likely to be reliable, appear in (29) under

the conventional LS criterion. But the sensors having‖ri‖2 > λ, contribute(λ‖ri‖2 − λ2/2) < ‖ri‖22/2
to the cost, and are deemed “less important” in specifyingx. For the latter set of sensors,u⋆

i 6= 0 holds

too. Thus, (P3) not only estimates the unknown vectorx, but also reveals the sensors most likely to be

unreliable in the presence of noise.

Regarding the cutoff parameterλ in (P3) and (29b), it is worth noting that whenλ → 0+, the costs of

(29) and (P3) tend to the cost of (P1). Consequently, forλ → 0+ the data of all sensors are declared to

contain outliers; and according to the previous analysis,(bi −Aix
⋆) → u⋆

i 6= 0 for all i. This suggests

that the solution of (P1) does not provide zero residuals anymore. On the other hand,asλ → ∞, the

same costs reduce to the LS criterion, and all sensors are classified as reliable, oru⋆
i = 0 for all i.

A heuristic rule of thumb for practically selectingλ is setting it toτ
√
m, whereτ is the equivalent

parameter for the scalar case and has been selected according to the techniques mentioned after (24).

If the number of reliable sensors is roughly known (e.g., based on prior operation of the network), an

alternative approach is solving (P3) for a grid ofλ values and selecting the one identifying the prescribed

number of outliers. Note that solving (P3) for several values ofλ can be efficiently performed either

through the group-LARS algorithm [32], or, by using the block coordinate descent algorithm of the next

subsection with what is called “warm startup” [14]. The latter initializes the tentative solutions of (P3) for

a grid value ofλ with the solution derived for the previous grid value ofλ. The computational efficiency

of such an approach has been numerically verified for the Lasso problem [14], [28].

Remark8. In Problem Statement 2, the noise term was assumed to be independent across sensors.

Specifications such as the geographical distribution of sensors may impose correlation across different
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sensor readings. In this case, if the covariance matrixΣ of the aggregate noise vectornT := [nT
1 · · · nT

k ]

is known, a standard preprocessing step is to prewhiten the data asb′ := Σ−1/2b andA′ := Σ−1/2A.

Prewhitening “spreads” the influence of unreliable sensorsacross the entries ofb′. As a result, the LS

and ℓ1-error regression estimators and even the robust Huber M-estimator are not applicable; see also

[15] for similar observations in the scalar case (m = 1). On the contrary, given thatu remains block

sparse, the (P3) estimator can successfully handle a colored noise setup bysimply modifying its cost to

‖b′ −A′x−Σ
−1/2

u‖22/2 + λ
∑k

i=1 ‖ui‖2.

C. A Block Coordinate Descent Algorithm

As mentioned earlier, (P3) is convex. It can be cast as an SOCP and solved by standard, interior point-

based solvers. An alternative solver of (P3) exploiting the problem structure and offering computational

advantages is block coordinate descent, which has been successfully applied to related optimization

problems [13], [31]. The core idea behind this solver is to partition the optimization variable into blocks,

and minimize iteratively the cost w.r.t. one block variablewhile keeping the rest fixed.

To apply block coordinate descent to the RSN problem at hand,consider minimizing the cost separately

w.r.t. x andu. Each iteration involves two steps: In the first step, the objective is minimized w.r.t.x,

while keepingu fixed, whereas in the second step the roles are interchanged.Specifically, letx(l−1) and

u(l−1) denote the tentative solutions at the(l − 1)-th iteration. During the first step of thel-th iteration,

fix u = u(l−1), and findx(l) as the minimizer of the resultant quadratic; that is,

x(l) = (ATA)−1AT (b− u(l−1)). (30)

In the second step, fixx=x(l) and find theu(l)
i ’s as the minimizers of the per-sensor optimization problems

min
ui

1

2
‖r(l)i − ui‖22 + λ‖ui‖2 (31)

wherer
(l)
i := bi − Aix

(l) for i = 1, . . . , k. As per (26), the solutions of (31) are provided neatly in

closed form2 as

u
(l)
i =







0 , ‖r(l)i ‖2 ≤ λ

r
(l)
i

(

1− λ
‖r(l)i ‖2

)

, ‖r(l)i ‖2 > λ.
(32)

The solution in (32) does not requirex(l), but only r(l). Combining (30) and (31), it follows that

r(l) = P⊥
Ab+PAu

(l−1) (33)

2This is not the case for the colored noise scenario discussedin Remark 8, where the vectors{ui} can then be jointly found

by any group Lasso algorithm instead [32].
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wherePA := A(ATA)−1AT andP⊥
A := I−PA.

Summarizing, the iterations entail: (a) updating the residuals based on (33); and (b) applying the thresh-

olding rule in (32). As matrixPA and vectorP⊥
Ab can be computed offline, the most computationally

demanding operation is the matrix-vector product in step (a). Sincekm ≥ n, this product would better

be implemented as
(

A(AAT )−1
) (

ATu
)

in O(kmn) operations. The developed algorithm has overall

complexity O(kmn) per iteration. The presence of zero blocks inu can be further exploited to save

computations. Numerical simulations demonstrate that theoverall complexity of this block-coordinate

approach is much lower than the complexity of the interior point-based algorithms.

Due to the specific form of (P3), convergence of the block coordinate descent iteration follows readily

from the results of [30]. The algorithm can be initialized atu(0) = 0, so thatx(1) is the conventional

LS solution. It is terminated when the relative error‖u(l) − u(l−1)‖2/‖u(l)‖2 becomes smaller than a

predefined threshold, e.g.,ǫ = 10−6. Upon termination, the output is the solution vectorû, which reveals

the sensors affected by outliers, whereas the solutionx̂ can be obtained directly from (30).

D. A Non-Convex Surrogate for RSN

In the context of robust linear regression, Huber’s M-estimator is just one choice from the class of robust

estimators defined as the minimizers of (24) for appropriately chosenρ functions. It has been argued

that estimators corresponding to non-convexρ functions, such as the bisquare (Tukey’s), Hampel’s, or

Andrew’s estimators, yield improved robustness-efficiency trade-offs in practice [22, p. 99]. Similarly in

the multivariate case, convex M-estimators [4] are practically replaced by non-convex M- or S-estimators

appropriately initialized [2].

Alternatively, it is of interest to explore a non-convex surrogate of (P3) paralleling that of Subsection

III-B. Recall that the RSN solver in (P3) seeksx andu based on fewer observations than unknowns, but

taking advantage ofu’s block sparsity. To further promote block sparsity inu, the ‖ui‖2 terms in (P3)

can be replaced bylog(‖ui‖2 + δ) for a small positiveδ, to end up with the non-convex problem

min
x,u

1

2
‖b−Ax− u‖22 + λ

k
∑

i=1

log(‖ui‖2 + δ). (P4)

Following the majorization-minimization rationale presented in Subsection III-B, (P4) can be driven to

a stationary point [18] using the iterations
(

x(l),u(l)
)

:= argmin
x,u

1

2
‖b−Ax− u‖22 + λ

k
∑

i=1

w
(l)
i ‖ui‖2, (34)

w
(l)
i :=

(

‖u(l−1)
i ‖2 + δ

)−1
, i = 1, . . . , k.
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The optimization per iteration of (34) is a weighted versionof (P3), and thus can be efficiently solved

using the steps (30) and (32) after replacingλ in (32) with λ
(l)
i := λw

(l)
i for all i at the l-th iteration.

The iterations can be initialized with the (P3) solution which corresponds to setting all weights to unity.

The simulations of Section VI will demonstrate that the (P4) solver outperforms that of (P3) in terms

of the mean-square error (MSE) even after a single iteration. Note that as with (34), single-iteration

methods based on non-convex surrogates of the (group) Lassocost function have been proposed with

well documented properties [34], [23].

VI. SIMULATED TESTS

A. Checking the Weak Bound

Among the results of Section IV, the one that can be numerically validated is the weak bound of

(19). This bound is termed weak because it refers to the occurrence of a single eventEs, namely, to a

single partition(S, S̄) with S = s. According to this bound, ifβ andγ are kept fixed and as long as

β > (
√
γ + 1)/2, the probabilityPr(Es) is arbitrarily small for largen.

To validate this result, the entries ofA are drawn independently fromN (0, 1), and the unknown vector

is modeled asx0 ∼ n−1/2N (0, In). Given thatPr(Es) is invariant to the permutations of the subsystems,

the partition(S0, S̄0) with S0 = {1, . . . , s} is simply selected. The output of the consistent subsystemsis

bS0
= AS0

x0; whereas for the inconsistent onesbS̄0
= w is simulated withw ∼ N (0, I(k−s)m). Notice

that due to the selected normalization, the observation vectors have equal variance, i.e.,E[‖bi‖22] = m

for all i ∈ I. For several(n,m) pairs, ten values ofγ are selected uniformly over the interval(0.1, 1]

that correspond to ten values ofk. And for everyγ(k), the number of consistent subsystemss is chosen

such thatβ(s, k) = s/k ∈ [0.5, 1]. For each pair(γ(k), β(s, k)), the probability of (P1) identifying

uniquely the (P0) solution is empirically evaluated through 100 Monte Carloruns. For each experiment,

the solution of (P1) is deemed successful wheneverx̂ satisfies‖x̂− x0‖∞ ≤ 10−4.

The results are depicted in Fig. 2. Every pair(γ(k), β(s, k)) corresponds to a circle whose face

intensity indicates the probability of recovery as explained in the caption. The east and south-east parts

of Figs. 2(a)-2(c) are not as crowded, since forγ close to 1, the integerk becomes small, which implies

that there are not many choices for an integers ∈ [k/2, k]. The condition for highly probable recovery

in the weak sense,β =
(√

γ + 1
)

/2, is also shown as a black solid curve. According to the weak bound

(19), the circles above this curve correspond to dimension setups with high probability of success for

largen. The empirically evaluated probabilities validate the result even for moderate values ofn.
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B. Test Cases for RS

The RS solvers developed are numerically compared in this subsection. The setup involves a network

of k = 16 sensors collecting observation vectors of sizem = 4, and an unknown vector of sizen = 20.

Quantitiesx0, A, andb, all follow the model of the previous experiment, and the number of consistent

sensors ranges from 8 to 16.

The comparison includes: (i) the LS solution of (1); (ii) theℓ1-error regression solution of (2); (iii)

the (P1) solver; and (iv) the (P2) solver obtained after one iteration of (7). In addition, a genie-aided LS

(GA-LS) solver knowing a priori the reliable sensors,x̂GA−LS := (AT
S0
AS0

)−1AT
S0
bS0

, is implemented

to serve as a benchmark. The parameterδ in (7) is set to10−4, whereas the simulation results were

insensitive to the range of values from10−2 to 10−8.

The sensor detection probability is empirically estimatedthrough 1,000 Monte Carlo experiments. An

estimatex̂ is considered to have successfully classified the sensors whenever the residual‖bi −Aix̂‖∞
is smaller than or equal to10−4 for i ∈ S0, and larger than10−4 for i ∈ S̄0. As evidenced by Table

I(a), the LS solution fails to identify the reliable subset.In contrast, the novel (P1) scheme shows a clear

advantage over theℓ1-error regression solution, while the empirical detectionprobability further improves

for the (P2) method, even after a single iteration.

C. Test Cases for RSN

To evaluate the developed RSN solvers, the unknown vector was fixed atx0 = 1n/
√
n, while the

reliable sensors followed the modelbS0
= AS0

x0 + nS0
, with nS0

∼ N (0, σ2Ism) and knownσ. A

plausible figure of merit in this scenario is the MSE,E[‖x0 − x̂‖22], which was empirically estimated by

averaging over 1,000 Monte Carlo experiments.

Comparisons included: (i) the LS estimator; (ii) the GA-LS estimator; (iii) theℓ1-error estimator of

(2); (iv) the conventional (scalar) Huber’s M-estimator of(P3); (v) the (P1) solver; (vi) the one-iteration

solution of (P2); (vii) the (P3) solver; and (viii) the one-iteration solution of (P4). The value ofδ

parameters in (P2) and (P4) turned out to be not critical, and were set to10−4. The cutoff parameterτ

for the Huber’s M-estimator was selected as1.34σ, whereasλ in both (P3) and (P4) was set to1.34σ
√
m.

It is worth noting that the average number of iterations for the block-coordinate descent algorithm of

Subsection V-C was between 16 (for SNR= 10 dB) and 30 (for SNR= 25 dB), while its execution time

was 1,000 times lower than that of a standard SOCP solver.

In Fig. 3(a), the MSE achieved by each method is plotted versus the number of consistent sensors

s for SNR = 10 dB. The curves show that the block-sparsity ignorant LS,ℓ1, and Huber’s estimators

October 22, 2018 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING (REVISED) 22

are generally outperformed by the novel schemes. The (P1) and (P2) solvers, originally designed for the

RS task, still exhibit reasonable performance that worsensass → k. The (P3) estimator shows a slight

improvement; but its solution serves as a good initialization point for the one-iteration estimates of (P4).

Note that the derived RSN solvers combine robustness with efficiency in the absence of outliers.

To test the effect of correlated sensor measurements, the following experiment was performed. The

reliable sensors were modeled again asbS0
= AS0

x0 + nS0
, the unreliable ones asbS̄0

= nw + nS̄0

wherenw ∼ N (0, I(k−s)m), while [nT
S0

nT
S̄0
]T ∼ N (0,Σ) andΣ is a symmetric Toeplitz matrix with

first column [1 0.9 0.92 · · · 0.9km−1]T . The two RSN solvers were modified according to Remark 8.

Fig. 3(b) shows the MSE curves obtained at SNR= 10 dB. In this correlated noise setup, the superiority

of RSN solvers is even more prominent.

Correctly classifying the sensors as reliable/unreliableis critical. Once a method has completed this

classification task, the estimation ofx0 can be performed based solely on the sensors classified as reliable.

Assuming successful classification, the MSE performance ofGA-LS can be attained. The probability of

correct sensor classification was evaluated in another simulation setup that differs from the previous ones

in the following ways: problem dimensions were(n,m, k) = (80, 8, 32); the reliable sensors followed the

linear white Gaussian model at SNR= 5 dB; bS̄0
had entries independently drawn from the zero mean

Laplacian distribution with variance(σ2+1); andτ andλ parameters were set toσ andσ
√
m, respectively.

The solvers (i)-(iii) and (iv)-(v) do not provide a classification mechanism, hence, a sensor was deemed

reliable when its residualℓ2-norm was smaller than10−4. The Huber’s estimator (iv) can identify outlying

scalar measurements and a sensor was considered correctly classified when all its measurements were

correctly classified. For(P3) and (P4), the identification followed naturally from theui vectors. The

results are listed in Table I(b). The majority of methods fail to identify the reliable sensors and yield

an empirical probability close to(1 − s/k), which is the ratio of unreliable sensors. The improvement

offered by Huber’s estimator is marginal, while (P3) and in particular (P4) outperform all others.

VII. C ONCLUSIONS

Contemporary approaches to compressive sampling and variable selection in linear regression problems

exploit (block) sparsity present in the signal of interest.The fresh perspective offered in this work broadens

the scope of sparsity-exploiting algorithms to settings where model mismatch induced by unreliable

sensors or outliers gives rise to (block) sparse residuals,even when the signal of interest is not sparse.

This perspective links compressive sampling and sparse linear regression with two important problems:

(i) finding the maximum number of feasible subsystems of linear equations; and (ii) robust multivariate
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linear regression. Capitalizing on these links, robust sensing algorithms were developed to reveal unreliable

sensors and recover the signal of interest based on reliablesensors. In the absence of noise, necessary and

sufficient conditions were provided for exact recovery (identifiability). Their probabilistic characterization

showed that they hold with overwhelming probability when the regression matrix is Gaussian distributed.

In the presence of noise, the RS task was reformulated to a combinatorial problem that was subsequently

surrogated by (non-)convex costs. The two subsystem-awarerobust estimators derived can be solved

by an efficient block coordinate descent algorithm. The simulated tests demonstrated that all proposed

schemes succeed in the task for which they have been designedfor.

APPENDIX

Proof of Theorem 1:The sufficiency of the conditions in (10) is shown first. Recall from Lemma 2

that the conditions in (10) imply thatx0 is the unique minimizer of (P0). Let S denote the set of reliable

wrt x0 sensors with|S| = s > k/2 for which bS = ASx0. Vectorx0 is the unique minimizer of (P1)

too if and only if the vector(x0 − u) for any nonzerou ∈ R
n yields a strictly larger (P1) cost thanx0

does. Indeed, lettingv := Au, the cost attained by(x0 − u) is

k
∑

i=1

‖bi −Aix0 + vi‖2 =
∑

i∈S
‖bi −Aix0 + vi‖2 +

∑

i∈S̄
‖bi −Aix0 + vi‖2

(a)
=

∑

i∈S
‖vi‖2 +

∑

i∈S̄
‖bi −Aix0 + vi‖2

(b)

≥
∑

i∈S
‖vi‖2 +

∑

i∈S̄
‖bi −Aix0‖2 −

∑

i∈S̄
‖vi‖2

(c)
>

k
∑

i=1

‖bi −Aix0‖2

where equality(a) uses thatbS = ASx0, inequality(b) stems from the reverse triangle inequality, and

inequality (c) is due to the assumed conditions of the theorem, and again thefact thatbS = ASx0.

Necessity is shown by proving the contrapositive. Specifically, it must be shown that if there exists

a v ∈ range(A) and an(S, S̄) partition of I with |S| = s for which
∑

i∈S ‖vi‖2 ≤ ∑

i∈S̄ ‖vi‖2,
then there exists anx0 that attains a minimum (P0) cost ofs, but is not the unique minimizer of (P1).

Suppose thatbS := ASx0 and bS̄ := AS̄x0/2 for an (S, S̄) partition with |S| = s > k/2. Vector

x0 obviously minimizes (P0), whereasx0/2 does not since|S̄ | < |S|. Assumev := Ax0 ∈ range(A)

and
∑

i∈S ‖vi‖2 ≤ ∑

i∈S̄ ‖vi‖2. It is easy to check that the (P1) costs attained byx0/2 and x0 are

respectively
∑

i∈S ‖vi‖2/2 and
∑

i∈S̄ ‖vi‖2/2. Hence, it has been shown thatx0/2 attains a (P1) cost

not greater than that ofx0, i.e.,x0 is not the unique minimizer of (P1). This concludes the proof.
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Lemma 4 (Lipschitz continuity off(A)). The functionf(A) defined in(17) is Lipschitz continuous with

Lipschitz constant at most
√
k.

Proof: Let A, A′ ∈ R
km×n andw, w′ ∈ R

n be the minimizing arguments off(A) and f(A′),

respectively. The difference of the function at these two points is

f(A)− f(A′) =





∑

i∈S
‖Aiw‖2 −

∑

i∈S̄
‖Aiw‖2



−





∑

i∈S
‖A′

iw
′‖2 −

∑

i∈S̄
‖A′

iw
′‖2





(a)

≤





∑

i∈S
‖Aiw

′‖2 −
∑

i∈S̄
‖Aiw

′‖2



−





∑

i∈S
‖A′

iw
′‖2 −

∑

i∈S̄
‖A′

iw
′‖2





(b)

≤
∑

i∈S
‖(Ai −A′

i)w
′‖2 +

∑

i∈S̄
‖(Ai −A′

i)w
′‖2

(c)

≤ sup
‖u‖2=1

k
∑

i=1

‖Ãiu‖2

where inequality(a) holds becausew is by definition the minimizer off(A); (b) follows from the

reverse triangle inequality applied on each subset;(c) holds trivially for ‖w′‖2 = 1; andÃi := Ai−A′
i.

Now, define the function appearing in the right-hand side of the last inequality as

g(Ã) := sup
‖u‖2=1

k
∑

i=1

‖Ãiu‖2 (35)

so thatf(A)− f(A′) ≤ g(Ã). Sincef(A′)− f(A) ≤ g(−Ã) = g(Ã), it holds that|f(A)− f(A′)| ≤
g(Ã). Given thatg(0) = 0, if g(A) is Lipschitz continuous with constant at mostL, i.e., |g(A)| ≤
L‖A‖F , where‖A‖F is the Frobenius norm of matrixA, thenf(A) is also Lipschitz continuous and

its constant is at mostL. Hence, it suffices to show thatg(A) is Lipschitz continuous and its constant

is upper bounded by
√
k.

To proceed, recall first that theℓ2-norm of a vectorx ∈ R
n can be written as [6, p. 637]

‖x‖2 = sup{xTy : ‖y‖2 ≤ 1}. (36)

Using (36),g(A) can alternatively be expressed as

g(A) = sup
‖u‖2=1

sup
‖vi‖2≤1

k
∑

i=1

vT
i Aiu (37)

which is a supremum over infinitely many linear functions ofA, and as such it is convex. Recall that

if a function f : Rp → R is convex with a subgradients(x) for which ‖ supx s(x)‖2 is finite, thenf is

Lipschitz with constantL ≤ ‖ supx s(x)‖2. This claim can be proved by the definitions of the subgradient

and the Lipschitz constant. Thus, it suffices to find a subgradient of g(A) and upper bound its norm.
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If u∗ and{v∗,i}ki=1 are the maximizers ofg(A), then a subgradient is given by the matrixG(A) =
[

u∗vT
∗,1 · · · u∗vT

∗,k

]

with ‖u∗‖2 = 1 and‖v∗,i‖2 ≤ 1 for i = 1, . . . , k. The norm of this subgradient is

‖G(A)‖F =

√

√

√

√

k
∑

i=1

‖u∗vT
∗,i‖2F =

√

√

√

√

k
∑

i=1

‖u∗‖22‖v∗,i‖22 =

√

√

√

√

k
∑

i=1

‖v∗,i‖22 ≤
√
k.

The bound is independent ofA, and the proof is complete.

Lemma 5 (Expected value lower bound). For the random matrixA ∈ R
km×n with entries drawn

independently fromN (0, 1), it holds thatE [f(A)] ≥ µ with µ :=
(

2β−1√
γ − 1

)√
kn (1 + on(1)).

Proof: Consider rewritingf(A) using (36) as

f(A) = inf
‖u‖2=1

sup
‖vi‖2≤1

inf
‖zi‖2≤1

∑

i∈S
vT
i Aiu+

∑

i∈S̄
zTi Aiu. (38)

Next, introduce auxiliary random vectorsy ∈ R
n, si ∈ R

m, ti ∈ R
m for i = 1, . . . , k, andw ∈ R

having their entries drawn independently fromN (0, 1), and define the functionals

hy (u,vi, zi) :=
∑

i∈S
vT
i Aiu+

∑

i∈S̄
zTi Aiu+

√
kw (39a)

hx (u,vi, zi) :=
∑

i∈S
vT
i si +

∑

i∈S̄
zTi ti +

√
kuTy, for (39b)

‖u‖2 = 1, {‖vi‖2 ≤ 1}ki=1 and{‖zi‖2 ≤ 1}ki=1. (40)

Consider now the triplets(u,vi, zi) and(u′,v′
i, z

′
i). By using the i.i.d. property of the random variables

appearing in the functionals, it holds that

E
[

hy (u,vi, zi) hy
(

u′,v′
i, z

′
i

)]

= uTu′





∑

i∈S
vT
i v

′
i +

∑

i∈S̄
zTi z

′
i



+ k

E
[

hx (u,vi, zi)hx
(

u′,v′
i, z

′
i

)]

=
∑

i∈S
vT
i v

′
i +

∑

i∈S̄
zTi z

′
i + kuTu′

whereas the difference of the two expectations is

E
[

hy (u,vi, zi) hy
(

u′,v′
i, z

′
i

)]

−E
[

hx (u,vi, zi) hx
(

u′,v′
i, z

′
i

)]

=
(

uTu′−1
)





∑

i∈S
vT
i v

′
i +

∑

i∈S̄
zTi z

′
i − k



 .

By exploiting the properties of vectorsu, vi, andzi in (40), it follows readily that

E
[

hx (u,vi, zi) hx
(

u,v′
i, z

′
i

)]

= E
[

hy (u,vi, zi) hy
(

u,v′
i, z

′
i

)]

, (41a)

E
[

hx (u,vi, zi)hx
(

u′,v′
i, z

′
i

)]

≤ E
[

hy (u,vi, zi) hy
(

u′,v′
i, z

′
i

)]

. (41b)
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To proceed, the following lemma is needed [16, Cor. 10].

Lemma 6 ([16]). Let {Xijk} and {Yijk} be two zero-mean Gaussian processes indexed by(i, j, k) for

i = 1, . . . , n, j = 1, . . . ,m, andk = 1, . . . , p, which satisfy the following conditions:

(c1) E

[

X2
ijk

]

= E

[

Y 2
ijk

]

for all (i, j, k).

(c2) For any two tripletsα = (i, j, k) and α′ = (i′, j′, k′), E [XαXα′ ] ≥ E [YαYα′ ] if i = i′ and

j 6= j′, andE [XαXα′ ] ≤ E [YαYα′ ] in all other cases.

Under (c1) and (c2), it holds that

E

[

max
i

min
j

max
k

Xijk

]

≥ E

[

max
i

min
j

max
k

Yijk

]

. (42)

Even though the indexes(i, j, k) are denumerable, by using the compactness argument of [25, Pr. 1],

the comparison in (42) extends to minimizations/maximizations over compact sets as well. Mapping the

Xijk (Yijk) variables of Lemma 6 to−hx(u,vi, zi) (−hy(u,vi, zi)), it can be verified that the conditions

of the lemma are met (cf. (41)), and upon using (42) deduce that

E

[

sup
‖u‖2=1

inf
‖zi‖2≤1

sup
‖vi‖2≤1

−hx (u,vi, zi)

]

≥ E

[

sup
‖u‖2=1

inf
‖zi‖2≤1

sup
‖vi‖2≤1

−hy (u,vi, zi)

]

.

Given thatsupx−f(x) = − infx f(x), the previous inequality is equivalent to

E

[

inf
‖u‖2=1

inf
‖zi‖2≤1

sup
‖vi‖2≤1

hx (u,vi, zi)

]

≤ E

[

inf
‖u‖2=1

inf
‖zi‖2≤1

sup
‖vi‖2≤1

hy (u,vi, zi)

]

.

But since the random variablew in (39a) is zero mean, the right-hand side of the last inequality is equal

to the desired expected value,E [f (A)]. Thus, it has been established that

E [f (A)] ≥ E

[

inf
‖u‖2=1

inf
‖zi‖2≤1

sup
‖vi‖2≤1

hx (u,vi, zi)

]

.

Using the definition ofhx (u,vi, zi) and exploiting the separability of the optimization, as well as the

properties in (40), one arrives at

E [f (A)] ≥ sE [‖si‖2]− (k − s)E [‖ti‖2]−
√
kE [‖y‖2] . (43)

Recall that ifx ∼ N (0n, In), then‖x‖2 is chi-distributed withn degrees of freedom, and mean value

E [‖x‖2] =
√
2π

B
(

n
2 ,

1
2

) (44)

whereB (·, ·) denotes the Beta function. Applying (44) three times in (43)yields

E [f (A)] ≥ µ = (2s − k)

√
2π

B
(

m
2 ,

1
2

) −
√
k

√
2π

B
(

n
2 ,

1
2

) .
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Using the standard approximation
√
2π

B(n

2
, 1
2)

=
√
n
(

1 + on(1)
)

[1, Formulas 6.1.46 and 6.2.2], and for

fixed γ = n/(km) andk, it also holds that
√
2π

B(m

2
, 1
2)

=
√
n/

√
γk

(

1 + on(1)
)

. Thus, the boundµ can be

compactly expressed asµ =
(

2β−1√
γ − 1

)√
kn (1 + on(1)), which concludes the proof.
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Fig. 1. A wireless sensor network linked with a fusion center. (Un)reliable sensors are color coded as (red) green.

TABLE I

EMPIRICAL PROBABILITY OF SUCCESSFUL SENSOR CLASSIFICATION(%).

(a) RS task with(n,m, k) = (20, 4, 16).

Number of consistent sensors s

Method 8 10 12 14 16

GA-LS 100.0 100.0 100.0 100.0 100.0

LS 50.0 37.5 25.0 12.5 100.0

l1 51.4 46.3 94.6 100.0 100.0

P1 53.5 67.4 99.6 100.0 100.0

P2(1) 81.5 99.3 100.0 100.0 100.0

(b) RSN task with(n,m, k) = (80, 8, 32).

Number of consistent sensors s

Method 16 20 24 28 32

GA-LS 50.0 37.5 25.0 12.5 0.0

LS 50.0 37.5 25.0 12.5 0.0

l1 50.0 37.5 25.0 12.5 0.0

Huber’s 53.2 43.9 36.0 27.9 20.1

P1 50.1 37.6 25.1 12.6 0.1

P2(1) 55.0 44.1 31.8 18.5 5.3

P3 68.7 73.9 79.6 83.5 84.4

P4(1) 72.6 82.8 90.7 96.1 99.1
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(a) n = 40, m = 20.
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(b) n = 40, m = 10.
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(c) n = 20, m = 10.
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(d) n = 20, m = 2.

Fig. 2. Empirical probability of success for (P1) and the weak bound of (19) (solid black line). Empty circlescorrespond to

quadruplets(n,m, k, s) with perfect empirical recovery and solid black circles to problem setups having failed in all experiments.
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(a) White noise.

10 11 12 13 14 15 16
10

−3

10
−2

10
−1

10
0

Number of Consistent Sensors, s

M
S

E

 

 
GA−LS
LS
L1
Huber
P1
P2(1)
P3
P4(1)

(b) Colored noise.

Fig. 3. MSE performance for RSN with (n,m, k) = (20, 4, 16).
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