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Abstract—We describe a new algorithm, termed subspace evo- can be accomplished in polynomial time by using semi-
lution and transfer (SET), for solving low-rank matrix comp letion  definite programming, singular value thresholding (SVT]) [3

problems. The algorithm takes as its input a subset of entrie of - yathods adapted from robust principal component arglysi
a low-rank matrix, and outputs one low-rank matrix consistent

with the given observations. The completion task is accomjzhed (4. . . .
by searching for a column space on the Grassmann manifold ~ Several low-complexity alternatives to nuclear norm min-
that matches the incomplete observations. The SET algoritn  imization have been proposed so far. Realizing the intimate

consists of two parts — subspace evolution and subspace tisfer.  relationship between compressive sensing and low-rankxmat
In the evolution part, we use a gradient descent method on completion, a few approaches for low-rank completion can

the Grassmann manifold to refine our estimate of the column be Vi d lizati f h f . .
space. Since the gradient descent algorithm is not guararged € VIEWEU as generalization of th0S€ lor COmpressive sgnsin

to converge, due to the existence of barriers along the sedrc reconstruction. In particular, the ADMIRA algorithrn! [5] &
path, we design a new mechanism for detecting barriers and counterpart of the subspace pursuit (SP) [6] and CoSaMP [7]

transferring the estimated column space across the barries.  algorithms, while the singular value projection (SVP) noeth
This mechanism constitutes the core of the transfer step of g} axtends the iterative hard thresholding (IHT) [9] apach.
the algorithm. The SE'_I' algorithm exhlblt_s excellent_emplrcal There are other approaches that rely more on the specific
performance for both high and low sampling rate regimes. i oK
structures of the low-rank matrices. The power factorizati
algorithm described in_[10] takes an alternating optimarat
approach. In the OptSpace algorithm describedlin [11], a
simultaneous optimization on both column and row spaces is
|. INTRODUCTION employed.

Suppose that we observe a subset of entries of a matrix. ThéNe address a more general class of problems in low-

matrix completion problem asks when and how the matrix céﬁnk matrix completion -consistent completion. Consistent

be recovered based on the observed entries. In genereﬂethiscompletion extends the previous completion framework in

construction task is ill-posed and computationally intadde. that it does not require the existence of a unique solution

However, if the data matrix is known to have low-rank, exaé? the problem. This extension seems questionable at first

recovery can be accomplished in an efficient manner Wi%ance '_tm hlgrlllyunder;ampie_d ob;erslatlcinhr;ar?|mebs, thetr_e
high probability, provided that sufficiently many entriee a may exist many fow-rank matrices that match the observation

revealed. Low-rank matrix completion problems have rardeivKl Wh'fr? lmaketi the f|r_1atl rtesult hla\g_e less %r_actwalll valufe.
considerable interests due to their wide applicationsgiran .devetzl; 1eless, the consis enblcomp e.tﬁn {oarg |gm a (MS,[
from collaborative filtering (the NETFLIX challenge) to sem identifying convergence problems with standard compietio

network tomography. For an overview of these application?,Chn'ques’ _and I does_ hot require any additional straptur
the reader is referred t61[1]. on the matrix, such as incoherence. Furthermore, as will be

An efficient way to solve the completion problem is Viéshown in the subsequent exposition, when confronted with

convex relaxation. Instead of looking at rank—restricteti-mve.lryt sparzely sampletlj tmatrtlcﬁl methl;)lds kn(;)wn tso t];]ar fact
trices, one can search for a matrix with minimum nucleﬂ 0 produce any solution to the probiem, despite the fac

Index Terms—Grassmann manifold, linear subspace, matrix
completion, non-convex optimization.

norm, subject to data consistency constraints. Although at r:ngr\%_ e>c()|stt.SF|naIIy, zve?h n ttheh s.amphnr? regime fglr
general nuclear norm minimization is not equivalent to rank /¢ » Optopace and ofher techniques have: provable,
minimization, the former approach recovers the same sojytiMque reconstruction perfor_mange guarantees, t_he densis
as the latter if the data matrix satisfies certain incohe&en%omplet'on technique described in this contribution ex&ib

conditions [[2]. More importantly, nuclear norm minimizati significantly better re;ults. . .
- To solve the consistent matrix completion problem, we
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role in the algorithm. However, there may exist “barriersA. Why optimizing over column spaces only?

along the search path that prevent subspace evolution fromy, thjs section, we show that the probléiR0) is equivalent
converging to a global optimum. To address this problem, {g finding a column space consistent with the observations.
the subspace transfer part, we design mechanisms to detegiy; Uy, . be the set ofn x r matrices withr orthonormal
and cross barriers. The SET algorithm improves the recovelyjymns, i.e.l4,, , = {UeRr™": UTU = I} . Define a

performance not only in high sampling rate regime but al$gnction
in low sampling rate regime where there may exist many

low-rank solutions. Empirical simulations demonstrate th JiUnr—R
excellent performance of the proposed algorithm. F(U)+— min HXQ —Pg (UWT) HQ )
The SET algorithm employs a similar approach as that of the WeRnxr B

OptSpace algorithmi [11] in terms of using optimization ov&fhere |||, denotes the Frobenius norm. The functign
Grassmann manifolds. Still, the SET approach substantiaiaptures the consistency between the mdtfiand the obser-
differs from the method supporting OptSpacel[11]. SeaghiRations X, : if f (U) = 0, then there exists a matri¥” such
over only one space (column or row space) represents Qg the rank- matrix UW?” satisfiesPo (UWT) = Xo.

of the most significant differences: in OptSpace, one searcience, the consistent matrix completion problem is eqaival
both column and row spaces simultaneously, which introducgs

numerical and analytical difficulties. Moreover, when apt- _
ing over the column space, one has to take care of “barriers” (P1):find U € Uy, such thatf (U) = 0. 3)

that prevent the search procedure from converging to a globaAn important property of the objective functighis that f

optimum, an issue that was not addressed before since it wag, -2t under rotations. More precisef(U) = f (UV)

obscured by simultaneous column and row space searcheg,, anyr-by-r orthogonal matrix’ € I,.,.. This can be easily

The paper is organized as follows. In Secfidn Il we introduce, ... T T )
the consistent low-rank completion problem, and desctilee tve”fled’ asUW® = (UV)(WV) . Hence, the function

terminology used throughout the paper. In Sect@h Il depends only on the subspace spanned by the columns of

outline the steps of the SET algorithm. Simulation resules aof’tr:.sl%otrr:rftjsaiglj]i)é mosﬁetzﬁtezﬂlsz(l;lsrgzse (S)f ét[}e) r_r;_atenx
presented in Sectidn]V. All proofs are listed in the Appendi P pett).

: consistent matrix completion problem essentially reduces
sections.

finding a column space consistent with the observed entries.
Il. CONSISTENTMATRIX COMPLETION Note that instead of identifying the column space in whiah th
Let X € R™*™ pe an unknown matrix with rank < observations lie, one can also use the row space instead. All
min (m,n), and letQ C [m] x [n] be the set of indices of results and the problem formulation remain valid in thisecas

the observed entries, whef&] = {1,2,.-- , K}. Define the well. Which space to search over will depend on the dimension
projection operatoPq by of the matrix, and the particular sampling pattern (which
P i RMX _y RmXn determines the density of rows and columns of the matrix).

_ In addition, one can run in parallel two search procedures -
Po(X) = Xq, where (Xo), . — X;,; if (i,j) €2 one on the column space, the other on the row space. Here, we
¢ @ Wirg 0 if (i,7) ¢ Q  only focus on the simplest scenario, and restrict our atent

The consistent matrix completion problem is to findone rank+ to column spaces.

matrix X' that is consistent with the observatioXs,, i.e.,

(P0) : find a X’ such that We find the following definit l for th i
p , e find the following definitions useful for the exposition
rank(X’) < randPe (X7) =Po (X) = Xo. (1) 0w, The Grassmann manifold,, . is the set of allr-
This problem is well defined as all our instances X, dimensional linear subspaces (hyperplanes through tgepri
are generated from matriceX with rank » and therefore inR",i.e.,G,,, = {spanU) : U € U, }. Given a subspace
there must exist at least one solution. Here, like in othey < G, .., one can always find a matri{ € U,,, .., such that
approaches [5]/[10] [11], we assume that the ramkgiven. % = spanU). The matrixU is referred to as a generator
In practice, one may try to sequentially guess a rank bounthtrix of % and the columns ol are often referred to as

B. Grassmann manifolds and geodesics

until a satis_factory solution has been fo_unq. an orthonormal basis of/. Since spafU) = spanUV)
We also introduce the (standard) projection operd@pr for all V € U, ,, it is clear that the generator matrix for a
P R™ x R™Xk _y R™ given subspace is not unique. Nevertheless, a given matrix

U € U, uniquely defines a subspace. For this reason, we
P(z,U) —y=UU'z, henceforth usgf tg represent its inéouced subspace.

wherel < k < m, and where the superscript denotes  To search for a consistent column space, we use a gradient
the pseudoinverse of a matrix. That iB,(x,U) gives the descent method on the Grassmann manifold. For this purpose,
projection of the vector: on the hyperplane spanned by theve introduce the notion of a geodesic curve in the Grassmann
matrix U, i.e., spafU). It should be observed thd&f Tz is manifold. Roughly speaking, a geodesic curve is an analogue
the global minimizer of the quadratic optimization problenof a straight line in an Euclidean space: given two points on

mingcpr || — Uw||2F. the manifold, the geodesic curve connecting them is the path



of the shortest length in the manifold. Lit (¢) be a geodesic is to identify whether there exist barriers along the gratie
curve (parametrized by € R) in the Grassmann manifold. descent path. Detecting barriers is in general a very difficu
Denote the starting point of this geodesic curveldy0) = task, since one obviously does not know the locations ofajlob
U € Uy, and the direction b)U (0) = H € R™". Let minima. Nevertheless, we observe that barriers can betddtec
H = Uy Sy VYL be the compact singular value decompositioby the existence of atomic functions with inconsistent dasc

of H, and letsy, --- , s, denote the singular values & in directions. Such an inconsistence can be seen as an indicato
descending order. Then the corresponding geodesic curvdoisthe existence of a barrier. When a barrier is expectesl, th
given by [12] algorithm “transfers” the current point of the line seardte-,
cos St its corresponding space - to the other side of the barriet, an
U (t) = [UVy,Ug] { sin St } Vi, (4) proceeds with the search from that point. Such a transfes doe
St not overshoot global minima as we enforce consistency of the
wherecos St € R™" andsin St € R™*" arer x r diagonal steepest descent directions at the points before and atter t
matrices with diagonal entriesos (s1t),---,cos(s,t) and transfer. The details of barrier detection and subspacsfEa
sin (s1t),- -+ ,sin (s,t), respectively. are presented in Sectiohs IM-C, 1MD, TME, abd 11I-F.
When H has rank one, i.e.so = s3 = --- = s, = 0, The major steps of the SET algorithm are given in Algo-
the equation for the geodesic curve has a particularly @mplthm[l. Here, we introduce an error tolerance parameter
form. In this case, letu;,---,u, be the columns of the 0. The stopping criterion is given byXq — Pq (X’)H% <

matrix UVy [l Let h € U1 be the left singular vector of ¢, ||XQ||2F where X’ denotes the estimated low-rank matrix.
H corresponding to the largest singular value. After a change our simulations, we set. = 10-%. The SET algorithm

of variables, the geodesic curve can be writtdh as described below only searches for an optimal column space,
represented b¥/. Other modifications are possible, as already
pointed out. For example, to speed up the process, one
Here, the range of values for the parametés restricted to May alternatively optimize ovet/ and V' (representing the

[0, 7), since column and row spaces, respectively). These extensions are

not described in the manuscript.

U (t) = [uicost + hsint,ug, -+ ,u,|, te€[0,m). (5)

spanU (t + m)) = span[—u; cost — hsint, ug,- -+ ,u,])
=spanU (1)), Algorithm 1 The SET algorithm

Input: Xq, Q, r ande..
Output: X'.
Initialization : Randomly generate & < U,,, ,.
Steps Execute the following steps iteratively:

1) Perform subspace transfer algorithm described in Algo-
A. The SET algorithm: a high level description rithm 3.

Our algorithm aims to minimize the objective function 2) Perform subspace evolution algorithm described in Al-
f(U). The basic component is a gradient search approach: gorithm[2.
for a given estimatd/, we search in the gradient descent 3) According to [2) find the optimalW;; and setX’ =

and therefore spaiV (t)) is a periodic function with period
.

IIl. THE SET ALGORITHM - A TWO STEP PROCEDURE

direction for a minimizer. This part of the algorithm is refed UWy. If | Xq — Pa (X’)||§7 < € ||XQ|\2F, output X’
to as “subspace evolution”. The details are presented itiddec and quit. Otherwise, go to Step 1).
[-Bl

The main difficulty that arises during the gradient descent
search, and makes the SET algorithm highly non-trivial, is .
when one encounters “barriers”. Careful inspection rextiedt B Subspace evolution
the objective functionf can be decomposed into a sum of For the optimization problem at hand, we refine the current
atomic functions, each of which involves only one column afolumn space estimat®&/ using a gradient descent method.
Xq (see Sectioh ITI-C for details). Along the gradient descefor a givenU € U,y, ,, it is straightforward to solve the least
path, the individual atomic functions may imply differensquare problem
search directions: some of the functions may decrease and . 9
some others may increase in the same direction. The in@ease wiin (| X —Po (UW)]F- ©6)
of some atomic functions may result in “bumps” in tife
curve, which block the search procedure from reaching
global optima and are therefore referred tobasriers. The
main component of the “transfer” part of the SET algorith

Denote the optimal solution byy. Let X, = Xqg —
ﬁag (UWy) be the residual matrix. Then the gradﬁaof f
rﬁlt U is given by

. o Vuf =—2X,W{. (7)
Note that spaiiU) = span(U V). The starting point (in the Grassmann

manifold) does not change. The proof of this claim is given in Appendix]A. The gradient

2Again, although the matriJ () in (B) and the matrixdJ () in @) may . . . . L -
be different, both matrices generate the same hyperplarieeirtGrassmann Vu f gives the direction along which the objectlve functlf)n

manifold G, . Therefore, Equation§§4) anldl (5) describe the same geondesi
curve. 3The gradient is well defined almost everywheredp, .



increases the fastest. In classical gradient descent oethd\lgorithm 2 Subspace evolution.

the search path direction is opposite to the gradient, i.&nput: Xo, Q, U, anditN.

—Vuf. In order to make the search step more suitable f@utput: t* andU (t*).

the transfer step, we choose the search direction as fallowstialization : Compute the gradient and the search direction
Consider the singular value decomposition of the maftixf. according to[(l7) and{8) respectively. The geodesic clif\e)

Let h € U1 andv € U,.; be the left and right singular along the search direction can be computed Mia (5).

vectors corresponding to the largest singular valu&effd  Step A find tax < 7 such thatt* € [0, £max]

Then the search direction is defined as Let t' = em.
1) Lett’" =co-t'. If t” > m, thent., = 7. Quit Step A.
H = —hov". (8)  2) If f(U(t") > f(U (), thenty., = t". Quit Step A.

3) Otherwiset’ =t"”. Go back to step 1).

It can be easily verified that ¥y f # 0 then (H, Vu f) =  step B numerically search fot* in [0, £ax-
trace(H"Vy f) < 0, and therefore the objective functiong et ¢, = ... /c2, ts = tmax/C2, t1 = tmax, andts = t; +
decreases along the direction @i. The geodesic curve ., (z, —¢,). Letitn = 1. Perform the following iterations.
starting fromU and pointing alongld can be computed via D If f(U () > f(U () > f (U (t3)), thent, = to,
@ . . . to = t3, andtz = t; + ¢ (t4 — t1).

The subspace evolution part is designed to search for ®) Else,t, = t3, t3 = t» andts = t; + (1—c1) (ts —t1).
“neighboring minimizer” of the functiorf along the geodesic 3) itn = itn + 1. If itn > tN, quit the iterations.

Eurvlt_a(.]I It is an alr;alogut(_e of the Iinte seatrch p_rc;ce?:!r;e N " Otherwise, go back to step 1).

uclidean space. Its continuous counterpart consists gfimgo . . .
the estimatel/ continuously along the directioi until the Lett” = t:{rt%?l,g}f (U 1)) and computdy (1)
objective function stops decreasing. For computer siruriat
one has to discretize the continuous counterpart. Our kmple

mentation includes two steps. Let denote the neighboring gefined by
minimizer along the geodesic curve. The goal of the first

step is to identify an upper bound an, denoted byt .. Paq, : R™ - R™
Since f (t) is periodic with periodr, ¢.,.x iS upper bounded .

by 7. The second step is devoted to locating the minimizer Po; (v) = vq,, where (v, ), = {O T
t* € [0,tmax] accurately by iteratively applying the golden ) 9
section rule[[1B]. These two steps are described in Algarith ©)
[2. The constants are set to= 107%, ¢; = (v/5—1)/2, Then the objective functiorf (u ()) can be written as a sum
ca = c1/ (1 —¢1) anditN = 10. Note that our discretized of »n atomic functions:

implementation is not optimized with respect to its contins . 2

counterpart, but is sufficiently accurate in practice. FU®) = Wrélﬂgrlx" X =Pa (U ®W)lx

n

zq, — P, (U () W,)|5, (10)

= mirﬁQ
3 W.;eR"
C. Subspace transfer =1

i U®)

Unfortunately, the objective functiorf (U) is typically where W, is the j* column of the matrixW. This de-

not a convex function ofU. The described linear search . L . L S
L coupling principle can be easily verified by the additivity o
procedure may not converge to a global minimum because . . :
u . e squared Frobenius norm. A formal proof is presented in
the search path may be blocked by what we call “barriers;. :
A&/p:/endlx[B.

In subsequent subsections, we show how “barriers” arise'i . . . .
e study atomic functions along the geodesic curve in a

matrix completion problems and how to overcome the prObIellgnk-one direction[{5) and summarize their typical behavio

mtrodu_ced py barriers. . ) .__.in the following proposition.
At this point, we formally introduce the decoupling princi- Proposition 1; Let U (¢) be of the form in [(5). Given a

ple. This_principle is_essen_tial _in understandi_ng _the b_m'avvectorw € R™ and an index sef2 C [m], consider the
of the objective function. It implies that the objective &tion ¢, tion

f (U (t)) can be decoupled into a sum of atomic functions, )
each of which is relatively simple to analyze. Specificaihe Jzo (U (1)) = nin lza —Pa (U (t) w)|% - (11)
objective functionf (U (t)) is the squared Frobenius norm _ X )
of the residue matrix; it can be decomposed into a sum Lpen either one of the fOIIOW'r.'g two claims hOId_S'
the squared Frobenius norms of the residue columns. Letl) The functionfs o (U (#)) is a constant function.
zq, € R™*! be thej™ column of the matrixXq. Let P, 2) The functionf o (U (1)) is periodic, with periodr. It
be the projection operator corresponding to jt# column, has a unique minimizety,, € [0,7), and a unique
maximizer,tyax € [0, 7).
4with probability one, the largest singular value is styicfiositive and The proof is given ir_‘ AppendiK_D and the CompUtations of
distinct from other singular values. tmin aNdt,.x are detailed in Sectidn IIIF.



D. Barrier - an illustration

We use the following example to illustrate the concept of
a barrier. Consider an incomplete observation of a rank-one
matrix

Us

1

1
?

3

?
3

[NCREEVEN )

where question marks denote that the corresponding entries
are unknown. It is clear that the objective functigU (¢))

is minimized byUx = % [1,1,1)" i.e., f (Ux) = 0 and the

recovered matrix equalX = [1,1,1]" - [3,2,1]. Let us study
one of the atomic functions, saf (U). For anyU € Us ;
of the form [VI = 2¢2,¢,¢]” with e € [-1/v/2,1/v2] \ {0},

one has

U,

2

0 0
fl(U):geiﬁ g — | e |w|| =0.
¢ F (a) Contours off;.
Similarly, For anyU of the form [v1 — 262,6,—6]T with
e € [-1/v2,1/v2], one has Us
0 0 ?
fi1 (U) = min 3| -] € |w| =18.
weR 3 p . fi=18 ,fl =0

As a result, ,"

f(U) =0, if Uy=U;#0; Line search paths 7

fl (U) = 18, if U2 = —U3. .~/’ U2
This gives us the two contours depicted in Figl 1a (projected ’,"
on the plane spanned by, and Us, the second and the R
third entries of the vectotV respectively). Suppos:(Fe that one e
starts with the initial gues# (0) = ﬁ [~10,1,1]". Then xa
FU0) =2 fi(U(0) < 0+8+2 = 10. On the ‘U
other hand, for anyU in the preimage off; (U) = 18, (b) Search paths with zooming in.

one hasf (U) > 18 > 10 > f(U (0)). As a result, any
gradient descent method (continuous version) can not tead t
estimateU (t) to cross the contofU : f; (U) = 18}. That

IS, thedcontoAurf1 =18 fofrr?s a Ibgrrler folr t?ﬁ L'?ﬁ SeS.mht.global minimizer. That is, in a small neighborhood of a glioba
procedure. A more careiul analysis reveals that e OMEClinimizer, the atomic functions should be “consistentrh

. . . . - T
fur:ctlo_n f IS n(l)tt(_:ontmuous ?E[;hte ponﬁ(l;__ 'Eloi 0,0] néOur should exist a small > 0 such that when current estimatté
extensive simulations suggest that a gradient desce pvoe is e-close to the global minimizet/x, there is no atomic
is typically trapped towards these singular points. See[Hig function reaching its maximum value along the path from

for an illustration of this phenomenon. current estimatd/ to the global minimizetlUx. Following
this intuition, we have the following definition of barriers
E. Barrier Detection and Subspace Transfer Consider the geodesic path [d (5) starting frém pointing in

We describe a heuristic procedure for detecting barrieds atfie directionH. Denote the unique minimizer and maximizer
transferring the current estimaké from one side of a barrier Of the k" atomic function byt .in x @ndtmax,x (for constant
to the other side. atomic functions, we Setpint = tmaxk = 0). Refer to

The intuition behind barrier detection is as follows. Récafhe atomic functions that decrease in the directiontbfas
that every atomic function is periodic and has a unique miﬁonsistent atomiC funCtionS. We Sa.y that the maximizel‘ ef th
imizer and maximizer in one period. In the gradient desceht" atomic function forms a barrier if
direction, some atomic function increase while some othersl) In the H direction, there exists a consistent atomic
decrease. On the other hand, in the matrix completion pnoble function, say thej'* atomic function, such that the
the objective function reaches zero at a global minimizarsT maximizer of thek*" atomic function appears before the
implies that each atomic function reaches its minimum at a  minimizer of the;j** atomic function. That is, there ex-

Figure 1: An illustrative example for barriers.



istsj € [n] such thal < tmaxk < tmin; < tmax,; < 7. hyperplane spafUg (t)). Note thatxq . (¢) is a function of

2) The gradients of at U (0) andU (tmax k) are consis- uzq,- - , Ur.q.
tent (form a sharp angle), i.e% f (U (t)) [i=t,..... <0.  We would like to understand how,, (t) changes with
In Appendix[Q, we describe how to decide whethes. Note thatus o, - - ,u,q do not change witht. We shall
L (U (1)) lt=tmn <O find an expression okq,, () that does not directly include
Moreover, we say that th¢" column of X, admits barriers w2, -+ ,u,q. For this purpose, let
if there exists ak € [n] such that the maximizer of the'"
atomic function forms a barrier anghax i < tmin,j < tmax,;- x, = xg — P (xq, [ugq, - ,ural),
Once barriers are detected, we trandter To avoid over- u, =u1.0 — P(urg,[usq, - ,urq]), and
shooting, the transfer destination should leeclose” to the he = ho — P (ho, [us.a, - urq)) .

barrier. Ase — 0, the transfer destination is on the barrier
(U (tmax,x) for somek). In our implementation, we focus on et

the “closest” barriers tdJ. Define .
u, (t) = u, cost + h, sint.

J = {j: thej* column of Xq admits barriers, (12)
According to Propositiof]l3 in Appendix]D, we have
J* = argmin ¢y ;, and (13)

JET o, (t) = iL'/T -P (w/ra U (t)) .

k" = arg max {tmax,x : the maximizer of the:"" atomic  Note thatw, (¢) has a simpler form compared @ (), and
is therefore easier to analyze.

According to Proposition[]1, the functiorfz o (t) =
|z, (t)]]* is either a constant function or a periodic function
We transfer our current estimatid (0) to U (tmax i+ )- with a unique maximizer and minimizer in one periad

The subspace transfer part is a combination of barrier d&%e are interested in computing the unique maximizer and
tection and column space transfer. It is described in Atgori  minimizer, denoted by, andt.;, respectively, when the
B function is not constant. Apply Propositiéh 2 in Appendik D,
the following procedure generates the values,gf. andt,,i,.

1) Check whether

a) the vectorau, andh,. are linearlydependent, or
b) the vectorz,. is orthogonal to boths, andh,..

function forms a barrier antl,ax,x < tmin,j* } -
(14)

Algorithm 3 Subspace transfer
Input: Xq, ©, andU.
Output: ttran andU (ttran).

Steps
1) Computetyay; andtmin ; for each columny. If either of the above two properties holds, thgna (¢)
2) Check whether there exist barriers. is a constant function. Seét.i, = tmax = 0 and quit the
a) Findj* andk* according to[(13) and(14), respec- procedure.
ti 2) Let
ively.
b) _Let tiran = tmax k= @and computdy (i) accord- c— { €1 } _ [ur,hr]T .,
ing to (8). C2

3) If no barrier is detected (the set in (I2) is empty),

where the superscrigt as before, denotes the pseudoin-
then ttran =0andU (ttran) =U. P wt P

verse. Define a mapping

atan: R xR — [0,7)

F. Computation of #min and tmax m/2
if Ty = O,

The subspace transfer part of the SET algorithm relies
tan~! (Il/IQ)

on the minimizers and maximizers of atomic functions. This

T1,T2) — .

subsection presents the details for computing these eatsem (@1,22) if zo # 0 andzy/xze > 0,

Let U (¢t) be of the form in[(5). Also, le©2 C [m] be an T —tan ! (=1 /xs)
index set. Define if 22 # 0 anda; /22 < 0.

Uq (t) = [Pa (w1 cost + hsint), Pq (us2), -+, Pao (u,)] (15)

= [u1,gcost + hgsint,us g, -, urq). Then
For a given vectorc € R™, denotePq, (z) by xq. Define tmax = atan(ca, c1) .
zo,r (1) = zo =P (2, Ua (1)) 3) The minimizert,,;, is computed via

The above expression simply specifies the projection residu . T
vector of xn, where the projection is performed on the tmin :ata”(mr Uy, =T, hr)-



1V. PERFORMANCEEVALUATION 9-by-9 matrices, # of realizations=200

o A -

We tested the SET algorithm by randomly generating lov 09t 8
rank matricesX and index set$2. Specifically, we decom- osl
posed the matrixX into X = UxSxVy, whereUx € ' %
Umr» Vx € Uy, andSx € R™*". We generated/x and E 0.71 .
Vx from the isotropic distribution on the s&t,, ., andi,, ., § o6l B XX ]
respectively. The entries of thi®x matrix were independently 3 E ;"
drawn from the standard Gaussian distributigi(0, 1). This £05f * Py ]
step is important in order to guarantee randomness in g oaf "-,/ 3 :
singular values ofX. The index setQ2 is also randomly EOB’ P ‘x\\" , |
generated according to a uniform distribution over the s “ 5’“"

{¥ C[m] x [n]: |Q] =k}, for some constant. 0.2y xxxx—_’:gg Z;S 1

The performance of the SET algorithm is excellent, whe 01f e SE(nO transfer step): rank=1 1
compared to the performance of other low-rank completic o ‘ % SE(no transfer step): rank=2
methods. We tested different matrices with different rani 0 0.2 0.4 0.6 0.8 1

Sample Rate

and different sampling rates, defined |85 / (m x n). Fig.[2
illustrates the performance improvement due to the Sumpﬁgure 2: Performance improvement due to the subspace
transfer step. Significant gain is observed by integrath®y t o «fer step.

subspace evolution and subspace transfer steps_JFig. 3show

the performance of the SET algorithm for several choices of

matrix sizes and ranks. We also compare the SET algoritt 50-by-50 matrices, # of realizations=200

to other matrix completion algorithﬁsAs shown in Figure
[4, the SET algorithm outperforms all other tested comptetic
approaches. One unique property of the SET algorithm is tt
it works well in both high sampling rate and low sampling rat
regimes: in the high sampling rate regime, the SET algorith
finds the unique low-rank solution; in the low sampling rat
regime, it finds one of the possibly multiple low-rank sabuis.
Also note that there exists a region of sampling rates foctvhi
the SET algorithm (actually all tested algorithms) extsbit
poor performance: the width and critical density of thisioeg
depends on the matrix dimension and rank, and this regic

Exact Reconstruction Rate

moves to the right as the rank increases. 02r o St
Finally, we would like to comment on the complexity of 01f —— SET: rank=3 1

the SET algorithm. The computational complexity is relate NN A'S ‘ [ TN SETrank=

to the number of iterations required for convergence. Since 0 0.2 0.45ample ratl” 08 1

incorporates a gradient descent part, the SET algoritheritsh

the general disadvantages of a gradient descent apprdexch: t Figure 3: Performance of the SET algorithm.

algorithm may take a large number of iterations to converge;
within each iteration, finding the optimal step size can be
time consuming. Furthermore, extra computations are requi
for the subspace transfer step. At the current stage, we
not have an accurate analytical estimate of the computdtion
complexity.

tge trace function:
0

f=(Pa(Xq—-UWy),Po(Xq—-UWy))

9D (X —UWy, PG (Pa (X — UWy)))

b
APPENDIX = (X —UWy,Pq (Xq-UWy)),

= trace((X — UWU)T Pa (XQ — UWU))

—

—~
=

A. Proof of the form of the gradient in (7)

Let Fy be them x r matrix of partial derivatives, i.e., where the symboP¢, in (a) denotes the adjoint operator of
(FU)M = 0f/0U; ;. We first write the objective function via Pq. Equation(a) follows from the definition of the adjoint
- operator, and equatiofb) holds because the operatBy, is

I . self-adjoint and idempotent. Note that
5Though the SVT algorithm is not designed to solve the problEf), we

include it for completeness. In the standard SVT algorittitare is no explicit

colz]strr?intbon the +l;ank of thsecc_)nsxrutf:tert]i matrix. For fa(ijr compariso(rj], vr\:e y af af n Z af 0 (WU)k,f
take the best rank-approximation of the reconstructed matrix, and checl = .
whether it satisfies the performance criterion. Ui i, Wu ke 9 (WU)/M U U,



This proves equatioi (10).

C. Determination of Consistency

LetG = Vufly boner) be the gradient of atU (tmax,k)-
It can be computed vial7). Consider the geodesic curvd in (5)
Define

H (t) = [-uysint + hcost,0,---,0] fort € [0,7).

It can be shown thaH (tmax k) IS the parallel transportation
of H attax 1 (Seel[12, pg. 19] for more details). Based on the
definition of the gradient, it can be shown thHatf (U (¢)) < 0

Exact Reconstruction Rate

—O— SET

0.2} —B—sSvT {1 if and only if
Power Factorization T
01l —— ADMiRA 1 (G, H (tmax,k)) = G" H (tmax.k) < 0.
A OptSpace
0y MR P a8 aaa8aaan
0 0.2 0.4 0.6 0.8 1

Sample Rate . D. Proof of Proposition

This subsection presents the proof of Proposifion 1 and the
mechanism in Sectidn IIl}F for computirtg,., andt,,. We
first study the case = 1 and then extend the results to the

Since Wy, is the solution of the least square problem[ih (Gﬂeneral case where> 1. )
we have In the rank-one case, the geodesic curve has the

Figure 4: Performance comparison.

form U (t) = wcost + hsint, with ¢ € [0,7). For
of —0. foralll<k<randl </ <n. some Q C [m], an atomic function can be written as
o(Wu),., U ’ o o |z — P (xq, uq cost + hg sint)|?, where ug = Pq (u)
Therefore and hq = Pq (h). Note thatug may not be of unit norm.
’ For notational convenience, we drop the subscfiptThe
Frr = 9/ — of following proposition describes the general behavior of an
U . .
U U |y, atomic function.
= —2Pq (Xq — UWYy) WUT = —2XTW{,F. Proposition 2: Let y,u1, us € R™. Suppose that

According to [12, pg. 20], the corresponding tangent vector 1) The vectorsu; andu; are linearly independent.
Vuf (with respect to the Grassmann manifold) is given by 2) The vectory is not orthogonal to bothu; and u,
Vuf = Fy —UU" Fy. SinceWy minimizes the Frobenius simultaneously.
norm, it is straightforward to verify thal/ is orthogonal to Letw (t) = uicost + uysint Wheregt € R. Definey, (t) =
X,, ie,UTX, = 0. ThereforeVy f = Fy = —2X, WL y—P(y,u(t)) andf(¢) = [ly- ()]". Then the following is

which proves[(l7). true.
1) f(t) is a periodic function with period.

B. Proof of the decoupling principle in (10) 2) f(t) has a unique minimizet,,;, and a unigue maxi-

Arbitrarily pick a U € R™*". For the matrix X, the MIZer tyax-
objective function | Xq — Po (UW)|}. is convex inW.  3) The maximizer tm.. defined in[2) can be com-
Let W(® be a global minimizer for this function. For each puted in the following way. Letc = [c1,co]” =
column of Xq, sayzq,, the function||zq, — Po, (UVV;,J-)H2 coeff(y, [u1, us]). Thentya = atan(c, c1), where the
is also convex. Lewgl) now be the global minimizer for atan function is defined if_015).

4) The minimizett;, defined if2) is computed vig,;, =
atan(yTui, —yTuQ) .

Proof: This first part is proved by observing that

+ m) = —u (t). Note that for a given,

this j** atomic function. Concatenatﬁf':(ll), e ,W(nlz) into

a matrix and denote the resulting matrix By (1. By the
additivity of the squared Frobenius norm, the right side of ’
(I0) becomeg| X — Pq (UW(l))H; By the definition of u(
WO, | Xq - Po (UWO)|2 < || Xa - P (UWO)|% w () =y~ (y"u®)/lu®))u).
On the other hand,

One has
HXQ - Pa (UW(1>) H2F - 2; ngzj — Pa, (UW§1>) HQF Y (t+7) =y — (yTu (b)) fut+ 7T)||2) P
J:z e N
<3 flon, - 7o, (1w Y <t>(. v )/ [ 0)) (-u )
e EWONL o e ot iy ot e



result, spari[ui, us)) is a hyperplane with dimension two. Itandy, L U, wherey, =y — P (y,U). We sayy, L U fif
is clear thatu (t) = uj cost + uzsint # 0 forall t e Rand yl U, =0 for all j € [n].
it forms an ellipse on the hyperplane sgfm , us]) centered Lety’ = y,.1 — P (y.1,Uz2,). To prove this proposition,
at 0. Any line in the hyperplane spdm;,u2]) through the it suffices to show thaty. | [U;,Us] andy — y. €
origin can be uniquely represented by a point on the hapan([U;,Us]).
ellipse u (t) with ¢ € [0,7): that is, for all unit vector  We first show thay, L [U,,Us,]. Thaty! L U, is verified
u’ € span([u;,uy]), there exists a uniquec [0,7) and an as follows. SinceP (y,1,U>,) € spanU:,) and each
s € R such thatu’s = w (t). In other words, the half ellipse column ofUs , is orthogonal tdJ;, we haveP (y,.1,Uz ) L
u (t) with ¢ € [0,7) presents all possible lines (through th&/,. The definition ofy, ; implies thaty,; L U;. Hence,
origin) in the hyperplane spafu, us]). we havey, | U; as the vectory, is a linear combination
Let y, be the projection ofy on the hyperplane of y.: andP (y.1,Us,). We claim thaty, L U, as well.
span(jui, us]), i.e., y, = proj(y, [ui,us]). It is clear that According to the definition oy, it is clear thaty, L U, .
f (t) is maximized wheru (¢) is aligned withy,: this means, Note that(Us)., = (Us,). . + P ((UQ). . ,Ul)- The vector
there exists a constant € R such thatu (t) = cy,. By oo Y
the definition of the projection, we havg, = [u1,us]c = P ((UQ):J. ,Ul) is in the sparfU;) and therefore orthogonal
wic1 + ucy. Thereforef ., = atan(ca, ¢1). to y... As a resulty,. L U,. We then havey,. L [Uy, Us).
The functionf (¢) is minimized whenu (¢) is orthogonal ~ Next, we show thay — y;. € span([U;, Uz]). Note that
to y. We havey”w; costmin + Yy ug sintyi, = 0. Solving
this equation proves part 4.
We prove theunigueness results next. By assumptiom, is =Py, U1) + P (yr1,Usyr).

not orthogonal to botlx; andu, simultaneously. Hencey,, # Clearly, P (y,U,) € spanU;) c span([U;,Us]). Further-
0. Furthermore, since; andu, are linearly independent, the .o according to the definition off,,, spanUs,) C

vectory,, is uniquely defined. This establishes the uniquenegﬁt,j“,]([U1 Us]) and therefore® (y,.1, Us.,) € spanUs.,) C
pf tmax. SiNce thg dimensiqn of the h)_/perplane sfan, us)) span([U1, Us]). This completes th7e prdof. ’ -
is two, there exists a unique line in spgny, us]) to be Based on the claim of this proposition, one can to apply the

grthogon?l Yy EO spar;(][zttﬁ7:¢2]). We denote this I|r(;e analysis for the rank-one case (Proposifidn 2) to highek-ra
y a \ie%O::th# ' sucth a yILtE S?gr([ul’“bz]) an_l cases. LeU.; = [ug, - ,u,], and lete, = z—P (x,U~;).

Y1yp = 0. FISL y.L 1S orthogonal toy. This can be easily Similarly, defineu, , andh,. It is clear that

verified asy = y, + y,, wherey, is the projection residue ’

vector and therefore is orthogonalga as well. Second, any wy, () = wy (1) — P (u (t),Uxr)
linear combination ofy, andy, such that the coefficient of
yp IS nonzero produces a line that is not orthogonalyto
Thereforey, represents the unique line in sp@n;, uq]) that

Y-y =y—Yr1+PYr1,U2,)

=wujcost+ hsint
— P (u1,Ux1)cost — P (h,U.q)sint

is orthogonal toy. The corresponding valug,;, is therefore = uy,cost + h, sint.
unique. ®  Hhe has
We proceed next with the general case whepe 1. Recall
the expression for the geodesic curvelih (5). Der@eg(h) x—P(x,[ug (t),uz, - ,u])
by hq. Similarly, we haveu; g, - ,u,q. Let u1 o (t) = =z, — P (zr,ur, (1))

u1,ocost + hgsint. The atomic function can be written as
This establishes the connection between the rank-one case

F) =z —P(za,[ura (t),uz0, -, ura)| 7. and the general case, proves Proposifibn 1, and justifies the
procedure in Sectioh I[IF for computing minimizers and

Again we drop the subscript for convenience. The following maximizers

proposition is the key to understand the relationship betwe
P(x,uq(t)) andP (x, [u (t), w2, -, ur).

Proposition 3: Let y € R™, U; € R™ "™ and U, € REFERENCES
R™>"2 whereny,ns € [m]. Let [1] E. Candes and B. Recht, “Exact matrix completion via exnwptimiza-
tion,” arXiv:0805.4471, 2008.
Yy =y—P (y’ [Ul, UQ]) . [2] E.J. Candes and T. Tao, “The power of convex relaxatiogabptimal

matrix completion,”arXiv:0903.1476, Mar. 2009.
th [3] J. Cai, E. J. Candes, and Z. Shen, “A singular value tluleihg
De_note the;™* column of U, by (UQ):J" Theny, can be algorithm for matrix completion,arXiv:0810.3286, 2008.
written as [4] E.J. Candés, X. Li, Y. Ma, and J. Wright, “Robust prindigamponent
— _ U. analysis?,"arXiv:0912.3599, 2009.
Yr =yr1 =P (yra, Uas), [5] K. Lee and Y. Bresler, “ADMIRA: atomic decomposition foninimum
_ B rank approximation,arXiv:0905.0044, Apr. 2009.
where . - P (y, ), and Uy, - [6] W. Dai and O. Milenkovic, “Subspace pursuit for compiesssensing
(U2)., —P((Us).,,U1),--,(Ua),, —P((Us)., U1l signal reconstruction JEEE Trans. Inform. Theory, vol. 55, pp. 2230 —

Proof: The proof is centered around the notion of pro-_ 2249, May 2009. o
[7] D. Needell and J. A. Tropp, “CoSaMP: lterative signalaeery from

jec_tion. qu a_rbitraryy € Rm andU € R™*", an operator incomplete and inaccurate sample8gplied and Computational Har-
P is a projection operator if and only # (y,U) € spanU) monic Analysis, vol. 26, pp. 301-321, May 2009.



(8]
El

[10]

[11]

[12]

[13]

R. Meka, P. Jain, and I. S. Dhillon, “Guaranteed rank mization via
singular value projection,arXiv:0909.5457, 2009.

T. Blumensath and M. E. Davies, “Iterative hard threslmy for

compressed sensingApplied and Computational Harmonic Analysis,

vol. 27, pp. 265-274, Nov. 2009.

J. Haldar and D. Hernando, “Rank-constrained solstitanlinear matrix
equations using powerfactorizationfEEE Sgnal Processing Letters,

pp. 16:584-587, 2009.

R. H. Keshavan, A. Montanari, and S. Oh, “Matrix comfatfrom a
few entries,”arXiv:0901.3150, 2009.

A. Edelman, T. Arias, S. T. Smith, Steven, and T. Smiffhé geometry
of algorithms with orthogonality constraints3 AM Journal on Matrix

Analysis and Applications, vol. 20, pp. 303-353, April 1999.

P. E. Gill, W. Murray, and M. H. Wright,Practical Optimization.

Academic Press, 1982.
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