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Optimal Design of Source and Relay Pilots for
MIMO Relay Channel Estimation

Ting Kong and Yingbo Hua, Fellow, IEEE

Abstract—In this paper, we consider a channel estimation
scheme for a two-hop nonregenerative MIMO relay system
without the direct link between source and destination. This
scheme has two phases. In the first phase, the source does not
transmit while the relay transmits and the destination receives.
In the second phase, the source transmits, the relay amplifies and
forwards, and the destination receives. At the destination, the data
received in the first phase are used to estimate the relay-to-des-
tination channel, and the data received in the second phase are
used to estimate the source-to-relay channel. The linear minimum
mean-square error estimation (LMMSE) is used for channel
estimation, which allows the use of prior knowledge of channel
correlations. For phase 1, an algorithm is developed to compute
the optimal source pilot matrix for use at the relay. For phase 2, an
algorithm is developed to compute the optimal source pilot matrix
for use at the source and the optimal relay pilot matrix for use at
the relay.

Index Terms—Convex optimization, MIMO wireless relays,
non-convex optimization, pilot waveform design, relay channel
estimation.

I. INTRODUCTION

M ultiple-input multiple-output (MIMO) relays have re-
ceived much attention in recent years, e.g., see [1]–[11].

It is well established that relays can substantially improve the
wireless coverage for users subject to limited power and spec-
tral resources. MIMO relays can provide additional power and
spectral savings by exploiting the spatial diversity of multiple
antennas. It is also known that the channel state information or
channel matrices between MIMO nodes can be used to maxi-
mize the power and spectral efficiency of MIMO relay systems;
e.g., see [10] and [11]. Channel estimation of MIMO relays is
clearly important.

The conventional MIMO channel estimation methods can be
applied to MIMO relays if every pair of adjacent MIMO nodes
can be treated as a conventional pair of transmitter and receiver.
The recently developed methods for single-hop MIMO channel
estimation can be found in [12]–[14] and the references therein.
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Fig. 1. A two-hop nonregenerative MIMO relay system.

In this paper, we consider alternative channel estimation
schemes for MIMO relay channels. In particular, we focus on a
two-hop nonregenerative MIMO relay system as illustrated in
Fig. 1 where the direct link between source and destination is
assumed to be negligible and hence ignored. One such example
in practice is when a source and a destination are blocked from
each other by a large building and a relay is added in between
them around the building. A nonregenerative relay is also
known as amplify-and-forward relay. It is subject to limited
signal processing functions and can not decode or estimate
information. Therefore, a nonregenerative relay may not be
able to complete the task of channel estimation by following a
single-hop MIMO channel estimation approach. It is because
of such a reason that researchers have started to explore non-
conventional MIMO channel estimation methods for MIMO
relays.

In [15], the authors developed a least square method to search
for the source-to-relay channel matrix and the relay-to-desti-
nation channel matrix from the observed composite source-
relay-destination channel matrix , where is
a known transformation matrix applied at the nonregenerative
relay. In [16], the authors studied sufficient and necessary con-
ditions on to ensure a successful estimation of and
from . The advantage of using to estimate and is
that for channel estimation, the relay node does not need to do
anything different from that for data transmission, and the desti-
nation node performs all the tasks needed for estimation of
and . But a disadvantage of the above approach is that there
is always a scalar ambiguity for the estimates of and .

In this paper, we consider a different channel estimation
scheme for the same type of two-hop MIMO relay system
as discussed in [15] and [16]. This system was also a focus
in [3]–[6] and [9]. Our scheme has two phases. In the first
phase, the source transmits no signal while the relay transmits
a source pilot matrix (using antennas and
time slots) and the destination receives (using

antennas and time slots). And is estimated at the
destination by using and . In the second phase, the
source transmits a source pilot matrix (using
antennas and time slots), the relay applies a relay pilot matrix

for each time slot, and the destination receives
. And is estimated at the destination by

using , , and .

1053-587X/$26.00 © 2011 IEEE
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Note that we use , and to denote the number of
antennas at source, relay and destination, respectively. We also
assume that the number of transmit antennas and the number
of receive antennas on the relay are equal. In the first phase,

denotes the number of time slots for channel training. In the
second phase, if the relay is a time-division half-duplex relay,
is the total number of time slots used for channel training. We
assume that the channel matrices and are constant during
the two phases of estimation. In fact, we need the coherence
time of and to be much larger than the time interval
needed for subsequent data transmission so that the overhead
for channel estimation, pilot computation and feedback of pilot
matrices only consumes a small fraction of the spectral resource.

The above channel estimation scheme requires the relay to
generate a source pilot in the first phase, which is slightly more
complex than the scheme in [15] and [16]. All computations are
done at the destination, however, which is similar to that in [15]
and [16]. However, unlike [15] and [16], the channel estimates
in the new scheme are not subject to any scalar ambiguity. For
both phases, we consider LMMSE of channel matrices, which
allows the use of prior knowledge of channel correlations.

The estimation of in the first phase is actually the same
type of problem as in [12] and [14]. Therefore, the optimal de-
sign of for the first phase coincides with that in [14]. Yet,
the estimate of in the second phase is a nonconventional
problem. We will derive the optimal design of and for es-
timation of in the second phase, which is the main focus of
this paper.

The channel matrices for 1, 2 are associated with
a narrow frequency band. We use the well-known Kronecker
correlation model for the channel matrices, i.e.,

(1)

where , , and the elements in
are uncorrelated random variables with zero mean and unit

variance. The matrix is known as the receive correlation
matrix of , and the transmit correlation matrix of .
The correlation matrices are assumed to be known. If there is
no information on the correlation for a particular application,
the correlation matrices should be set as the identity matrices.

The rest of the paper is organized as follows. In Section II,
we present the optimal pilot design for channel estimation in
phase 1, the result of which is similar to one in [14] although our
derivations are different and provide a complementary perspec-
tive. In Section III, we show the optimal source-and-relay pilots
design for channel estimation in phase 2. It should be noted that
for proportional to the identity matrix, an optimality of the
designed relay pilot is established. For arbitrary , the op-
timality of the designed relay pilot remains an open problem.
Numerical results are illustrated in Section IV. Section V con-
cludes this paper.

II. PILOT DESIGN FOR PHASE 1

As mentioned earlier, the pilot design problem for phase 1
is the same as for single-hop MIMO system. The result shown
in this section is similar to that in [14] although our derivations

are different, and were found independently, from [14]. We keep
this section as brief as possible.

In phase 1, the source transmits nothing, the relay transmits
, and the destination receives

(2)

where is the noise matrix at the destination in phase 1.
Without loss of generality, we assume that the noise samples
in has been (spatially) whitened such that the elements in

are uncorrelated random variables with zero mean and unit
variance.

Let , and

. Here, stacks up the columns of a matrix
into a single column vector. Recall the fact

where denotes the Kronecker product [17].
We will also use frequently

and . Using , we
can write (2) as

(3)

Since and are one-to-one related via
or equivalently

, we can focus on the estimation of or
equivalently .

We consider the LMMSE of from , i.e.,
where is such that the following cost is minimized:

(4)

where denotes expectation. There are two special choices of
the weight matrix . If , then

which is the mean squared errors of . If

, then which is the mean squared
errors of . In either case, we can write . It is
useful to note that as long as is positive definite, does
not affect the optimal which is given by

(5)

where

and

Substituting , (3) and (5) into (4), and using the
identity , it is easy to verify
that with the optimal ,

(6)

where . If is arbitrary, .
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Once is fixed, is invariant to . So, to find the op-
timal relay pilot matrix for phase 1, it suffices to find
by solving the following problem:

(7)

where is the positive semidefinite constraint on ,
and is the power bound at the relay.

The problem (7) is convex. In Appendix I, we apply the gen-
eralized KKT conditions [18] to arrive at the following optimal
solution: where is the unitary eigen-
vector matrix of and is a diagonal matrix with its diag-
onal elements , , either equal to zero or
given by the positive solution of the following equations:

(8)

where is such that . Recall .
Here, and are the th largest eigenvalue of and

. and are the th largest eigenvalue of and
.

For any given , for each , can be easily found
by the bisection search [19] since the left side expression of (8)
is a monotonically decreasing function of . Consequently,

is a monotonically decreasing
function of , and hence the optimal can be found by an outer-
loop bisection search.

The above solution for is similar to one in [14] although
a different method of derivation was used in [14].

III. PILOT DESIGN FOR PHASE 2

In phase 2, the source transmits the pilot matrix
, the relay receives

and retransmits , and the destination
receives

(9)

where now serves as a co-pilot matrix from the relay, is the
noise matrix at the relay, and is the noise matrix received at
the destination. Without loss of generality (for temporally white
noise), we assume that the channel matrices and (along
with and ) are normalized in such a way that the ele-
ments in both and are uncorrelated with zero mean and
unit variance. Given the result from phase 1, we now assume
that for phase 2, is known. The objective in this section is
to derive the optimal pilot matrices and so that the esti-
mation errors of are minimized. The assumption of known

is justifiable when the training power for phase 1 is high so
that the estimate of is near perfect. Also note that the under
the same training power for both phases, the accuracy of is
always much higher than that of , which is illustrated later in
Fig. 5.

Using the operator, we have from (9) that

(10)

where the bold lower case symbols are the vector forms of the
bold upper case symbols, e.g., .

For notational convenience, we have chosen not to use the
superscript for phase 2 although we have used for some
of the variables for phase 1.

A. Channel Estimation

Unlike the discussion in Section II, we now only focus on
the mean squared errors of . The choice of the
mean squared errors of would make the optimal
pilot design more difficult, which will not be further mentioned.
Namely, we define the cost

(11)

without any other weighting.
For fixed and , the LMMSE of is known as

. Using (10) and , we
have

(12)

(13)

The covariance matrix of the estimation error
is well known as

where . Therefore, with
the LMMSE of and (12) and (13), we have

(14)

In other words, with any other linear estimator of , .

B. Pilot Design Problem

We formulate the pilot design problem as minimization of
with respect to and subject to power constraints at both
source and relay, i.e.,

(15)

where is the power bound at the source and the power
bound at the relay.
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The power constraint for the relay here has the additional op-
erator which averages the fluctuations due to the noise and
the unknown . Although the instantaneous power at the relay
is not possible to be bounded exactly due to the unknown nature
of noise and , the averaged power bound at the relay is still
meaningful and necessary. Clearly, the power constraint at the
relay in phase 2 does not have the same meaning as that in phase
1. But for convenience, we will use the same notation as the
relay power bound for both phases.

Recall and
or equivalently

. The power constraint at the relay can
be rewritten as

(16)

The problem (15) is not convex. The generalized KKT con-
ditions are not an effective tool for this problem. In the rest of
this section, we present methods to simplify the problem (15).

C. Decomposition of Pilots

In this section, we show a decomposition of pilots into
two sets of components: unitary components and diagonal
components.

Denote the eigenvalue decompositions (EVD) of
and , respectively, as

(17)

(18)

where the matrices are the unitary eigenvector matrices and
the matrices are the diagonal eigenvalue matrices with de-
scending diagonal elements.

Also let and be the
EVDs of and , respectively, with descending eigen-

values. Define and . Then, we
can write

(19)

(20)

where and are unitary matrices.
It is important to note here that if , and are non-

singular, the pilot matrices and are uniquely determined
by the unitary components: , , , and the diagonal
components: , . Namely,

(21)

(22)

On the other hand, if any of , and is singular, it is
optimal in minimized transmission power to choose and as
the minimum norm solutions to (19) and (20), respectively, i.e.,
replacing the inverse in (21) and (22) by pseudoinverse. Conse-
quently, as is easy to verify, the inverse in the sequel should be

viewed as pseudoinverse in each case where a matrix under the
inverse operator is singular.

It then follows from (11) that

(23)

We can see from the above equation that the cost is invariant
to and but depends on , , and .

It is easy to verify that the power constraint at the source can
now be written as

(24)

which depends on and , and is invariant to all other com-
ponents of the pilots.

To simplify the power constraint at the relay, we denote the
singular value decomposition (SVD): ,
with descending singular values, where and are
(square) unitary singular vector matrices. Note that we will use

in the case where is nonsquare. Then,
using (19) and (20) and , one can
verify that the relay power constraint (16) can be rewritten as

(25)

which depends on , , , and , and is invariant to
and .

In the following two subsections, we will show how to iden-
tify the optimal unitary components and the optimal diagonal
components, respectively.

D. Optimal Unitary Components of the Pilots

Among the pilot components, we have the unitary (matrix)
components , , and , and the diagonal (matrix)
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components and . The optimality of the choices of the
unitary components are given by following two theorems.

Theorem 1: For any and , the solution to the problem
(15) is such that and is arbitrary unitary.

Proof: See Appendix II.
Theorem 2: If , the solution to (15) is such that

and is arbitrary unitary.
Proof: See Appendix III.

Namely, if , then we can choose and
as optimal, and the optimal and have the fol-

lowing structures:

(26)

(27)

If , finding the optimal (which also affects the
optimal ) is a difficult problem.

E. Optimal Diagonal Components of the Pilots

In this section, we apply , , and
to develop efficient algorithms for finding the optimal

and . The above choice of the unitary components is op-
timal if is proportional to the identity matrix, and has no
known optimality property otherwise.

Then, the pilot design problem (15) becomes

(28)

Denote , , , and as the th
diagonal element of , , , and , respectively.
The problem (28) can be further written as

(29)

Let and
. Under the pseudoinverse condition (or inter-

pretation of inverse) mentioned previously, for ,
, and for , . Also, the

minimum norm solutions to (19) and (20) ensure that
for and for . So, we can
replace and in (29) by and , respectively.

The problem (29) is nonconvex. But if we fix for all
subject to the source power constraint [the first constraint in

(29)], the optimization over for all subject to the relay
power constraint [the second constraint in (29)] is a convex
problem. Similarly, if we fix for all , the optimization
over for all subject to the source and relay power con-
straints is also a convex problem. By alternating between the
two sub-optimizations, we can find a local optimal solution to
(29), which is the algorithm we propose to use. Note that a local
convergence of the alternations is guaranteed since the cost is
lower bounded and is reduced by each alternation subject to the
same power constraints.

The algorithms of the two suboptimizations are shown next.
1) Optimizing With Fixed : With fixed

, satisfying , the first
power constraint in the problem (29) is no longer needed. The
KKT conditions of this problem can be simplified to

(30)

(31)

where and . And is
either zero or a positive value satisfying (30).

Here, is a monotonically decreasing function of
. So, for any given , for each , either a nonneg-

ative solution for can be found from (30) by the bisection
method or we set to zero.

Since is an increasing function of for all , it
is monotonically decreasing with . Hence, the optimal
can be found by an outer layer bisection search.

2) Optimizing With Fixed : With fixed
, , the problem (29) still has two power

constraints. The Lagrangian condition of the problem (i.e., the
derivative of the Lagrangian function set to zero) can be shown
to be

(32)

where is the multiplier for the first constraint and
is the multiplier for the second constraint.

The left-hand side function in (32) is a monotonically de-
creasing function of . So, for any given pair of
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Fig. 2. Normalized MSE of� with optimal pilots and orthogonal pilots.

and , for each , is either zero or a positive solution
from (32) by bisection search.

Both of the power constraint functions are increasing func-
tions of for all , and hence they are also decreasing func-
tions of both and . So, with one of and fixed, the
other (whether or not the solution exists) can be determined by
an outer layer bisection search. Such a search for the optimal
pair of and is a 2-D bisection search. In general, we have to
conduct this 2-D search. But if only one of the two constraints is
active (i.e., satisfied with equality), then only the corresponding
multiplier is positive (and the other is zero). In this case, a 1-D
bisection search for either or suffices. A good strategy for
efficient implementation is to first consider the two possibilities
that or . If none of these two cases is the actual
solution, we then consider the 2-D search.

IV. SIMULATION RESULTS

In this section, we present some numerical examples to il-
lustrate the performance of our proposed algorithm. We assume

and . We define a
correlation matrix with where is the nor-
malized correlation coefficient with magnitude [21]. We
also define the normalized MSE of and as and

, respectively. The average over is computed by using
100 realizations of .

Fig. 2 compares the normalized MSE of between “op-
timal source and relay pilots” and “orthogonal source and relay
pilots”, where , and . For orthog-

onal pilots, we use and . Here,
both and have orthogonal columns. As expected, the op-
timal pilots yield a better accuracy than the orthogonal pilots.

From (14), we can see that the channel correlation of both
and ( , , , ) will impact the MSE of .

In the following, Figs. 3 and 4 will illustrate how the channel
correlation of and impact the MSE of differently.
Generally speaking, MSE performance gets better when is
strongly correlated and is weakly correlated.

Fig. 3 illustrates the normalized MSE of with the optimal

source and relay pilots, where and

Fig. 3. Normalized MSE of� where� is uncorrelated and� is correlated
with the correlation factor �.

Fig. 4. Normalized MSE of � where � is correlated with the correlation
factor � and� is uncorrelated.

with (weak correlation) and (strong correla-
tion). We can see from Fig. 3, as becomes strongly corre-
lated, the MSE of degrades, with the difference in perfor-
mance being more apparent in high power constraint region. We
can also observe that with the increase of , the gap between
the performances of weakly correlated and strongly corre-
lated becomes larger.

Fig. 4 illustrates the normalized MSE of with the optimal

source and relay pilots, where and
with (weak correlation) and (strong correla-
tion). Different from Fig. 3, Fig. 4 shows that with getting
strongly correlated, the MSE of improves, with the perfor-
mance gap more obvious in low power constraint region. We
can also observe that with the increase of , the gap between
the performances of weakly correlated and strongly corre-
lated becomes larger.

Fig. 5 compares the normalized MSE of and that of ,
where and . We see that the estimation
accuracy of is much higher than that of , which is ex-
pected. Recall that the estimation of in phase 1 is based on a
single-hop link while the estimation of in phase 2 is based on
a two-hop relay system where the relay only does “amplify and
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Fig. 5. Normalized MSE of� estimated in phase 1 and the normalized MSE
of � estimated in phase 2.

forward”. The high accuracy of is in fact important for the
estimation of in phase 2 where is assumed to be known.
Also note that the method shown in this paper does not have the
ambiguity problem suffered by those in [15] and [16].

Unlike the previous figures, for Fig. 5, each estimate of is
based on an estimate of , and the error in is propagated
to .

V. CONCLUSION

In this paper, we have proposed a two-phase LMMSE-based
channel estimation method for a two-hop nonregenerative
MIMO relay system. In phase 1, the relay-to-destination
channel is estimated for which the relay sends out a source pilot
matrix. In phase 2, the source-to-relay channel is estimated for
which the source sends out a source pilot matrix and the relay
applies a relay pilot matrix. For phase 1, an optimal design
of the source pilot has been presented, the result of which is
similar to one in [14] while our approach based on generalized
KKT conditions provides a complementary perspective. For
phase 2, an optimal joint design of the source and relay pilots
has been developed, which is a much harder problem than in
phase 1. The two-phase channel estimation scheme shown in
this paper does not have the ambiguity problem suffered by the
schemes in [15] and [16].

The two-phase scheme can be extended to an -phase
scheme for an -hop nonregenerative relay system. If all
nodes are indexed sequentially with the source node being node
0 and the destination node being node , then in phase the
channel matrix between node and node
is estimated for which node sends out a source pilot
matrix, all other down-stream nodes (except node ) sends
out relay pilot matrices and the channel matrices between the
adjacent down-stream nodes can be assumed to be known. But
a problem with such a scheme is that the estimation errors
for the down-stream channels will accumulate and affect the
estimation of their upper-stream channels. In practice, such a
scheme can be useful only if SNR for each link is sufficiently
high.

APPENDIX I
PROOF OF OPTIMAL PILOT FOR PHASE 1

Denote the eigenvalue decompositions (EVD) of and
as and with de-

scending eigenvalues. We can then write and

. We also write .
If , both and are the identity matrices. If

, we have equivalently and
.

It then follows from (6) that

(33)

where , which has not yet been shown to be
diagonal.

It follows from the generalized KKT conditions that the so-
lution to (7) satisfies the sufficient and necessary conditions:

, , and , which is easy
to prove by using (5.95) in [18].

To derive , we will use ,
and . Then, we have

(34)

Recall that if , then [11]. Therefore,

(35)

It is easy to observe from (35) that for any , there is always
a diagonal such that . Therefore, the optimal

is diagonal.
Let . It follows from (35)

that for all ,

(36)

where is such that .
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APPENDIX II
PROOF OF THEOREM 1

From (23), (24), and (25), it is obvious that the cost and the
constraints in the problem (15) is invariant to and hence any
unitary is optimal.

To prove the optimality of the choice of , we need the
following definitions and lemmas from [20].

Definition 1 [20, 1.A.1]: Consider any two real-valued
vectors , , and let and

denote the elements of and , respectively,
sorted in decreasing order. Then is said to be majorized by ,
denoted as , if ,

and .
Definition 2 [20, 1.A.2]: Using the same notations as in

DEFINITION 1, is said to be weakly majorized by , denoted
as , if , .

Lemma 1 [20, 9.H.1.h]: For two positive semidefi-
nite Hermitian matrices and with eigenvalues and ,

, arranged in the descending order respectively, it
follows that .

Lemma 2 [20, 9.B.1]: For a Hermitian matrix with the
vector of its main diagonal elements (in descending order
for convenience) and the vector of its eigenvalues (in de-
scending order for convenience), it follows that .

Lemma 3 [20, 9.H.2]: For complex matrices
, let , then

, where and , denote
vectors containing the singular values of and arranged in
the same order, respectively, and denotes the Schur (element-
wise) product of two vectors.

Lemma 4 [20,3.A.8]: For a real-valued function ,
implies if and only if is increasing with respect
to each variable and Schur-convex.

Recall that among the two constraints in the problem (15),
only the first, or equivalently (24), depends on . From
Lemma 1, we have

(37)

where the equality holds when . Namely, for any given
, the source consumes the least amount of power when

.
For the cost in (15), let us define

Then, from (23),

(38)

where depends on , and depends on .

It follows from Lemma 2 and Lemma 3 that

(39)

It is known [20] that implies
, and implies

. It then follows that where

which is when . Furthermore,

(40)

Since is increasing and Schur-convex function of
, from Lemma 4, we have

(41)

where and are diagonal matrices with the elements
of and being their diagonal values, respectively.
From (38) and (41), is minimized when .

The above discussions show that when , the source
consumes the least amount of power and is minimized.
Therefore, we reach the conclusion that is optimal.

APPENDIX III
PROOF OF THEOREM 2

It is easy to observe from (23), (24) and (25) that when
or equivalently , the cost function and both con-

straints in (15) are invariant to . Therefore, any unitary
is optimal.

We know from (23) and (24) that the cost and the first con-
straint of (15) are invariant to . Using and Lemma
1, the left-hand side of (25) can be written as

(42)

where the lower bound is achieved when .
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