
ar
X

iv
:1

00
9.

31
67

v1
 [

cs
.N

I]
 1

5
S

ep
 2

01
0

1

Sensor Management for Tracking in Sensor

Networks
Jason A. Fuemmeler,Member, IEEE, George K. Atia,Member, IEEE, and

Venugopal V. Veeravalli,Fellow, IEEE

Abstract

We study the problem of tracking an object moving through a network of wireless sensors. In

order to conserve energy, the sensors may be put into a sleep mode with a timer that determines their

sleep duration. It is assumed that an asleep sensor cannot becommunicated with or woken up, and

hence the sleep duration needs to be determined at the time the sensor goes to sleep based on all the

information available to the sensor. Having sleeping sensors in the network could result in degraded

tracking performance, therefore, there is a tradeoff between energy usage and tracking performance. We

design sleeping policies that attempt to optimize this tradeoff and characterize their performance. As an

extension to our previous work in this area [1], we consider generalized models for object movement,

object sensing, and tracking cost. For discrete state spaces and continuous Gaussian observations, we

derive a lower bound on the optimal energy-tracking tradeoff. It is shown that in the low tracking error

regime, the generated policies approach the derived lower bound.

I. INTRODUCTION

Large sensor networks collecting data in dynamic environments are typically composed of a distributed

collection of cheap nodes with limited energy and processing capabilities. Hence, it is imperative to

efficiently manage the sensors’ resources to prolong the lifetime of such networks without sacrificing

performance. Our focus in this paper is on sensor resource management for tracking and surveillance

applications.

This work was funded in part by a grant from the Motorola corporation, a U.S. Army Research Office MURI grant W911NF-

06-1-0094 through a subcontract from Brown University at the University of Illinois, a NSF Graduate Research Fellowship, and

by a Vodafone Fellowship.

This work was done at the Coordinated Science Laboratory (CSL), University of Illinois at Urbana-Champaign, Urbana IL

61801, Emails:{fuemmele,atia1,vvv}@illinois.edu

DRAFT

http://arxiv.org/abs/1009.3167v1

2

Previous work on sensor resource management considered thedesign of sensor sleeping protocols for

sensor sleeping via wakeup mechanisms [2]–[7] or by modifying power-save functions in MAC protocols

for wireless ad hoc networks [8]–[10]. In the context of target classification, Castanon [11] developed an

approximate dynamic programming approach for dynamic scheduling of multi-mode sensors subject to

sensors resource constraints. In [12], [13] we studied a single object tracking problem where the sensors

can be turned on or off at consecutive time steps to conserve energy (sensor scheduling). A controller

selects the subset of sensors to activate at each time step. Also in [1], we studied a tracking problem

where each sensor could enter a sleep mode with a sleep timer (sensor sleeping). While in sleep mode,

the sensor could not assist in tracking the object by making observations. In contrast to [13], in [1] we

assumed that sleeping sensors could not be woken up externally but instead had to set internal timers to

determine the next time to come awake, wherefore, the control actions correspond to the sleep durations

of awake sensors. In turn, this did not only entail a different control space, but also led to a significantly

different policy design problem since a decision to put a sensor to sleep implies that this sensor cannot be

scheduled at future time steps until it comes awake. The consequences of the current action on the tracking

performance could be more dramatic rendering future planning more crucial. This led to a design problem

that sought to optimize a tradeoff between energy efficiencyand tracking performance. While optimal

solutions to this problem could not be found, suboptimal solutions were devised that were demonstrated

to be near optimal. To aid analysis, we assumed particularlysimple models for object movement, object

sensing, and tracking cost. In particular, we assumed that the network could be divided into cells, each

of which contained a single sensor. The object moved among the cells and could only be observed by

the sensor in the currently occupied cell. Tracking performance was a binary quantity; either the object

was observed in a particular time slot or it was not observed depending on whether the right sensor was

awake.

In this paper, we continue to examine the fundamental theoryof sleeping in sensor networks for

tracking but we extend our analysis to more generalized models for object movement, object sensing,

and tracking cost. We allow the number of possible object locations to be different from the number

of sensors. The number of possible object locations can evenbe infinite to model the movement of an

object on a continuum. Moreover, the object sensing model allows for an arbitrary distribution for the

observations given the current object location, and the tracking cost is modeled via an arbitrary distance

measure between the actual and estimated object location.

Not surprisingly, this generalization results in a problemthat is much more difficult to analyze. Our

approach is to build on the policies designed in [1]. The design of those policies relied on the separation

DRAFT

3

of the problem into a set of simpler subproblems. In [1], we have shown that under an observable-after-

control assumption, the design problem lends itself to a natural decomposition into simpler per-sensor

subproblems due to the simplified nature of the tracking coststructure. Unfortunately, this does not extend

to the generalized cases we consider herein. However, basedon the intuition gained from the structure

of the solution in the simplified case, in this work we artificially separate our problem into a set of

simpler per-sensor subproblems. The parameters of these subproblems are not knowna priori due to

the difficulties in analysis. However, we use Monte Carlo simulation and learning algorithms to compute

these parameters. We characterize the performance of the resulting sleeping policies through simulation.

For the special case of a discrete state space with continuous Gaussian observations, we derive a lower

bound on the optimal energy-tracking tradeoff which is shown to be loose at the high tracking error

regime, but is reasonably tight for the low tracking error region.

The remainder of this paper is organized as follows. In Section II, we describe the tracking problem

in mathematical terms and define the optimization problem. In Section III we derive our suboptimal

solutions and the aforementioned lower bound. In Section IV, we provide numerical results that illustrate

the efficacy of the proposed sleeping policies. We summarizeand conclude in Section V.

II. PROBLEM FORMULATION

A. POMDP Formulation

Consider a network withn sensors. Each sensor can be in one of two states: awake or asleep. A

sensor in the awake state consumes more energy than one in theasleep state. However, object sensing

can be performed only in the awake state. We denote the set of possible object locations asB such that

|B| = m + 1 where the(m + 1)-th state represents an absorbing terminal state that occurs when the

object leaves the network. We also refer to this terminal state asT . If B is not a finite set thenm is

∞. We define akernelP such thatP (x,Y) is the probability that the next object location is in the set

Y ⊂ B given that the current object location isx. We can predictt time steps into the future by defining

P 1 = P andP t inductively as

P t(x,Y) =

∫

B
P t−1(x, dz)P (z,Y) (1)

Supposep is a probability measure onB such thatp(X) for X ∈ B is the probability that the state is

in X at the current time step. Then the probability that the statewill be in Y after t time steps in the

future is given by

(pP t)(Y) ≡

∫

B
p(dx)P t(x,Y) (2)

DRAFT

4

This defines the measurepP t which depends on both the priorp and the transition KernelP . Let bk

denote the state for the object at timek. Also, let δx denote a probability measure such thatδx(A) = 1

if x ∈ A, and δx(A) = 0 otherwise. Conditioned on the object statebk, the future statebk+1 has a

distribution δbkP . This defines the evolution of the object location. For a discrete state space this is

simply the probability mass function defined by thebk-th row of a transition matrixP . We assume that

it is always possible to determine if the object has left the network, i.e., ifbk = m+ 1. To this end, we

define a virtual sensorn+ 1 that detects without error whether the object has left the network. In other

words, sensorn+ 1 is always awake but consumes no energy.

To provide a means for centralized control, we assume the presence of an extra node called the central

controller. The central controller keeps track of the stateof the network and assigns sleep times to sensors

that are awake. In particular, each sensor that wakes up remains awake for one time unit during which

the following actions are taken: (i) the sensor sends its observation of the object to the central unit, and

(ii) the sensor receives a new sleep time (which may equal zero) from the central controller. The sleep

time input is used to initialize a timer at the sensor that is decremented by one time unit each time step.

When this timer expires, the sensor wakes up. Since we assumethat wakeup signals are impractical, this

timer expiration is the only mechanism for waking a sensor.

Let rk,ℓ denote the value of the sleep timer of sensorℓ at time k. We call the(n + 1)-vectorrk the

residual sleep times of the sensors at timek. Also, letuk,ℓ denote the sleep time input supplied to sensor

ℓ at time k. We add the constraintsrk,n+1 = 0 anduk,n+1 = 0 due to the nature of the virtual sensor

n+ 1. We can describe the evolution of the residual sleep times as

rk+1,ℓ = (rk,ℓ − 1)11{rk,ℓ > 0} + uk,ℓ11{rk,ℓ = 0} (3)

for all k andℓ ∈ {1, . . . , n+ 1}. The first term on the right hand side of this equation expresses that if

the sensor is currently asleep (the sleep timer for the sensor is not zero), the sleep timer is decremented

by 1. The second term expresses that if the sensor is currently awake (the sleep timer is zero), the sleep

timer is reset to the current sleep time input for that sensor.

Based on the probabilistic evolution of the object locationand (3), we see that we have a discrete-time

dynamical model that describes our system with a well-defined state evolution. Thestateof the system

at timek is described byxk = (bk, rk). Unfortunately, not all ofxk is known to the central unit at time

k sincebk is known only if the object location is being tracked precisely. Thus we have a dynamical

system with incomplete (or partially observed) state information.

DRAFT

5

We write the observations for our problem as

zk = (sk, rk) (4)

wheresk is an(n+1)-vector of observations. These observations are drawn froma probability measure

σxk
that depends onxk. However, we add two restrictions. The first is that if a sensor is not awake at

time k, its observation is an erasure. Mathematically, we say thatrk,ℓ > 0 implies sk,ℓ = E . The second

restriction is thatsk,n+1 is a binary observation that indicates whether the object has left the network.

The total information available to the control unit at timek is given by

Ik = (z0, . . . , zk,u0, . . . ,uk−1) (5)

with I0 = z0 denoting the initial (known) state of the system. The control input for sensorℓ at timek is

allowed to be a function of the information stateIk, i.e.,

uk = µk(Ik) (6)

The vector-valued functionµk is the sleeping policy at timek which defines a mapping from the

information stateIk to the set of admissible actionsuk.

We now identify the costs present in our tracking problem. The first is anenergy costof c > 0 for

each sensor that is awake. The energy cost can be written mathematically as
n
∑

ℓ=1

c11{rk,ℓ = 0} (7)

The second cost is atracking cost. To define the tracking cost, we first define the estimated object location

at timek to be b̂k. We can think of̂bk as an additional control input that is a function ofIk, i.e.,

b̂k = βk(Ik) (8)

Since b̂k does not affect the state evolution, we do not need past values of this control input inIk. The

tracking cost is a distance measure that is a function of the actual and estimated object locations and is

written as

d(bk, b̂k) (9)

We assume thatd is a bounded function onB×B. Two examples of distance measures we might employ

are the Hamming cost (if the spaceB is finite), i.e.,

d(bk, b̂k) = 11{b̂k 6= bk} (10)

DRAFT

6

and the squared Euclidean distance (if the spaceB is a subset of an appropriate vector space), i.e.,

d(bk, b̂k) = ‖b̂k − bk‖
2
2 (11)

The parameterc is used to trade off energy consumption and tracking errors.

Recall that the input̂bk does not affect the state evolution; it only affects the cost. Therefore, we can

compute the optimal choice of̂bk, given byβ∗
k(Ik), using an optimization minimizing the tracking error

over a single time step. We can thus write

β∗
k(Ik) = argmin

b̂

E
[

d(bk, b̂k)
∣

∣

∣
Ik

]

(12)

Remembering that once the terminal state is reached no further cost is incurred, we can write the total

cost for time stepk as

g(bk, Ik) = 11{bk 6= T }

(

d (bk, β
∗
k(Ik)) +

n
∑

ℓ=1

c11{rk,ℓ = 0}

)

(13)

The infinite horizon cost for the system is given by

J(I0, µ0, µ1, . . .) = E

[

∞
∑

k=1

g(bk, Ik)

∣

∣

∣

∣

∣

I0

]

(14)

Sinceg is bounded (since the functiond is bounded) and the expected time till the object leaves the

network is finite, the cost functionJ is well defined. The goal is to compute the solution to

J∗(I0) = min
µ0,µ1,...

J(I0, µ0, µ1, . . .) (15)

The solution to this optimization problem for each value ofc yields an optimal sleeping policy. The

optimization problem falls under the framework of a partially observable Markov decision process

(POMDP) [14]–[17].

B. Dealing With Partial Observability

Partial observability presents a problem since the information for decision-making at timek given

in (5) is unbounded in memory. To remedy this, we seek a sufficient statistic for optimization that is

bounded in memory. The observationsk depends only onxk, which in turn depends only onxk−1,

uk−1, and some random disturbancewk−1. It is a standard argument (e.g., see [18]) that for such an

observation model, a sufficient statistic is given by the probability distribution of the statexk given Ik.

Such a sufficient statistic is referred to as abelief statein the POMDP literature (e.g., see [14], [15]).

DRAFT

7

Since the residual sleep times portion of our state is observable, the sufficient statistic can be written as

vk = (pk, rk), wherepk is a probability measure onB. Mathematically, we have

pk(X) = P(bk ∈ X |Ik) (16)

The task of recursively computingpk for eachk is a problem in nonlinear filtering (e.g., see [19]). In

other words,pk+1 can be computed using standard Bayesian techniques as the posterior measure resulting

from prior measurepP and observationssk+1.

The functionβ∗
k that determineŝbk can now be written in terms ofpk andrk instead ofIk. We can

rewrite it as

β∗
k(pk, rk) = argmin

b̂

E
[

d(bk, b̂)|bk ∼ pk

]

(17)

= argmin
b̂

∫

B
d(bk, b̂)pk(db) (18)

Note that due to the stationarity of the state evolution,β∗
k has the same form for everyk and is independent

of rk. Thus, we can drop the subscript and refer toβ∗
k asβ∗, a function ofpk alone.

Now we write our dynamic programming problem in terms of the sufficient statistic. We first rewrite

the cost at time stepk. Since only expected values of the cost functiong appear in (14), we can take our

cost function to be the expected value ofg (defined in (13)) conditioned onbk being distributed according

to pk. With a slight abuse of notation, we call this redefined costg. The cost can then be written as

g(pk, rk) =

∫

B
11{b 6= T }

(

d(b, β∗(pk)) +

n
∑

ℓ=1

c11{rk,ℓ = 0}

)

pk(db) (19)

=

∫

B−T

(

d(b, β∗(pk)) +

n
∑

ℓ=1

c11{rk,ℓ = 0}

)

pk(db) (20)

The selection of sleep times, originally presented in (6), can now be rewritten as

uk = µk(pk, rk) (21)

The total cost defined in (14) becomes

J(p0, r0, µ0, µ1, . . .) = E

[

∞
∑

k=1

g(pk, rk)

∣

∣

∣

∣

∣

v0

]

(22)

and the optimal cost defined in (15) becomes

J∗(p0, r0) = min
µ0,µ1,...

J(p0, r0, µ0, µ1, . . .) (23)

DRAFT

8

III. SUBOPTIMAL SOLUTIONS

Similar to the problem in [1], an optimal policy could be found by solving the Bellman equation

J(p, r) = min
µ

E [g(p1, r1) + J(p1, r1)|p0 = p, r0 = r,u0 = µ(p0, r0)] (24)

However, since an optimal solution could not be found for thesimpler problem considered in [1], we

immediately turn our attention to finding suboptimal solutions to our problem.

Note that in [1], simpler sensing models and cost structureswere employed. Under a simplifying

observable-after-control assumption, the simplicity of the sensing models allowed for the decoupling

of the contributions of the individual sensors. The simplicity of the cost structures allowed the cost to

be written as a sum of per-sensor costs. The result was a problem that could be written as a number

of simpler subproblems. The present case is more complicated. In general, the cooperation among the

sensors may be difficult to analyze and understand. Furthermore, the tracking cost may not be easily

written as a sum across the sensors.

Based on the intuition gained from [1], our approach to generating suboptimal solutions is to artificially

write the problem as a set of subproblems that can be solved using the techniques of [1]. The tracking

cost expressions (which are a function of the sleeping actions of the sensors) in these subproblems will

be left as unknowns. To determine appropriate values for these tracking costs, we either perform Monte

Carlo simulations before tracking begins or use data gathered during tracking. The intuition is that if the

resultant tracking cost expressions capture the “typical”behavior of the actual tracking cost, then our

sleeping policies should perform well.

A. General approach

The complexity of the sleeping problem stems from:

1) The complicated evolution of the belief statepk (non-linear filtering).

2) The complexity of the model including the dimensionalityof the state space, the control space and

the observation space.

To address the aforementioned difficulties, our approach has two main ingredients. First, we make

assumptions about the observations that will be available to the controller at future time steps. To generate

sleeping policies, we assume that the system is either perfectly observable or totally unobservable after

control. Hence, we define approximate recursions with special structure as surrogates for the optimal

value function. Second, we devise different methodologiesto evaluate suitable tracking costs in Sections

III-B and III-C whereby we capture the effect of each sensor on the overall tracking cost. Writing the

DRAFT

9

combined tracking cost as the sum of independent contributions of different sensors (with respect to some

baseline) allows us to write the Bellman equation as the sum of per-sensor recursions. Instead of solving

the Bellman equation in (24), we alternatively solven simpler Bellman equations to find per-sensor

policies and cost functions. The overall policy is then the per-sensor policies applied in parallel.

We denote byJ (ℓ) the cost function of theℓ-th sensor approximate subproblem. We defineT∆(b, ℓ)

to be the increase in tracking cost due to not waking up sensorℓ at time k given thatbk−1 = b. This

is meant to capture the contribution of theℓ-th sensor to the total tracking cost. Next we define our

approximations.

1) QMDP: First introduced in the artificial intelligence literature[20], [21], the QMDP solution for

POMDPs assumes that the system will be perfectly observableafter control, i.e., the partially observable

state becomes fully observable after taking a control action. In other words, under a QMDP assumption

the belief state simply evolves as

pk+1 = δbk+1
(25)

Noting that the future cost is not only affected by the current control action through belief evolution,

but also by the fact that no future decisions can be made for a sleeping sensor until it wakes up, the

observable-after-control policy is by no means a myopic policy. Note that (25) does not imply zero

tracking errors; it is merely an assumption simplifying thestate evolution in order to generate a sleeping

policy. Now we can readily define aQMDP per-sensor Bellman equationanalogous to the one in [1] as

J (ℓ)(p) = min
u

u−1
∑

j=0

∫

B−T
T∆(b, ℓ) (pP j)(db) +

∫

B−T

(

c+ J (ℓ)(δb)
)

(pP u+1)(db)

 (26)

To clarify, the first summation in the R.H.S. of (26) corresponds to the expected tracking cost incurred

by the sleep durationu of sensorℓ. The second term consists of: (i) the energy cost incurred asthe

sensor comes awake after its sleep timer expires (afteru+1 time slots); and (ii) the cost to go under an

observable-after-control assumption (hence the belief state isδb).

We cannot find an analytical solution for (26). However, notethat if we can solve (26) forp = δb for

all b, then it is straightforward to find the solution for all values of p. Thus, given a functionT∆, (26)

can be solved through standard policy iteration [18], but only if B is finite.

2) FCR: Similarly, we define a First Cost Reduction(FCR) Bellman equationanalogous to the one

in [1] as

J (ℓ)(p) = min
u

u−1
∑

j=0

∫

B−T
T∆(b, ℓ) (pP j)(db) + c

∫

B−T
(pP u+1)(db) + J (ℓ)(pP u+1)

 (27)

DRAFT

10

In this case, it is assumed that we will have no future observations. In other words, we define the

belief evolution aspk+1 = pkP . Again, it is worth mentioning that this does not mean that itwould be

impossible to track the object; we are simply making a simplifying assumption about the future state

evolution in order to generate a sleeping policy. Given a function T∆, it is easy to verify that the solution

to (27) is

J (ℓ)(p) =

∞
∑

j=0

min

{∫

B−T
T∆(b, ℓ) (pP j)(db), c

∫

B−T
(pP j+1)(db)

}

(28)

and the associated policy is to choose the first value ofu such that

c

∫

B−T
(pP u+1)(db) ≥

∫

B−T
T∆(b, ℓ) (pP u)(db), (29)

In other words, the policy is to come awake at the first time theexpected tracking cost exceeds the

expected energy cost where the tracking cost is defined basedon T∆ (to be determined) hence the name

First Cost Reduction.

The solutions to the per-sensor Bellman equations in (26) and (27) define the QMDP and FCR policies

for each sensor, respectively. Note that, unlike [1], [12],[13], the solution to the QMDP recursion does

not necessarily provide a lower bound on the optimal value function since the employed tracking cost

is not a lower bound on the actual tracking cost. In Sec III-D we derive a lower bound on the optimal

energy-tracking tradeoff for discrete state spaces with Gaussian Observations. The remaining task is to

identify appropriate values ofT∆(b, ℓ) for all b 6= T and for all ℓ. This is the subject of the next two

sections.

B. Nonlearning approach

For now, suppose thatB is a finite space. Supposebk−1 = b. To generateT∆(b, ℓ) for a particular

ℓ, we first assume a “baseline” behavior for the sensors, i.e.,we make an assumption about the set of

sensors that are awake at timek given thatbk−1 = b. We consider two possibilities:

1) That all sensors are asleep.

2) That the set of sensors awake is selected through a greedy algorithm. In other words, the sensor

that causes the largest decrease in expected tracking cost is added to the awake set until any further

reduction due to a single sensor is less thanc. The expected tracking cost can be evaluated through

the use of Monte Carlo simulation (repeatedly simulating our system from timek − 1 to time k)

to avoid the need for numerical integration.

DRAFT

11

Starting with this set of awake sensors, the value ofT∆(b, ℓ) is then computed as the absolute difference

in expected tracking cost incurred by changing the state of sensorℓ. Again, Monte Carlo simulation can

be used to evaluate the change in expected tracking cost. We can think of this procedure as linearizing

the tracking cost about some baseline behavior.

If B is not finite, then a parameterized version ofT∆ can be computed instead. We choosem̃ elements

of B − T and evaluateT∆ at these points. The value ofT∆ at all other values ofb ∈ B − T can be

computed via an interpolation algorithm. Recall that only an FCR policy is appropriate in the infinite

state case, since solving the QMDP Bellman equation for an infinite number of point mass distributions

is infeasible.

C. Learning approach

In this section, we describe an alternative learning-basedapproach. For ease of exposition, suppose that

B is a finite space. Then our probability measurepk can be characterized by a probability mass function.

We refer to this probability mass function aspk (a row vector). Definêak,ℓ to be the approximated

expected increase in tracking cost due to sensorℓ sleeping at timek as

âk,ℓ =
∑

b6=T

pk−1(b)T
∆(b, ℓ) (30)

Ideally, we would like this approximation to be equal to the actual expected increase in tracking cost due

to sensorℓ sleeping. Unfortunately, we do not have access to actual tracking costs at timek sincebk is

not known exactly. However, we do have access topk, rk, andpk−1. It is therefore possible to estimate

the tracking cost as
∫

B
d(b, β∗(pk))pk(db) (31)

For example, if Hamming cost is being used, then we can estimate the tracking cost as

1−max
b

pk({b}) (32)

and if squared Euclidean distance is being used we can estimate the tracking cost using the variance of

the measurepk. Next we describe how we learnT∆ by solving a least squares problem.

Determining an estimate of theincreasein the tracking cost due to the sleeping of sensorℓ at time

k, denotedak,ℓ, depends on the value ofrk,ℓ. If rk,ℓ = 0, we ignore the observation from sensorℓ and

generate a new version ofpk calledp′
k. We can computeak,ℓ as

ak,ℓ =
∑

b6=T

p′
k(b)d(b, β

∗(p′
k))−

∑

b6=T

pk(b)d(b, β
∗(pk)) (33)

DRAFT

12

If on the other handrk,ℓ > 0, we we first generate an object locationb′k according topk and then

generate an observation according to the probability measure σb′k . This observation is used to generate a

new distributionp′
k from pk. Then we computeak,ℓ as

ak,ℓ =
∑

b6=T

pk(b)d(b, β
∗(pk))−

∑

b6=T

p′
k(b)d(b, β

∗(p′
k)) (34)

We now have an approximation sequenceâk,ℓ and an observation sequenceak,ℓ. At time k − 1, our

goal is to chooseT∆ to minimize

E
[

(âk,ℓ − ak,ℓ)
2
]

(35)

We apply the Robbins-Monro algorithm, a form of stochastic gradient descent, to this problem in order

to recursively compute a sequence ofT∆ that will hopefully solve this minimization problem for large

k. The update equation is

T∆
k (b, ℓ) = T∆

k−1(b, ℓ) − 2αk11{b 6= T }pk−1(b)(âk,ℓ − ak,ℓ) (36)

whereαk is a step size. Note that11{b 6= T }pk−1(b) is the gradient of̂ak,ℓ with respect toT∆(b, ℓ).

Using a constant step size in our simulations, we could only observe small oscillations in the values

of T∆. It is unclear whether there are conditions under which the local or global convergence of this

learning algorithm is guaranteed. The difficulty is that theobservations we are trying to model depend

on the model itself. The problem is reminiscent of optimistic policy iteration (see [18]), the convergence

properties of which are little understood. We have left a proof of convergence for future work. It should

be pointed out that the algorithm will likely converge more slowly for a two-dimensional network than a

one-dimensional network. The reason is that in two dimensions it is easier for an object to avoid visiting

an object location state and causing an update to that particular value ofT∆.

If B is not finite, then we can again parameterizeT∆ as in the previous section. The Robbins-Monro

algorithm can be applied in this context as well, although the gradient expressions will depend on the

type of interpolation used.

D. A Lower Bound

Unfortunately, deriving a lower bound is generally difficult for the considered problem. However, in this

section we derive a lower bound for the special case of a discrete state space with Gaussian observations.

Our approach is similar to [13] in which we considered a related scheduling problem. The idea is to

combine the observable-after-control assumption with a separable lower bound on the tracking cost as

we demonstrate in what follows.

DRAFT

13

Given the current beliefpk, an action vectoruk, and the current residual sleep times vectorrk, the

expected tracking cost can be written as:

E[d(b̂k+1, bk+1)|pk,uk, rk] =

m
∑

j=1

Pr[b̂k+1 6= j|pk,uk, rk, bk+1 = j] Pr[bk+1 = j|pk,uk]

=

m
∑

i=1

pk(i)

m
∑

j=1

p(bk+1 = j|bk = i) Pr[b̂k+1 6= j|pk,uk, rk, bk+1 = j]

(37)

When awake, the sensors observations are Gaussian, i.e.,

sk,ℓ ∼ N

(

10

(νℓ − bk)2 + 1
, 1

)

(38)

whereνℓ is the location of sensorℓ.

Defining,

P (E|Hj) , Pr[b̂k+1 6= j|pk,uk, rk, bk+1 = j]

which is a conditional error probability for a multiple hypothesis testing problem withm hypotheses,

each corresponding to a different mean vector contaminatedwith white Gaussian noise. Conditioned on

Hj, the observation model is:

Hj : s(ℓ) = (mj(ℓ) + w)11{rk+1,ℓ = 0} + ε11{rk+1,ℓ > 0} (39)

wheres(ℓ) is theℓ-th entry of ann× 1 vectors denoting the received signal strength at then sensors,

mj is the mean received signal strength when the target is at state j (j-th hypothesis) andw is a zero

mean white Gaussian Noise, i.e.w ∼ N (0, σ2). According to (39), if awake at the next time step, sensor

ℓ gets a Gaussian observation that depends on the future target location, and an erasure, otherwise. Since

the current belief ispk, the prior for thej-th hypothesis isπj = [pkP]j .

The error eventE can be written as the union of pairwise error regions as

p(E|Hj) = Pr[∪k 6=jζkj] (40)

where

ζkj = {s : Lkj(s) >
πj

πk
}

is the region of observations for which thek-th hypothesisHk is more likely than thej-th hypothesis

Hj, and where

Lkj ,
f(s|Hk)

f(s|Hj)

DRAFT

14

denotes the likelihood ratio forHk andHj.

Using standard analysis for likelihood ratio tests [22], [23], it is not hard to show that:

p(ζkj|Hj) = Q

(

dkj

2
+

ln πj

πk

dkj

)

(41)

whered2
kj =

∆m
T
kj∆mkj

σ2 , ∆mkj = mk − mj, andQ(.) is the normal distributionQ-function. The

quantitydkj plays the role of distance between the two hypothesis and hence depends on the difference

of their corresponding mean vectors and the noise varianceσ2. Hence,dkj is a function of the next step

residual sleep vectorrk+1. To highlight this dependence, we will sometimes use the notation dkj(r)

when needed. Note that, for different values ofk and j, ζkj are not generally disjoint but allow us to

lower bound the error probability in terms of pairwise errorprobabilities, namely, a lower bound can be

written as:

p(E|Hj) ≥ max
k 6=j

p(ζkj|Hj) (42)

And we can readily lower bound the expected tracking error:

E[d(b̂k+1, bk+1)|pk,uk] ≥
m
∑

i=1

pk(i)

m
∑

j=1

p(bk+1 = j|bk = i)max
k 6=j

p(ζkj|Hj)

=

m
∑

i=1

pk(i)

m
∑

j=1

p(bk+1 = j|bk = i)max
k 6=j

Q

(

dkj

2
+

ln πj

πk

dkj

)

(43)

Next we separate out the effect of each sensor on the trackingerror:

E[d(b̂k+1, bk+1)|pk,uk, rk]
(a)

≥ 11{rk+1,ℓ = 0}E[d(b̂k+1, bk+1)|pk, rk+1 = 0]

+ 11{rk+1,ℓ > 0}E[d(b̂k+1, bk+1)|pk, rk+1,i = 0 ∀i 6= ℓ] for every ℓ

(44)

where 0 is the all zero vector designating that all sensors will be awake at the next time slot. The

inequality in (a) follows from the fact that if we separate out the effect of theℓ-th sensor we get a better

tracking performance when all the remaining sensors are awake. Since this holds for everyℓ, a lower

bound on the expected tracking error can be written as a convex combination of all sensors contributions:

E[d(b̂k+1, bk+1)|pk,uk, rk] ≥
n
∑

ℓ=1

λℓ(pk)
{

11{rk+1,ℓ = 0}E[d(b̂k+1, bk+1)|pk, rk+1 = 0]

+ 11{rk+1,ℓ > 0}E[d(b̂k+1, bk+1)|pk, rk+1,i = 0 ∀i 6= ℓ]
}

(45)

where
∑

ℓ λℓ(pk) = 1.

DRAFT

15

Let 0−ℓ denote a vector of lengthn with all entries equal to zero except for theℓ-th entry which can

be anything greater than0. Then replacing from (43),

E[d(b̂k+1, bk+1)|pk,uk, rk] ≥

n
∑

ℓ=1

λℓ(pk)

{

1I{rk+1,ℓ=0}

m
∑

i=1

pk(i)

m
∑

j=1

p(bk+1 = j|bk = i)max
k 6=j

Q

(

dkj(0)

2
+

ln πj

πk

dkj(0)

)

+11{rk+1,ℓ > 0}
m
∑

i=1

pk(i)

m
∑

j=1

p(bk+1 = j|bk = i)max
k 6=j

Q

(

dkj(0−ℓ)

2
+

ln πj

πk

dkj(0−ℓ)

)}

(46)

To simplify notation, we introduce the following2 quantities:

T0(p; i, ℓ) ,

m
∑

j=1

p(bk+1 = j|bk = i)max
k 6=j

Q

dkj(0)

2
+

ln [pP]j
[pP]k

dkj(0)

T (p; i, ℓ) ,

m
∑

j=1

p(bk+1 = j|bk = i)max
k 6=j

Q

dkj(0−ℓ)

2
+

ln [pP]j
[pP]k

dkj(0−ℓ)

Intuitively, T0(p; i, ℓ) represents the contribution of sensorℓ to the total expected tracking cost when the

underlying state isi, the belief isp and when all sensors are awake. On the other handT (p; i, ℓ) is the

ℓ-th sensor contribution when it is asleep and all the other sensors are awake.

Now if we assume that the target will be perfectly observableafter taking the sleeping action, a lower

bound on the total cost can be obtained from the solution of the following Bellman equation:

J(p, r0) =
∑

ℓ

Jℓ(p, r0,ℓ) (47)

where,

Jℓ(p, r0,ℓ) = min
uℓ

{

11{r1,ℓ = 0}

(

∑

b

p(b)λℓT0(p; b, ℓ) + c

m
∑

i=1

[pP]i +

m
∑

i=1

[pP]iJ(ei, 0)

)

+ 11{r1,ℓ > 0}

(

∑

b

p(b)λℓT (p; b, ℓ) +

m
∑

i=1

[pP]iJ(ei, uℓ)

)}

(48)

Note that if we can solve the equation above forp = ei for all i ∈ {1, . . . ,m}, then it is straightforward

to find the solution for all other values ofp. We therefore focus on specifying the value function at those

points. Since this is the case, we further simplify our notation and useT (i, ℓ) andλ(i, ℓ) as shorthand for

T (ei; i, ℓ) andλℓ(ei), respectively. Also since an action only needs to be made when the sensor wakes

up, we only need to define actions atr0,ℓ = 0. Observing that

Jℓ(ej, u) = λ(j, ℓ)T (j, ℓ) +

m
∑

i=1

[ejP]iJ
ℓ(ei, u− 1) ∀ u > 1 (49)

DRAFT

16

and

Jℓ(ej, 1) = λ(j, ℓ)T0(j, ℓ) + c

m
∑

i=1

[ejP]i +

m
∑

i=1

[ejP]iJ
ℓ(ei, 0) (50)

we recursively substitute from (49) and (50) in (48) until the system reaches(ei, 0). We can see that a

lower bound on the value function of sensorℓ can be obtained as a solution of the following minimization

problem overubℓ, whereubℓ is the control action for sensorℓ given a belief stateeb

Jℓ(eb) = min
u

{

u−1
∑

j=0

m
∑

i=1

[ebP
j]iλ(i, ℓ)T (i, ℓ) +

m
∑

i=1

[ebP
u]iλ(i, ℓ)T0(i, ℓ)

+ c

m
∑

i=1

[ebP
u+1]i +

m
∑

i=1

[ebP
u+1]iJ

ℓ(ei)

}

(51)

Equation (51) together with (47) define a lower bound on the total expected cost. To further tighten

the bound we can now optimize over a matrixΛ for every value ofc, whereΛ(c) is anm × n matrix

with the (i, ℓ) entry equal toλ(i, ℓ), i.e.,Λ(c) = {λ(i, ℓ)}. Hence,

J(eb) = max
Λ(c)

n
∑

ℓ=1

min
ub
ℓ

{

u−1
∑

j=0

m
∑

i=1

[ebP
j]iλ(i, ℓ)T (i, ℓ) +

m
∑

i=1

[ebP
u]iλ(i, ℓ)T0(i, ℓ)

+ c

m
∑

i=1

[ebP
u+1]i +

m
∑

i=1

[ebP
u+1]iJ

ℓ(ei)

}

(52)

subject to Λ1n = 1m

where1m is a column vector of all ones of lengthm. A closed form solution for (52) cannot be obtained,

and hence, we solve forJ(eb) numerically. First, we fixΛ and use policy iteration [18] to solve for

the control of each sensor at each state. Then, we changeΛ and repeat the process. The envelope of

the generated value functions (corresponding to differentinstants ofΛ) is hence a lower bound on the

optimal value function.

IV. N UMERICAL RESULTS

In this section, we show some simulation results illustrating the performance of the policies we derived

in previous sections. These results will be for one-dimensional sensor networks, but the general behavior

should extend to two-dimensional networks. In each simulation run, the object was initially placed at the

center of the network and the location of the object was made known to each sensor. A simulation run

concluded when the object left the network. The results of many simulation runs were then averaged to

compute an average tracking cost and an average energy cost.To allow for easier interpretation of our

results, we then normalized our costs by dividing by theexpectedtime the object spends in the network.

DRAFT

17

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Sensors Awake per Unit Time

T
ra

ck
in

g
E

rr
or

s
pe

r
U

ni
t T

im
e

Asleep
Greedy
Learning

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Sensors Awake per Unit Time

T
ra

ck
in

g
E

rr
or

s
pe

r
U

ni
t T

im
e

Asleep
Greedy
Learning

(a) (b)

Fig. 1. Tradeoff curves for Network A: (a) QMDP policies; (b) FCR policies

We refer to these normalized costs as costs per unit time, even though the true costs per unit time would

use theactual times the object spent in the network (the difference between the two was found to be

small).

For the non-learning policies, the value ofT∆(b, ℓ) for eachb andℓ was generated using 200 Monte

Carlo simulations. The results of 50 simulation runs were averaged when plotting the curves. For the

learning policies, the values forT∆ were initialized to those obtained from the non-learning approach

using greedy sensor selection as a baseline. A constant stepsize of 0.01 was used in the learning algorithm.

First, 100 simulation runs were performed but the results were not recorded while the values forT∆

stabilized. Then an additional 50 simulation runs were performed (T∆ continued to be updated) and these

results were averaged when plotting curves. In the case of QMDP learning policies, computation time was

saved by performing policy iteration only after every fifth simulation run.

We first consider a simple network that we term Network A. Thisis a one-dimensional network with

41 possible object locations where the object moves with equal probability either one to the left or one to

the right in each time step. There is a sensor at each of the 41 object locations that makes (when awake)

a binary observation that determines without error whetherthe object is at that location. Hamming cost

is used for the tracking cost.

For Network A, we illustrate the performance of the QMDP versions of our policies in Figure 1(a) and

the FCR versions of our policies in Figure 1(b).

The curves labeled “Asleep” are for the nonlearning approach for computingT∆ where we assume that

DRAFT

18

Sensor

O
bj

ec
t L

oc
at

io
n

10 20 30 40

5

10

15

20

25

30

35

40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 2. The final matrix forT∆ for the QMDP learning policy and smallc for Network A.

all sensors are asleep as a baseline. The curves labeled “Greedy” are for the nonlearning approach for

computingT∆ where we use a greedy algorithm to determine our baseline. The curves labeled “Learning”

employ our learning algorithm for computingT∆.

From the tradeoff curves, it is apparent that using the learning algorithm to computeT∆ results in

improved performance. A close inspection of Figures 1(a) and 1(b) will reveal that the QMDP policies

perform somewhat better than their FCR counterparts. This is consistent with what was observed in [1].

It is instructive to consider the final matrix of values forT∆(b, ℓ) that was obtained at the end of

all learning algorithm simulations. In Figures 2 and 3 we plot this matrix for the QMDP learning policy

simulations for the smallestc and for the largestc used in simulation, respectively. In Figure 2, it is

evident that only a single sensor has an impact for each valueof b. Due to the way our simulations

worked, it is the sensor to the left that has the impact, but itcould just as easily be the sensor to the

right of the current object position. The fact that most of the nonzero values of the matrix are less than

0.5 reflects the fact that the sensor to the right of the current object location might wake up due to a

sleep time selected at a previous time step. In Figure 3, it isevident that the sensors on either side of

the current object location (which is actually not known since Figure 3 corresponds to the case where no

sensors are awake) appear to have a major impact on the tracking cost. There are nonzero values off the

DRAFT

19

Sensor

O
bj

ec
t L

oc
at

io
n

10 20 30 40

5

10

15

20

25

30

35

40 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 3. The final matrix forT∆ for the QMDP learning policy and largec for Network A.

TABLE I

OBJECT MOVEMENT FORNETWORK B.

Change in Position 0 1 2 3

Probability 0.3125 0.2344 0.0938 0.0156

two main diagonals due to probabilistic nature of the learning process when the actual object location is

not known.

We now consider a new one-dimensional network termed Network B. The possible object locations

are located on the integers from 1 to 21. The object moves according to a random walk anywhere from

three steps to the left to three steps to the right in each timestep. The distribution of these movements

is given in table I. The change in position indicate movementby a corresponding number of steps to the

right or to the left. There are 10 sensors in this network so that m 6= n. The locations of the sensors are

given in Table II and awake sensors make Gaussian observations as in (38).

Results for the QMDP and FCR versions of our policies are shown in Figures 4(a) and4(b), respectively.

The results confirm the same general trends observed for Network A. The figures also show our derived

lower bound on the energy-tracking tradeoff using the approach described in Sec. III-D. Not surprisingly,

DRAFT

20

TABLE II

SENSOR LOCATIONS FORNETWORK B.

Sensor 1 2 3 4 5 6 7 8 9 10

Location 1.36 1.61 3.91 8.09 11.96 13.39 13.52 13.66 16.60 18.68

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Sensors Awake per Unit Time

T
ra

ck
in

g
E

rr
or

s
pe

r
U

ni
t T

im
e

Asleep
Greedy
Learning
LB

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Sensors Awake per Unit Time

T
ra

ck
in

g
E

rr
or

s
pe

r
U

ni
t T

im
e

Asleep
Greedy
Learning
LB

(a) (b)

Fig. 4. Tradeoff curves for Network B and a lower bound: (a) QMDP policies; (b) FCR policies

the lower bound is particularly loose at the high tracking cost regime, yet the gap is reasonably small

for the low tracking error region. This is expected since thelower bound uses an all-awake assumption

to lower bound the contribution of each sensor to the tracking error. However, it is worth mentioning

that we can exactly compute the saturation point for the optimal scheduling policy, which matches the

saturation limit of the shown curves, since every policy hasto eventually meet the all-asleep performance

curve when the energy cost per sensor is high. At that point, all sensors are put to sleep and hence the

target estimate can only be based on prior information. The small gap at the low tracking error regime

combined with the aforementioned saturation effect highlight good performance for our sleeping policies.

For illustration, we plot the matrix forT∆ for the QMDP learning policy simulations for the smallestc

and for the largestc when the object moves according to a symmetric random walk inFigures 5 and

6, respectively. Note the difference between the rows corresponding to object locations 7 and 8 in

Figure 5. Examining the sensor locations, we see that sensor4 is located at 8.09. This sensor is useful

for distinguishing between object locations 6 and 8 (for an initial object position of 7) but is of less value

for distinguishing between object locations 7 and 9 (for an initial object position of 8). This is evidenced

DRAFT

21

Sensor

O
bj

ec
t L

oc
at

io
n

2 4 6 8 10

2

4

6

8

10

12

14

16

18

20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 5. The final matrix forT∆ for the QMDP learning policy and smallc for Network B.

Sensor

O
bj

ec
t L

oc
at

io
n

2 4 6 8 10

2

4

6

8

10

12

14

16

18

20
0

0.1

0.2

0.3

0.4

0.5

Fig. 6. The final matrix forT∆ for the QMDP learning policy and largec for Network B.

DRAFT

22

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

20

Sensors Awake per Unit Time

M
S

E

Asleep
Greedy
Learning

Fig. 7. Tradeoff curves for FCR policies for Network C.

in the figure as a large value forT∆(7, 4) and a small value forT∆(8, 4).

To demonstrate that our techniques can be applied to an object that moves on a continuum, we define

a new network, Network C. This network is identical to Network B except for two changes. First, the

object can take locations anywhere on the interval[1, 21]. Second, the object moves according to Brownian

motion with the change in position between time steps havinga Gaussian distribution with mean zero and

variance 1. As mentioned earlier, only FCR policies can be generated for this type of network. Values

of T∆ were computed for each integer-valued object location on[1, 21] and linear interpolation used to

compute values ofT∆ for other object locations. Since continuous distributions cannot be easily stored,

particle filtering techniques were employed (e.g., see [19]). The number of particles used was 512 and

resampling was performed at each time step. As is consistentwith particle filtering, in generating the

sleep times the computation of future probability distributions was approximated through Monte Carlo

movement of the particles. The number of simulation runs that were averaged for each data point was

increased to 200 for these simulations.

Tradeoff curves for Network C are shown in Figure 7. Althoughthe tradeoff curves are less smooth

than before, this figure illustrates performance trends similar to those already seen. The reason the curves

are not as smooth is that occasionally the particle filter would fail to keep track of the distribution with

DRAFT

23

sufficient accuracy. This would cause the network to lose track of the object and cause abnormally bad

tracking for that simulation run. These outliers were not removed when generating the tradeoff curves.

A recovery mechanism would need to be added to the sleeping policies to overcome this limitation of

particle filters.

V. CONCLUSION

In this paper, we considered energy-efficient tracking of anobject moving through a network of wireless

sensors. While an optimal solution could not be found, it waspossible to design suboptimal, yet efficient,

sleeping solutions for general motion, sensing, and cost models. We proposed QMDP and FCR approximate

policies, where in the former, the system is assumed to be perfectly observable after control, and in

the latter, to be totally unobservable. We combined these approximations with a decomposition of the

optimization problem into simpler per-sensor subproblems, and developed learning and non-learning

based approaches to compute the parameters of each subproblem. The learning-based QMDP policies

were shown to provide the best energy-tracking tradeoff. Inthe low tracking error regime, our sleeping

policies approach a derived lower bound on the optimal energy-tracking tradeoff.

Avenues for future research include developing distributed sleeping strategies in the absence of central

control and solving the tracking problem for unknown or partially known object movement statistics.

REFERENCES

[1] J. A. Fuemmeler and V. V. Veeravalli, “Smart sleeping policies for energy efficient tracking in sensor networks,”IEEE

Tranactions on Signal Processing, vol. 56, no. 5, pp. 2091–2101, May 2008.

[2] R. R. Brooks, P. Ramanathan, and A. M. Sayeed, “Distributed target classification and tracking in sensor networks,”

Proceedings of the IEEE, vol. 91, no. 8, pp. 1163–1171, Aug. 2004.

[3] S. Balasubramanian, I. Elangovan, S. K. Jayaweera, and K. R. Namuduri, “Distributed and collaborative tracking forenergy-

constrained ad-hoc wireless sensor networks,” inIEEE Wireless Communications and Networking Conference, vol. 3, Mar.

2004, pp. 1732–1737.

[4] R. Gupta and S. R. Das, “Tracking moving targets in a smartsensor network,” inIEEE 58th Vehicular Technology

Conference, vol. 5, Oct. 2003, pp. 3035–3039.

[5] H. Yang and B. Sikdar, “A protocol for tracking mobile targets using sensor networks,” inProceedings of the First IEEE

International Workshop on Sensor Network Protocols and Applications, May 2003, pp. 71–81.

[6] Y. Xu, J. Winter, and W.-C. Lee, “Prediction-based strategies for energy saving in object tracking sensor networks,” in

Proceedings of the 2004 IEEE International Conference on Mobile Data Management, 2004, pp. 346–357.

[7] L. Yang, C. Feng, J. W. Rozenblit, and J. Peng, “A multi-modality framework for energy efficient tracking in large scale

wireless sensor networks,” inProceedings of the 2006 IEEE International Conference on Networking, Sensing and Control,

Apr. 2006, pp. 916–921.

DRAFT

24

[8] C. Gui and P. Mohapatra, “Power conservation and qualityof surveillance in target tracking sensor networks,” inProceedings

of the 10th Annual International Conference on Mobile Computing and Networking (MOBICOM), Sep. 2004, pp. 129–143.

[9] ——, “Virtual patrol: A new power conservation design forsurveillance using sensor networks,” inFourth International

Symposium on Information Processing in Sensor Networks (IPSN), Apr. 2005, pp. 246–253.

[10] N. A. Vasanthi and S. Annadurai, “Energy saving schedule for target tracking sensor networks to maximize the network

lifetime,” in First International Conference on Communication System Software and Middleware, Jan. 2006, pp. 1–8.

[11] D. A. Castanon, “Approximate dynamic programming for sensor management,” in36th conference on decision and control

(CDC), 1997, pp. 1202–1207.

[12] G. K. Atia, J. A. Fuemmeler, and V. V. Veeravalli, “Sensor scheduling for energy-efficient target tracking in sensor

networks,”Accepted to Asilomar Conference on Signals, Systems, and Computers, July 2010.

[13] G. K. Atia, V. V. Veeravalli, and J. A. Fuemmeler, “Sensor scheduling for energy-efficient target tracking in sensor

networks,”Submitted to IEEE Transactions on Signal Processing, July 2010.

[14] D. Aberdeen, “A (revised) survey of approximate methods for solving partially observable Markov

decision processes,” National ICT Australia, Canberra, Australia, Tech. Rep., Dec. 2003. [Online]. Available:

http://users.rsise.anu.edu.au/∼daa/papers.html.

[15] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning policies for partially observable environments: Scaling

up,” in Proceedings of the Twelfth International Conference on Machine Learning, 1995, pp. 362–370.

[16] G. Monahan, “A survey of partially observable markov decision processes: theory, models, and algorithms,”Management

Science, vol. 28, pp. 1–16, 1982.

[17] M. Hauskrecht, “Value-function approximations for partially observable markov decision processes,”Journal of Artificial

Intelligence Research (JAIR), vol. 13, pp. 33–94, 2000.

[18] D. P. Bertsekas,Dynamic Programming and Optimal Control, 3rd ed. Belmont, MA: Athena Scientific, 2007.

[19] A. Doucet, N. de Freitas, and N. Gordon, Eds.,Sequential Monte Carlo Methods in Practice. New York, NY: Springer-

Verlag, 2001.

[20] A. Cassandra, M. L. Littman, and N. L. Zhang, “Incremental pruning: A simple, fast, exact algorithm for partially observable

markov decision processes,” inThirteenth Annual Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann,

1997, pp. 54–61.

[21] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning policies for partially observable environments: scaling

up,” in Twelfth International Conference on Machine Learning, 1995, pp. 362–370.

[22] H. V. Poor,An Introduction to Signal Detection and Estimation (2nd ed.). New York, NY, USA: Springer-Verlag New

York, Inc., 1994.

[23] B. C. Levy,Principles of Signal Detection and Parameter Estimation. Springer Publishing Company, Incorporated, 2008.

DRAFT

http://users.rsise.anu.edu.au/~daa/papers.html.

	I Introduction
	II Problem Formulation
	II-A POMDP Formulation
	II-B Dealing With Partial Observability

	III Suboptimal Solutions
	III-A General approach
	III-A1 QMDP
	III-A2 FCR

	III-B Nonlearning approach
	III-C Learning approach
	III-D A Lower Bound

	IV Numerical Results
	V Conclusion
	References

