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Abstract

Environmental monitoring is often performed through a wireless sensor network, whose nodes are

randomly deployed over the geographical region of interest. Sensors sample a physical phenomenon

(the so-called field) and send their measurements to asinknode, which is in charge of reconstructing

the field from such irregular samples. In this work, we focus on scenarios of practical interest

where the sensor deployment is unfeasible in certain areas of the geographical region, e.g., due

to terrain asperities, and the delivery of sensor measurements to the sink may fail due to fading

or to transmission collisions among sensors simultaneously accessing the wireless medium. Under

these conditions, we carry out an asymptotic analysis and evaluate the quality of the estimation

of a d-dimensional field (d ≥ 1) when the sink uses linear filtering as a reconstruction technique.

Specifically, given the matrix representing the sampling system,V, we derive both the moments

and an expression of the limiting spectral distribution ofVVH, as the size ofV goes to infinity

and its aspect ratio has a finite limit bounded away from zero.By using such asymptotic results,

we approximate the mean square error on the estimated field through theη-transform ofVVH, and

derive the sensor network performance under the conditionsdescribed above.

I. INTRODUCTION

Recently, a great deal of attention has been payed to wireless sensor networks whose nodes sample

a physical phenomenon (hereinafter referred to as field), i.e., air temperature, light intensity, pollution

levels or rain falls, and send their measurements to a central processing unit (orsink node). The sink

is in charge of reconstructing the sensed field: if the field can be approximated as bandlimited in the

time and space domain, then an estimate of the discrete spectrum can be obtained.

However, the sensors measurements typically represent an irregular sampling of the field of interest,

thus the sink operates based on a set of field samples that are not regularly spaced in the time and
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space domain. The reasons for such an irregular sampling aremultifold. (i) The sensors may be

irregularly deployed in the geographical region of interest, either due to the adopted deployment

procedure (e.g., sensors thrown out of an airplane [1]), or due to the presence of terrain asperities

and obstacles. (ii) The transmission of the measurements from the sensors to the central controller

may fail due to bad channel propagation conditions (e.g., fading), or because collisions occur among

the transmissions by sensors simultaneously attempting toaccess the channel. In this case, although

the sample has been collected by the sensor, it will not be delivered to the central controller. (iii) The

sensors may enter a low-power operational state (sleep mode), in order to save energy [2], [3]. While

in sleep mode, the nodes neither perform sensing operationsnor transmit/receive any measurement.

(iv) The sensors may be loosely synchronized, hence sense the field at different time instants.

Clearly, sampling irregularities may result in a degradation of the reconstructed signal [4]. The

work in [5] investigates this issue in the context of sensor networks. Other interesting studies can

be found in [6] and [7], just to name a few, which address the perturbations of regular sampling in

shift-invariant spaces [6] and the reconstruction of irregularly sampled images in presence of measure

noise [7].

In this work, our objective is to evaluate the performance ofthe field reconstruction when the

coordinates in thed-dimensional domain of the field samples, which reach the sink node, are randomly,

independently distributed and the sensors measurements are noisy. We take as performance metric

the mean square error (MSE) on the reconstructed field. As a reconstruction technique, we use linear

filtering and we adopt the filter that minimizes the MSE (i.e.,the LMMSE filter) [8]–[10]. The matrix

representing the sampling system, in the following denotedby V, results to be ad-fold Vandermonde

matrix1. By drawing on the results in [9], [11], we derive both the moments and an expression of the

limiting spectral distribution (LSD) ofVVH, as the size ofV goes to infinity and its aspect ratio has

a finite limit bounded away from zero. Then, by using such an asymptotic model, we approximate

the MSE on the reconstructed field through theη-transform [12] ofVVH, and derive an expression

for it. We apply our results to the study of network scenariosof practical interest, such as sensor

sensor deployments with coverage holes, communication in presence of a fading channel, massively

dense networks [13], [14], and networks using contention-based channel access techniques [15].

The rest of the paper is organized as follows. Section II reviews previous work, while Section III

describes the system model under study. In Section IV, we first provide some useful definitions and

introduce our performance metric, then we recall previous results on which we build our analysis. In

Section V, we derive asymptotic results concerning the moments and the LSD ofVVH. Such results

1An n×m matrix X is Vandermonde if its(i, j)−th entry,(X)ij can be written as(X)ij = xi
j , i = 0, . . . , n− 1, j =

1, . . . ,m.
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are applied to different practical scenarios in Section VI.Finally, Section VII concludes the paper.

II. RELATED WORK

In the context of sensor networks, several works [16]–[19] have studied the field reconstruction

at the sink node in presence of spatial and temporal correlation among sensor measurements. In

particular, in [19] the observed field is a discrete vector oftarget positions and sensor observations

are dependent. By modeling the sensor network as a channel encoder and exploiting some concepts

from coding theory, the network capacity, defined as the maximum value of the ratio of the target

positions to the number of sensors, is studied as a function of the noise, the sensing function and the

sensor connectivity level.

The paper by Dong and Tong [20] considers a dense sensor network where a MAC protocol is

responsible to collect samples from network nodes. The workanalyzes the impact of deterministic and

random data collection strategies on the quality of field reconstruction. As a performance measure,

the maximum of the reconstruction square error over the sensed field is employed, as opposed to our

work where the mean square error is considered. Also, in [20]the field is a Gaussian random process

and the sink always receives a sufficiently large number of samples so as to reconstruct the field with

the required accuracy.

The problem of reconstructing a bandlimited field from a set of irregular samples at unknown

locations, instead, has been addressed in [21]. There, the field is oversampled by irregularly spaced

sensors; sensor positions are unknown but always equal to aninteger multiple of the sampling interval.

Different solution methods are proposed, and the conditions for which there exist multiple solutions

or a unique solution are discussed. Differently from [21], we assume that the sink can either acquire

or estimate the sensor locations and that the coordinates ofthe sampling points are randomly located

over a finited-dimensional domain.

As for previous results on Vandermonde matrices, in [11] Ryan and Debbah considered a Van-

dermonde matrixV with d = 1 and complex exponential entries, whose phases are i.i.d. with

continuous distribution. Under such hypothesis, they obtained the important results that, given the

phases distribution, the moments ofVVH can be derived once the moments for the case with

uniformly distributed phases are known. Also, a method for computing the moments of sums and

products of Vandermonde matrices, for the non-folded case (i.e.,d = 1), has recently appeared in [22];

further insights on the extremal eigenvalues behavior, still for the case of non-folded Vandermonde

matrices, can be found in [23]. Moreover, in [9] it has been shown that the LSD ofVVH converges

to the Marčenko-Pastur distribution [24] whenV is d-fold Vandermonde with uniformly distributed

phases andd → ∞.

Note that, with respect to previous studies on Vandermonde matrices with entries that are randomly
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distributed on the complex unit circle, in this work we obtain results on the LSD ofVVH where

the entries ofV have phases drawn from ageneric continuous distribution. By relying on the results

in [9], [11], we show that such an LSD can be related to that ofVVH when the phases ofV are

uniformly distributed on the complex unit circle. We also provide somenumerical results that show

the validity of our analysis. To our knowledge, these results have not been previously derived. We

then apply them to the study of several practical scenarios in the context of sensor networks, although

our findings can be useful for the study of other aspects of communications as well [11].

III. N ETWORK MODEL

We consider a network composed ofm wireless sensors, which measure the value of a spatially-

finite physical field defined overd dimensions, (d ≥ 1). We denote byH =
[

−1
2 ,

1
2

)d
the hypercube

over which the sampling points fall, and we assume that the sampling points are i.i.d. randomly

distributed variables, whose value is known to the sink node. Note that this is a fair assumption,

as one can think of sensor nodes randomly deployed over the geographical region that has to be

monitored, or, even in the case where the network topology isintended to have a regular structure,

the actual node deployment may turn out to be random due to obstacles or terrain asperities. In

addition, now and then the sensors may enter a low-operational mode (hence become inactive) in

order to save energy, and they may be loosely synchronized. All the above conditions yield a set of

randomly distributed samples of the field under observation, in both the time and the space domain [5].

By truncating its Fourier series expansion, a physical fielddefined overd dimensions and with

finite energy can be approximated in the regionH as [9]

n−d/2
∑

ℓ

aν(ℓ)e
j2πℓTx (1)

wheren is the approximate one-sided bandwidth (per dimension) of the field, ℓ = [ℓ1, . . . , ℓd]
T is

a vector of integers, withℓk = 0, . . . , n − 1, k = 1, . . . , d. The coefficientn−d/2 is a normalization

factor and the function

ν(ℓ) =

d
∑

j=1

nj−1ℓj ,

maps uniquely the vectorℓ over [0, nd−1]. aν(ℓ) denotes theν(ℓ)-th entry of the vectora of sizend,

which represents the approximated field spectrum, while thereal vectorsxq, q = 1, . . . ,m represent

the coordinates of thed-dimensional sampling points. In this work, we assume thatxq, q = 1, . . . ,m,

are i.i.d. random vectors having a generic continuous distribution fx(z), z ∈ H. In the specific case

wherexq are i.i.d with i.i.d. entriesxqj , j = 1, . . . , d, uniformly distributed in[−1/2, 1/2), we denote

the distribution ofxq by fu(z).

The coordinates of thed-dimensional sampling points, however, are known to the sink node,

because(i) either sensors are located at pre-defined positions or theirposition can be estimated
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through a localization technique [25], and(ii) the sampling time is either periodic or included in the

information sent to the sink.

Now, let s = [s(x1), . . . , s(xm)]T be the values of the samples at[x1, . . . ,xm], respectively.

Following [8], [9], we can write the vectors as a function of the field spectrum:

s = β−1/2
n,m VHa (2)

whereV is thend ×m d-fold Vandermonde matrix with entries

(

Vν(ℓ),q

)

= m−1/2 exp
(

−2πiℓTxq

)

(3)

randomly distributed on the complex circle of radiusm−1/2, andβn,m is the ratio of the rows to the

columns ofV, i.e.,

βn,m =
nd

m
.

In general, the entries ofa can be correlated with covariance matrixE[aaH]. However, in the

following, we restrict our attention to the class of fields characterized byE[aaH] = σ2
aI.

In the case where the sensor measurements,p = [p1, . . . , pm]T, are noisy, then the relation between

the sensor samples and the approximated field spectrum can bewritten as:

p = s+ n = β−1/2
n,m VHa+ n (4)

wheren is am-size, zero-mean random vector representing the noise. Here, we assume a white noise,

i.e., with covariance matrixE[nnH] = σ2
nIm. Note that the additive white noise affecting the sensor

measurements may be due to quantization, round-off errors or quality of the sensing device.

IV. PRELIMINARIES

In this section, we report some definitions and previous results that are useful for our study.

A. Useful definitions

Let us consider ann× n non-negative definite random matrixA, whose eigenvalues are denoted

by λA,1, . . . , λA,n.

Definition 4.1: The average empirical cumulative distribution of the eigenvalues ofA is defined as

F
(n)
λA

(z) = 1
n

∑n
i=1 E [1{λA,i ≤ z}], where the superscript(n) indicates that we refer to a system with

sizen and 1{·} is the indicator function. IfF(n)λA

(z) converges asn → ∞, then limn→∞ F
(n)
λA

(z) =

FλA
(z). The corresponding limiting probability density function, or limiting spectral distribution

(LSD), is denoted byfλA
(·).

Definition 4.2: The η-transform ofA is given by:

η
(n)
A

(γ) = E

[

tr

{

(γA+ I)−1
}]

= E

[

1

n

n
∑

i=1

1

γλA,i + 1

]

(5)
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wheretr{·} is the normalized matrix trace operator andγ is a non-negative real number. Ifη(n)
A

(γ)

converges asn → ∞, then the corresponding limit isηA(γ) = E[(γλA+1)−1] [12, p. 40], whereλA

is the generic asymptotic eigenvalue ofA, whose distribution isfλA
(z), and the average is computed

with respect toλA [12].

Next, consider the matrixV as defined in (3) and that the LMMSE filter is used for field

reconstruction. Then, the estimate of the unknown vectora in (4), given y and V, is obtained

by computingâ = E[apH]E[ppH]−1p. Through easy computations and using the Sherman-Morrison-

Woodbury identity, we can obtain the MSE as

MSE(n) = σ−2
a E

[

tr

{

(

σ−2
n β−1

n,mVVH + σ−2
a I
)−1

}]

= η
(n)
VVH

(

γ

βn,m

)

(6)

whereγ = σ2
a/σ

2
n denotes the signal-to-noise ratio on the sensor measurements, and we employed

the definition of theη-transform given in (5).

Next, we approximate the MSE of the finite size system in (4) through an asymptotic model, which

assumes the size ofV to grow to infinity while the ratio of its number of rows to its number of

columns tends to a finite limit,β, greater than zero, i.e., we assume

lim
n,m→∞

βn,m = β

Indeed, in our recent works [8]–[10] it was shown that this asymptotic model provides a tight

approximation of the MSE of the finite size system, already for small values ofn and m. Under

these conditions, we therefore define the asymptotic expression of the MSE as [10]:

MSE∞ = lim
n,m→∞

MSE(n) = ηVVH (γ/β) (7)

if the limit exists.

B. Previous results

Vandermonde matrices have been studied in a number of recentworks [8]–[11]. Specifically, [9]

considered the case where the vectorsxq are i.i.d., forq = 1, . . . ,m, and their entries,xqj are i.i.d.

random variables with uniform distribution in[−1/2, 1/2). The work there studied the eigenvalue

distribution ofVVH for both finite and infinite (i.e.,m,n → ∞) matrix size. Although an explicit

expression of such LSD is still unknown, [9] provided an algorithm to compute its moments of any

order in closed form.

Indeed, asn,m → ∞ with βn,m = nd/m having a finite limitβ > 0, in [9] it was shown that the

p-th moment of the generic asymptotic eigenvalue ofVVH, denoted byλ, is given by

Mp,d,β,u =

∫

zpfλ,u(d, β, z) dz =

p
∑

k=1

βp−k
∑

ω∈Ωp,k

v(ω)d
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where fλ,u(d, β, z) represents the distribution ofλ. Moreover,Ωp,k is the set of partitions of the

setP = {1, 2, . . . , p} in k subsets, andv(ω) ∈ (0, 1], ω ∈ Ωp,k is a rational number that can be

analytically computed fromω following the procedure described in [9]. The subscriptu in Mp,d,β,u

andfλ,u(d, β, z) indicates that a uniform distribution of the entries ofxq is considered in the matrix

V.

In [9] it was also shown that whenn,m, d → ∞, with βn,m = nd/m having a finite limitβ > 0, the

eigenvalue distributionfλ,u(d, β, z) converges to the Marčcenko-Pastur law [24]. A similar result [10]

also applies when the vectorsxq (q = 1, . . . ,m) are independent but not i.i.d., with equally spaced

averages.

More recently, Ryan and Debbah in [11] consideredd = 1 and the case where the random variables

xq1, q = 1, . . . ,m, are i.i.d. with continuous distributionfx(z), 0 ≤ z < 1. Under such hypothesis,

it was shown that the asymptotic moments ofVVH can be written as

Mp,1,β,x =

p
∑

k=1

Ikβ
p−k

∑

ω∈Ωp,k

v(ω) (8)

where the termsIk depend on the phase distributionfx(z) and are given by

Ik =

∫ 1

0
fx(z)

k dz

for k ≥ 1. The subscriptx in Mp,1,β,x indicates that in the matrixV the random variablesxq1 have a

generic continuous distributionfx(z). Note that for the uniform distribution we haveIk = 1, for all

k. The important result in (8) states that, givenβ, if the moments ofVVH are known for uniformly

distributed phases, they can be readily obtained for any continuous phase distributionfx(z).

V. VANDERMONDE MATRICES WITH GENERIC PHASE DISTRIBUTION

In this work, we extend the above results by considering a sampling system defined overd ≥ 1

dimensions with nonuniform sample distribution, where samples may be irregularly spaced in the

time and spatial domains, as it occurs in wireless sensor networks. Being our goal the estimation of

the quality of the reconstructed field, we aim at deriving theasymptotic MSE (i.e.,ηVVH(γ/β)).

We start by considering a generic continuous distribution,fx(z), z ∈ H of the samples measured by

the sensors over thed-dimensional domain. We state the theorem below, which gives the asymptotic

expression of the generic moment ofVVH, for d ≥ 1.

Theorem 5.1:Let V a d-fold nd × m Vandermonde matrix with entries given by (3) where the

vectorsxq, q = 1, . . . ,m, are i.i.d. and have continuous distributionfx(z). Then, forn,m → ∞,

with βn,m = nd/m having a finite limitβ > 0, the p-th moment ofVVH is given by

Mp,d,β,x =

p
∑

k=1

βp−kIk
∑

ω∈Ωp,k

v(ω)d (9)
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whereIk =
∫

H fx(z)
k dz and the termsv(ω) are defined as in [9].

The proof is given in Appendix A.

Using Theorem 5.1 and the definition ofIk, it it possible to show the theorem below, which provides

the LSD ofVVH.

Theorem 5.2:Let

• V be ad-fold nd × m Vandermonde matrix with entries given by (3) where the vectors xq,

q = 1, . . . ,m, are i.i.d. and have continuous distributionfx(z), z ∈ H
• A be the set wherefx(z) is strictly positive, i.e.,A = {z ∈ H|fx(z) > 0}
• the cumulative density function

Gx(y) =
1

|A| |{z ∈ A |fx(z) ≤ y}| (10)

defined2 for y > 0 and letgx(y) be its corresponding probability density function.

Then, the LSD ofVVH, for n,m → ∞ with βn,m = nd/m having a finite limitβ > 0, is given by

fλ,x(d, β, z) = (1− |A|) δ(z) + |A|
∫ ∞

0

gx(y)

y
fλ,u

(

d,
β

y
,
z

y

)

dy (11)

Proof: The proof can be found in Appendix B.

From Theorem 5.2, the corollary below follows.

Corollary 5.1: Considerfx(z) such thatfx(z) > 0 ∀z ∈ H. Then, let us denote byfx′(z) a scaled

version of this function, so that

fx′(z) =







1
|C|fx

(

z

|C|

)

z ∈ C

0 z ∈ H \ C
(12)

whereC ⊂ H. It can be shown that

fλ,x′(d, β, z) = (1− c) δ(z) + c2fλ,x(d, cβ, cz) (13)

wherec = |C|.
Proof: The proof can be found in Appendix C.

As an example of the result given in Corollary 5.1, consider that a unidimensional (d = 1) sensor

network monitors the segmentH = [−1/2, 1/2]. Due to terrain irregularities and obstacles, nodes

are deployed with uniform distribution only in the range[−c/2, c/2] (with c ∈ [0, 1)). We therefore

havefx′(z) = 1/c for −c/2 ≤ z ≤ c/2 and 0 elsewhere. Moreover,fλ,x(1, β, z) = fλ,u(1, β, z).

The expression offλ,x′(1, β, z) is given by (13), by replacingd = 1 and the subscriptx with the

subscriptu.

This result is well supported by simulations as shown in Figures 1(a) and 1(b). In the plots,

we compare the asymptotic empirical spectral distribution(AESD) f
(n)
λ,x′ and f

(n)
λ,u instead of the

2|S| denotes the measure of the setS
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Fig. 1. Comparison between the curve representingf
(n)

λ,x′(1, βn,m, z) and the one representing the empirical function

c2f
(n)
λ,u(d, βn,mc, zc). (a) βn,m = 0.8, c = 0.8 and (b)βn,m = 0.2, c = 0.5.

LSDs fλ,x′ andfλ,u since an analytic expression offλ,u is still unknown. However, in [8]–[10] it is

shown that, already for small values ofn, the AESDf
(n)
λ,u appears to rapidly converge to a limiting

distribution. Figure 1(a) refers to the caseβn,m = 0.8 and c = 0.8. The solid and dashed lines

represent, respectively, the functionsf (n)
λ,x′(1, β, z) and c2f

(n)
λ,u(1, βn,mc, zc), for n = 100. Note that

the probability mass off (n)
λ,x′(1, βn,m, z) at z = 0 is not shown for simplicity. Similarly, Figure 1(b)

shows the caseβn,m = 0.2 and c = 0.5. As evident from these plots, the match between the two

functions is excellent for any parameter setting, thus supporting our findings.

Since we are interested in evaluating the MSE, taking into account the result in (7), we now apply

the definition of theη-transform to (11). The corollary below immediately follows.

Corollary 5.2: The η-transform ofVVH is given by

ηx(d, β, γ) = 1− |A|+ |A|
∫ ∞

0
gx(y)ηu

(

d,
β

y
, γy

)

dy (14)

hence, the asymptotic MSE on the reconstructed field, definedin (7), is given by

MSE∞ = ηx(d, β,
γ

β
) = 1− |A|+ |A|

∫ ∞

0
gx(y)ηu

(

d,
β

y
,
γ

β
y

)

dy (15)

Proof: The proof can be found in Appendix E.

In (14), in order to avoid a heavy notation we referred toηVVH(d, β, γ) as ηx(d, β, γ) when the

phases of the entries ofV follow a generic random continuous distribution, whileηu(d, β, γ) refers

to the case where the phases are uniformly distributed.

Remark 5.1:Sincegx(y) > 0 andηu(d, β/y, γy/β) > 0, the integral in the right hand side of (14)

is positive, thenηx(d, β, γ/β) > 1− |A|. It follows that the MSE is lower-bounded by the measure

of the total area where the probability of finding a sensor is zero. This clearly suggests that, in order
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to obtain a good quality of the field reconstructed at the sinknode, this area must be a small fraction

of the region under observation.

Next, we observe that, in the case of massively dense networks where the number of sampling

sensors is much larger than the number of harmonics considered in the approximated field, i.e.,β ≪ 1,

an interesting result holds:

Corollary 5.3: Let A be the set wherefx(z) is strictly positive; then

lim
β→0

fλ,x(d, β, z) = (1− |A|) δ(z) + |A|gx(z) (16)

Proof: The proof can be found in Appendix D.

Thus, as evident from Corollary 5.3, for the limit ofβ → 0, the LSD ofVVH is the density of the

density of the phase distributionfx(z).

Furthermore, for massively dense networks, we have:

Corollary 5.4: Let A be the set wherefx(z) is strictly positive; then

lim
β→0

ηx(d, β, γ/β) = 1− |A| (17)

Proof: The proof can be found in Appendix F.

Remark 5.2:The result in (17) shows that even for massively dense networks 1 − |A| is the

minimum achievableMSE∞, when an areaA cannot covered by sensors.

VI. F IELD RECONSTRUCTION IN PRESENCE OF LOSSES

Here, we provide examples of how our results can be used in wireless sensor networks to investigate

the impact of a random distribution of the coordinates of thesampling points on the quality of the

reconstructed field. In particular, we first consider a wireless channel affected by fading, and then the

effects of contention-based channel access.

A. Sensor network performance with fading communication channel

We consider a wireless sensor network whose nodes are uniformly distributed over a geograph-

ical region. Without loss of generality, we assume a square region of unitary side (d = 2, H =

[−1/2,+1/2]2), where the sink is located at the center and has coordinates(z1, z2) = (0, 0). Through

direct transmissions, the sensors periodically send messages to the sink, including their measurements.

At every sample period, a sensor message is correctly received at the sink if its signal-to-noise ratio

(SNR) exceeds a thresholdτ . The communication channel is assumed to be affected by slowfading

and to be stationary over the message duration.

Let d be the distance between a generic sensor and the sink. Then, the signal to noise ratio at the

receiver is given by

SNR(d) = s|h|2d−2

November 20, 2018 DRAFT



11

whereh ∼ NC(0, 1) is a circularly symmetric Gaussian complex random variablerepresenting the

channel gain, ands is the signal to noise ratio in the absence of fading and when the sensor-sink

distance isd = 1.

The probability that a message is correctly received at the sink is given by

P(SNR(d) > τ) = P

(

|h|2 > τ
d2

s

)

= 1− F|h|2

(

τ
d2

s

)

= exp
(

−ad2
)

(18)

with a = τ/s andF|h|2(z) = 1− e−z being the cumulative density function of|h|2.
The probability densityfx(z1, z2) corresponding to sensors at distanced =

√

z21 + z22 , −1/2 ≤
z1, z2 ≤ 1/2 from the sink and successfully sending a message is then given by

fx(z1, z2) =
fu(z1, z2)P

(

SNR
(

√

z21 + z22

)

> τ
)

∫∫

H fu(z1, z2)P
(

SNR
(

√

z21 + z22

)

> τ
)

dz1 dz2

wherefu(z1, z2) = 1∀z1, z2, is the density representing the sensor deployment (recallthat nodes are

assumed to be uniformly distributed in the region hence their density is constant and equal to 1).

Using (18), we obtain:

fx(z1, z2) =
exp

(

−a(z21 + z22)
)

∫∫

H exp
(

−a(z21 + z22)
)

dz1 dz2

= b exp
(

−a(z21 + z22)
)

(19)

where

b−1 =

∫∫

H
exp

(

−a(z21 + z22)
)

dz1 dz2 =
π

a
erf2

(
√

a

4

)

In order to compute (14), we need the functiongx(y), i.e., the density offx(z1, z2). Note that

fx(z1, z2) is circularly symmetric with respect to(z1, z2) = (0, 0). Let y be the value of density of the

sampling points at distancedy =
√

z21 + z22 from the sink. Then, from (19) we obtaindy =
√

1
a log

b
y ,

thus the network area where the density is lower thany is given by

Gx(y) = 1− πd2y

for 0 ≤ dy ≤ 1/2, i.e., be−a/4 ≤ y < b. For 1/2 < dy <
√
2/2, it is possible to show that

Gx(y) = 1−
√

4d2y − 1− d2y

(

π − 4 cos−1 1

2dy

)

In conclusion,

Gx(y) =































1 y/b ≥ 1

1− πd2y e−a/4 ≤ y/b < 1

1−
√

4d2y − 1− d2y

(

π − 4 cos−1 1
2dy

)

e−a/2 ≤ y/b < e−a/4

0 y/b < e−a/2

(20)
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and

gx(y) =































0 y/b ≥ 1

π
ay e−a/4 ≤ y/b < 1

1
ay

(

π − 4 cos−1 1
2dy

)

e−a/2 ≤ y/b < e−a/4

0 y/b < e−a/2

(21)

Since|A| = 1, then the asymptotic MSE can be obtained by computing

MSE∞ = ηx(2, β, γ/β) =

∫ b

e−a/2

gx(y)ηu

(

2,
β

y
,
γy

β

)

dy (22)

 0
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 1.6

 2

 2.4

 2.8

 3.2

 3.6
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 0  0.4  0.8  1.2  1.6  2  2.4  2.8  3.2  3.6

g x
(y

)

y

 a = 10 dB
 a =   5 dB
 a =   0 dB

Fig. 2. Transmissions in presence of fading: densitygx(y) for a = 0, 5, 10 dB, i.e., for different values of the SNR

thresholdτ .

Figure 2 shows the densitygx(y) for a = 0, 5, 10 dB. Note thata = τ/s, thus for a fixeds (i.e.,

the signal to noise ratio at distanceD in the absence of fading) the parametera is proportional to the

SNR thresholdτ . In particular, asτ decreases, the probability that a message successfully reaches the

destination increases and, thus, the spatial distributionof correctly received samples,fx(z1, z2), tends

to the uniform distributionfu(z1, z2). As a consequence, the density offx(z1, z2), i.e., gx(y), for

a = 0 and 5 dB is concentrated close toy = 1. However, for high values ofτ , messages originated

from sensor nodes located far from the sink are successfullyreceived with low probability. Thus,

gx(y) shows a significant probability mass aroundy = 0.

Figure 3 shows the effect of the fading channel on the MSE of the reconstructed field (dashed

lines), and compares the obtained results with the MSE obtained in absence of fading (solid lines).
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 β=0.4, fx(z)
 β=0.6, fx(z)
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Fig. 3. MSE of the reconstructed field in absence (fu(z)) and in presence (fx(z)) of fading, as the signal to noise ratio

on the sensor measurements varies.

The plot considers different values ofβ, namely,β = 0.2, 0.4, 0.6, 0.8, and a = 5 dB. The MSE

is plotted versus the signal to noise ratio on the sensor measurements,γ. The curves have been

obtained by numerically computing (22), wheregx(y) is given by (21) andηu(2, β, γ/β) is replaced

by η
(n)
u (2, βn,m, γ/βn,m), with n = 10. Recall that the analytic expression of the LSDfλ,u(d, β, z) is

unknown, hence in the numerical results we considered the AESDf
(n)
λ,u(d, βn,m, z) instead. We observe

that for low valuesβ, in spite of the presence of fading, the sink node still receives a large number of

samples from the sensors, hence the degradation of the MSE shown in Figure 3 is negligible. On the

contrary, forβ > 0.4 (i.e., for a larger value of the ratio of the number of harmonics composing the

approximated field to the number of sensors), the reconstruction performance degrades significantly

and this is particularly evident in presence of high values of γ.

In the case of massively dense networks, the LSD ofVVH is given by (16) and from (17) we know

that the MSE tends to 0 asβ → ∞. This result is confirmed by the plot in Figure 4, which shows

the AESDf
(n)
λ,x(2, βn,m, z), for |A| = 1, a = 5 dB, andn = 10. The behavior of such a function is

compared with the densitygx(z) as β varies. We note that, asβ decreases, the matching between

f
(n)
λ,x(2, βn,m, z) andgx(z) improves, and the latter represents an excellent approximation already for

β = 0.01, as predicted by the result in (5.3).
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Fig. 4. Massively dense networks: empirical functionf (n)
λ,x(2, β, z) in presence of fading, witha = 5 dB and |A| = 1.

The curves obtained for different values ofβ are compared with the densitygx(z).

B. Measurements gathering through contention-based channel access

In environmental monitoring applications, it is often desirable to vary the resolution level with

which the field measurements are taken over the region under observation, depending on the field

variations and the interest level of the different locations [2], [3]. It follows that the number of samples

generated by the sensors network (i.e., the offered traffic load) varies in the spatial domain.

To represent such a scenario, we consider a wireless sensor network whose nodes are uniformly

deployed over a square region. We also identifyL areas,Ai i = 1, . . . , L, each corresponding to

a different value of the offered traffic load. As often assumed in the literature (see e.g., [26], [27])

and widely applied in the practice, the network is divided into clusters and a hierarchy of clusters is

created. More specifically, at the first hierarchical layer,layer 1, the sensors are grouped into clusters,

each of which is controlled by a cluster-head. The cluster-head is in charge of handling all traffic

packets it receives from the nodes. At a given layerh > 1 of the hierarchy, the cluster-heads are

grouped into clusters on their turn and forward the traffic totheir parent cluster-head. At the highest

layer, layerH, we have only one cluster whose cluster-head coincides withthe sink node. Without

loss of generality, we assume that the cluster at theH-th layer is composed ofL cluster-heads, each

handling the traffic generated within one of theL areas defined above.

As for the medium access control (MAC) layer, we consider that the nodes implement the IEEE
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802.15.4 standard specifications for wireless sensor networks [15]. In particular, all nodes within a

cluster are in radio visibility of each other and use the slotted carrier-sense multiple-access/collision

avoidance (CSMA/CA) technique [15]. This is a contention-based scheme and transmissions may

fail if two or more sensors access the channel at the same time. Inter-cluster interference is instead

avoided by assigning different frequency channels to neighboring clusters. We consider that packets,

whose transmission fails, are discarded.

In order to derive the probability that a packet transmission fails within a cluster due to collision,

we use the Markov chain model presented in [28]. We denote bymi,h the average number of sensors

belonging to the generic cluster at theh-th layer of the hierarchical architecture, in areaAi (i =

1, . . . , L and h = 1, . . . ,H). Similarly, we defineλi,h as the average traffic load per node, again

within the generic cluster at theh-th layer, in areaAi. Then, we set the size of the packet payload to

32 bytes, and the value of the other parameters as in [28]. Under this setting, we compute the value

of the collision probability within the generic cluster at layerh, in areaAi, as a function ofmi,h

andλi,h, i.e., Pc(i, h) [28]. Furthermore, we observe that at the generic layerh, with 1 < h ≤ H,

a node, which acts as cluster-head at layerh − 1 in areaAi, will have a traffic load equal to

λi,h = mi,h−1λi,h−1 [1− Pc(i, h− 1)].

It follows that the probability that a packet is successfully delivered to the correspondingh-layer

cluster-head within areaAi (i = 1, . . . , L) can be obtained asPs(i, h) = 1 − Pc(i, h). Then, the

probability that a measurement generated by a sensor located in Ai (i = 1, . . . , L) is successfully

delivered to the sink is given by:

Ps(i) = 1−
H
∏

h=1

Ps(i, h).

Next, denoting by|Ai| the measure ofAi, we define

ps(i) =
Ps(i)

∑L
i=1 |Ai|Ps(i)

as the normalized probability that a message is successfully delivered to the sink. Then, the spatial

density of the sensors successfully sending their message is as follows:

fx(z1, z2) = ps(i) ∀(z1, z2) ∈ Ai, i = 1, . . . , L.

The density offx(z1, z2) is therefore given by

gx(y) =

L
∑

i=1

|Ai|δ (y − ps(i)) .

and the asymptotic MSE is given by

MSE∞ = ηx(2, β,
γ

β
) =

L
∑

i=1

|Ai|ηu
(

2,
β

ps(i)
,
γ

β
ps(i)

)

November 20, 2018 DRAFT



16

10-3

10-2

10-1

100

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
S

E(n
)

β

 γ=10dB, fu(z)
 γ=20dB, fu(z)
 γ=30dB, fu(z)
 γ=10dB, fx(z)
 γ=20dB, fx(z)
 γ=30dB, fx(z)

Fig. 5. Comparison between the case where transmission collisions are taken into account (fx(z)) and the case where

all measurements successfully reach the sink (fu(z)). The MSE is shown as a function ofβ and for different values of

signal-to-noise ratio (H = 3, |Ai| = 1/4, ∀i, λ1,1 = 10−3, λ2,1 = 2 · 10−4, λ3,1 = 2 · 10−4, λ4,1 = 2 · 10−5).

Figures 5 and 6 show the impact of collisions due to the contention-based channel access, on

the quality of the reconstructed field. In particular, they compare the MSE of the reconstructed field

when collisions are taken into account (fx(z)) with the one obtained in the idealistic case where all

messages (measurements) sent by the sensors successfully reach the sink (fu(z)). The results refer to

a square region of unitary side, where there are four areas ofequal size (|Ai| = 1/4, i = 1, . . . , 4) but

corresponding to different resolution levels in the measurements collection (i.e., they are characterized

by different traffic loads); the number of hierarchical levels is set toH = 3. We setλ1,1 = 10−3,

λ2,1 = 2 · 10−4, λ3,1 = 2 · 10−4, λ4,1 = 2 · 10−5 in Figure 5, and a higher traffic load in Figure 6,

i.e., λ1,1 = 5 · 10−3, λ2,1 = 10−3, λ3,1 = 10−3, λ4,1 = 10−4.

Looking at the plots, we observe that bothβ andγ have a significant impact of the obtained MSE,

with the MSE increasing asβ grows and smaller values ofγ are considered. Most interestingly, by

comparing the two figures, we can see that as the traffic load, hence the collision probability, increases,

the performance derived taking into account the contention-based channel access significantly differs

from the idealistic one. Furthermore, the latter effect is particularly evident asγ increases, since the

higher the signal-to-noise ratio, the more valuable the samples sent by the sensors toward the sink.
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Fig. 6. Comparison between the case where transmission collisions are taken into account (fx(z)) and the case where all

measurement transmissions are successful (fu(z)). The MSE is shown asβ varies and for different values of signal-to-noise

ratio (H = 3, |Ai| = 1/4, ∀i, λ1,1 = 5 · 10−3, λ2,1 = 10−3, λ3,1 = 10−3, λ4,1 = 10−4).

VII. C ONCLUSION

We studied the performance of a wireless network whose nodessense a multi-dimensional field

and transfer their measurements to a sink node. As often happens in practical cases, we assumed

the sensors to be randomly deployed over (the whole or only a portion of) the region of interest,

and that their measurements may be lost due to fading or transmission collisions over the wireless

channel. We modeled the sampling system through a multi-folded Vandermonde matrixV and, by

using asymptotic analysis, we approximated the MSE of the field, which the sink node reconstructs

from the received sensor measurements with theη-transform ofVVH.

Our results clearly indicate that the percentage of region where sensors cannot be deployed must

be extremely small if an accurate field estimation has to be obtained. Also, the effect of losses due to

fading or transmission collisions can be greatly mitigatedprovided that a suitable value for the ratio

between the number of harmonics approximating the field bandwidth and the number of sensors is

selected.
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APPENDIX A

PROOF OFTHEOREM 5.1

The p-th moment of the asymptotic eigenvalue distribution ofVVH can be expressed as [9]

Mp,d,β,x = lim
n,m→∞

E

[

tr

{(

VVH

)p}]

wheretr{·} is the normalized matrix trace operator. The matrix power can be expanded as a multiple

sum over the entries ofV:

Mp,d,β,x = lim
n,m→∞

1

mpnd

∑

ℓ1,...,ℓp

∑

q1,...,qp

E

[

ej2πℓ1
T(xqp−xq1 ) · · · e−j2πℓpT(xqp−1

−xqp )
]

where q1, · · · , qp, qi = 1, . . . ,m are integer indices andℓ1, . . . , ℓp, ℓi = [ℓi,1, . . . , ℓi,d]
T, ℓi,j =

0, . . . , n− 1 are the indices identifying the rows ofV. Since,

∑

ℓi

ej2πℓ
T
x =

n−1
∑

ℓi,1,...,ℓi,d=0

ej2π(ℓi,1x1+···+ℓi,dxd) =

d
∏

j=1

1− ej2πnxj

1− ej2πxj

for i = 1, . . . , p and the elements ofx are i.i.d., we have that

Mp,d,β,x = lim
n,m→∞

1

mpnd

∑

q1,...,qp

E





p
∏

i=1

d
∏

j=1

1− ej2πn(xqi,j
−xqi+1,j)

1− ej2π(xqi,j
−xqi+1,j)





where the indexi is to be considered modulop, i.e., p + 1 ≡ 1. As for the sum over the indices

q1, . . . , qp we note that any choice ofq = [q1, . . . , qp]
T induces a partitionω of the set,P = {1, . . . , p}

in k subsetsP1, . . . ,Pk, 1 ≤ k ≤ p, under the equality relation [9]. In the following, we denote by

Ωp,k the set of partitions ofP in k subsets,1 ≤ k ≤ p. Since there aremk possible vectorsq inducing

a given partitionω ∈ Ωp,k, we can write thep-th moment as

Mp,d,β,x = lim
n,m→∞

p
∑

k=1

∑

ω∈Ωp,k

βp−k
n,m

nd(p−k+1)
E





p
∏

i=1

d
∏

j=1

1− ej2πn(xωi,j
−xωi+1,j)

1− ej2π(xωi,j
−xωi+1,j)





= lim
n,m→∞

p
∑

k=1

βp−k
n,m

∑

ω∈Ωp,k

E [Φω(x1, . . . ,xk)]

nd(p−k+1)
(23)

where Φω(x1, . . . ,xk) =
∏d

j=1 Fω(x1j , . . . , xkj), Fω(x1j , . . . , xkj) =
∏p

i=1
1−e

j2πn(xωi,j
−xωi+1,j)

1−e
j2π(xωi,j

−xωi+1,j)
,

andωi ∈ {1, . . . , k} is the index of the subset ofP containingi. Recall thatp + 1 ≡ 1 and that

βn,m = nd/m. Moreover, since the vectorsx are i.i.d., we removed the dependence on the subscript

q.

Following the same steps as in [11, Appendix H], we compute the limit

lim
n→∞

E [Φω(x1, . . . ,xk)]

nd(p−k+1)
= lim

n→∞

∫

Hk

fx(x1) · · · fx(xk)
Φω(x1, . . . ,xk)

nd(p+1−k)
dx1 · · · dxk

= lim
n→∞

∫

Hk

fx(x1) · · · fx(xk)

d
∏

j=1

Fω(x1j , . . . , xkj)

np+1−k
dx1j · · · dxkj
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We then definexh = [xh1,yh] whereyh = [xh2, . . . , xhd], for h = 1, . . . , k and we integrate first

with respect to the variablesx11, . . . , xk1 obtaining

lim
n→∞

E [Φω(x1, . . . ,xk)]

nd(p−k+1)
= lim

n→∞

∫

[− 1

2
, 1
2
](d−1)k

Gω(y1, . . . ,yk)

d
∏

j=2

Fω(x1j , . . . , xkj)

np−k+1
dx1j · · · dxkj

where

Gω(y1, . . . ,yk) =

∫

[− 1

2
, 1
2
]k

Fω(x11, . . . , xk1)

np−k+1
fx([x11,y1]) · · · fx([xk1,yk]) dx11 · · · dxk1 (24)

In [11, Appendix H] it was shown that, because of the properties ofFω(x11, . . . , xk1),

lim
n→∞

∫

Bǫ

Fω(x11, . . . , xk1)

np−k+1
dx11 · · · dxk1 = 0

where

Bǫ = {(x11, . . . , xk1)||xh1 − xℓ1| > ǫ, for someh, ℓ}

for any ǫ > 0. This means that the integral in (24) can be limited to thex11, . . . , xk1 on the diagonal

wherex11 = · · · = xk1. Therefore

lim
n→∞

Gω(y1, . . . ,yk) = lim
n→∞

∫

[− 1

2
, 1
2
]k

Fω(x11, . . . , xk1)

np−k+1
fx([xk1,y1]) · · · fx([xk1,yk]) dx11 · · · dxk1

=

∫

[− 1

2
, 1
2
]

k
∏

h=1

fx([xk1,yh]) lim
n→∞

(

∫

[− 1

2
, 1
2
]k−1

Fω(x11, . . . , xk1)

np−k+1

k−1
∏

h=1

dxh1

)

dxk1

= v(ω)

∫

[− 1

2
, 1
2
]

k
∏

h=1

fx([xk1,yh]) dxk1 (25)

Note that the limit

v(ω) = lim
n→∞

∫

[− 1

2
, 1
2
]k−1

Fω(x11, . . . , xk1)

np−k+1

k−1
∏

h=1

dxh1

does not depend onxk1 and the coefficientv(ω) ∈ [0, 1] is described in [9].

Next, iterating this procedure by integrating over the variables,x1j, . . . , xkj, j = 2, . . . , d we finally

get

lim
n→∞

E [Φω(x1, . . . ,xk)]

nd(p−k+1)
= v(ω)d

∫

[− 1

2
, 1
2
]d
fx(xk1, . . . , xkd)

k dxk1 · · · dxkd

= v(ω)d
∫

H
fx(xk)

k dxk

= v(ω)dIk (26)

where we definedIk =
∫

H fx(xk)
k dxk. It follows that

Mp,d,β,x =

p
∑

k=1

βp−kIk
∑

ω∈Ωp,k

v(ω)d

which proves the theorem. Note that when the entries ofxq = [xq1, . . . , xqd]
T are independent with

continuous distributionfx,j(zj) such thatfx(x) =
∏d

j=1 fxj
(xj), we haveIk =

∏d
j=1 Ik,j with

Ik,j =
∫

[−1/2,1/2] fxj
(x)k dx.
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APPENDIX B

PROOF OFTHEOREM 5.2

From Theorem 5.1 and the definition ofIk, we have that

Mp,d,β,x =

p
∑

k=1

βp−kIk
∑

ω∈Ωp,k

v(ω)d

=

∫

H

p
∑

k=1

βp−kfx(z)
k
∑

ω∈Ωp,k

v(ω)d dz. (27)

Next, we define the setA wherefx(z) is strictly positive as

A = {z ∈ H|fx(z) > 0}

Note that forz ∈ H \ A the contribution to the integral in (27) is zero. Thus,

Mp,d,β,x =

∫

A

p
∑

k=1

βp−kfx(z)
k
∑

ω∈Ωp,k

v(ω)d dz

=

∫

A
fx(z)

p
p
∑

k=1

βp−kfx(z)
k−p

∑

ω∈Ωp,k

v(ω)d dz

=

∫

A
fx(z)

p
p
∑

k=1

β′(z)p−k
∑

ω∈Ωp,k

v(ω)d dz

=

∫

A
fx(z)

pMp,d,β′(z),u dz (28)

where for anyz ∈ A, Mp,d,β′(z) is thep-th moment ofVVH when the phases are uniformly distributed

in H and the ratioβ′(z) is given by

β′(z) =
β

fx(z)

Note also that (28) holds forp ≥ 1 since, by definition, the zero-th moment of any distributionis

equal to 1. Expression (28) allows us to write the moments ofVVH for any distributionfx(z), given

the moments for uniformly distributed phases. Likewise, itis possible to describe the LSD ofVVH,

for any continuousfx(z), in terms of the LSD obtained for uniformly distributed phases. Indeed, let

us denote the Laplace transform offλ,x(d, β, z) by Lλ,x(d, β, s) if it exists. Then, whenever the sum

converges

Lλ,x(d, β, s) =

∞
∑

p=0

sp

p!
Mp,d,β,x

November 20, 2018 DRAFT



21

SinceM0,d,β,x = 1 for any distribution, using (28) we obtain:

Lλ,x(d, β, s) = 1 +

∞
∑

p=1

sp

p!

∫

A
fx(z)

pMp,d,β′(z),u dz

= 1− |A|+ |A|+
∫

A

∞
∑

p=1

fx(z)
psp

n!
Mp,d,β′(z),u dz

= 1− |A|+
∫

A

∞
∑

p=0

fx(z)
psn

n!
Mp,d,β′(z),u dz

= 1− |A|+
∫

A
Lλ,u

(

d, β′(z), fx(z)s
)

dz

(29)

where|A| is the measure ofA andLλ,u(d, β, s) is the Laplace transform offλ,u(d, β, z). By using

the properties of the Laplace transform and by taking its inverse, we finally get

fλ,x(d, β, z) = (1− |A|) δ(z) +
∫

A

1

fx(z)
fλ,u

(

d,
β

fx(z)
,

z

fx(z)

)

dz. (30)

We can rewrite the second term of (30) by defining the cumulative density function

Gx(y) =
1

|A| |{z ∈ A|fx(z) ≤ y}|

for y > 0. By using the corresponding probability density function,gx(y), and Lebesgue integration,

we can rewrite (30) as in (11).

APPENDIX C

COROLLARY 5.1

From the result in (11) and from the assumptionfx(z) > 0 ∀z ∈ H (i.e., |A| = 1), we have

fλ,x(d, β, z) =

∫ ∞

0

gx(y)

y
fλ,u

(

d,
β

y
,
z

y

)

dy

Then, from the definition offx′(z) given in (12) it follows thatGx′(y) = Gx(cy) and, by consequence,

gx′(y) = cgx(cy). Therefore, from (13) we have:

fλ,x′(d, β, z) = (1− c)δ(z) + c

∫ ∞

0

gx′(y)

y
fλ,u

(

d,
β

y
,
z

y

)

dy

= (1− c)δ(z) + c2
∫ ∞

0

gx(cy)

y
fλ,u

(

d,
β

y
,
z

y

)

dy

= (1− c)δ(z) + c2
∫ ∞

0

gx(y)

y
fλ,u

(

d,
cβ

y
,
cz

y

)

dy

= (1− c)δ(z) + c2fλ,x(d, cβ, cz)
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APPENDIX D

COROLLARY 5.3

From the expression of the moments given in Theorem 5.1 and the results in [9], it is easy to show

that for uniformly distributed phases, we have:

lim
β→0

Mp,d,β,x = 1

for any p ≥ 0. It immediately follows that

lim
β→0

fλ,u(d, β, z) = δ(z − 1)

whereδ(z) is the Dirac’s delta function. By applying this result to (11), we get

lim
β→0

fλ,x

(

d,
β

y
,
z

y

)

= (1− |A|) δ(z) + |A|
∫ ∞

0

gx(y)

y
δ

(

z

y
− 1

)

dy

= (1− |A|) δ(z) + |A|
∫ ∞

0

gx(z/w)

w
δ(w − 1) dw

= (1− |A|) δ(z) + |A|gx(z). (31)

APPENDIX E

COROLLARY 5.2

By using the definition of theη-transform and the result in (11), we obtain:

ηx(d, β, γ) = E

[

(γλ+ 1)−1
]

=

∫ ∞

0

1

γz + 1
fλ,x(d, β, z) dz

=

∫ ∞

0

1− |A|
γz + 1

δ(z) + |A|
∫ ∞

0

gx(y)

y

∫ ∞

0

1

γz + 1
fλ,u

(

d,
β

y
,
z

y

)

dz dy

= 1− |A|+ |A|
∫ ∞

0
gx(y)

∫ ∞

0

1

γyz + 1
fλ,u

(

d,
β

y
, z

)

dz dy

= 1− |A|+ |A|
∫ ∞

0
gx(y)ηu

(

d,
β

y
, γy

)

dy. (32)

Then, by considering thatMSE∞ = ηx(d, β, γ/β), the expression of the asymptotic MSE immediately

follows.

APPENDIX F

COROLLARY 5.4

In Appendix 5.3 we have shown thatlimβ→0 fλ,u(d, β, z) = δ(z − 1). From the definition of the

η-transform, it follows thatlimβ→0 ηu(d, β, γ) =
1

γ+1 andlimβ→0 ηu(d, β, γ/β) = 0. Thus, from (14)
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we have:

lim
β→0

ηx(d, β, γ) = 1− |A|+ |A|
∫ ∞

0
gx(y)

(

lim
β→0

ηu

(

d,
β

y
, γy

))

dy

= 1− |A|+ |A|
∫ ∞

0

gx(y)

γy + 1
dy

= 1− |A|+ |A|ηg(γ) (33)

where we definedηg(γ) =
∫∞
0

gx(y)
γy+1 dy. As a consequence,

lim
β→0

ηx(d, β, γ/β) = 1− |A|+ |A|
∫ ∞

0
gx(y)

(

lim
β→0

ηu

(

d,
β

y
,
γy

β

))

dy

= 1− |A|. (34)
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