
ar
X

iv
:1

00
9.

29
97

v1
 [

cs
.M

A
]

15
 S

ep
 2

01
0

1

Sensor Scheduling for Energy-Efficient Target

Tracking in Sensor Networks
George K. Atia,Member, IEEE, Venugopal V. Veeravalli,Fellow, IEEE, and

Jason A. FuemmelerMember, IEEE

Abstract

In this paper we study the problem of tracking an object moving randomly through a network of

wireless sensors. Our objective is to devise strategies forscheduling the sensors to optimize the tradeoff

between tracking performance and energy consumption. We cast the scheduling problem as a Partially

Observable Markov Decision Process (POMDP), where the control actions correspond to the set of

sensors to activate at each time step. Using a bottom-up approach, we consider different sensing, motion

and cost models with increasing levels of difficulty. At the first level, the sensing regions of the different

sensors do not overlap and the target is only observed withinthe sensing range of an active sensor. Then,

we consider sensors with overlapping sensing range such that the tracking error, and hence the actions

of the different sensors, are tightly coupled. Finally, we consider scenarios wherein the target locations

and sensors’ observations assume values on continuous spaces. Exact solutions are generally intractable

even for the simplest models due to the dimensionality of theinformation and action spaces. Hence,

we devise approximate solution techniques, and in some cases derive lower bounds on the optimal

tradeoff curves. The generated scheduling policies, albeit suboptimal, often provide close-to-optimal

energy-tracking tradeoffs.

I. INTRODUCTION

In large networks of inexpensive sensors with small batteries, the sensor nodes are required to operate

on limited energy budgets. Sensor management can prolong the lifetime of a sensor network and conserve

This work was funded in part by a grant from the Motorola corporation, a U.S. Army Research Office MURI grant W911NF-

06-1-0094 through a subcontract from Brown University at the University of Illinois, a NSF Graduate Research Fellowship, and

by a Vodafone Fellowship.

This work was done at the Coordinated Science Laboratory (CSL), University of Illinois at Urbana Champaign, Urbana

IL, and was submitted in part in June 2010 to the Asilomar conference on Signals, Systems, and Computers. Emails:

{atia1,vvv,fuemmele}@illinois.edu

DRAFT

http://arxiv.org/abs/1009.2997v1

scarce energy resources. However, inefficient management could result in severe performance degradation.

In this paper, we consider a network ofn sensors tracking a single object. The sensors can be turned

on or off at consecutive time steps and the goal is to select the subset of sensors to activate at each time

step. This problem is challenging due to the inherent tradeoff between the value of information in the

sensor measurements and the energy cost, combined with the combinatorial complexity of the decision

space.

In previous work [1], two of the authors considered approximate strategies forsensor sleeping, where

the sensors are put to sleep to save energy and decisions are made concerning their sleep duration (in

time slots). Once in a sleep mode, a sensor would only wake up after its own sleep timer expires. Here,

we consider a scheduling variant of the problem which can be thought of as a sleeping problem with an

external wake-up mechanism, i.e., sensors can be woken up byexternal means (e.g. a low-power wake-up

radio). At timek, the permissible control actions for ann-sensor scheduling problem aren-dimensional

binary vectors, i.e., vectors in{0, 1}n (corresponding to set sensor nodes to activate at each time step),

in contrast to vectors inNna(k)
0 for the sleeping problem (corresponding to the sleep durations of awake

sensors), whereN0 is the set of non-negative integers andna(k) the number of awake sensors at time

k. While this does not address the combinatorial nature of thecontrol space, the simpler structure of the

control space for the scheduling problem enables efficient approximate solution methodologies for the

more realistic models that we study in this paper.

A significant body of related research work considers sensormanagement for tasking sensors in

dynamically evolving environments. Castanon [2] has developed an approximate dynamic programming

approach for dynamic scheduling of multi-mode sensor resources for the classification of a large number of

unknown objects. The goal is to achieve an accurate classification of each object at the end of a fixed finite

horizon by assigning different sensor modes to different objects subject to periodic or total resource usage

constraints. Mode allocation strategies are computed based on Lagrangian relaxation for an approximate

optimization problem wherein sample-path resource constraints are replaced by expected value constraints.

In the context of sensor scheduling for target tracking, information-based approaches [3], [4] have been

developed for optimizing tracking performance subject to an explicit constraint on communication costs

in a decentralized setting. Williams et al. [3] also adopt a Lagrangian relaxation approach to solve a

constrained dynamic program over a rolling horizon. There,the combinatorial complexity of the decision

space is avoided by first selecting one leader node, followedby greedy sensor subset selection. Other

related work on sensor scheduling include leader-based distributed tracking schemes [5], [6], where at

any time instant there is only one sensor active, namely, theleader sensor which changes dynamically

2

as a function of the object state, while the rest of the network is idle.

While previous work focused on developing distributed implementations of efficient sensor scheduling

strategies, our goal here is to study the fundamental theoryof sensor scheduling for tracking and

surveillance applications. Specifically, to explicitly study the fundamental tradeoff between tracking

performance and energy expenditure, we define a unified objective function combining tracking and

energy costs trading-off the complexity of per-stage coststo better capture the inherent energy-tracking

tradeoff. We adopt a bottom-up approach where we consider a range of sensing, motion and cost models

with increasing levels of difficulty and devise suboptimal scheduling policies to balance the tradeoff

between energy expenditure and tracking performance. In some cases we are also able to derive lower

bounds on the optimal energy-tracking tradeoff.

Due to noise and model uncertainties, natural limitations of the measurement devices, or incomplete

data about the surroundings, we need to design scheduling policies when the system’s state is only partially

observable to the controller. Partially-Observable Markov Decision Processes (POMDPs) provide a natural

framework for addressing sequential decision problems where the goal is to find a policy (strategy) for

selecting actions based on the information available to thecontroller while addressing both short-term and

long-term benefits and costs. Solving POMDPs optimally is generally intractable. For example, the value

function for a POMDP with a finite state space depends on information states consisting of conditional

probability vectors of dimension equal to the number of states. This has led to a number of POMDP

approximations and we refer the reader to Monahan [7] and Hauskrecht [8] for excellent surveys on

approximate methods for stochastic dynamic programming. Usually, no single approximation can be

prescribed for all POMDPs, rather approximations can be judiciously used to exploit specific problem

structures. In this paper, we use a subset of these approximate solution techniques, including reduced-

uncertainty and point-based approximations [9]–[12]. Theformer assumes that more information would be

available to the controller at future time steps, and the latter solves a reduced optimization problem based

on a relatively small subset of sampled beliefs about the object’s state. We devise different approaches to

deal with the aforementioned computational complexity of the decision space. In one approach, instead

of solving one large combinatorial problem, we solve a set ofsimpler subproblems based on the intuition

gained from a simplistic sensing model. In another approach, we iteratively sample control actions from

a reduced control space based on the sparsity of a reachable belief set combined with point-based value

updates.

The remainder of this paper is organized as follows. In Section II, we describe the tracking problem

and define the sensing, transition and cost models, as well asthe optimization problem, for each of the

3

considered models. In Section III we describe approximate strategies to generate suboptimal scheduling

policies. In Section IV, we present some experimental results, and finally, in Section V, we provide some

concluding remarks.

II. SCHEDULING PROBLEM

In the following we consider different models with increasing level of difficulty. Depending on the

structure of the model, we devise approximate methods to address the associated difficulties and generate

efficient scheduling policies. For notation, vectors are denoted by bold lower-case letters. Superscript T

denotes transposition and the indicator function is written as1I{.}.

A. Simple sensing, observation and cost models

In this model, the network is divided inton distinct cells, one for each sensor. In other words, each cell

corresponds to the sensing range of one particular sensor and sensors’ ranges do not overlap. A Markov

chain with an(n+1)× (n+1) probability transition matrixP describes the motion of the target through

the field of interest. The extra state is for an absorbing termination state of the Markov chain which is

reached when the object leaves the network. It is further assumed that all information about the object

trajectory is stored at some central unit and is used to determine the scheduling actions for the different

sensors.

We letuk,ℓ denote the action for sensorℓ at timek; uk,ℓ = 1 if sensorℓ is activated at timek+1 and

0 if the decision is to turn it off. The action vector at timek, denoteduk, is a binary vector of sizen×1,

one decision per sensor. In this simplistic model, we assumethat the target is perfectly observable within

the cell of an awake sensor or if it reaches the terminal stateτ , otherwise it is unobservable. Thus, the

observationsk at timek is defined according to:

sk =



















bk, if bk 6= τ anduk−1,bk = 1;

ε, if bk 6= τ anduk−1,bk = 0;

τ, if bk = τ .

(1)

whereε stands for erasure. The observation model in (1) induces a well-defined probabilistic observation

model p(sk|bk,uk−1) such that the current observation depends on that actual target location and the

scheduling action for then sensors.

At each time step, the incurred cost is the sum of the energy and the tracking costs. An energy cost

of c ∈ (0, 1] per unit time is incurred for every active sensor and a tracking cost of1 for each time unit

that the object is not observed. Once stateτ is reached the problem terminates and no further cost is

4

incurred. In other words,τ is an absorbing cost-free state; alln states are transient so thatτ is the only

recurrence class of the Markov chain. Hence,

g(bk,uk−1) = 1I{bk 6= τ}
(

1I{uk−1,bk = 0}+
n
∑

ℓ=1

c1I{uk−1,ℓ = 1}
)

(2)

The parameterc is thus used to tradeoff energy consumption and tracking errors.

B. Overlapping sensors with discrete observations models

In this model, we continue to use a discrete model for the target transition but we redefine a new

sensing model and cost structure to account for the fact thatsensors could have overlapping visibility

regions. Within that model we further consider simple and probabilistic sensing.

1) Overlapping sensors with simple sensing: In this case, the target isperfectlyobserved within the

visibility region of any active sensor. Denote byRℓ the set of locations in the visibility region of sensor

ℓ and byBi the set of sensors that observe locationi. The observation at timek is as follows:

sk =



















bk, if bk 6= τ and∃j ∈ Bbk : uk−1,j = 1;

ε, if bk 6= τ anduk−1,j = 0, ∀j ∈ Bbk ;

τ, if bk = τ .

(3)

Therefore, a tracking error is incurred if none of the sensors observing the current target location is

active. Redefining the cost structure for this model:

g(bk,uk−1) = 1I{bk 6= τ}
(

1I{uk−1,j = 0,∀j ∈ Bbk}+
n
∑

ℓ=1

c1I{uk−1,ℓ = 1}
)

(4)

2) Overlapping sesnors with probabilistic sensing: By probabilistic sensing we account for observation

uncertainty even if the target is within the visibility region of one or more active sensors. We assume,

p(sk|bk,∃j ∈ Bbk : uk−1,j = 1) =







q, sk = bk;
1−q
|R|−1 , sk = i, ∀i ∈ R

(5)

where

R =
⋂

j∈Bbk
,

uk−1,j=1

Rj

∖

⋃

i/∈Bbk
,

uk−1,i=1

Ri.

That is, the observation is uniformly distributed over the remaining locations (other than the true target

location) that belong to the visibility regions of the set ofawake sensors monitoring the true location

bk. If the true target location does not belong to the visibility region of an awake sensor, we naturally

exclude the visibility region of that sensor since no measurement is received from such a sensor. When

5

R is a singleton{bk}, we setq = 1. A tracking error is incurred if the target is not directly observed

and the uncertainty in the target location cannot be resolved.

C. Continuous observation, continuous state and arbitrarycost models

In this class of models, the object sensing model allows for an arbitrary distribution for the observations

given the current object location. Tracking cost is modeledas an arbitrary distance measure between the

actual and the estimated object location. If we denote the set of possible object locationsB, we have

B = m + 1. Note that, in contrast to the simplistic model in II-A,m is different fromn since object

locations are arbitrary and we no longer assume one locationcorresponds to the sensing range of one

particular sensor. The(m+ 1)-th state again corresponds to a termination state. Furthermore, the target

can be moving on a continuous state space in which casem is ∞.

If the state space is discrete, then conditioned on the object statebk at timek, bk+1 has a probability

mass function that is given by thebk-th row of the transition matrixP . If the state space is continuous,

P is a kernel such thatP (x,Y) is the probability that the next object location is in the setY ⊂ B given

the current object location isx. For simplicity of exposition, we focus on discrete state spaces. Also, we

omit indexing time whenever the time evolution is well-understood to avoid cumbersome notation. We

consider the following observation model for illustration; however, our approach is fairly general:

p(s|b,u) =
n
∏

i=1

{

1√
2π

exp

(

−1

2

(

si −
10

(b− pi)2 + 1

)2
)

1I{ui = 1}+ δ(si − ε)1I{ui = 0}
}

(6)

wheres is ann× 1 continuous observation vector with thei-th entry,si, representing the observation of

sensori, pi, i = 1, . . . , n, is the position of thei-th sensor,b is the target state, andε stands for erasure.

δ(.) is the Dirac Delta function. In (6), the observation of an active sensor is Gaussian with a mean

received signal strength inversely proportional to the square of the distance between the sensor and the

actual target location. The observation of an inactive sensor is just an erasure.

The estimated target location (given the entire history) isdenoted bŷb. We define the tracking error

through an arbitrary bounded distance functiond(b, b̂) between the actual and the estimated object

locations, which can be the Hamming distanced(b, b̂) = 1I{b 6= b̂} or the Euclidean distance for discrete

and continuous state spaces, respectively. The control at each time step is the tuple(b̂k,uk). Sinceb̂ does

not affect the state evolution, the optimal value forb̂k is the value that minimizes the tracking cost over

a single time step given history up to timek, i.e.,

b̂k = argmin
b̂

E[d(bk, b̂k)|Ik] (7)

6

where,Ik denotes the information state, i.e., the total informationavailable to the central controller at

time k which is given by

Ik = {s0, s1 . . . , sk,u0,u1 . . . ,uk−1}

In the case of Hamming cost, it follows thatb̂ is simply the MAP decision, i.e.,̂b = argmaxb pk(b).

D. Optimal scheduling policy

The design of anoptimal scheduling policydepends on the history up to timek, i.e., the information

stateIk. However, the posterior probability distribution,pk = Pr[bk|Ik], of the target’s state givenIk is

a sufficient statistic for this class of partially observable processes. The distributionpk, also known as

belief, summarizes all the information needed for optimal control. The sufficient statistic itself forms a

Markov process whose evolution can be obtained through Bayes’ rule updates1. For example, the belief

update equation for the simplistic model in Section II-A canbe written as:

pk+1 =



















eτ , if sk+1 = τ ;

ebk+1
, if uk,bk+1

= 1;

[pkP]{j:uk,j=0} , if uk,bk+1
= 0.

(8)

whereei is a row vector with a1 at thei-th entry and0 elsewhere. The vector[pkP]S is the probability

vector formed by setting thei-th entry [pkP]i of the vectorpkP to zero,∀i /∈ S, and then normalizing

the vector into a probability distribution. The set{j : uk,j = 0} signifies the set of deactivated sensors.

In other words, the updated belief for the model in II-A, is a point mass distribution concentrated atτ

if the object exits the network, and concentrated atbk+1 if the object is observed. When the object is

unobservable, we eliminate the probability mass at all sensors that are awake, since the object cannot be

at these locations, and normalize. The multi-valued function in (8), and equivalent Bayes’ updates for

the other models, define a transformationpk+1 = φ(pk, sk+1,uk), mapping the current beliefpk, the

current control vectoruk, and the future observationsk+1, to a future belief.

The policyuk = µk(Ik) is defined as a mapping from information statesIk to control actionsuk. The

goal is to design a policy that minimizes the expected sum of costsJ , where,

J(I0, µ0, µ1, . . .) = E

[

∞
∑

k=1

g(bk)

∣

∣

∣

∣

∣

I0

]

. (9)

1Equivalently, for a continuous state space, a sufficient statistic would bepk(X) = Pr[bk ∈ X |Ik]. The updated beliefpk+1

can be computed using standard Bayesian non-linear filtering as the posterior measure resulting from prior measurepP and

observationsk+1.

7

J is well-defined sinceg is upper bounded bycn + 1 (regardless of the model) and the expected time

till the object exits the network is finite. Note that the termination is inevitable, thus the objective is to

reach the termination state with minimal expected cost. Hence, the scheduling policy is the solution of

the minimization problem,

J∗ = min
µ0,µ1,...

J(I0, µ0, µ1, . . .) (10)

This POMDP problem falls within the class of infinite horizonstochastic shortest path problems.

Noting that the termination state is observable, cost-freeand absorbing, and that every policy is proper2,

a stationary policyµ∗(.), i.e., one which does not depend onk, is optimal in the class of all history-

dependent policies andpk is a sufficient statistic for control [13], i.e.,u∗k = µ∗(pk), is defined through

a time-invariant mapping from the belief space to the actionspace.J can be written in terms of the

sufficient statistic and the optimal policy can be obtained from the solution of the Bellman equation:

J(p) = min
u∈{0,1}n

E[g(b′,u)|p,u] +
∑

s

p(s|p,u)J(φ(p, s,u)) (11)

such thatJ(eτ) = 0, whereJ(.) is the value function for the POMDP, and the expectation is taken

over the future stateb′ which is distributed according topP . Note that we removed the time dependence

due to the aforementioned time invariance property. For continuous observations, summation overs is

replaced by an integration.

III. A PPROXIMATE SOLUTIONS AND LOWER BOUNDS

There are a number of algorithms for solving POMDPs exactly [14]–[16]. These algorithms rely on the

powerful result of Sondik that the optimal value function for any POMDP can be approximated arbitrarily

closely using a set of hyper-planes (α-vectors) defined over the belief simplex [14]. This fact is the basis

for exact value iteration based algorithms, such as the Witness algorithm [17] for computing the value

function. The result is a value function parameterized by a number of hyper-planes (or vectors) whereby

the belief space is partitioned into a finite number of regions. Each vector minimizes the value function

over a certain region of the belief space and has a control action associated with it, which is the optimal

control for beliefs in its region.

To clarify, in value iteration we generally start with some initial estimate forJ∗ and repeatedly apply

the transformation defined by the right hand side of Bellman equation (11) until the sequence of cost

2A proper policy is a policy that leads to the termination state with probability one regardless of the initial state. In our

problem, the scheduling policy does not affect the target motion and all policies are proper in the sense that there is a positive

probability that the target will reach the termination state after a finite number of stages.

8

functions converges. Let{α(k)
i }|J

(k)|
i=1 denote the set of vectors parameterizing the value functionJ (k)

after k iterations, where|J (k)| is the total number of hyper-planes, andα(k)
i (b), which is a hyperplane

in the belief space, represents the value of executing thek-step policy associated with thei-th vector

starting from a stateb. Hence, the value of executing thei-th hyperplane policy starting from a belief

statep is simply the dot product ofαi andp:

J
(k)
i (p) =

∑

b

p(b)α
(k)
i (b) = p ·α(k)

i .

Therefore, the value of the optimalk-step policy starting atp is simply the minimum dot product over

all hyperplanes, i.e.,

J∗(k)(p) = min
{α

(k)
i }

p · α(k)
i .

Hence,J∗(k)(p) is piecewise linear and concave. Some of the vectors (also known as policy trees)

may be dominated by others in the sense that they are not optimal at any region in the belief simplex.

Thus, many exact algorithms devise pruning mechanisms whereby a parsimonious representation with a

minimal set of non-dominated hyper-planes is maintained [7].

Even though the aforementioned linearity/concavity property makes the policy search a great deal

simpler, the exact computation is generally intractable except for relatively small problems. The two

major difficulties for exact computation arise from the exponential growth of the vectors with the planning

horizon and with the number of observations, and the inefficiencies related to identification of such vectors

and subsequently pruning them. Namely, the number of hyper-planes grows double exponentially such

that afterk steps the number of hyperplanes isO
(

|U||S|k
)

, where|U| and |S| denote the cardinality of

the control and observation spaces, respectively. Equivalently, the number of hyperplanes per iteration

grows as:

|J (k+1)| = O
(

|U||J (k)||S|
)

.

This has led to a number of approximations and suboptimal solutions techniques trading off solution

quality for speed.

Remark III.1. The intractability of the optimal solution for our problem is primarily due to the following

reasons:

(i) The cost function is minimized over the simplex of probability distributions, i.e., the(m − 1)-

dimensional belief simplex form-state discrete state-space models, and the space of probability

density functions for continuous state-space models.

9

(ii) The exponential explosion of the action space with the number of sensors (2n actions).

(iii) The exponential growth of theα-vectors with the planning horizon and with the number of obser-

vations, especially for continuous observation models.

A. Approximate solutions

In this section, we outline our approximate solution methodologies for the different models introduced

in Section II. First, we consider approximations where it isassumed that more information becomes

available to the controller at future time steps. Policies based on the assumption that uncertainty in the

current belief state will be gone after the next action were first introduced within the artificial intelligence

community and known as QMDP policies [10], [17]. We show that under an observable-after-control

assumption, our sensor scheduling problem decomposes inton simpler subproblems, one subproblem

per sensor,for the simplistic modelof II-A. These subproblems can then be solved exactly using policy

iteration [13]. Furthermore, in this case, the QMDP solution gives us a lower bound on the optimal

tracking-energy tradeoff. Unfortunately, this natural decomposition does not extend to the other class of

models due to the inherent coupling of their tracking errors. However, based on intuition gained from

the simplistic model, we artificially decouple the scheduling problem for those models and individually

learn the tracking costs corresponding to each subproblem under the aforementioned QMDP assumption.

This approach combines QMDP with reinforcement learning [18].

Second, we develop sensor scheduling strategies based on point-based approximations. Despite the

fact that the generated QMDP based policies perform reasonably well, generally the resulting policies

would not take actions to gain information (an effect of the observable-after-control assumption), leading

to situations wherein the belief state does not get updated appropriately. Furthermore, while decoupling

the scheduling problem provides close-to optimal performance for uncoupled or lightly-coupled sensing

and tracking models (see Section IV), it might come at the expense of reduction in solution quality for

more realistic or heavily-coupled models. To that end, we develop point-based approximate scheduling

policies. While our previous approach reduced complexity via decoupling and learning, the key idea here

is to optimize the value function only for a small set of reachable beliefsP and not over the entire

belief simplex. Point-based methods have shown great potential for solving large scale POMDPs mostly

for robotic applications [8], [9], [11], [19]. Pineau et al.[9] proposed point-based value iteration (PBVI)

which performs point-based backups only at a discrete set ofreachable belief points, that can be actually

encountered by interacting with the environment. Developing a class of point-based algorithms, which

mostly differ in the way the subset of belief points is chosenand the execution order of the backup

10

Reduce
scheduling

control space

Point-based
update

Aggregate
multi-dimensional

sensor
measurements

past policy

Belief point (p) U(p)

Aggregated
measurements

weights

new policy

Fig. 1: Structure of the point-based scheduling approximation

operations over the selected belief points, has been the focus of recent algorithm-development research

targeting large scale POMDPs. Perseus [11] is one such randomized point-based algorithm that maintains

a fixed set of belief points. There, backup speedups can be obtained by exploiting the key observation

that a single backup may improve the value of many belief points simultaneously. These algorithms were

designed to deal with large state spaces, yet, two extra difficulties in the scheduling problem arise from

the size of the action space2n (for all models) and the observation space (for the models inSections II-C).

Regarding the dimensionality of the action space, we devisea strategy to sample actions based on the

support of the beliefs and the sparse structure of the transition models. Intuitively speaking, an object can

only move from one side of the network to the other side withintime constraints rendering exponentially

many scheduling actions irrational at certain times. Hence, instead of performing full updates including

2n actions, we perform the minimization over a reduced controlspaceU(p) for everyp ∈ P (see Section

III-C1). When dealing with continuous or large observations, we combine that with a methodology that

aggregates observations and uses aggregate observations for value iteration updates (Section III-C2). At

the core of the algorithm we use Perseus [11], a variant of PBVI [9], whereby value iteration updates

are not carried out for every sampled belief. Instead, the values for many belief points are improved

simultaneously in one update. Fig. 1 depicts the structure of our point-based approximation, combining

control space reduction and observation aggregation with point-based updates.

B. QMDP based scheduling policies

Next, we consider our first class of policies based on the QMDP reduced future uncertainty assumption.

First, we consider the simplistic model in Section II-A, then we use the intuition we developed from this

model to devise similar policies for the other models. Sincethe POMDP is a stochastic shortest path

problem with an absorbing cost-free termination state, andthe expected termination time is finite, the

11

cost-to-go function for a given belief can be written as the minimum of the dot product of the belief

vector and a set of hyper-planes (α vectors):

J(p) = min
{αi}

∑

b

αi(b)p(b)

= min
u∈{0,1}n

{

n
∑

i=1

[pP]i

(

1I{ui = 0}+
n
∑

ℓ=1

c1I{uℓ = 1}
)

+
∑

s∈{1...n,ε}

min
αi

∑

b′

p(s|u, b′)
∑

b

p(b′|b)p(b)αi(b
′)

}

(12)

where{αi} is the set of hyperplanes constituting the value functionJ . In essence, the complexity of the

Bellman equation (12) stems from the evolution of the beliefpk in (8). We can see why (12) is hard

to analyze if we further divide the second term in the summation into two terms depending on whether

there is observability or there is an erasure,

J(p) = min
u∈{0,1}n

{

n
∑

i=1

[pP]i

(

1I{ui = 0}+
n
∑

ℓ=1

c1I{uℓ = 1}
)

+
∑

b′

1I{ub′ = 1}[pP]b′ min
{αi}

αi(b
′) + min

{αi}

∑

b′

1I{ub′ = 0}[pP]b′αi(b
′)

}

. (13)

To further clarify we observe that:

∑

s

p(s|u, p)J(p1) =

n
∑

i=1

1I{ui = 1}[pP]iJ(ei) +

n
∑

i=1

1I{ui = 0}[pP]iJ([pP]{j:uj=0}) (14)

and the minimization problem is coupled across the sensors as the second term in (14), which is due

to non-observability, depends on the action vectoru. The action of one sensor affects belief evolution

therefore coupling the problem across sensors. Now, if we make the assumption that perfect observations

would be available to the controller after taking a scheduling action, we obtain an approximate surrogate

function which can be used to generate a suboptimal scheduling policy. Namely, we replacep(s|u, b′) =
δ(s − b′) in (12). We get

J(p) = min
u∈{0,1}n

{

n
∑

i=1

[pP]i

(

1I{ui = 0}+
n
∑

ℓ=1

c1I{uℓ = 1}
)

+
∑

b′

[pP]b′ minαi · eb′
}

= min
u∈{0,1}n

{

n
∑

i=1

[pP]i

(

1I{ui = 0}+
n
∑

ℓ=1

c1I{uℓ = 1}
)

+
∑

b′

[pP]b′J(eb′)

}

. (15)

The terms in the summation in (15) only depend on the control action for each sensor. Furthermore,

the belief evolution is independent of the scheduling action, wherefore the approximate recursion in (15)

decomposes into separable terms, one per sensor. Hence, thevalue function and the scheduling policy for

12

sensorℓ, under the observable-after-control assumption, can be obtained from the solution of per-sensor

Bellman equation:

J (ℓ)(p) = min
uℓ∈{0,1}

{

n
∑

i=1

[pP]i

(

1I{ui = 0}+
n
∑

ℓ=1

c1I{uℓ = 1}
)

+
∑

b′

[pP]b′J
(ℓ)(eb′)

}

. (16)

The POMDP problem is now decomposed inton separate simpler subproblems such that the total cost

function is the sum of the per-sensor cost function while theoverall scheduling policy is the per-sensor

policies applied in parallel. Each subproblem can be easilysolved using standard policy iteration [13]

with a simple minimization over a binary control action.

Fundamentally, for the simplistic model, we were able to decompose the problem inton simpler

subproblems due to the separability of the tracking cost into per-sensor costs. Note that the problem is

still coupled due to the belief evolution in (8) yet that coupling is resolved under the observable-after-

control assumption.

While separability holds for the simplistic model, this is not the case for the other models. Hence, we

devise a strategy where we artificially decouple the probleminto n simpler subproblems. To this end,

we perform Monte Carlo simulations to determine appropriate values for the per-sensor tracking cost

corresponding to each subproblem. For example, consider the continuous observation model of Section

II-C. For simplicity of exposition, assume a discrete statespace model withm possible object locations.

In this case, we define a surrogate value function for theℓ-th subproblem as follows:

Jℓ(p) = min
u

{

1I{u = 0}
m
∑

i=1

p(i)T (i, ℓ)+1I{u = 1}
m
∑

i=1

c[pP]i+

m
∑

i=1

[pP]iJ
ℓ(ei)

}

ℓ = 1, . . . , n (17)

whereT (i, ℓ) captures the contribution of theℓ-th sensor to the total tracking error when the target’s

previous state isi and is obtained via Monte Carlo simulations. Namely, the expected tracking cost can

be evaluated by repeatedly simulating our system from timek− 1 to time k while changing the state of

the ℓ-th sensor. Similarly, (17) can be generalized for continuous state spaces.

Even though the QMDP assumption leads to a separable problem and provides a lowerbound on the

optimal energy-tracking tradeoff for the simplistic modelas we elaborate in Section III-D, the resulting

scheduling policies are myopic, unlike the sleeping policies in [1]. This follows from the fact that under an

observable-after-control assumption, the future cost term is independent of the control vectoru. Therefore,

we consider more efficient, albeit more difficult, point-based approximations in the next section.

C. Point-based approximate policies

In the previous section, we described QMDP based policies, whereby issues (i) and (iii) in Remark III.1

are resolved since we only needed to solve the underlying Markov Decision Process to describe the full

13

approximate surrogate function. Decoupling the problem into one-per-sensor subproblems (naturally or

artificially) further enabled us to address issue (ii). Yet,we just argued in Sections III-A and III-B that the

resulting scheduling policies are myopic and generally do not take control actions to gain information.

To that end, we develop point-based approximate schedulingpolicies. Instead of reducing complexity

via artificial decoupling and learning, the key idea here is to optimize the value function only for

specific reachable sampled beliefs and not over the entire belief simplex (addressing issue (i) in Remark

III.1). Such techniques have shown great potential for solving large scale POMDPs while significantly

reducing complexity. Due to the large size of the control space, we also devise strategies to sample

actions exploiting the sparsity of the beliefs and the problem structure (to address issue (ii)). Moreover,

observation aggregation is used for continuous observation models. Furthermore, since Perseus updates

are not carried out for every sampled belief and multiple belief points are improved simultaneously, the

number ofα vectors grows modestly with the number of iterations. This addresses issue (iii) in Remark

III.1.

For completeness we first briefly outline the steps of Perseusand refer the reader to [11], [12] for

further details. Later, we discuss specific variations to the algorithm to address the dimensionality of the

action and the observation spaces.

One iteration of Perseus

1) Sample a set of belief pointsP. We obtain these beliefs by simulating the target motion through

the field taking random actions and generating observation according to the observation models in

(1), (3), (5), and (6)

2) Sample a belief pointp ∈ P at random and compute the backup using (18a) and (18b),

α = arg min
{αp

u}u∈U

p · αp
u (18a)

where

α
p
u = g(b,u) +

∑

s

p(s|u,p)min
α

(k)
i

φ(p,u, s) · α(k)
i (18b)

3) If
∑

b p(b)α(b) ≤ J (k)(p) then add newα to J (k+1) otherwise keep old hyperplane

4) If {p ∈ P : Jk+1(p) > J (k)(p)} = ∅, i.e., the empty set, iteration is complete otherwise repeat from

step 1

Fig.2 illustrates the progress of one iteration of Perseus.The x-axis represents the belief space with

circles representing the sampled belief setP = {p1, . . . , p7}. The y-axis is the value function at

consecutive iterations, i.e.Jk−1 (solid lines) andJk (dashed lines). The figure displays theα vectors and

14

(a) (b)

(c) (d) (e)

Fig. 2: One iteration of Perseus illustrating the progress of the algorithm. The x-axis represents the

belief space with circles representing the sampled belief set P = {p1, . . . , p7}. The y-axis is the value

function at consecutive iterations, i.e.Jk−1 andJk. Solid lines represent the hyper-planes in the(k−1)-th

iteration and dashed lines represent the newly added hyper-planes during thek-th iteration. (a) The initial

value functionJk−1; (b) p1 is randomly selected and a newα vector is added toJk. This update step

only happens to improvep1. Dark circles represent belief points which did not yet improve; (c) p3 is

sampled and a new hyperplane is added which improves the value for p2 throughp6; (d) Only p7 did

not improve, thusp7 is sampled and a new hyperplane is added toJ (k); (e) All belief points improved,

J (k) is computed, the iteration ends.

different steps illustrating the progress of the algorithm. The algorithm selects a belief point at random

and updates the value function for that belief. Then a new update is carried out for a belief point randomly

selected from the set of remaining beliefs, i.e., beliefs which did not improve in the previous step. The

algorithm repeats till all belief points are updated. Solidlines represent the hyper-planes in the(k−1)-th

iteration and dashed lines represent the newly added hyper-planes during thek-th iteration. In a way, the

Perseus updates in POMDPs are the counterpart of asynchronous dynamic programming for MDPs [13]

since the order of backup of the belief points is arbitrary and does not require full sweeps over the entire

sampled belief set.

15

1) Sampling actions based on the support of the belief: Note that the update equation (18) involves

a minimization over all control actions in|U|. Even though one iteration of the algorithm is linear in

the cardinality|U| of the control space,|U| itself is exponential in the number of sensors rendering the

minimization infeasible for a relatively large sensor network.

The idea here is to exploit the structure of the scheduling/tracking problem. Since the target transition

model is naturally sparse, we predict relatively small uncertainty regions for the target state at future time

steps. More specifically, for every belief point inP, we use prior information about the target transition

model to project the future state of the target. This is particularly useful when the current belief vector

is sparse leading to more restricted uncertainty regions. Subsequently, we restrict our attention to a

significant subset of sensors, that is, sensors of relevance to the particulars of the uncertainty region.

Hence, we only consider scheduling actions involving scheduling different combinations of a reduced

number of sensors which considerably reduces the control space for every belief inP. If the number

of significant sensors is still large, we randomly sample actions from the reduced control space. Note

that the same intuition extends to more complex motion models wherein information about target speed,

maneuver, and acceleration can be factored in to define the future uncertainty regions. Hence, instead of

performing full updates including2n actions, we perform the minimization over a reduced controlspace

for everyp ∈ P. Specifically, we redefine the point update equation as:

α = arg min
{αp

u}u∈U(p)

p ·αp
u (19)

whereU(p) designates the reduced control space for the belief vectorp.

Note that, future iterations of the algorithm involving a particular belief point, ensure sufficient sampling

to relevant control actions in the reduced control space. This approach is well suited to Perseus wherein

the value for every belief point is guaranteed to improve over consecutive stages of the algorithm. It

is worth mentioning that the observation and the cost modelsneed to be computed on the fly for each

sampled control action during the algorithm implementation.

2) Observation aggregation: The point update equation (18) involves back-projecting all hyper-planes

in the current iteration one step from the future and returning the vector that minimizes the value of

the belief. Since this involves computing a cross sum by enumerating all possible combinations of

alpha vectors for the different observations, a number of vectors which is exponential in the number

of the observations is generated at each stage. The recursion has to be redefined to address continuous

observation models. Looking carefully at (18), it is not hard to see that if different observations map

16

to the same minimizing hyperplane, then they can be aggregated [20]. Hence, if we can partition the

observation space into regions that map to the same hyperplane (possibly non contiguous), the continuous

model is reduced to a corresponding discrete model. Integration is replaced by a summation over these

partitions and the weighing probabilities are obtained by integrating the conditional density over these

partitions. This is clarified in the following:
∫

s
min
αi

∑

b′

p(s|u, b′)
∑

b

p(b′|b)p(b)αi(b
′) ds =

∑

j

∫

Sj

∑

b′

p(s|u, b′)
∑

b

p(b′|b)p(b)αj(b
′) ds

=
∑

j

∑

b′

[pP]b′αj(b
′)

∫

Sj

p(s|u, b′) ds

=
∑

j

∑

b′

[pP]b′ Pr[Sj |u, b′]αj(b
′). (20)

To find the regions of aggregate observations, we need to solve for the boundaries, i.e., for each pair

(i, j) of α vectors we need to solve fors:

αi · φ(p,u, s) = αj · φ(p,u, s) (21)

whereφ(p,u, s) = p1(b
′) ∝∑b p(b)p(s|b′,u)p(b′|b)

Hence, we need to solve:

∑

b′

(αi(b
′)−αj(b

′))[pP]b′ exp

{

−1

2

∑

i:ui=1

(si −
10

(b′ − pi)2 + 1
)2

}

= 0 (22)

After solving for the boundaries, we can readily define the regions:

Sj∗ = {s|j∗ = argmax
j

αj · φ(p,u, s)} (23)

Now the update step is simply:

J(p) = g(p,u∗) +
∑

j

∑

b′

[pP]b′ Pr[Sj |u∗, b′]αj(b
′) (24)

where

Pr[Sj |u∗, b′] =

∫

s∈Sj

p(s|u∗, b′)ds.

Finding a closed form analytical solution for (22) is not feasible. Instead, we use Monte-Carlo simulations

to solve for the boundaries and get estimates of the weighingprobabilities by sampling observations from

p(s|u, b′) for different combinations of actions and target states.

17

D. Lower bounds

We are able to derive lower bounds on the energy-tracking tradeoff for the simple as well as the

continuous Gaussian observation models.For the simple model, the QMDP value function is itself a lower

bound on the expected total cost since more information is available to the controller at future time steps

given the reduced uncertainty assumption. To further clarify, observe that if we interchange the order of

minimization and summation in the last term of (13), we obtain a lower bound on the optimal cost to go

function. Hence, a lower bound can be obtained from the solution of the following equation:

J(p) = min
u∈{0,1}n

{

n
∑

i=1

[pP]i

(

1I{ui = 0}+
n
∑

ℓ=1

c1I{uℓ = 1}
)

+
∑

b′

1I{ub′ = 1}[pP]b′ min
{αi}

αi(b
′) +

∑

b′

1I{ub′ = 0}[pP]b′ min
{αi}

αi(b
′)

}

= min
u∈{0,1}n

{

n
∑

i=1

[pP]i

(

1I{ui = 0}+
n
∑

ℓ=1

c1I{uℓ = 1}
)

+
∑

b′

[pP]b′ minαi · eb′
}

= min
u∈{0,1}n

{

n
∑

i=1

[pP]i

(

1I{ui = 0}+
n
∑

ℓ=1

c1I{uℓ = 1}
)

+
∑

b′

[pP]b′J(eb′)

}

(25)

Interchanging the order of the summation and minimization corresponds to a fully observable state after

the next scheduling action, i.e., that the future belief iseb′ . Hence, the QMDP value function is a lower

bound on the cost function of the original problem.

Unfortunately, this is only true for the simplistic model and does not extend to the coupled models

since the factored tracking cost in (17) need not be a lower bound on the true tracking cost.

To obtain a lower bound on the optimal energy-tracking tradeoff for such models, we combine the

observable-after-control assumption with a decomposablelower bound on the tracking cost which we

derive next. Consider the continuous observation model with discrete state space. Given the current

belief pk and a control vectoruk the expected tracking cost can be written as:

E[d(b̂k+1, bk+1)|pk,uk] =

m
∑

j=1

Pr[b̂k+1 6= j|pk,uk, bk+1 = j] Pr[bk+1 = j|pk,uk]

=

m
∑

i=1

pk(i)

m
∑

j=1

p(bk+1 = j|bk = i) Pr[b̂k+1 6= j|pk,uk, bk+1 = j]

(26)

Defining

P (E|Hj) , Pr[b̂k+1 6= j|pk,uk, bk+1 = j]

18

which is a conditional error probability for a multiple hypothesis testing problem withm hypotheses,

each corresponding to a different mean vector contaminatedwith white Gaussian noise. Conditioned on

Hj the observation model is:

Hj : s(ℓ) = (mj(ℓ) +w(ℓ))1I{uk,ℓ = 0}+ ε1I{uk,ℓ > 0} (27)

wheres(ℓ) is theℓ-th entry of ann×1 vectors denoting the received signal strength at then sensors,mj

is the mean received signal strength when the target is at state j (j-th hypothesis), andw is a zero mean

white Gaussian Noise, i.e.w ∼ N (0, σ2I). According to (27), sensorℓ gets a Gaussian observation,

which depends on the future target location, if activated atthe next time step, and an erasure, otherwise.

Since the current belief ispk, the prior for thej-th hypothesis isπj = [pkP]j . The error eventE can

be written as the union of pairwise error regions as

p(E|Hj) = Pr[∪k 6=jζkj] (28)

where

ζkj = {s : Lkj(s) >
πj
πk

}

is the region of observations for which thek-th hypothesisHk is more likely than thej-th hypothesis

Hj and where

Lkj ,
f(s|Hk)

f(s|Hj)

denotes the likelihood ratio forHk andHj. Using standard analysis for likelihood ratio tests [21], [22],

it is not difficult to show that:

p(ζkj|Hj) = Q

(

dkj
2

+
ln πj

πk

dkj

)

(29)

where,d2kj =
∆mT

kj∆mkj

σ2 , ∆mkj = mk − mj , andQ(.) is the normal distributionQ-function. The

quantitydkj plays the role of distance between the two hypothesis and hence depends on the difference

of their corresponding mean vectors and the noise varianceσ2. Note that, for different values ofk and

j, ζkj are not generally disjoint but allow us to lower bound the error probability in terms of pairwise

error probabilities, namely, a lower bound can be written as:

p(E|Hj) ≥ max
k 6=j

p(ζkj|Hj). (30)

19

And we can readily lower bound the expected tracking error:

E[d(b̂k+1, bk+1)|pk, uk] ≥
m
∑

i=1

pk(i)

m
∑

j=1

p(bk+1 = j|bk = i)max
k 6=j

p(ζkj|Hj)

=

m
∑

i=1

pk(i)

m
∑

j=1

p(bk+1 = j|bk = i)max
k 6=j

Q

(

dkj
2

+
ln πj

πk

dkj

)

(31)

Next we separate out the effect of each sensor on the trackingerror:

E[d(b̂k+1, bk+1)|pk,uk] ≥ 1I{uk,ℓ = 1}E[d(b̂k+1, bk+1)|pk,uk = 1]

+ 1I{uk,ℓ = 0}E[d(b̂k+1, bk+1)|pk, uk,i = 0 ∀i 6= ℓ] for every ℓ

(32)

where1 is the vector of all ones designating that all sensors will beactive at the next time slot. The

inequality in (32) follows from the fact that if we separate out the effect of theℓ-th sensor we get a better

tracking performance when all the remaining sensors are awake. Since this holds for everyℓ, a lower

bound on the expected tracking error can be written as a convex combination of all sensors contributions:

E[d(b̂k+1, bk+1)|pk,uk] ≥
n
∑

ℓ=1

λℓ(pk)
{

1I{uk,ℓ = 1}E[d(b̂k+1, bk+1)|pk,uk = 1]

+ 1I{uk,ℓ = 0}E[d(b̂k+1, bk+1)|pk, uk,i = 0 ∀i 6= ℓ]
}

(33)

where,
∑

ℓ λℓ(pk) = 1.

Let 1−ℓ denote a vector of lengthn with all entries equal to one except for theℓ-th entry being zero.

Then replacing from (31),

E[d(b̂k+1, bk+1)|pk,uk] ≥
n
∑

ℓ=1

λℓ(pk)

{

1I{uk,ℓ = 1}
m
∑

i=1

pk(i)

m
∑

j=1

p(bk+1 = j|bk = i)max
k 6=j

Q

(

dkj(1)

2
+

ln πj

πk

dkj(1)

)

+1I{uk,ℓ > 0}
m
∑

i=1

pk(i)

m
∑

j=1

p(bk+1 = j|bk = i)max
k 6=j

Q

(

dkj(1−ℓ)

2
+

ln πj

πk

dkj(1−ℓ)

)}

(34)

To simplify notation, we define the following2 quantities:

T1(p; i, ℓ) ,

m
∑

j=1

p(bk+1 = j|bk = i)max
k 6=j

Q





dkj(1)

2
+

ln [pP]j
[pP]k

dkj(1)





T (p; i, ℓ) ,

m
∑

j=1

p(bk+1 = j|bk = i)max
k 6=j

Q





dkj(1−ℓ)

2
+

ln [pP]j
[pP]k

dkj(1−ℓ)





20

Intuitively, T1(p; i, ℓ) represents the contribution of sensorℓ to the total expected tracking cost when the

underlying state isi, the belief isp, and when all sensors are awake. On the other handT (p; i, ℓ) is the

ℓ-th sensor contribution when it is inactive and all the othersensors are awake.

Now if we assume that the target will be perfectly observableafter taking the scheduling action, a lower

bound on the total cost can be readily obtained from the solution of the following Bellman equation:

J(p) =
∑

ℓ

J (ℓ)(p) (35)

where

J (ℓ)(p) = min
uℓ∈{0,1}

(

1I{uℓ = 1}
(

∑

b

p(b)λℓT1(p; b, ℓ) + c

m
∑

i=1

[pP]i

)

+ 1I{uℓ = 0}
∑

b

p(b)λℓT (p; b, ℓ) +

m
∑

i=1

[pP]iJ
(ℓ)(ei)

)

(36)

Note that if we can solve the equation above forp = ei for all i ∈ {1, . . . ,m}, then it is straightforward

to find the solution for all other values ofp. We therefore focus on specifying the value function at those

points. Since this is the case, we further simplify our notation and useT (i, ℓ) andλ(i, ℓ) as shorthand

for T (ei; i, ℓ) andλℓ(ei), respectively. We can see that a lower bound on the value function of sensorℓ

can be obtained as a solution to the following minimization problem overu:

J (ℓ)(eb) = min

{

λ(b, ℓ)T (b, ℓ);λ(b, ℓ)T1(b, ℓ) + c

m
∑

i=1

[ebP]i

}

+

m
∑

i=1

[ebP]iJ
(ℓ)(ei) (37)

Equation (37) together with (35) define a lower bound on the total expected cost. To further tighten

the bound we can now optimize over a matrixΛ for every value ofc, whereΛ(c) is anm × n matrix

with the (i, ℓ) entry equal toλ(i, ℓ), i.e.,Λ(c) = {λ(i, ℓ)}. Hence

J(eb) = max
Λ(c)

n
∑

ℓ=1

(

min

{

λ(b, ℓ)T (b, ℓ);λ(b, ℓ)T1(b, ℓ) + c

m
∑

i=1

[ebP]i

}

+

m
∑

i=1

[ebP]iJ
(ℓ)(ei)

)

(38)

subject to Λ1n = 1m

where1m is a column vector of all ones of lengthm.

The inner recursion can be solved to obtain a closed form solution for J (ℓ)(eb) as:

Jℓ(eb) =

∞
∑

j=0

m
∑

i=1

min
{

[ebP
j]iλ(i, ℓ)T1(i, ℓ) + c

m
∑

k=1

[ebP
j+1]k ; [ebP

j]iλ(i, ℓ)T (i, ℓ)
}

(39)

Since the problem is only constrained across the different sensors, we obtain a lower bound from the

solution of the following optimization problem,
m
∑

i=1

max
λ(i,ℓ)

n
∑

ℓ=1

∞
∑

j=0

[ebP
j]i min

(

λ(i, ℓ)T1(i, ℓ) + c

m
∑

k=1

[eiP]k ; λ(i, ℓ)T (i, ℓ)

)

(40)

21

subject to
n
∑

ℓ=1

λ(i, ℓ) = 1 ∀i = 1, . . . ,m.

We observe that for everyi we are maximizing a concave piecewise linear function inλ(i, ℓ). We pose

an equivalent convex optimization problem by realizing that the minimum of a set of concave functions

is also concave. Since affine functions are concave, we can apply the technique here. Since the problem

is unconstrained across thei dimension we focus on solving the max-min problem for a fixedi. The

final solution can then be obtained by summing the objective function form subproblems.

For eachℓ = 1, . . . , n add a variabletℓ to the optimization problem. Also for everyℓ append2

constraints to the optimization problem. The constraints state the minimization overuℓ implicitly, by

requiring thatλ(i, ℓ)T1(i, ℓ) + c
∑m

k=1[eiP]k ≥ tℓ and λ(i, ℓ)T (i, ℓ) ≥ tℓ. The modified problem is

therefore:

maximizeλ(i,ℓ),tℓ;ℓ=1,...,n

n
∑

ℓ=1

tℓ,

subject to
n
∑

l=1

λ(i, ℓ) ≤ 1,

λ(i, ℓ)T1(i, ℓ) + c

m
∑

k=1

[eiP]k ≥ tℓ,

λ(i, ℓ)T (i, ℓ) ≥ tℓ, ℓ = 1, . . . , n.

(41)

which can be readily solved using standard convex optimization techniques [23].

IV. RESULTS AND SIMULATIONS

In this section, we show experimental results illustratingthe performance of the proposed scheduling

policies for the different models considered in this paper.In each simulation run, the object was initially

placed at the center of the network and the simulation run concluded when the object reached the

absorbing stateτ . We perform Monte Carlo runs to compute the average trackingand energy costs for

different values of the energy parameterc. For the planning phase in case of point-based policies, beliefs

are sampled by simulating multiple object trajectories through the sensor network. Each trajectory starts

from a random state sampled from the initial belief, pickingactions at random, until the target leaves

the network.

First, we consider the simple model in Section II-A with a linear network of41 sensors. Figure 3(a)

shows the tradeoff curve between the number of active sensors per unit time and the tracking error

per unit time using the point-based and the QMDP policies. The figure also shows a lower bound on

22

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sensors awake

T
ra

ck
in

g
er

ro
rs

Tradeoff between the number of awake sensors and tracking cost (simplistic model)

Point−based
QMDP
LB

0 500 1000 1500 2000 2500
0

10

20

30

40

50

time

A
vg

 v
al

ue
 fo

r
al

l b
el

ie
fs

0 500 1000 1500 2000 2500
14

16

18

20

22

24

A
vg

 c
os

t

time

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

time

nu
m

be
r

of
 h

yp
er

pl
an

es

0 500 1000 1500 2000 2500
0

200

400

600

800

P
ol

ic
y

ch
an

ge
s

time
200 beliefs, 16 sampled actions

(a) Energy-tracking tradeoff (b) Convergence results

Fig. 3: Simplistic model

Fig. 4: A sensor network with overlapping sensing ranges (12sensors and 20 object locations). An edge

connects a sensor to a given location if this location falls within the sensing range of that sensor.

the optimal performance (see Section III-D). It is clear that both policies lead to tradeoffs that closely

approach the lower bound. The QMDP policy gets even closer to the lower bound at small tracking errors

since the observable-after-control assumption is more meaningful in this regime. In Fig. 3(b) we show

convergence results for the point-based algorithm with reduced control space minimization. The top left

subplot displays the convergence of the sum cost of all the belief points in P; the top right shows the

expected cost averaged over many trajectories; the bottom left subplot shows the number of hyper-planes

constituting the value function as a function of time; the bottom right subplot shows the number of

policy changes versus time, i.e., the number of belief points for which the optimal action changed over

2 consecutive iterations of the algorithm.

Figure 5 displays the tradeoff curves for the network in Fig.4 with a probabilistic observation model.

The network is composed of 12 sensors and 20 object locationswith the shown connectivity such that the

23

0 0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

C
os

t p
er

 U
ni

t T
im

e

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sensors Awake per Unit Time

T
ra

ck
in

g
E

rr
or

s
pe

r
U

ni
t T

im
e

Q

MDP

Point−based

Fig. 5: Overlap model

observation range for the different sensors overlap. Sincethe tracking error for this model is inherently

coupled across sensors, the global point-based policy clearly outperforms the learning-based QMDP policy.

Next, we consider a network of10 sensors where object locations are located on integers from1 to

21. The observation for each sensor is continuous as in (6). Forevery object state and every scheduling

action in the reduced control space, we sample50 observations to construct estimates of the weight

probabilities and compute the aggregate observation boundaries. Up to32 actions are sampled from the

reduced control space. In this setup, the belief set consists of 500 sampled belief vectors and we assume a

Hamming error cost. Fig. 6 shows the performance of the different policies for the continuous observation

model. It is shown that the point-based scheduling policy outperforms the QMDP policy. We further show

a lower bound on the optimal performance tradeoff. The lowerbound is loose especially in the high

tracking error regime since the derived bound on per-sensortracking errors assumes all other sensors are

awake. However, we can exactly compute the saturation pointfor the optimal scheduling policy since

every policy has to eventually meet the all-asleep performance curve, shown in Fig. 6a, when the energy

cost per sensor is high. At that point, all sensors are inactive and hence the target estimate can only be

based on prior information.

V. CONCLUSIONS

In this paper we studied the problem of tracking an object moving randomly through a dense network

of wireless sensors. We devised approximate strategies forscheduling the sensors to optimize the tradeoff

24

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Energy cost per sensor (c)

T
ot

al
 c

os
t p

er
 u

ni
t t

im
e

Total cost versus c (continuous observation model)

Lower bound
Q

MDP

Point−based
All asleep

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average number of awake sensors

T
ra

ck
in

g
co

st
 p

er
 u

ni
t t

im
e

Tradeoff between number of awake sensors and tracking cost (continuous observation model)

Lower bound
Q

MDP

Point−based

(a) (b)

Fig. 6: Continuous observation model: (a) Total cost versusenergy cost per sensor, (b) Energy-tracking

tradeoff

between tracking performance and energy consumption for a wide range of models. First, we proposed

policies that rely on an observable-after-control assumption (QMDP policies). Key to this solution is

the decoupling of the optimization problem into per-sensorsubproblems combined with simulation-

based learning of individual tracking costs for each subproblem. Second, we developed point-based

sensor scheduling strategies which optimize the value function over a small set of reachable beliefs

within the belief simplex. Based on the belief support and the sparsity of the transition models, we

developed a methodology to sample actions from reduced control spaces. This was combined with

observation aggregation to address the complexity of the observation space for continuous observations

models. In some cases we derived lower bounds on the optimal tradeoff curves. While being suboptimal,

the generated scheduling policies often provide close-to-optimal energy-tracking tradeoffs. Developing

distributed scheduling strategies when no central controller is available is an area for future research.

Another interesting challenge is when the statistics for object movement are unknown or partially known.

REFERENCES

[1] J. A. Fuemmeler and V. V. Veeravalli, “Smart sleeping policies for energy efficient tracking in sensor networks,”IEEE

Trans. Signal Processing, vol. 56, no. 5, pp. 2091–2101, May 2008.

25

[2] David A. Castanon, “Approximate dynamic programming for sensor management,” in36th conference on decision and

control (CDC), 1997, pp. 1202–1207.

[3] Jason L. Williams, John W. Fisher, and Alan S. Willsky, “Approximate dynamic programming for communication

constrained sensor network management,”IEEE Transactions on Signal Processing, vol. 55, 2007.

[4] C. Kreucherm, K. Kastella, and A. Hero, “Sensor management using an active sensing approach,”IEEE Transactions on

Signal Processing, vol. 85, no. 3, pp. 607–624, March 2005.

[5] Juan Liu, Reich, and Feng Zhao, “Collaborative in-network processing for target tracking,”Journal on Applied Signal

Processing, vol. 4, pp. 378–391, 2002.

[6] Ying He and Edwin K.P. Chong, “Sensor scheduling for target tracking: A monte carlo sampling approach,”Digital Signal

Processing, vol. 16, no. 5, pp. 533 – 545, 2006, Special Issue on DASP 2005.

[7] G.E. Monahan, “A survey of partially observable markov decision processes: theory, models, and algorithms,”Management

Science, vol. 28, pp. 1–16, 1982.

[8] M. Hauskrecht, “Value-function approximations for partially observable markov decision processes,”Journal of Artificial

Intelligence Research (JAIR), vol. 13, pp. 33–94, 2000.

[9] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An anytime algorithm for POMDPs,” inthe International

Joint Conference on Artificial Intelligence (IJCAI), 2003, pp. 1025–1032.

[10] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning policies for partially observable environments: scaling

up,” in Twelfth International Conference on Machine Learning, 1995, pp. 362–370.

[11] M. T. J. Spaan and N. Vlassis, “Perseus: Randomized point-based value iteration for POMDPs,”Journal of Artificial

Intelligence Research (JAIR), vol. 24, pp. 195–220, 2005.

[12] J. M. Porta, N. Vlassis, M. T. J. Spaan, and P. Poupart, “Point-based value iteration for continuous POMDPs,”Journal of

Machine Learning Research, vol. 7, pp. 2329–2367, 2006.

[13] Dimitri P. Bertsekas,Dynamic programming and optimal control, Athena Scientific, 2001.

[14] E. J. Sondik,The Optimal Control of Partially Observable Markov Processes, Ph.D. thesis, Stanford University, 1971.

[15] H. T. Cheng,Algorithms for partially observable Markov decision processes, Ph.D. thesis, University of British Columbia,

1988.

[16] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in partially observable stochastic domains,”

Artificial Intelligence, vol. 101, pp. 99–134, 1998.

[17] A. Cassandra, M. L. Littman, and N. L. Zhang, “Incremental pruning: A simple, fast, exact algorithm for partially

observable markov decision processes,” inThirteenth Annual Conference on Uncertainty in Artificial Intelligence. 1997,

pp. 54–61, Morgan Kaufmann.

[18] L. P. Kaelbling, M. L. Littman, and A. Moore, “Reinforcement learning: A survey,”Journal of Artificial Intelligence

Research, vol. 4, pp. 237–285, 1996.

[19] N. Roy and G. Gordon, “Exponential family PCA for beliefcompression in POMDPs,”In Advances in Neural Information

Processing Systems, vol. 15, 1995.

[20] Jesse Hoey and Pascal Poupart, “Solving pomdps with continuous or large discrete observation spaces,” inIJCAI’05:

Proceedings of the 19th international joint conference on Artificial intelligence, San Francisco, CA, USA, 2005, pp.

1332–1338, Morgan Kaufmann Publishers Inc.

[21] H. Vincent Poor, An Introduction to Signal Detection and Estimation (2nd ed.), Springer-Verlag New York, Inc., New

York, NY, USA, 1994.

26

[22] Bernard C. Levy,Principles of Signal Detection and Parameter Estimation, Springer Publishing Company, Incorporated,

2008.

[23] Stephen Boyd and Lieven Vandenberghe,Convex Optimization, Cambridge University Press, New York, NY, USA, 2004.

27

	I Introduction
	II Scheduling Problem
	II-A Simple sensing, observation and cost models
	II-B Overlapping sensors with discrete observations models
	II-B1 Overlapping sensors with simple sensing
	II-B2 Overlapping sesnors with probabilistic sensing

	II-C Continuous observation, continuous state and arbitrary cost models
	II-D Optimal scheduling policy

	III Approximate Solutions and Lower bounds
	III-A Approximate solutions
	III-B QMDP based scheduling policies
	III-C Point-based approximate policies
	III-C1 Sampling actions based on the support of the belief
	III-C2 Observation aggregation

	III-D Lower bounds

	IV Results and Simulations
	V Conclusions
	References

