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Abstract

Base station cooperation can exploit knowledge of the users’ channel state information (CSI) at

the transmitters to manage co-channel interference. Users have to feedback CSI of the desired and

interfering channels using finite-bandwidth backhaul links. Existing codebook designs for single-cell

limited feedback can be used for multicell cooperation by partitioning the available feedback resources

between the multiple channels. In this paper, a new feedback-bit allocation strategy is proposed, as

a function of the delays in the communication links and received signal strengths in the downlink.

Channel temporal correlation is modeled as a function of delay using the Gauss-Markov model. Closed-

form expressions for bit partitions are derived to allocate more bits to quantize the stronger channels

with smaller delays and fewer bits to weaker channels with larger delays, assuming random vector

quantization. Cellular network simulations are used to show that the proposed algorithm yields higher

sum-rates than an equal-bit allocation technique.
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I. INTRODUCTION

Multicell base station cooperation can improve sum-rates and reduce outage in cellular systems [1]–

[18]. By sharing user channel state information (CSI) and/or data and/or precoding matrices via high-

capacity wired backhaul links, base stations coordinate transmissions to manage co-channel interference.

Consequently, cooperation can be used to improve the performance of systems that have high levels of

co-channel interference due to universal frequency reuse, e.g., upcoming commercial wireless standards

like 3GPP long term evolution (LTE) Advanced [19]. Knowledge of the desired and interfering CSI at

the base stations is important to obtain the full performance gains promised by multicell cooperation.

While it is commonly assumed in the literature that full CSI is available at all base stations, the feedback

channel has finite bandwidth implying that limited feedback techniques [20] will be employed to obtain

information of multiple channels at the transmitters [17]. Further, the multicell cooperative literature also

commonly assumes zero-delay backhaul and feedback links. This is not realistic due to propagation and

signal processing delays [21]. Successful implementation of cooperative strategies in next generation

cellular systems calls for evaluating the performance gains obtained by accounting for finite-bandwidth

feedback channels and delayed CSI availability.

Strategies that utilize full cooperation, e.g. dirty paper coding [1]–[3], [22], multicell zero-forcing,

minimum mean square error, and null-space decomposition [3], [4], typically yield higher sum-rates. They

generally possess, however, high-complexity and involve the exchange of large amount of information

between base stations, increasing the load on finite-capacity backhaul links [5]–[8]. In contrast, approaches

that employ joint dynamic resource allocation [9] and/or joint scheduling [10] to ensure orthogonality

among the transmissions of users in neighboring cells tradeoff performance gains in exchange for low

complexity and backhaul loads. Partial base station cooperation (known as coordinated beamforming in

3GPP LTE Advanced [19]) is an effective compromise. It offers reasonable sum rate improvements and

only a small amount of additional backhaul bandwidth for moderate Doppler spreads [8]. Each base station

designs beamforming vectors on-site to transmit exclusively to the users in its own cell by exchanging

only user CSI on the backhaul. Examples of partial cooperative strategies include MMSE-estimation-

based beamforming [11], [12], transmit power-minimizing beamforming [13], intercell interference nulling

(ICIN) [14], [23], [24], and sum-rate maximizing beamforming for single-interferer scenarios [15]–[18].

In this paper, we use ICIN, which is non-iterative, does not suffer from convergence issues (such as those

in in [11], [12]), and is suitable for multiple interferer scenarios.
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The performance of a multicell cooperative transmission strategy is highly dependent on the quality

of the CSI fed back by the users. Most of the literature on multicell cooperation assumes that full CSI

is available at the transmitters [1]–[13], [15], [16], [25], [26]. Limited feedback for multicell systems

is a topic of ongoing research [14], [17], [18]. Unfortunately, results from the well-investigated single-

cell limited feedback [20] are not directly applicable to the multicell scenario. While the CSI of only

one channel is fed back in the single-cell case, cooperative strategies require feedback of CSI from

multiple base stations using the same feedback link. Further, in single-cell transmission, quantized CSI

reaches the base station after experiencing a delay in the feedback channel [21], [27]–[30]. In the multicell

cooperative framework, however, quantized CSI is subject to an additional source of delay in the backhaul

link. The impact of delayed CSI on the performance of (single cell) non-cooperative systems [21], [27]–

[30] has been investigated extensively. Note that while [30] accounts for inter-cell interference, base

station cooperation is not included in the system model. The effect of delayed limited feedback on the

performance of cooperative systems has received comparatively less attention.

Jointly quantizing the CSI of multiple channels was proposed as a solution to multicell limited feedback

in [18] for a single interferer. This, however, requires design of special multi-channel codebooks, which

is a topic of ongoing investigation. Existing codebook designs can be exploited if the CSI of each of the

channels is quantized independently. Hence, it is reasonable to quantize the desired and interfering CSI

using separate codebooks, by partitioning the available feedback bits among the different channels [14],

[17]. Intuitively, the bits allocated to feedback each of the multiple channels should be a function of the

signal strength and delay experienced by the channels. For example, a weak interfering channel can be

allocated few or no bits since it has a small impact on the sum-rate. The bits can, instead, be allocated to

quantize a stronger interferer more finely to reduce the associated quantization error and thereby, reduce

its impact on the sum-rate. Similarly, channels experiencing large delays can be assigned fewer bits since

nulling out the outdated channel might not contribute to improving sum-rates. The bit allocations derived

in [17] are not applicable to multiple interferer scenarios; [14] does not provide closed-form solutions

for the bit-partitioning. Further, [14], [17] assume zero delay backhaul and limited feedback links.

In this paper, we propose a feedback-bit partitioning algorithm to reduce the mean loss in sum-rate

due to delayed limited feedback in a multicell cooperative system using ICIN, by accounting for both

average signal strength and delay. We consider multi-antenna base stations and single antenna receivers,

i.e. multiple-input single-output (MISO) systems. We assume a single active user in each cell, which
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faces interference from several neighboring cells. We model channel temporal correlation using the Gauss-

Markov autoregressive model [21], [27]–[31] and assume that each user estimates perfectly and quantizes

the channels using random vector quantization (RVQ) [32], for analytical reasons. The quantized CSI is

fed back to its own base station, which then exchanges this information with adjacent base stations over

the backhaul links. Thus, each base station has knowledge of its desired channel and the interference

it causes to the neighboring users. We first quantify the impact of delayed limited feedback on the

performance of the cooperative ICIN strategy by deriving an upper bound on the mean loss in sum-rate.

We then develop closed-form expressions to determine feedback-bit allocations to reduce the mean loss

in sum-rate. Simulations verify the performance of the proposed algorithm.

The contributions of the paper are summarized as follows.

• We derive an upper bound on the mean loss in sum-rate due to delayed limited feedback in a MISO

system using ICIN, assuming a Gauss-Markov autoregressive channel model and RVQ. The bound

is a function of the number of feedback bits allocated to each of the channels, the relative strengths,

and delays of the channels.

• We derive closed-form expressions for computing the feedback bit partitions among the desired and

interfering channels, as a function of their relative strengths and delays.

• We use simulations to verify that the proposed feedback-bit allocation algorithm increases the sum-

rate per base station using cooperative ICIN with delayed limited feedback.

The paper is organized as follows. The system model is presented in Section II. Cooperative ICIN,

assuming full and limited CSI is described in Section III. The impact of delayed limited feedback on

the mean sum-rate using ICIN is presented in Section IV. The feedback bit-partitioning algorithm is

proposed in Section V to reduce the mean loss in sum-rate. In Section VI, simulations are presented to

verify that the mean sum-rate can be improved using the feedback technique in this paper. Finally, the

conclusions are provided in Section VII.

Notation: In this paper, X refers to a matrix and x to a vector. XT and X∗ denote the transpose and

Hermitian transpose, respectively. The pseudo-inverse of X is given by X†. An identity matrix of size

R×R is denoted by IR. E{.} refers to the expectation. ‖x‖ stands for the Frobenius norm of x. Nc(µ, σ
2)

refers to a complex Gaussian distribution with mean µ and variance σ2. The nth column X is denoted

by X(:, n). The angle between two vectors, x and y is denoted by θ(x,y). The cardinality of a set S is

denoted by |S|.
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II. SYSTEM MODEL

Consider the cellular system in Fig. 1. We assume that the base station in each cell serves a single active

user, using intra-cell time division multiple access (TDMA) or a comparable orthogonal access strategy

and that the user faces interference from the neighboring cells [1]. The strength of the interfering signals

at each user depends on the respective propagation channels and the distance between the interfering

base station and user. This is similar to the approaches used in [4], [17], [18]. The number of cells in the

multicell system is denoted by K. We index the users in each cell by the base station they obtain their

desired signal from, i.e. the kth base station services the kth user, for k = 1, . . . ,K. We assume that

all the base stations are equipped with Nt antennas, while each user supports a single receive antenna.

The channel corresponding to the desired signal between the kth base station and kth user is denoted by

hk[n] ∈ CNt×1, at the nth discrete-time instant. The interfering channel between the kth user and the

`th base station is given by gk,`[n] ∈ CNt×1 for k 6= `. This is illustrated in Fig. 1.

Note that the results derived in the paper can be extended to receivers with multiple antennas using

multiuser eigenmode transmission, a block-diagonalization based technique, instead of ICIN to null out

the interference between multiple users [33]. In this paper, we model the desired and interfering channels

by the i.i.d. Rayleigh fading model, where each entry is unit variance complex Gaussian independent

and identically distributed (i.i.d.) according to Nc(0, 1). While it is recognized that the Rayleigh fading

model does not model realistic propagation channels accurately, we use the i.i.d. Gaussian assumption

to facilitate the limited feedback analysis.

A. Discrete-Time Input-Output Model

The symbol transmitted from the kth base station (intended for the kth user) is denoted by sk, where

E{|sk|2} = Es. Each user is assumed to face interference from K − 1 neighboring base stations, each

transmitting with energy Es. The path-loss incurred by the desired signal is given by Lk, and that by the

interfering signal from the `th base station to the kth user is given by Lk,`. The received signal powers of

the desired and interfering signals are then given by γk = Es/Lk and γk,` = Es/Lk,`, respectively. We

define the interference to signal noise ratio (ISR) of the `th interferer to the kth user by αk,` = γk,`/γk,

where ` = 1, . . . ,K, ` 6= k. Further, αk,` ∈ [0, 1] (i.e. the interfering signal strength can at most be

equal to that of the desired signal, otherwise the user will associate with a different base station). Note

that a similar parameter is used in [4], [17], [18] to model the received power of the interfering signal

with respect to the desired signal. Using the narrowband flat-fading model, the baseband discrete-time
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input-output relation for the user in the kth cell is given by

yk[n] =
√
γkh

∗
k[n]fk[n]sk[n] +

K∑
`=1
`6=k

√
αk,`γkg

∗
k,`[n]f`[n]s`[n] + vk[n], (1)

where yk[n] ∈ C is the received signal at the kth user and fk[n] ∈ CNt×1 is the unit-norm beamforming

vector at the kth base station, at the nth time instant. Finally, vk[n] ∈ C is complex additive zero-mean

white Gaussian noise at the kth user, with E{|vk|2} = No. We denote the received desired and interfering

signal to noise ratios (SNR) as ρk = γk/No and αk,`ρk, respectively. The base stations are assumed to

have perfect knowledge of ρk. This is a popular assumption in literature [34]–[36]. It was shown in [36]

that SNR quantization does not effect the sum-rates of a single-cell multiuser MIMO system signicantly.

To the best of our knowledge, the effect of SNR quantization on the sum-rates of a multicell system has

not yet been investigated.

The signal to interference noise ratio (SINR) of the kth user at the nth instant is given by

SINRk[n] =
ρk|h∗k[n]fk[n]|2

1 +
∑K

`=1
` 6=k

αk,`ρk|g∗k,`[n]f`[n]|2
(2)

The sum-rate of all the users within the system is

Rs[n] =
∑
k

log2 (1 + SINRk[n]) . (3)

The sum-rate, hence, depends on beamforming vectors fk[n], which are designed using quantized channel

state information. Note that in the remainder of this paper, we assume that k 6= ` unless otherwise

mentioned.

B. Limited Feedback Model

The channel directions, denoted by h̃k[n] , hk[n]/‖hk[n]‖ and g̃k,`[n] , gk,`[n]/‖gk,`[n]‖, are

quantized to the unit-norm vectors given by ĥk[n] and ĝk,`[n], respectively, at the kth user in the nth

time instant. Using ICIN, the cooperative strategy used in this paper, beamforming vectors are designed

to lie in the null space of the interfering channel directions. Since base stations do not require knowledge

of the channel gains, users feedback only the estimated channel directions.

Channel directions can be quantized either jointly using a single codebook [18] or independently using

separate codebooks [14], [17]. It was proposed in [18] that desired and interfering channel directions can

be jointly quantized by introducing an ‘inherent bias’ based on the ISR. Special codebooks are required



7

that are a function of the interfering signal strength, implying that the number of codebooks that need to

be designed and stored for joint quantization can be prohibitively large. In contrast, channel directions

are quantized separately in independent quantization. Thus, existing single-user codebook designs can

be used [14], [17]. The number of bits assigned to each channel direction is varied depending on the

respective ISR. Hence, the number of codebooks required only depends on the total number of feedback

bits available, Btot and consequently, is not as large as that required in the joint quantization case. Due

to these reasons, we consider separate quantization in this paper, as illustrated in Fig. 2.

We assume that each user can utilize Btot bits for feedback, and that Bk and Bk,` bits are used

to quantize h̃k[n] and g̃k,`[n] respectively, where Bk +
∑K

`=1
`6=k

Bk,` = Btot. This approach of splitting

available feedback bits between the desired and interfering channels was used in [14], [17]. The delay

associated with quantizing h̃k[n] (to ĥk[n]) and feeding back ĥk[n] to the kth base station is denoted by

Dk. The kth user also quantizes the interfering channels, gk,`[n] to ĝk,`[n] and feeds back ĝk,`[n] to the

kth base station, which then transmits ĝk,`[n] to the `th base station over the backhaul link, incurring a

delay of Dk,`, where ` = 1, . . . ,K. Hence, at the time instant n, the kth base station has knowledge of

hk[n−Dk] and gk,`[n−D`, k], for all ` 6= k.

In this paper, we assume that the delays, Dk and Dk,`, are known at the base station and users. This

is reasonable since delays in the feedback and backhaul link can be measured using training signals,

assuming perfect synchronization between the transmitter(s) and receiver(s). Note that Dk,` ≥ Dk, since

Dk,` includes exchange of CSI over the backhaul link, in addition to limited feedback from the kth user.

C. Gauss-Markov Model for CSI Delay

The presence of delay in the system leads to a loss in the sum-rate, which can be evaluated by

understanding the relation between the current and delayed CSI. In this paper, the Gauss-Markov block

fading autoregressive model is used to characterize the relation between hk[n] (gk,`[n]) and hk[n−Dk]

(gk,`[n−Dk,`]). It has been shown in the literature [37]–[39] that the Gauss-Markov autoregressive model

is reasonably accurate for relatively small delays in the communication links. Hence, it has been widely

used in research to model the effect of delay on the performance of wireless systems using limited

feedback [21], [27]–[29]. By assuming that hk[n] and gk,`[n] are constant throughout the codeword
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transmission, the current and delayed CSI are related by

hk[n] = ηkhk[n−Dk] +
√

1− η2
kwhk

[n], and (4)

gk,`[n] = ηk,`gk,`[n−Dk,`] +
√

1− η2
k,`wgk,`

[n], (5)

where whk
[n] and wgk,`

[n] denote the channel error vectors, and are uncorrelated with hk[n−Dk] and

gk,`[n−Dk,`], respectively. The entries of whk
[n] and wgk,`

[n] are distributed by Nc(0, 1). The correlation

coefficients for the desired and interfering channels are denoted by ηk and ηk,`, respectively. Clarke’s

autocorrelation model is used to determine ηk and ηk,` as [21], [27]–[29], [31]

ηk = J0(2πDkfdTs), and (6)

ηk,` = J0(2πDk,`fdTs), (7)

where J0 is the zeroth order Bessel function of the first kind, fd is the Doppler spread and Ts is the

symbol duration. The Doppler spread, fd = νfc/c, where ν is the relative velocity of the transmitter-

receiver pair, fc the carrier frequency, and c the speed of light. Note that Clarke’s model requires isotropic

scattering, which is satisfied in this paper through the Rayleigh fading assumption.

III. INTER-CELL INTERFERENCE NULLING

In this section, we briefly describe ICIN for the setup in Fig. 1. We consider first the ideal case where

full CSI is available at all the base stations and the delay associated with feedback and backhaul is zero.

We then proceed to the comparatively more realistic limited feedback scenario with non-zero delay.

A. Full CSI and Zero Delay

The kth base station has instantaneous knowledge of not only its own desired channel, hk[n], but also

of the interference caused to neighboring cells, i.e. g`,k[n], ` = 1, . . . ,K, ` 6= k, made available via the

backhaul link. The kth base station then computes the beamforming vector, fk, [n], as [14], [23], [24]

fk[n] = Wk[n](:, 1), where W`[n] =
([

h̃k[n] g̃1,k[n] . . . g̃K,k[n]
])†

. (8)

Since all the channels in Wk[n] are independent of each other with high probability, (8) ensures perfect

interference nulling, i.e. gT
k,`[n]f`[n] = 0, for ` = 1, . . . ,K, ` 6= k, when Nt ≥ K. The sum-rate, assuming
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full CSI and zero delay, is given by

Rs[n] =

K∑
k=1

log2

(
1 + |hT

k [n]fk[n]|2
)
, (9)

where fk[n] is given by (8). The denominator is nulled out since the beamforming vector at the `th base

station is designed to be lie in the null-space of the gk,`.

B. Limited Feedback with Delay

As a result of delay, at the nth time instant, the kth base station has knowledge of its desired channel,

ĥk[n − Dk] and the interference that it causes to the neighboring K − 1 cells, ĝ`,k[n − Dk,`] (for

` = 1, . . . ,K, ` 6= k). Hence, the beamforming vector at the nth time instant, f̂k[n], is designed using the

delayed and quantized CSI of the desired channels and the interference caused to other cells

f̂k[n] = Ŵk[n](:, 1), where Ŵk[n] =
([

ĥk[n−Dk] ĝ1,k[n−D1,`] . . . ĝK,k[n−DK,k]
])†

. (10)

When Nt ≥ K, the beamforming vector lies in the Nt − (K − 1) null-space of the K − 1 interfering

channels. Hence, when Nt = K, f̂k[n] will lie in a one-dimensional subspace, independent of ĥk. This

implies that if Nt = K, it is not necessary to feedback the quantized desired channel back to the base

station, i.e. Bk = 0. In contrast, when Nt > K, ĥk is desirable to determine the best f̂k[n] in the

Nt − (K − 1) subspace.

The sum-rate, assuming limited feedback and delay, is given by

R̂s[n] =

K∑
k=1

log2

1 +
ρk|hT

k [n]f̂k[n]|2

1 +
∑K

`=1
` 6=k

αk,`ρk|gT
k,`[n]f̂`[n]|2

 , (11)

where f̂k[n] and f̂`[n] are given by (10). Due to limited feedback, interfering signals in the denominator

of (2) are not nulled out, i.e. |gT
k,`[n]f̂`[n]|2 6= 0. Note, however, that |ĝT

k,`[n −Dk,`]f̂`[n]|2 = 0. Hence,

the non-zero denominator of (11) reduces the sum-rate of the overall system. In the next section, we

quantify the mean loss in sum-rate caused by delayed limited feedback.

IV. IMPACT OF LIMITED FEEDBACK AND DELAY ON SUM-RATE OF ICIN

We define the mean loss in sum-rate due to delay and limited feedback, using ICIN as

E{∆Rs[n]} , E{Rs[n]} − E{R̂s[n]}. (12)



10

To simplify analysis, we derive an upper bound on the mean loss in sum-rate by deriving first a lower

bound on E{R̂s[n]} given by

E{R̂s[n]} ≥
K∑
k=1

log2

 ρk|hT
k [n]f̂k[n]|2

1 +
∑K

`=1
6̀=k
αk,`ρk|ĝT

k,`[n]f̂`[n]|2

 , (13)

=

K∑
k=1

E
{

log2

(
ρk|hT

k [n]f̂k[n]|2
)}

︸ ︷︷ ︸
Rk,(des)

−E

log2

1 +

K∑
`=1
` 6=k

αk,`ρk|gT
k,`[n]f̂`[n]|2


︸ ︷︷ ︸

Rk,(int)

. (14)

We label the first term on the right-hand side of (14) as Rk,(des) and the second term as Rk,(int). We

obtain a lower bound on the mean sum-rate by deriving a lower-bound on Rk,(des) and an upper bound on

Rk,(int). To derive closed-form bounds on Rk,(des) and Rk,(int) we use RVQ [32], where each codeword

is independent and isotropically distributed on a complex unit Nt dimensional hypersphere.

Proposition 1: The mean of E
{

log2

(
ρk|hT

k [n]f̂k[n]|2
)}

using RVQ is given by

E
{

log2

(
ρk|hT

k [n]f̂k[n]|2
)}
≥ log2(ρkη

2
k) + log2(e)

2Bk∑
i=0

(
2Bk

i

)
(−1)i

i(Nt−1)∑
n=1

1

n

+ E
{

log2

(
‖hk[n−Dk]‖2

∣∣∣ĥk[n−Dk]f̂k[n]
∣∣∣2)} .

Proof: The proof is given in Appendix A.

Now, E{Rs[n]} ≈
∑K

k=1 E
{

log2

(
ρk‖hk[n]‖2|h̃T

k [n]fk[n]|2
)}

. Using (12) and (14), Proposition 1 relates

the error from quantizing the desired channel using Bk bits to the mean loss in sum-rate, E{∆Rs[n]},

E{∆Rs[n]} ≤
K∑
k=1

log2(η2
k) + log2(e)

2Bk∑
i=0

(
2Bk

i

)
(−1)i

i(Nt−1)∑
n=1

1

n
+Rk,(int), (15)

since E
{

log2

(
‖hk[n]‖2|h̃T

k [n]fk[n]|2
)}

= E
{

log2

(
‖hk[n−Dk]‖2

∣∣∣ĥk[n−Dk]f̂k[n]
∣∣∣2)}. To further

simplify (15), we express
∑2Bk

i=0

(
2Bk

i

)
(−1)i

∑i(Nt−1)
n=1

1
n as the sum of beta functions, as shown by

Lemma 2.

Lemma 2: The contribution of the desired channel delay and quantization towards the loss in sum-rate,∑2Bk

i=0

(
2Bk

i

)
(−1)i

∑i(Nt−1)
n=1

1
n is given by

2Bk∑
i=0

(
2Bk

i

)
(−1)i

i(Nt−1)∑
n=1

1

n
=

1

Nt − 1

Nt−1∑
i=1

β

(
2Bk ,

i

Nt − 1

)
.
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Proof: The proof is given in Appendix B.

Using Lemma 2, (15) is rewritten as

E{∆Rs[n]} ≤
K∑
k=1

log2(η2
k) +

log2(e)

Nt − 1

Nt−1∑
i=1

β

(
2Bk ,

i

Nt − 1

)
+Rk,(int). (16)

Intuitively, as Bk increases, the contribution of the desired channel quantization towards the mean loss in

sum-rate reduces. By definition, we have that β(2B1 , x) < β(2B2 , x) for B1 < B2. Hence, Proposition 1

and Lemma 2 verify that increasing Bk leading to a smaller value of Rk,(des).

Using Jensen’s inequality, Rk,(int) can be upper bounded by

Rk,(int) ≤ log2

1 + ρk

K∑
`=1
`6=k

αk,`E
{
|gT

k,`[n]f̂`[n]|2
} . (17)

We evaluate E
{
|gk,`T [n]f̂`[n]|2

}
to derive an upper bound on Rk,(int).

Proposition 3: The mean of |gk,`T [n]f̂`[n]|2 using RVQ is given by

E
{
|gk,`T [n]f̂`[n]|2

}
≤ 1− η2

k,` + η2
k,`2

Bk,`β

(
2Bk,` ,

Nt

Nt − 1

)
Nt

Nt − 1
.

Proof: The proof is given in Appendix C.

Proposition 3 relates the mean loss in sum-rate to the number of bits assigned to quantize the interfering

channels, Bk,`. Intuitively, increasing Nt by keeping Bk,` fixed will lead to an increase in the quantization

error, which will increase the mean loss in sum-rate. This is verified using Proposition 3, where it is

seen that for large Nt, Nt/(Nt − 1) → 1, causing β
(

2Bk,` , Nt

Nt−1

)
Nt

Nt−1 to become larger. Using (16)

and Proposition 3, E{∆Rs[n]} is upper bounded as

E{∆Rs[n]} ≤
K∑
k=1

log2(η2
k) +

log2(e)

Nt − 1

Nt−1∑
n=1

β

(
2Bk ,

n

Nt − 1

)

+ log2

1 + ρk

K∑
`=1
6̀=k

αk,`

(
1− η2

k,` + η2
k,`2

Bk,`β

(
2Bk,` ,

Nt

Nt − 1

)
Nt

Nt − 1

) .

(18)

It is clear from (18) that for a given {ρk, ηk}Kk=1 and {ηk,`, αk,`}Kk=1
k 6=`

, the (upper bound on) mean loss in

sum-rate will depend on Bk and Bk,`, for all k and `.

For Nt > K (where Bk 6= 0), one solution to choosing Bk and Bk,` is to partition the feedback bits

as Bk = Bk,` = Btot/K. Note that while this solution is simple, it does not account for the different
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weights associated with each interferer. For example, for a given user k, if αk,` ≈ 0 for all `, it implies

that the interfering signals to the user are too weak to contribute to the mean loss in sum-rate and hence,

can be ignored completely. Equal-bit allocation, however, will assign Bk,` = Btot/K to each interferer

and waste (K − 1)Btot/K bits, while assigning only Btot/K to quantize the desired channel. Thus, an

adaptive feedback bit partitioning strategy will efficiently allocate bits to the different channels depending

on the respective delays and signal strengths.

V. FEEDBACK-BIT PARTITIONING

In this section we minimize the upper bound on the mean loss in sum-rate in (18), with respect to the

number of feedback bits assigned to the desired and interfering channels at each user. We simplify (18)

using approximations for the beta functions to ensure analytical tractability and then derive closed-form

expressions for the bit-partitioning.

A beta function β(a, b) (=
∫ 1

0 t
a−1(1− t)b−1dt) can be approximated by β(a, b) ≈ Γ(b)a−b, when a is

large and b is fixed. Since we are optimizing over Bk and Bk,` in (18), b is always fixed while a = 2Bk

(or 2Bk,`) is at least equal to 1. Hence, we approximate the right hand side of the expression in (18) as

∆R ≈
K∑
k=1

log2(η2
k) +

log2(e)

Nt − 1

Nt−1∑
n=1

Γ

(
n

Nt − 1

)(
2Bk
)− n

Nt−1

+ log2

1 + ρk

K∑
`=1
6̀=k

αk,`

(
1− η2

k,` + η2
k,`2

Bk,`Γ

(
Nt

Nt − 1

)(
2Bk,`

)− Nt
Nt−1

Nt

Nt − 1

) .

(19)

For a large Nt,
(
2Bk
)− n

Nt−1 will be relatively much smaller than
(
2Bk
)− 1

Nt−1 and hence, can be ignored.

By neglecting the higher order terms (n = 2, . . . , (Nt − 1)) in the summation

log2(e)

Nt − 1

Nt−1∑
n=1

Γ

(
n

Nt − 1

)(
2Bk
)− n

Nt−1 ≈ log2(e)

Nt − 1
Γ

(
1

Nt − 1

)(
2Bk
)− 1

Nt−1 . (20)

The mean loss in sum-rate can then be further approximated as

∆R ≈
K∑
k=1

log2(η2
k) + log2(e)Γ

(
Nt

Nt − 1

)
2
− Bk

Nt−1

+ log2

1 + ρk

K∑
`=1
6̀=k

αk,`

(
1− η2

k,`

)
+ Γ

(
2Nt − 1

Nt − 1

)
Ntρk

K∑
`=1
` 6=k

αk,`η
2
k,`2
− Bk,`

Nt−1

 ,

(21)
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using the identity NΓ(N) = Γ(N + 1). We denote

∆R,k(Bk, {Bk,`}`) , log2(e)Γ

(
Nt

Nt − 1

)
2
− Bk

Nt−1

+ log2

1 +Ntρk

K∑
`=1
6̀=k

αk,`

(
1− η2

k,`

)
+ Γ

(
2Nt − 1

Nt − 1

)
Ntρk

K∑
`=1
`6=k

αk,`η
2
k,`2
− Bk,`

Nt−1

 .

(22)

The mean loss in sum-rate can finally be written as

∆R ≈
K∑
k=1

log2

(
η2
k

)
+

K∑
k=1

∆R,k(Bk, {Bk,`}K`=1
`6=k

). (23)

For a fixed ηk, minimizing (23) reduces to minimizing
∑K

k=1 ∆R,k(Bk, {Bk,`}K`=1
`6=k

), which is equivalent

to minimizing each ∆R,k(Bk, {Bk,`}K`=1
` 6=k

) individually due to the independence of each term in the

summation. Note that this eliminates the need for joint optimization.

The optimization problem to minimize the kth user’s contribution to the mean loss in sum-rate,

∆R,k(Bk, {Bk,`}K`=1
6̀=k

) (and hence, the expression in (22)) is given by

min
Bk,{Bk,`}K`=1

`6=k

∆R,k(Bk, {Bk,`}K`=1
`6=k

)

s.t. Bk +

K∑
`=1
6̀=k

Bk,` = Btot, and Bk, Bk,` ≥ 0.

(24)

We denote the total number of bits allocated to quantize interfering channels by Bi =
∑K

`=1
`6=k

Bk,`, where

Bk +Bi = Btot. Given Bi, we first derive Bk,` to minimize the contribution of the interfering channels

towards the mean loss in sum-rate, i.e., we minimize

log2

1 + ρk

K∑
`=1
6̀=k

αk,`

(
1− η2

k,`

)
+ Γ

(
2Nt − 1

Nt − 1

)
ρkNt

K∑
`=1
`6=k

αk,`η
2
k,`2
− Bk,`

Nt−1

 (25)

such that
∑K

`=1
6̀=k
Bk,` = Bi. Since the log function is monotonic in nature and {Bk,`}K`=1

`6=k

are the only
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variables in (25), the optimization problem in (25) is reduced to

min
{Bk,`}K`=1

`6=k

K∑
`=1
`6=k

αk,`η
2
k,`2
− Bk,`

Nt−1

s.t.

K∑
`=1
6̀=k

Bk,` = Bi, and Bk,` ≥ 0.

(26)

The solution to (26) and the contribution of each of the terms inside the summation in the objective

function of (26) is given by Theorem 4 using the arithmetic-geometric mean inequality. We consider

first unconstrained optimization, where the bits Bk and Bk,` do not have to be integers. We later use

convexity arguments to determine non-negative integer solutions to Bk and Bk,`.

Theorem 4: The optimum number of bits assigned to the `th interferer, Bk,`
∗, that minimizes (26) is

given by

Bk,`
∗ =

Bi

|K|
+ (Nt − 1) log2

 αk,`η
2
k,`∏

`∈K(αk,`η
2
k,`)

1

|K|

 ,

for ` ∈ K, and Bk,` = 0 for ` /∈ K, where K is the largest set of interferers that satisfies

log2

∏`∈K(αk,`η
2
k,`)

1

|K|

αk,`η
2
k,`

 <
Btot

|K|(Nt − 1)
.

Proof: The proof is given in Appendix D.

In Theorem 4, K denotes the set of effective set of interferers. Only the effective interfering channels are

quantized using the proposed bit-partitioning algorithm. The idea is that the limited number of feedback

bits are best utilized by allocating them to strong interferers, which can affect the sum-rate drastically

or/and to the interferers with small delays, since nulling out outdated CSI will not improve sum-rates.

Feedback bits are assigned to the channels in proportion to their signal strengths and delays. If all the

interferers have the same delay and strength, then it is seen from Theorem 4 that all the channels are

assigned the same number of feedback bits.

Using the bit allocation strategy for interfering channels proposed in Theorem 4, the minimum value

of the objective function in (26) is given by

min
{Bk,`}K`=1

6̀=k

K∑
`=1
6̀=k

αk,`η
2
k,`2
− Bk,`

Nt−1 = |K|2−
Bi

|K|(Nt−1)

∏
`∈K

(αk,`η
2
k,`)

1

|K| .
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The objective function of (24), ∆R,k(Bk, {Bk,`}K`=1
` 6=k

), can then be rewritten as

∆R,k(Bk, {Bk,`}K`=1
6̀=k

) = log2(e)Γ

(
Nt

Nt − 1

)
2
− Bk

Nt−1

+ log2

1 +Ntρk

K∑
`=1
6̀=k

αk,`

(
1− η2

k,`

)
+ |K|ρkNtΓ

(
2Nt − 1

Nt − 1

)
2
− Btot−Bk
|K|(Nt−1)

∏
`∈K

(αk,`η
2
k,`)

1

|K|


= ∆R,k(Bk).

(27)

Hence, the objective function of (24) is now reduced to an expression in a single variable. To simplify

the function in (27), we consider different solutions for the high and low SNR regimes.

Case 1: Low SNR Regime

Using the approximation that ln(1 + x) ≈ x for x ≈ 0, ∆R,k(Bk) can be written as

∆R,k(Bk) ≈ log2(e)Γ

(
Nt

Nt − 1

)
2
− Bk

Nt−1 + log2(e)ρkNt

K∑
`=1
`6=k

αk,`

(
1− η2

k,`

)

+ log2(e)|K|NtρkΓ

(
2Nt − 1

Nt − 1

)
2
− Btot−Bk
|K|(Nt−1)

∏
`∈K

(αk,`η
2
k,`)

1

|K| .

(28)

We use the arithmetic mean-geometric mean inequality to minimize the expression in (28), as given in

Theorem 5.

Theorem 5: Given the total number of bits allocated to quantize all the channels, Btot, the optimum

number of bits assigned to the desired channel at the kth user, Bk, to minimize (28) is given by

Bk =
Btot

|K|+ 1
− (Nt − 1)|K|

|K|+ 1
log2

(
ρk

Nt

Nt − 1

∏
`∈K

(αk,`η
2
k,`)

1

|K|

)
,

for Nt > K and Bk = 0 for Nt = K. The optimum number of bits assigned to all the interfering

channels at the kth user is computed as Bi = Btot −Bk.

Proof: The proof is given in Appendix E.

From Theorem 5, it is seen that as ρk
∏

`∈K αk,`η
2
k,` increases (or as interferers become stronger/ have

smaller delays) Bk is reduced. In the presence of strong interference, reducing the interfering signal

power will increase the sum-rate more than further improving the already strong desired signal strength.

In contrast, when the interfering signals are weak, i.e. ρk
∏

`∈K αk,`η
2
k,` is small, most bits will be assigned

to quantize the desired channel more finely in an attempt to improve the desired signal power. Hence,
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the theorem makes intuitive sense.

Case 2: High SNR Regime

In the high SNR regime, we use the approximation that ln(1 + x) ≈ lnx for x >> 1 to approximate

∆R,k(Bk) in (27) by

∆R,k(Bk) ≈ log2(e)Γ

(
Nt

Nt − 1

)
2
− Bk

Nt−1 + log2

ρk K∑
`=1
`6=k

αk,`

(
1− η2

k,`

)

+ρkΓ

(
2Nt − 1

Nt − 1

)
2
− Btot−Bk

(Nt−1)(K−1)

K∏
`=1

(αk,`η
2
k,`)

1

K−1

)
.

(29)

The optimal number of bits to minimize (29) are given in Theorem 6.

Theorem 6: Given the total number of bits allocated to quantize all the channels, Btot, the optimum

number of bits assigned to the desired channel at the kth user, Bk, is given by

Bk = (Nt − 1) log2

(
(|K| − 1)Γ

(
Nt

Nt − 1

))
.

The optimum number of bits assigned to all the interfering channels at the kth user, Bi = Btot −Bk.

Proof: The proof is given in Appendix F.

It is seen from Theorem 6 that Bk and Bi are independent of the SNR, in the high SNR regime.

Further, Bk is also independent of the received signal strengths and delays of the interferers. This makes

intuitive sense if we take into account that the sum-rate saturates as SNR → ∞. Hence, minimizing

the mean loss in sum-rate at high SNR will be independent of the SNR of the desired (and interfering)

channels.

Note that the feedback bit assignments in Theorems 4, 5, and 6 are not necessarily integers. To ensure

that Bk and Bk,` are positive integers, we only have to check for the ceiling and floor of Bk and Bk,` due

to the convexity of the objective functions in (28) and (26), respectively. In (28), the objective function

is the sum of two non-negatively weighted convex functions, 2
− Bk

Nt−1 and 2
Bk

|K|(Nt−1) and hence, is convex.

By the same argument, (26) is also convex. This is similar to the approach in [17].
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The approximate mean loss in sum-rate in (29) can be rewritten as

log2(e)Γ

(
Nt

Nt − 1

)
2
− Bk

Nt−1 + log2

1 +
Γ
(

2Nt−1
Nt−1

)
2

−Btot
(Nt−1)(K−1)

∏K
`=1(αk,`η

2
k,`)

1

K−1∑K
`=1
`6=k

αk,`

(
1− η2

k,`

) 2
Bk

(Nt−1)(K−1)



− log2

ρk K∑
`=1
`6=k

αk,`

(
1− η2

k,`

) .

(30)

The last term can be ignored in the optimization problem since it is independent of Bk. Denoting the

ratio before 2
Bk

(Nt−1)(K−1) inside the logarithm by Ci, the objective function in (56) can be simplified as

log2(e)Γ

(
Nt

Nt − 1

)
2
− Bk

Nt−1 + log2

(
1 + Ci2

Bk
(Nt−1)(K−1)

)
. (31)

Note that Ci will typically be large since the denominator of
∑K

`=1
` 6=k

αk,`

(
1− η2

k,`

)
is very small.

VI. SIMULATION RESULTS

In this section, we present simulation results to demonstrate the gain in the mean per-cell data rate

obtained using the proposed adaptive feedback-bit partitioning algorithm, over equal-bit allocation. We

consider a seven-cell system with a single active user per cell. Each base station has eight antennas

(Nt = 8) and each user has a single antenna. For simulation purposes we focus on a target user located

in the cell at the center of the seven-cell grid, which receives the desired signal from its own base station

and interference from the six neighboring cells as shown in Fig. 3 and from base stations out of the

seven-cell system. The mobile terminal is assumed to travel in a straight line from the cell center to the

cell edge with a velocity v. The distance between the user and the desired base station is given by d ≤ R.

The system setup is based on the urban microcell propagation scenario in the 3GPP spatial channel model

[40]. The radius of each cell, R, is assumed to be 400 m. The path loss between the base stations and

the mobile user is modeled using the COST 231 Walfish-Ikegami NLOS model [40], adopted for urban

mircocells. Using a carrier frequency of 1.9 GHz, base station antenna height of 12.5 m, mobile terminal

height of 1.5 m, building height 12 m, building to building distance 50 m and street width 25 m, the

path-loss in dB, PL[dB], is given by [40] MS antenna height 1.5m

PL[dB] = 34.53 + 38 log10(d) (32)
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The transmit power, Es = 3 dBW for all the base stations and the noise power is given by −144 dBW .

We also model the delay associated with the feedback of CSI to the desired base station by one symbol

time and that with the exchange of CSI over the backhaul link connecting the desired and interfering

base stations by two symbol times. The parameters used for simulations are tabulated in Table I.

In Fig. 4, we compare the performance of equi-bit partitioning and the proposed adaptive strategy

as a function of the distance from the desired base station. In the figure, we normalize the data rates

from the two limited feedback techniques by the full CSI data rate for Btot = 7 and Btot = 35 with

v = 10 mph. It is seen that the feedback-bit assignment presented in this paper outperforms equal-bit

allocation irrespective of where the user is located. At the cell-edge, adaptive bit assignment achieves

about 45% more of the full CSI data rate as compared to uniform allocation.

The bit partitioning corresponding to Btot = 35 are plotted in Figs. 5(a) and 5(b) as a function of

distance for the simulation setup described in Fig. 3 and Table I. We consider both the high SNR and

low SNR partitions by setting Es = 3 dB and −3 dB, respectively. The channel from base station j

to the user ‘0’ (as shown in Fig. 3) is quantized using B0,j bits. In Fig. 5(a), it is seen that more bits

are assigned to quantize the desired channel towards the cell edge as compared to the low SNR case

in Fig. 5(b). This makes intuitive sense because at high SNR, the quantization error associated with the

desired channel is larger than that at low SNR. Hence, more bits need to be assigned to quantize the

desired channel at high SNR. Another interesting point from Figs. 5(a) and 5(b) is the decrease in the

number of bits allocated to the interfering channels from base stations 1, 4, 5 and 6 as the user moves to

the cell edge towards cells 2 and 3. This clearly illustrates the adaptive nature of the proposed algorithm,

which allocates bits as a function of the received signal strength and the delays.

We plot the cell-edge data rates using both, equi-bit allocation and the proposed adaptive partitioning,

in Fig. 6 for the system setup described in this section. Note that at the cell edge, the strongest interference

is from BTS 2 and BTS 3, as shown in Fig. 3. The corresponding bit assignments are also given in the

figure, for each Btot in the format of (B0, B0,1, B0,2, B0,3, B0,4, B0,5, B0,6). Finally, the effect of delay

in the backhaul link is plotted in Fig. 7 for a user at cell-edge with Btot = 7 and Btot = 35. We fix

the feedback delay, Dk to one symbol time and vary the backhaul delay between [0, 5] symbol times,

i.e. Dk,` ∈ [1, 6]. Similar to Fig. 6, it is seen that while the proposed algorithm outperforms equal bit

allocation for all the delays and Btot values.

It is seen from both Fig. 6 and Fig. 7 that while the limited feedback technique in this paper outperforms
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EBA for all Btot, the improvement in data rate is larger for higher Btot. The new strategy yields about

40 % higher sum-rates than the equal-bit approach at Btot = 35 in both Fig. 6 and Fig. 7. This can be

explained as follows. At Btot = 7, the desired channel is given all the 7 bits, implying 0 bits for each

of the strong interfering channels. For Btot = 35, the strong interfering channels are assigned 14 bits for

each of two strong interfering channels. EBA, in contrast, sees an increase in the feedback bits for the

strong interfering channels from 1 to 5 bits per channel. Quantizing the strong interferers more finely at

the cost of allocating zero bits to the weak channels leads to the significant improvement in data rate using

the proposed algorithm. This leads to a better quantization of the strong interfering channels, leading

to a significantly better performance. We can also see from Fig. 6 that all the bits are assigned to the

desired channel at Btot = 7. The reason is that when the received signal strength for the desired signal is

low, the proposed algorithm will first concentrate on improving the desired signal strength through finer

quantization, rather than reducing the strength of the interfering signals, which can only be as strong as

the desired signal.

VII. CONCLUSION

We considered a multicell cooperative MISO system using ICIN. We assumed a single active user per

cell, which estimates and feeds back the desired and interfering CSI to its own base station. Backhaul

links are used to ensure that each base station has knowledge of the interference that it is causing to

neighboring cells. The feedback and backhaul links are assumed to have delays associated with them. In

this paper, we quantified the mean loss in sum-rate due to delayed limited feedback of the desired and

interfering CSI, using ICIN. We derived a closed-form expression for allocating feedback bits to quantize

the multiple channels. We showed, using simulations, that the proposed algorithm yields higher mean

sum-rates as compared to the equal-bit partitioning approach.

APPENDIX A

PROOF OF PROPOSITION 1

To evaluate the sum-rate in (11), the relation between hk[n] and f̂k[n] needs to be known. Since the kth

base station uses the delayed quantized desired channel, ĥk[n−Dk], to design f̂k[n], we first determine

the dependence of hk[n] and ĥk[n−Dk]. While the Gauss-Markov model in (6) is used to relate hk[n]
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and hk[n−Dk], the relationship between h̃k[n−Dk] and ĥk[n−Dk] is given by1 [32]

h̃k[n−Dk] = cos(θh̃k,ĥk
)ĥk[n−Dk] + sin(θh̃k,ĥk

)sk[n], (33)

where sk[n] is an isotropically distributed vector in the null-space of ĥk[n−Dk], and is independent of

cos(θh̃k,ĥk
) (or sin(θh̃k,ĥk

)). Substituting (33) in (6) yields

hk[n] = ηk‖hk[n−Dk]‖
(

cos(θh̃k,ĥk
)ĥk[n−Dk] + sin(θh̃k,ĥk

)sk[n]
)

+
√

1− η2kwk[n]. (34)

Computing |hk
T [n]f̂k[n]|2, we have

|hk
T [n]f̂k[n]|2 =

∣∣∣ηk‖hk[n−Dk]‖
(

cos(θh̃k,ĥk
)ĥk[n−Dk]f̂k[n] + sin(θh̃k,ĥk

)sk[n]f̂k[n]
)

+
√

1− η2
kwk[n]f̂k[n]

∣∣∣2.
Since sin(θh̃k,ĥk

) and
√

1− η2
k (<< 1) are generally very small, we can approximate |hk

T [n]f̂k[n]|2 by

|hk
T [n]f̂k[n]|2 ≈ η2

k‖hk[n−Dk]‖2 cos2(θh̃k,ĥk
)
∣∣∣ĥk[n−Dk]f̂k[n]

∣∣∣2. (35)

Hence, E{log2(ρk|hk
T [n]f̂k[n]|2)} can be written as

E{log2(|hk
T [n]f̂k[n]|2)} ≥ E

{
log2

(
ρkη

2
k‖hk[n−Dk]‖2 cos2(θh̃k,ĥk

)
∣∣∣ĥk[n−Dk]f̂k[n]

∣∣∣2)}

= log2(η2
k) + log2(e)

2Bk∑
i=0

(
2Bk

i

)
(−1)i

i(Nt−1)∑
n=1

1

n
+ E

{
log2

(
‖hk[n−Dk]‖2

∣∣∣ĥk[n−Dk]f̂k[n]
∣∣∣2)} ,

(36)

where (36) is obtained using a result from [17], that E
{

ln
(

cos2(θh̃k,ĥk
)
)}

=
∑N

i=0

(
N
i

)
(−1)i

∑i(Nt−1)
n=1

1
n .

APPENDIX B

PROOF OF LEMMA 2

Denoting Nt − 1 = M ,
∑2Bk

i=1

(
2Bk

i

)
(−1)i

∑iM
n=1

1
n can be written as

2Bk∑
i=1

(
2Bk

i

)
(−1)i

iM∑
n=1

1

n
=

2Bk∑
i=1

(
2Bk

i

)
(−1)i

∫ 1

0

1− xiM

1− x
dx. (37)

1In the remainder of this proof, we refer to cos(θh̃k[n−Dk],ĥk[n−Dk]
) as cos(θh̃k,ĥk

), and sin(θh̃k[n−Dk],ĥk[n−Dk]
) as

sin(θh̃k,ĥk
) for the sake of notational brevity.
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Since 1−xiM

1−x ≥ 0, i = 1, . . . , 2Bk and x ∈ [0, 1], we exchange the integrand and summations to yield

2Bk∑
i=1

(
2Bk

i

)
(−1)i

iM∑
n=1

1

n
=

∫ 1

0

1

1− x

2Bk∑
i=1

(
2Bk

i

)
(−1)i(1− xiM )dx (38)

=

∫ 1

0

1

1− x

2Bk∑
i=1

[(
2Bk

i

)
(−1)i −

(
2Bk

i

)
(−xM )i

]
dx (39)

= −
∫ 1

0

(1− xM )2Bk

1− x
dx, (40)

where (40) was obtained using
∑2Bk

i=1

(
2Bk

i

)
(−1)i = (1 + (−1))2Bk = 0 and

∑2Bk

i=1

(
2Bk

i

)
(−xM )i =

(1− xM )2Bk . The relation 1− xM = (1− x)
∑M−1

k=0 xk is used to further simplify (40) as

2Bk∑
i=1

(
2Bk

i

)
(−1)i

iM∑
n=1

1

n
= −

∫ 1

0
(1− xM )2Bk−1

M−1∑
k=0

xkdx. (41)

Since xk ≥ 0 for all k = 1, . . . ,M − 1 and x ∈ [0, 1], we again interchange the summation and integrals

2Bk∑
i=1

(
2Bk

i

)
(−1)i

iM∑
n=1

1

n
= −

M−1∑
k=0

∫ 1

0
(1− xM )2Bk−1xkdx (42)

= −
M−1∑
k=0

∫ 1

0
u

k+1

M
−1(1− u)2Bk−1du, (43)

where u = xM . Note that the expression in (44) is that of a beta function with parameters given by k+1
M

and 2Bk . Hence, (44) is given by the sum of beta functions

2Bk∑
i=1

(
2Bk

i

)
(−1)i

iM∑
n=1

1

n
= −

Nt−1∑
k=1

β

(
2Bk ,

k

Nt − 1

)
. (44)

APPENDIX C

PROOF OF PROPOSITION 3

Similar to (34), we can express gk,`[n] as a function of ĝk,`[n−Dk,`] as

gk,`[n] = ηk,`‖gk,`[n−Dk,`]‖
(
cos(θg̃k,`,ĝk,`

)ĝk,`[n−Dk,`] + sin(θg̃k,`,ĝk,`
)sk,`[n]

)
+
√

1− η2k,`wk,`[n]. (45)

Since f̂`[n] lies in the null-space of ĝk,`[n−Dk,`], we have

|gk,`T [n]f̂`[n]|2 =
∣∣∣ηk,`‖gk,`[n−Dk,`]‖ sin(θg̃k,`,ĝk,`

)sk,`[n]f̂`[n] +
√

1− η2
k,`wk,`[n]f̂`[n]

∣∣∣2.
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Using the triangle inequality, we get

|gk,`T [n]f̂`[n]|2 ≤
(∣∣∣ηk,`‖gk,`[n−Dk,`]‖ sin(θg̃k,`,ĝk,`

)sk,`[n]f̂`[n]
∣∣∣+
∣∣∣√1− η2

k,`wk,`[n]f̂`[n]
∣∣∣)2

= η2
k,`‖gk,`[n−Dk,`]‖2 sin2(θg̃k,`,ĝk,`

)
∣∣∣sk,`[n]f̂`[n]

∣∣∣2 + (1− η2
k,`)‖wk,`[n−Dk,`]‖2

∣∣∣w̃k,`[n]f̂`[n]
∣∣∣2

+ 2ηk,`‖gk,`[n−Dk,`]‖ sin(θg̃k,`,ĝk,`
)
√

1− η2
k,`‖wk,`[n−Dk,`]‖

∣∣∣sk,`[n]f̂`[n]
∣∣∣.∣∣∣wk,`[n]f̂`[n]

∣∣∣.
(46)

Evaluating E{|gk,`T [n]f̂`[n]|2} using the relations that
∣∣∣sk,`[n]f̂`[n]

∣∣∣ ≤ 1 and
∣∣∣wk,`[n]f̂`[n]

∣∣∣ ≤ 1,

E{|gk,`T [n]f̂`[n]|2} ≤ η2
k,`E{‖gk,`[n−Dk,`]‖2}E{sin2(θg̃k,`,ĝk,`

)}E{
∣∣∣sk,`[n]f̂`[n]

∣∣∣2}
+ (1− η2

k,`)E{‖wk,`[n−Dk,`]‖2}E{
∣∣∣w̃k,`[n]f̂`[n]

∣∣∣2}
+ 2ηk,`

√
1− η2

k,`E{sin(θg̃k,`,ĝk,`
)}E{‖gk,`[n−Dk,`]‖}E{‖wk,`[n−Dk,`]‖}.

(47)

Now, E{‖gk,`[n − Dk,`]‖2} = E{‖wk,`[n − Dk,`]‖2} = Nt. Further, since sk,`[n] and f̂`[n] are both

isotropically and independently distributed in the Nt−1 null-space of ĝk,`[n−Dk,`],
∣∣∣sk,`[n]f̂`[n]

∣∣∣2 is beta

distributed as β(1, Nt−2) [32]. Similarly, w̃k,`[n] and and f̂`[n] are both isotropically and independently

distributed in the Nt dimensions, implying that
∣∣∣w̃k,`[n]f̂`[n]

∣∣∣2 is beta distributed as β(1, Nt − 1). The

mean of a beta distribution β(a, b) is a
a+b . Since ‖gk,`[n−Dk,`]‖ and ‖wk,`[n−Dk,`]‖ are χ distributed

with 2Nt degrees of freedom, E{‖gk,`[n − Dk,`]‖} = E{‖wk,`[n − Dk,`]‖} = Γ(Nt+1/2)√
2ΓNt

. Using these

results, (47) is rewritten as

E{|gk,`T [n]f̂`[n]|2} ≤ η2
k,`2

Bk,`β

(
2Bk,` ,

Nt

Nt − 1

)
Nt

Nt − 1
+ (1− η2

k,`)

+ηk,`

√
1− η2

k,`E{sin(θg̃k,`,ĝk,`
)}
(

Γ(Nt + 1/2)

ΓNt

)2

. (48)

The last term in the upper bound of E
{
|gk,`T [n]f̂`[n]|2

}
in (48) includes the product of ηk,`(< 1), for

non-zero delay,
√

1− η2
k,`(<< 1) and E{sin(θg̃k,`,ĝk,`

)}(≤ 1), and hence, can be ignored. The lower-

bound in (48) can then be rewritten as

E{|gk,`T [n]f̂`[n]|2} ≤ log2

1 + ρk

K∑
`=1
` 6=k

αk,`

(
1− η2

k,` + η2
k,`2

Bk,`β

(
2Bk,` ,

Nt

Nt − 1

)
Nt

Nt − 1

) . (49)
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APPENDIX D

PROOF OF THEOREM D

Applying the arithmetic mean - geometric mean inequality to the objective function in (26), we get

K∑
`=1
6̀=k

αk,`η
2
k,`2
− Bk,`

Nt−1 ≥ (K − 1)

 K∏
`=1
`6=k

αk,`η
2
k,`2
− Bk,`

Nt−1


1

K−1

, (50)

where the equality holds for αk,`η
2
k,`2
− Bk,`

Nt−1 = αk,nη
2
k,n2

− Bk,n

Nt−1 , ` 6= n. The minimum value of (50) is

(K − 1)αk,`η
2
k,`2
− Bk,`

Nt−1 = (K − 1)

2
−Bi
Nt−1

K∏
`=1
`6=k

αk,`η
2
k,`


1

K−1

. (51)

Solving for Bk,` gives us

Bk,`
∗ =

Bi

K − 1
+ (Nt − 1) log2

(
αk,`η

2
k,`∏K

`=1(αk,`η
2
k,`)

1

K−1

)
. (52)

Note that (52) can be negative when αk,`η
2
k,` is sufficiently small. Since Bk,` can only be non-negative,

we set the Bk,` = 0 for all ` which cause (52) to become negative. This implies that we partition bits

among only the effective set of interferers K that will result in a non-negative value of Bk,` for all ` ∈ K.

APPENDIX E

PROOF OF THEOREM 5

By ignoring the terms in (28) that do not depend on Bk, the new objective function is given by

log2(e)Γ

(
Nt

Nt − 1

)
2
− Bk

Nt−1 + log2(e)ρk(K − 1)Γ

(
2Nt − 1

Nt − 1

)
2
− Btot−Bk

(Nt−1)(K−1)

K∏
`=1
` 6=k

(αk,`η
2
k,`)

1

K−1 . (53)

The expression in (53) can be further simplified by dividing the expression by the constant log2(e)Γ
(

Nt

Nt−1

)
and by denoting Ci = ρk

(K−1)Nt

Nt−1 2
−Btot

(Nt−1)(K−1)
∏K

`=1
`6=k

(αk,`η
2
k,`)

1

K−1 as

2
− Bk

Nt−1 + Ci2
Bk

(Nt−1)(K−1) . (54)

Using the arithmetic mean-geometric mean inequality, we get

2
− Bk

Nt−1 + Ci2
Bk

(Nt−1)(K−1) ≥ 2

√
2
− Bk

Nt−1 · Ci2
Bk

(Nt−1)(K−1) . (55)
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We can minimize (53) (and hence, (28)) by solving for Bk that satisfies the equality 2
− Bk

Nt−1 = Ci2
Bk

(Nt−1)(K−1) .

Hence, the approximate mean loss in sum-rate at low SNR can be minimized by setting Bk as

Bk
LS =

Btot

K
− (Nt − 1)(K − 1)

K
log2

ρk Nt

Nt − 1

K∏
`=1
`6=k

(αk,`η
2
k,`)

1

K−1

 .

APPENDIX F

PROOF OF THEOREM 6

The approximate mean loss in sum-rate in (29) can be rewritten as

log2(e)Γ

(
Nt

Nt − 1

)
2
− Bk

Nt−1 + log2

1 +
Γ
(

2Nt−1
Nt−1

)
2

−Btot
(Nt−1)(K−1)

∏K
`=1(αk,`η

2
k,`)

1

K−1∑K
`=1
`6=k

αk,`

(
1− η2

k,`

) 2
Bk

(Nt−1)(K−1)



− log2

ρk K∑
`=1
`6=k

αk,`

(
1− η2

k,`

) .

(56)

The last term can be ignored in the optimization problem since it is independent of Bk. Denoting the

ratio before 2
Bk

(Nt−1)(K−1) inside the logarithm by Ci, the objective function in (56) can be simplified as

log2(e)Γ

(
Nt

Nt − 1

)
2
− Bk

Nt−1 + log2

(
1 + Ci2

Bk
(Nt−1)(K−1)

)
. (57)

Note that Ci will typically be large since the denominator of
∑K

`=1
`6=k

αk,`

(
1− η2

k,`

)
is very small. For

large Ci, log2

(
1 + Ci2

Bk
(Nt−1)(K−1)

)
≈ log2(Ci) + Bk

(Nt−1)(K−1) , which is a linear (and hence, convex)

function in Bk. Now, 2
− Bk

Nt−1 is a convex functions in Bk. As the sum of non-negatively weighted

convex functions is convex, the expression in (57) is convex. Hence, there exists a global minimizer,

Bk ∈ [0, Btot]. Finding the derivative of the objective function in (57) with respect to Bk, we get

−1

Nt − 1
Γ

(
Nt

Nt − 1

)
2
− Bk

Nt−1 +
Ci2

Bk
(Nt−1)(K−1)

1 + Ci2
Bk

(Nt−1)(K−1)

1

(Nt − 1)(K − 1)
. (58)

In (58), we can approximate Ci2
Bk

(Nt−1)(K−1)

1+Ci2
Bk

(Nt−1)(K−1)

≈ 1, for large Ci. Setting (58) to zero, we get,

Bk
HS = (Nt − 1) log2

(
(K − 1)Γ

(
Nt

Nt − 1

))
.
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TABLE I
SIMULATION PARAMETERS, BASED ON THE 3GPP LTE’S URBAN MICROCELL.

Parameter Value
Number of interferers 6
Carrier frequency, fc 1.9 GHz

Base station height 12.5 m

Mobile terminal height 1.5 m

Cell radius 400 m

Transmit power, Es 3 dB

Noise power, No −144 dB

Normalized feedback and quantization delay 1
Normalized backhaul delay 1

Figures

Fig. 1. Multicell cooperative model described in Section II. The solid line with an arrow represents the desired signal, while
the dashed lines denote the interfering signals. The solid line between base stations represents the backhaul links connecting
base stations.

Backhaul with delay

Feedback with delayBackhaul with delay

BTS
BTS

BTS

^

^

^

^

Fig. 2. The limited feedback model, described in Section II-B, to feedback quantized CSI of the desired and interfering
channels. The quantizing operation is denoted by Q.
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Fig. 3. The simulation setup in Section VI. The base stations are numbered in a clockwise fashion.
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Fig. 4. Comparison of the normalized data-rate as a function of the distance, d, of the user from the desired base station for
Btot = 7, 35 and v = 10 mph.
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Fig. 5. Adaptive feedback-bit partitioning as a function of the distance, d, the user from the desired base station for Btot = 35
and v = 10 mph for (a) Es = 3dB and (b) Es = −3dB .
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Fig. 6. Comparison of the mean data-rate at the cell-edge for different values of Btot. Bit assignments are shown corresponding
to each Btot.
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Fig. 7. Comparison of the mean data-rate at the cell-edge for different values of delay in the backhaul link.
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