arXiv:1009.2997v1 [cs.MA] 15 Sep 2010

Sensor Scheduling for Energy-Efficient Target

Tracking in Sensor Networks

George K. Atia,Member, IEEE Venugopal V. VeeravalliFellow, IEEE and
Jason A. Fuemmeldvlember, IEEE

Abstract

In this paper we study the problem of tracking an object mgwiandomly through a network of
wireless sensors. Our objective is to devise strategiesdieeduling the sensors to optimize the tradeoff
between tracking performance and energy consumption. \fetlea scheduling problem as a Partially
Observable Markov Decision Process (POMDP), where therabattions correspond to the set of
sensors to activate at each time step. Using a bottom-umpagiprwe consider different sensing, motion
and cost models with increasing levels of difficulty. At thestfilevel, the sensing regions of the different
sensors do not overlap and the target is only observed witleisensing range of an active sensor. Then,
we consider sensors with overlapping sensing range sut¢hhtddracking error, and hence the actions
of the different sensors, are tightly coupled. Finally, vemsider scenarios wherein the target locations
and sensors’ observations assume values on continuousssiiga@ct solutions are generally intractable
even for the simplest models due to the dimensionality ofitfiermation and action spaces. Hence,
we devise approximate solution techniques, and in somescdsave lower bounds on the optimal
tradeoff curves. The generated scheduling policies, akugioptimal, often provide close-to-optimal

energy-tracking tradeoffs.

. INTRODUCTION

In large networks of inexpensive sensors with small baterihe sensor nodes are required to operate

on limited energy budgets. Sensor management can prolerigatime of a sensor network and conserve

This work was funded in part by a grant from the Motorola cogtion, a U.S. Army Research Office MURI grant W911NF-
06-1-0094 through a subcontract from Brown University &t thiversity of lllinois, a NSF Graduate Research Fellopshnd
by a Vodafone Fellowship.

This work was done at the Coordinated Science LaboratoryL)CSniversity of lllinois at Urbana Champaign, Urbana
IL, and was submitted in part in June 2010 to the Asilomar ewmrice on Signals, Systems, and Computers. Emails:

{atial,vvv,fuemmelp@illinois.edu

DRAFT

http://arxiv.org/abs/1009.2997v1

scarce energy resources. However, inefficient manageroatt result in severe performance degradation.

In this paper, we consider a network ofsensors tracking a single object. The sensors can be turned
on or off at consecutive time steps and the goal is to selecstirset of sensors to activate at each time
step. This problem is challenging due to the inherent triidsziween the value of information in the
sensor measurements and the energy cost, combined witlothieiratorial complexity of the decision
space.

In previous work[[1], two of the authors considered appratienstrategies fosensor sleepingvhere
the sensors are put to sleep to save energy and decisionsaale gancerning their sleep duration (in
time slots). Once in a sleep mode, a sensor would only waketapits own sleep timer expires. Here,
we consider a scheduling variant of the problem which carhbeght of as a sleeping problem with an
external wake-up mechanism, i.e., sensors can be woken agtésnal means (e.g. a low-power wake-up
radio). At timek, the permissible control actions for ansensor scheduling problem aredimensional
binary vectors, i.e., vectors if0,1}" (corresponding to set sensor nodes to activate at each tepg s
in contrast to vectors img”(k) for the sleeping problem (corresponding to the sleep curatof awake
sensors), wher& is the set of non-negative integers anglk) the number of awake sensors at time
k. While this does not address the combinatorial nature ottmdrol space, the simpler structure of the
control space for the scheduling problem enables efficipptaimate solution methodologies for the
more realistic models that we study in this paper.

A significant body of related research work considers semsanagement for tasking sensors in
dynamically evolving environments. Castanon [2] has dgwedl an approximate dynamic programming
approach for dynamic scheduling of multi-mode sensor nessUfor the classification of a large number of
unknown objects. The goal is to achieve an accurate claasificof each object at the end of a fixed finite
horizon by assigning different sensor modes to differefgab subject to periodic or total resource usage
constraints. Mode allocation strategies are computeddoasd_agrangian relaxation for an approximate
optimization problem wherein sample-path resource caimgtrare replaced by expected value constraints.
In the context of sensor scheduling for target trackingorimfation-based approachés [3], [4] have been
developed for optimizing tracking performance subjectrioeaplicit constraint on communication costs
in a decentralized setting. Williams et &l [3] also adoptaglangian relaxation approach to solve a
constrained dynamic program over a rolling horizon. Th#ére,combinatorial complexity of the decision
space is avoided by first selecting one leader node, follolyedreedy sensor subset selection. Other
related work on sensor scheduling include leader-baseadbdited tracking schemes|[5],1[6], where at

any time instant there is only one sensor active, namelylghder sensor which changes dynamically

2

as a function of the object state, while the rest of the ndtvimidle.

While previous work focused on developing distributed iempéntations of efficient sensor scheduling
strategies, our goal here is to study the fundamental thebrgensor scheduling for tracking and
surveillance applications. Specifically, to explicitlyudy the fundamental tradeoff between tracking
performance and energy expenditure, we define a unified tlgefunction combining tracking and
energy costs trading-off the complexity of per-stage ctstsetter capture the inherent energy-tracking
tradeoff. We adopt a bottom-up approach where we considangerof sensing, motion and cost models
with increasing levels of difficulty and devise suboptimaheduling policies to balance the tradeoff
between energy expenditure and tracking performance. imestases we are also able to derive lower
bounds on the optimal energy-tracking tradeoff.

Due to noise and model uncertainties, natural limitatiohthe measurement devices, or incomplete
data about the surroundings, we need to design scheduliiciggavhen the system'’s state is only partially
observable to the controller. Partially-Observable MarRecision Processes (POMDPSs) provide a natural
framework for addressing sequential decision problemsravtige goal is to find a policy (strategy) for
selecting actions based on the information available tatimroller while addressing both short-term and
long-term benefits and costs. Solving POMDPs optimally isegelly intractable. For example, the value
function for a POMDP with a finite state space depends on imdtion states consisting of conditional
probability vectors of dimension equal to the number ofestaiThis has led to a number of POMDP
approximations and we refer the reader to Monahan [7] andskteoht [8] for excellent surveys on
approximate methods for stochastic dynamic programmingually, no single approximation can be
prescribed for all POMDPs, rather approximations can bécjodsly used to exploit specific problem
structures. In this paper, we use a subset of these apprexsoéution techniques, including reduced-
uncertainty and point-based approximatians [9]+-{12]. fdrener assumes that more information would be
available to the controller at future time steps, and thedaolves a reduced optimization problem based
on a relatively small subset of sampled beliefs about theatlsjstate. We devise different approaches to
deal with the aforementioned computational complexitylef tecision space. In one approach, instead
of solving one large combinatorial problem, we solve a seimipler subproblems based on the intuition
gained from a simplistic sensing model. In another approaehiteratively sample control actions from
a reduced control space based on the sparsity of a reachelldé det combined with point-based value
updates.

The remainder of this paper is organized as follows. In 8adlii we describe the tracking problem

and define the sensing, transition and cost models, as wélleagptimization problem, for each of the

3

considered models. In Sectidnllll we describe approximatgegies to generate suboptimal scheduling
policies. In Sectiofi IV, we present some experimental tesahd finally, in Section vV, we provide some

concluding remarks.

Il. SCHEDULING PROBLEM

In the following we consider different models with increagilevel of difficulty. Depending on the
structure of the model, we devise approximate methods teegaddhe associated difficulties and generate
efficient scheduling policies. For notation, vectors araaled by bold lower-case letters. Superscript T

denotes transposition and the indicator function is writs1{.}.

A. Simple sensing, observation and cost models

In this model, the network is divided into distinct cells, one for each sensor. In other words, eadh cel
corresponds to the sensing range of one particular sendosarsors’ ranges do not overlap. A Markov
chain with an(n +1) x (n+1) probability transition matrix” describes the motion of the target through
the field of interest. The extra state is for an absorbing iteation state of the Markov chain which is
reached when the object leaves the network. It is furthewrasd that all information about the object
trajectory is stored at some central unit and is used to iénerthe scheduling actions for the different
Sensors.

We letu;, , denote the action for sensémt time k; u; o = 1 if sensor? is activated at timé: + 1 and
0 if the decision is to turn it off. The action vector at tilkedenoteduy, is a binary vector of size x 1,
one decision per sensor. In this simplistic model, we asshatethe target is perfectly observable within
the cell of an awake sensor or if it reaches the terminal statgherwise it is unobservable. Thus, the

observations;, at timek is defined according to:

b, if by #7 andug_1p, = 1;
sk=19q e if by # 7 andug_1p, = 0; (1)

T, ifbp=r.
wheree stands for erasure. The observation modelin (1) induceslede®ned probabilistic observation
model p(si|bk, ux—1) such that the current observation depends on that actgdttébcation and the
scheduling action for th@ sensors.

At each time step, the incurred cost is the sum of the energytlam tracking costs. An energy cost

of ¢ € (0, 1] per unit time is incurred for every active sensor and a tragkiost of1 for each time unit

that the object is not observed. Once states reached the problem terminates and no further cost is

4

incurred. In other wordsy is an absorbing cost-free state; alistates are transient so thais the only

recurrence class of the Markov chain. Hence,

g(bg,up—1) = Wb # 7} (]I {uk—l,bk =0} + ZC]] {uk_u = 1}) (2)

=1
The parametee is thus used to tradeoff energy consumption and trackingrerr

B. Overlapping sensors with discrete observations models

In this model, we continue to use a discrete model for theetang@nsition but we redefine a new
sensing model and cost structure to account for the factsasors could have overlapping visibility
regions. Within that model we further consider simple anobpbilistic sensing.

1) Overlapping sensors with simple sensing: In this case,alget isperfectly observed within the
visibility region of any active sensor. Denote By, the set of locations in the visibility region of sensor

¢ and byB; the set of sensors that observe locatioihe observation at timé is as follows:
b, if by #7and3dj € By, rup—1; =1,
sk=19 e, ifby#Tandu,_1,; =0, Vj € By,; 3
T, ifbp=r.
Therefore, a tracking error is incurred if none of the sesgiyserving the current target location is
active. Redefining the cost structure for this model:

g(bk, up—1) = W{by # 7} <]I{uk—1,j =0,Vj € By} + ZC“ {ur—1,0= 1}) (4)

=1
2) Overlapping sesnors with probabilistic sensing: By prdlistiz sensing we account for observation

uncertainty even if the target is within the visibility regi of one or more active sensors. We assume,

q, Sk = bkv

p(3k|bk7 EI] S Bbk P UE—1,5 = 1) = 1— . . (5)
|R|f1, sp=1, VieR
where
R= (1 ’\ U R
jGBbM i¢8bk7

Uk—1,;=1 Up—1,i=1

That is, the observation is uniformly distributed over tleenaining locations (other than the true target
location) that belong to the visibility regions of the setafiake sensors monitoring the true location
bi. If the true target location does not belong to the visipiliegion of an awake sensor, we naturally

exclude the visibility region of that sensor since no measwant is received from such a sensor. When

5

R is a singleton{b; }, we setq = 1. A tracking error is incurred if the target is not directly saoved

and the uncertainty in the target location cannot be resolve

C. Continuous observation, continuous state and arbiti@rgt models

In this class of models, the object sensing model allows ficarditrary distribution for the observations
given the current object location. Tracking cost is modeledin arbitrary distance measure between the
actual and the estimated object location. If we denote theofspossible object locations, we have
B = m + 1. Note that, in contrast to the simplistic model[in 1l-A is different fromn since object
locations are arbitrary and we no longer assume one locatioresponds to the sensing range of one
particular sensor. Thén + 1)-th state again corresponds to a termination state. Funthrey; the target
can be moving on a continuous state space in which gaseco.

If the state space is discrete, then conditioned on the tbjated; at timek, b, 1 has a probability
mass function that is given by thig-th row of the transition matrix?. If the state space is continuous,
P is a kernel such thaP(x,)) is the probability that the next object location is in the ¥et B given
the current object location i8. For simplicity of exposition, we focus on discrete statacgs. Also, we
omit indexing time whenever the time evolution is well-urgteod to avoid cumbersome notation. We
consider the following observation model for illustratidrowever, our approach is fairly general:

n 2
p(slb,u) = H { \/12_7Texp (—% <si - ﬁ)) W{u; =1} 4+ 0(s; —e)W{u; = 0}} (6)

i=1

wheres is ann x 1 continuous observation vector with tixh entry, s;, representing the observation of
sensori, p;,i = 1,...,n, is the position of the-th sensorp is the target state, andstands for erasure.
4(.) is the Dirac Delta function. In[{6), the observation of aniactsensor is Gaussian with a mean
received signal strength inversely proportional to theasguof the distance between the sensor and the
actual target location. The observation of an inactive geissjust an erasure.

The estimated target location (given the entire historyjdsoted byb. We define the tracking error
through an arbitrary bounded distance functid(b, 13) between the actual and the estimated object
locations, which can be the Hamming distanké, b) = 1{b # b} or the Euclidean distance for discrete
and continuous state spaces, respectively. The contrelcht tene step is the tupl(ézk, ug). Sinceb does
not affect the state evolution, the optimal value 8gris the value that minimizes the tracking cost over

a single time step given history up to tinei.e.,

l;k = arg min E[d (b, Ek)]Ik] @)
b

where, I}, denotes the information state, i.e., the total informatvailable to the central controller at
time k£ which is given by

Iy = {s0,81..., 8k, o, U1 ..., Up_1}

In the case of Hamming cost, it follows thats simply the MAP decision, i.ej = arg maxyp p(b).

D. Optimal scheduling policy

The design of amoptimal scheduling policdepends on the history up to tinke i.e., the information
statel;,. However, the posterior probability distributiop, = Pr[b;|I], of the target’s state giver, is
a sufficient statistic for this class of partially obseneprocesses. The distributigs),, also known as
belief, summarizes all the information needed for optin@htool. The sufficient statistic itself forms a
Markov process whose evolution can be obtained through Bayike update@. For example, the belief

update equation for the simplistic model in Secfion JI-A denwritten as:

e, if spe1=1;
Pit1 = €beyss if upp,., =1, (8)
[PrP =0y 1 Wby =0.
wheree; is a row vector with al at thei-th entry andd elsewhere. The vectdp, P|s is the probability
vector formed by setting théth entry [p, P]; of the vectorp, P to zero,Vi ¢ S, and then normalizing
the vector into a probability distribution. The sgi : u; ; = 0} signifies the set of deactivated sensors.
In other words, the updated belief for the model[in1I-A, is @ mass distribution concentrated 7at
if the object exits the network, and concentrated;at; if the object is observed. When the object is
unobservable, we eliminate the probability mass at all ssrthat are awake, since the object cannot be
at these locations, and normalize. The multi-valued fumctn (8), and equivalent Bayes’ updates for
the other models, define a transformatipp,; = ¢(p;., sk+1, wi), Mapping the current beligh,, the
current control vectot,, and the future observation., |, to a future belief.
The policyuy, = ux(Ix) is defined as a mapping from information stafgdo control actionuy. The

goal is to design a policy that minimizes the expected sumosfsc/, where,

J(Io, pro, p1,-..) = E [Zg(bk)
=1

[0] . 9)

'Equivalently, for a continuous state space, a sufficientssimwould bepy (X) = Pr[bs, € X|I;]. The updated beliefy, . 1
can be computed using standard Bayesian non-linear fifexinthe posterior measure resulting from prior meaguteand

observationsy; 1.

J is well-defined sincey is upper bounded byn + 1 (regardless of the model) and the expected time
till the object exits the network is finite. Note that the témation is inevitable, thus the objective is to
reach the termination state with minimal expected cost.ddethe scheduling policy is the solution of
the minimization problem,

J* :MD%}H__J(IO,Mlia-'-) (10)

This POMDP problem falls within the class of infinite horizetochastic shortest path problems.
Noting that the termination state is observable, cost-fme@ absorbing, and that every policy is pr@aer
a stationary policyu*(.), i.e., one which does not depend énis optimal in the class of all history-
dependent policies angl, is a sufficient statistic for control [13], i.ew; = p*(p;,), is defined through
a time-invariant mapping from the belief space to the acspace.J can be written in terms of the

sufficient statistic and the optimal policy can be obtainexhf the solution of the Bellman equation:

J(p) = E 11
(p) = min Elg(t',u)lp.u +Zp slp, w)J($(p, 5,u)) (11)

such thatJ(e,;) = 0, where J(.) is the value function for the POMDP, and the expectation kera
over the future stat& which is distributed according tp. Note that we removed the time dependence
due to the aforementioned time invariance property. Foticoaus observations, summation oweis

replaced by an integration.

I1l. A PPROXIMATE SOLUTIONS AND LOWER BOUNDS

There are a number of algorithms for solving POMDPs exad#l}H[16]. These algorithms rely on the
powerful result of Sondik that the optimal value functiom fmy POMDP can be approximated arbitrarily
closely using a set of hyper-planesYectors) defined over the belief simpléx [14]. This facthe basis
for exact value iteration based algorithms, such as the asétralgorithm[[17] for computing the value
function. The result is a value function parameterized byimlmer of hyper-planes (or vectors) whereby
the belief space is partitioned into a finite number of regidbach vector minimizes the value function
over a certain region of the belief space and has a contrimraassociated with it, which is the optimal
control for beliefs in its region.

To clarify, in value iteration we generally start with sonmtial estimate forJ* and repeatedly apply

the transformation defined by the right hand side of Bellmgunagion [(11) until the sequence of cost

2 proper policy is a policy that leads to the termination statith probability one regardless of the initial state. Irr ou
problem, the scheduling policy does not affect the targetiancand all policies are proper in the sense that there issitip®

probability that the target will reach the termination etafter a finite number of stages.

8

functions converges. Le{agk)}Li(?l denote the set of vectors parameterizing the value funcfidn
after k iterations, where.J(*)| is the total number of hyper-planes, anélk)(b), which is a hyperplane
in the belief space, represents the value of executingkthtep policy associated with thieth vector
starting from a staté. Hence, the value of executing thigh hyperplane policy starting from a belief

statep is simply the dot product ofy; and p:
T0m) =" pl)a”®) =p- .
b

Therefore, the value of the optimaistep policy starting ap is simply the minimum dot product over
all hyperplanes, i.e.,

J*®)(p) = min p- agk).

{a™}

Hence, J*(¥)(p) is piecewise linear and concave. Some of the vectors (alsavkras policy trees)
may be dominated by others in the sense that they are not apgitrany region in the belief simplex.
Thus, many exact algorithms devise pruning mechanismsehlyea parsimonious representation with a
minimal set of non-dominated hyper-planes is maintaindgd [7

Even though the aforementioned linearity/concavity propenakes the policy search a great deal
simpler, the exact computation is generally intractableeex for relatively small problems. The two
major difficulties for exact computation arise from the emenotial growth of the vectors with the planning
horizon and with the number of observations, and the inefiicies related to identification of such vectors
and subsequently pruning them. Namely, the number of hglaeres grows double exponentially such
that afterk steps the number of hyperplanesﬂs(\m's'k), where|i/| and |S| denote the cardinality of
the control and observation spaces, respectively. Eqntlg| the number of hyperplanes per iteration

grows as:
)= 0 (@)

This has led to a number of approximations and suboptimaitisols techniques trading off solution

quality for speed.

Remark I11.1. The intractability of the optimal solution for our probles primarily due to the following
reasons:
(i) The cost function is minimized over the simplex of prdlitgbdistributions, i.e., the(m — 1)-
dimensional belief simplex fom-state discrete state-space models, and the space of ptitpab

density functions for continuous state-space models.

(i) The exponential explosion of the action space with thenber of sensor{ actions).
(i) The exponential growth of the-vectors with the planning horizon and with the number ofepbs

vations, especially for continuous observation models.

A. Approximate solutions

In this section, we outline our approximate solution metilodies for the different models introduced
in Sectionl. First, we consider approximations where itassumed that more information becomes
available to the controller at future time steps. Policiasddl on the assumption that uncertainty in the
current belief state will be gone after the next action wenst fintroduced within the artificial intelligence
community and known as gp policies [10], [17]. We show that under an observable-attartrol
assumption, our sensor scheduling problem decomposes:isimpler subproblems, one subproblem
per sensorfor the simplistic modebf [I-A] These subproblems can then be solved exactly usoigyp
iteration [13]. Furthermore, in this case, thg,¢ solution gives us a lower bound on the optimal
tracking-energy tradeoff. Unfortunately, this naturatdeaposition does not extend to the other class of
models due to the inherent coupling of their tracking errbtewever, based on intuition gained from
the simplistic model, we artificially decouple the schedglproblem for those models and individually
learn the tracking costs corresponding to each subproblaseruhe aforementioned,fg assumption.
This approach combinesy@p with reinforcement learning [18].

Second, we develop sensor scheduling strategies basedimtrbpeed approximations. Despite the
fact that the generated,f@r based policies perform reasonably well, generally the ltiegupolicies
would not take actions to gain information (an effect of thservable-after-control assumption), leading
to situations wherein the belief state does not get updgtedogriately. Furthermore, while decoupling
the scheduling problem provides close-to optimal perforoeafor uncoupled or lightly-coupled sensing
and tracking models (see Section 1V), it might come at theeagp of reduction in solution quality for
more realistic or heavily-coupled models. To that end, weeltg point-based approximate scheduling
policies. While our previous approach reduced complexitydecoupling and learning, the key idea here
is to optimize the value function only for a small set of reaule beliefs? and not over the entire
belief simplex. Point-based methods have shown great paliéor solving large scale POMDPs maostly
for robotic applications [8],.[9],[111],.[19]. Pineau et §9] proposed point-based value iteration (PBVI)
which performs point-based backups only at a discrete setamthable belief points, that can be actually
encountered by interacting with the environment. Develgm class of point-based algorithms, which

mostly differ in the way the subset of belief points is choser the execution order of the backup

10

Belief point (p) new polic
Sgee%ﬁ;g U(p) Point-based v p; ol
control space update
Aggregated
measurements
weights
Aggregate
multi-dimensional

sensor
measurements
past policy

Fig. 1: Structure of the point-based scheduling approxonat

operations over the selected belief points, has been thesfotrecent algorithm-development research
targeting large scale POMDPs. Perseus [11] is one such mairdd point-based algorithm that maintains
a fixed set of belief points. There, backup speedups can kz@nelt by exploiting the key observation
that a single backup may improve the value of many belieffgagimultaneously. These algorithms were
designed to deal with large state spaces, yet, two extraulii#s in the scheduling problem arise from
the size of the action spaeé (for all models) and the observation space (for the modeBeictions$ 1I-C).
Regarding the dimensionality of the action space, we dexis&ategy to sample actions based on the
support of the beliefs and the sparse structure of the transnodels. Intuitively speaking, an object can
only move from one side of the network to the other side wititime constraints rendering exponentially
many scheduling actions irrational at certain times. Heimegtead of performing full updates including
2" actions, we perform the minimization over a reduced corgpaicé/(p) for everyp € P (see Section
[M-CT). When dealing with continuous or large observasipwe combine that with a methodology that
aggregates observations and uses aggregate observatioradue iteration updates (Sectibn Il[-IC2). At
the core of the algorithm we use Perseud [11], a variant of IB) whereby value iteration updates
are not carried out for every sampled belief. Instead, tHaegafor many belief points are improved
simultaneously in one update. Fid. 1 depicts the structéi@uo point-based approximation, combining

control space reduction and observation aggregation withtybased updates.

B. Quop based scheduling policies

Next, we consider our first class of policies based on thgdJeduced future uncertainty assumption.
First, we consider the simplistic model in Section 1I-A, nhee use the intuition we developed from this
model to devise similar policies for the other models. Sittte POMDP is a stochastic shortest path

problem with an absorbing cost-free termination state, twedexpected termination time is finite, the

11

cost-to-go function for a given belief can be written as th@imum of the dot product of the belief
vector and a set of hyper-planes yectors):

J(p)zgii}} ai(b)p(b)
Yy

= min { > IpPli (]I{ui =0} + > el{uy = 1})
ue{0,1} — —1

+ Z manp s|u,b') Zp V|b)p(b)ey; b’)} (12)
se{l..ne}
where{a;} is the set of hyperplanes constituting the value functiotn essence, the complexity of the
Bellman equation[(12) stems from the evolution of the betigfin (8). We can see why (12) is hard
to analyze if we further divide the second term in the sumomatinto two terms depending on whether
there is observability or there is an erasure,

J(p) = uef?oilil}n { > [pPli (]]{ui =0} + Y ell{u, = 1}>
’ =1

i=1

+Y " W{uy = 1}[pPly I{nH}l a;(b') + I{m}l > {uy = 0}pPly o (V) } (13)
(6 7] by

b/
To further clarify we observe that:

> p(slu,p)J(Zﬂ{uz—l}pP le{u,—O} [PPliJ([PP)(ju,—0p) (14)

s

and the minimization problem is coupled across the sens;)rtheasecond term ir_(1l4), which is due

to non-observability, depends on the action veaioThe action of one sensor affects belief evolution
therefore coupling the problem across sensors. Now, if wieenttde assumption that perfect observations
would be available to the controller after taking a schedphction, we obtain an approximate surrogate

function which can be used to generate a suboptimal scimedpblicy. Namely, we replacg(s|u,b') =
d(s —b') in (12). We get

J(p) = uel?(]i,rll}" { Z[PJ; (]I{u, =0} + chl{ug = 1}) + Z pPly mina; - eb,}

=1 /=1
= uel?(]irll}" { Z[pP],- (]I{u, =0} + Z cl{up = 1}) + Z[pP]b/J(eb/)}. (15)
’ i=1 =1 b
The terms in the summation if_(15) only depend on the contrtibia for each sensor. Furthermore,

the belief evolution is independent of the scheduling actherefore the approximate recursion[inl(15)

decomposes into separable terms, one per sensor. HeneJuledunction and the scheduling policy for

12

sensor/, under the observable-after-control assumption, can barad from the solution of per-sensor
Bellman equation:

J(f) (p) — wren{i(?l} { Z[pP]Z (]I{ul = O} + ZC]] {’u,g = 1}) + Z[pp]blj(g)(eb/)}. (16)
’ (=1 b’

i=1
The POMDP problem is now decomposed inteeparate simpler subproblems such that the total cost

function is the sum of the per-sensor cost function whiledtierall scheduling policy is the per-sensor
policies applied in parallel. Each subproblem can be easilyed using standard policy iteration [13]
with a simple minimization over a binary control action.

Fundamentally, for the simplistic model, we were able tocamegose the problem inta simpler
subproblems due to the separability of the tracking cost per-sensor costs. Note that the problem is
still coupled due to the belief evolution ifl(8) yet that cbng is resolved under the observable-after-
control assumption.

While separability holds for the simplistic model, this istithe case for the other models. Hence, we
devise a strategy where we artificially decouple the probitm » simpler subproblems. To this end,
we perform Monte Carlo simulations to determine appropriglues for the per-sensor tracking cost
corresponding to each subproblem. For example, consigecdhtinuous observation model of Section
I-Cl For simplicity of exposition, assume a discrete stgtace model withn possible object locations.
In this case, we define a surrogate value function for/ttie subproblem as follows:

J(p) = mln{]l{u—O}Zp z£+11{u_1}z [pP]; +ZpP A el)} (=1,...,n (17)

=1 =1
whereT'(i,¢) captures the contribution of théth sensor to the total tracking error when the target's

previous state i$ and is obtained via Monte Carlo simulations. Namely, theeetgd tracking cost can
be evaluated by repeatedly simulating our system from #imel to time £ while changing the state of
the /-th sensor. Similarly,[(17) can be generalized for contirsustate spaces.

Even though the (}» assumption leads to a separable problem and provides a lmowerd on the
optimal energy-tracking tradeoff for the simplistic model we elaborate in Sectidn Il}D, the resulting
scheduling policies are myopic, unlike the sleeping pesidan [1]. This follows from the fact that under an
observable-after-control assumption, the future cost isfindependent of the control vectar Therefore,

we consider more efficient, albeit more difficult, point-edsapproximations in the next section.

C. Point-based approximate policies

In the previous section, we describeg, @ based policies, whereby issués (i) ahd (iii) in Remark]ill.1

are resolved since we only needed to solve the underlyinckdtaDecision Process to describe the full

13

approximate surrogate function. Decoupling the probletn one-per-sensor subproblems (naturally or
artificially) further enabled us to address isdue (ii). Yes, just argued in Sections TIHA and 1Il}B that the
resulting scheduling policies are myopic and generally dotake control actions to gain information.

To that end, we develop point-based approximate schedplifigies. Instead of reducing complexity
via artificial decoupling and learning, the key idea heredsoptimize the value function only for
specific reachable sampled beliefs and not over the entlief sénplex (addressing issug (i) in Remark
[M.I). Such techniques have shown great potential foriagitarge scale POMDPs while significantly
reducing complexity. Due to the large size of the controlcgpave also devise strategies to sample
actions exploiting the sparsity of the beliefs and the probktructure (to address isslié (ii)). Moreover,
observation aggregation is used for continuous observatiodels. Furthermore, since Perseus updates
are not carried out for every sampled belief and multiplegbgloints are improved simultaneously, the
number ofa vectors grows modestly with the number of iterations. Thidrasses issué {iii) in Remark
M1l

For completeness we first briefly outline the steps of Pers@ualsrefer the reader to _[11], [12] for
further details. Later, we discuss specific variations ®dlgorithm to address the dimensionality of the
action and the observation spaces.
One iteration of Perseus

1) Sample a set of belief point8. We obtain these beliefs by simulating the target motiolough

the field taking random actions and generating observaticording to the observation models in
@. @), (3), and((®)
2) Sample a belief poinp € P at random and compute the backup using|18a) (18b),

a = arg rgl}%n p-ab (18a)
where
of, = g(b,w) + Y p(s|u, p) min¢(p,u,s) - o (18b)

3) If 3, p(b)ex(b) < J*F)(p) then add newx to J*+1) otherwise keep old hyperplane
4) If {peP:Jr(p) > JH®(p)} =0, ie., the empty set, iteration is complete otherwise refiem
step[1
Fig[2 illustrates the progress of one iteration of Pers&hg. x-axis represents the belief space with
circles representing the sampled belief $&t= {p,...,pr}. The y-axis is the value function at

consecutive iterations, i.g*~! (solid lines) and/* (dashed lines). The figure displays thesectors and

14

/ sample p; ; only improves p;

Pg Pz P1 Py P3 pg Ps5 Pg Py

(@) (b)

—0-0 o000 L —0-0 o000 O—0O— —0-0 o000 O—0O—
P1 Py P3 pg Ps Pg Pz P1 Py P3 Py Ps Pg Pz P1 Py P3 Py Ps Pg Py

(© (d) (e)

Fig. 2: One iteration of Perseus illustrating the progrekshe algorithm. The x-axis represents the
belief space with circles representing the sampled beé#efPs= {p;,...,p7}. The y-axis is the value
function at consecutive iterations, i.&~! and.J*. Solid lines represent the hyper-planes in the 1)-th
iteration and dashed lines represent the newly added Iptpees during thé-th iteration. (a) The initial
value functionJ*~!; (b) p; is randomly selected and a newvector is added to/*. This update step
only happens to improvg,. Dark circles represent belief points which did not yet ioyw; (c) ps is
sampled and a new hyperplane is added which improves the ¥aiyp, throughpg; (d) Only p; did
not improve, thug- is sampled and a new hyperplane is added %3; (e) All belief points improved,

J*) is computed, the iteration ends.

different steps illustrating the progress of the algoritfirhe algorithm selects a belief point at random
and updates the value function for that belief. Then a nevatgid carried out for a belief point randomly
selected from the set of remaining beliefs, i.e., beliefscividid not improve in the previous step. The
algorithm repeats till all belief points are updated. Sdiliés represent the hyper-planes in tie- 1)-th
iteration and dashed lines represent the newly added tplares during thé-th iteration. In a way, the
Perseus updates in POMDPs are the counterpart of asynealzralyoamic programming for MDPs [[13]
since the order of backup of the belief points is arbitrargl dnes not require full sweeps over the entire

sampled belief set.

15

1) Sampling actions based on the support of the belief: Note that the update equatidn [18) involves
a minimization over all control actions ifi{|. Even though one iteration of the algorithm is linear in
the cardinality|/| of the control spaceg/| itself is exponential in the number of sensors rendering the
minimization infeasible for a relatively large sensor netk

The idea here is to exploit the structure of the scheduliagking problem. Since the target transition
model is naturally sparse, we predict relatively small utaisty regions for the target state at future time
steps. More specifically, for every belief point i, we use prior information about the target transition
model to project the future state of the target. This is paldirly useful when the current belief vector
is sparse leading to more restricted uncertainty regionfs&quently, we restrict our attention to a
significantsubset of sensors, that is, sensors of relevance to theyart of the uncertainty region.
Hence, we only consider scheduling actions involving salieg different combinations of a reduced
number of sensors which considerably reduces the contadesfor every belief irfP. If the number
of significant sensors is still large, we randomly sampléoast from the reduced control space. Note
that the same intuition extends to more complex motion nmodglerein information about target speed,
maneuver, and acceleration can be factored in to define theefuncertainty regions. Hence, instead of
performing full updates includin@™ actions, we perform the minimization over a reduced corgpaice

for everyp € P. Specifically, we redefine the point update equation as:

a=arg min p-af (29)
{altueu)

wherel/(p) designates the reduced control space for the belief vector

Note that, future iterations of the algorithm involving atiaular belief point, ensure sufficient sampling
to relevant control actions in the reduced control spacé @pproach is well suited to Perseus wherein
the value for every belief point is guaranteed to improverama@nsecutive stages of the algorithm. It
is worth mentioning that the observation and the cost modeési to be computed on the fly for each

sampled control action during the algorithm implementatio

2) Observation aggregation: The point update equation (|18) involves back-projectihdpgber-planes
in the current iteration one step from the future and rehgnhe vector that minimizes the value of
the belief. Since this involves computing a cross sum by amrating all possible combinations of
alpha vectors for the different observations, a number atore which is exponential in the number
of the observations is generated at each stage. The regura®to be redefined to address continuous

observation models. Looking carefully at [18), it is notdh&o see that if different observations map

16

to the same minimizing hyperplane, then they can be aggdda0]. Hence, if we can partition the
observation space into regions that map to the same hyperf@ssibly non contiguous), the continuous
model is reduced to a corresponding discrete model. Iniegrés replaced by a summation over these
partitions and the weighing probabilities are obtained ttggdrating the conditional density over these
partitions. This is clarified in the following:

/ncaxian(sm, b')Zp(b'|b)p(a;(b) ds = Z/ Zp s|u, b Zp (V' |b)p(b)a; (V) ds
s 7w b

S; Ty

- ;g[pmbfaj(b’) /S Dol) ds

=> " [pPly Pr[S;|u, V]a; (V). (20)
iV

To find the regions of aggregate observations, we need t@ $oivthe boundaries, i.e., for each pair

(i,7) of a vectors we need to solve far.
(67 ¢(p7u7 S) =0y - ¢(p>u7 S) (21)
where¢(p, u, s) = py (V') o< 3, p(b)p(s|V, w)p(b'|b)
Hence, we need to solve:

Z(a,(b’) — aj(b’))[pP]b, exp {—% Z (Si — my} =0 (22)

b u;=1

After solving for the boundaries, we can readily define thgiaes:

Sj. = {s|j* = arg m?X aj-o(p,u,s)} (23)

Now the update step is simply:
J(p) = g(p.u") +) > [PPly PriSjlu”, ¥]ay (V) (24)
Jj v
where

Pr[S;|u*, V] = / p(s|u*,v')ds.
seS

Finding a closed form analytical solution far {22) is notdise. Instead, we use Monte-Carlo simulations
to solve for the boundaries and get estimates of the weigtiolgabilities by sampling observations from

p(s|u,b’) for different combinations of actions and target states.

17

D. Lower bounds

We are able to derive lower bounds on the energy-trackindetti for the simple as well as the
continuous Gaussian observation modets. the simple modethe Q,pp value function is itself a lower
bound on the expected total cost since more informationadable to the controller at future time steps
given the reduced uncertainty assumption. To further fglasbserve that if we interchange the order of
minimization and summation in the last term bf](13), we ab&ilower bound on the optimal cost to go
function. Hence, a lower bound can be obtained from the isolwf the following equation:

J(p) = uer?oilil}n { Z[pP]i (]l{ul =0} + Zc]l {ue = 1})
’ =1

i=1

+ Z 1{uy = 1}[pP]y I{Ioltlr; a;(b') + Z H{uy = 0} [pPly ?;‘11}1’ ai(b/)}

4 b’
— min { > [pPl; (]l{ui =0} + > cl{u, = 1}) +) [pPly minay - eb,}
ue{0,1} =1 — by
— min { > IpPl; (]l{ui =0} + > cl{u, = 1}) + Z[pP]b/J(eb/)} (25)
ue{0,1} =1 — b

Interchanging the order of the summation and minimizatiomesponds to a fully observable state after
the next scheduling action, i.e., that the future belieéjs Hence, the Qpp value function is a lower
bound on the cost function of the original problem.

Unfortunately, this is only true for the simplistic modeldadoes not extend to the coupled models
since the factored tracking cost in {17) need not be a lowentmn the true tracking cost.

To obtain a lower bound on the optimal energy-tracking todidéor such models, we combine the
observable-after-control assumption with a decompostaaer bound on the tracking cost which we
derive next. Consider the continuous observation modeh iscrete state space. Given the current

belief p,, and a control vectot, the expected tracking cost can be written as:

Eld(bps1,bp1) P ue] = > Prlbess # Py, s brsr = J] Pr(bpes = jlpy, wa]
i=1
=) pu(i) > plbrr = jlbx = i) Prlbpyr # jlpy: e, biers =]
i=1 =1
(26)
Defining

P(E|Hj) £ Prlbgy1 # §|Pg ks brr1 = J]

18

which is a conditional error probability for a multiple hyihesis testing problem withn hypotheses,
each corresponding to a different mean vector contaminaidwhite Gaussian noise. Conditioned on

H; the observation model is:
Hj:s(l) = (m;(€) +w(0))1{up, = 0} + el {uy, > 0} (27)

wheres(¢) is the/-th entry of ann x 1 vectors denoting the received signal strength at theensorsm;

is the mean received signal strength when the target is tat s{a-th hypothesis), anav is a zero mean
white Gaussian Noise, i.av ~ N(0,02I). According to [27), sensof gets a Gaussian observation,
which depends on the future target location, if activatethatnext time step, and an erasure, otherwise.
Since the current belief ip,, the prior for thej-th hypothesis isr; = [p, P];. The error event can

be written as the union of pairwise error regions as

P(E[Hj) = Pr[Upz;Crjl (28)

where
-

Crj = {s: Lij(s) > ﬂ—i}

is the region of observations for which tiketh hypothesisH;, is more likely than thej-th hypothesis

H; and where
L, & Ll
T f(s|Hj)

denotes the likelihood ratio foff;, and H;. Using standard analysis for likelihood ratio tests [22R][

it is not difficult to show that:

dyj InZt
M%w»zQ(§+Z;> (29)
J

Ami; Amy;
0-2

where, d}; = , Amy; = my —mj, andQ(.) is the normal distributior)-function. The
quantity d;; plays the role of distance between the two hypothesis andehdapends on the difference
of their corresponding mean vectors and the noise variadc&lote that, for different values of and
J» Cx; are not generally disjoint but allow us to lower bound theoeprobability in terms of pairwise

error probabilities, namely, a lower bound can be written as

p(E|H;) 2 maxp(Q| Hj)- (30)
#J

19

And we can readily lower bound the expected tracking error:

m m

Bld(bir1 b))l ue] = Y P Y plbesr = jlbi =) maxp(Gy | Hy)
i=1 j=1
= i b = j|br = %) max — T 31
;pkm;puﬂ lb >k#cz<2 dkj) (31)

Next we separate out the effect of each sensor on the traeknog:

Eld(bgyr, b)) oo wn] > W{uge = 13 E[d(Bps1, bpsr) oy, wi = 1]
+ Mg = 0}E[d(bg1, bry1) [Py, wki = 0 Vi # €] for every £
(32)
where1 is the vector of all ones designating that all sensors willabgve at the next time slot. The
inequality in [32) follows from the fact that if we separaig the effect of the/-th sensor we get a better

tracking performance when all the remaining sensors ar&kewsince this holds for ever, a lower

bound on the expected tracking error can be written as a g@ombination of all sensors contributions:

Eld(bp41,0p41) 1Pg> wt] > Z)\Z(pk){]]{uk,é = 1} E[d(bgr1, bps1) [Py wr = 1]
=1
+ W{uge = O} E[d(brs, brs) [pgo s = 0 Wi # 4]} (33)
where,> >, \¢(p;,) = 1.
Let 1_, denote a vector of length with all entries equal to one except for tieh entry being zero.

Then replacing from[{31),

Bld(byt1, brs1) [Pps wr] >

Z)\é(pk){]l{uk,z =1} Zpk(i) ZP(
=1 i=1 Jj=1
() p(
j=1

o . (1) I
b1 = jlbx = 1) rggf@ (5 RGN

+1{upe > 0} py
=1

‘ ‘ dii(1_y) In 22
bt — ilb — J Tk 34
k1 = Jlbk = 1) I}flﬁ;{@ (2 dij(1-¢) 4y

To simplify notation, we define the following quantities:

R . . dij(1) In Bt
T1(p;i f) = Zp(bk—l-l = jlbp = 1) IEQ;(Q +

P 2 (D)

m [pPl;

, . . dj(1-g) | 0 pp
T(p;i, 0) = bro1 = 7|bp = 7) max J + Pk
(p:i,0)]Z::lp(b = dlbx = 1) max Q (5 o

20

Intuitively, T4 (p; i, ¢) represents the contribution of sengdo the total expected tracking cost when the
underlying state ig, the belief isp, and when all sensors are awake. On the other Hapd:, ¢) is the
£-th sensor contribution when it is inactive and all the otbensors are awake.

Now if we assume that the target will be perfectly observalfter taking the scheduling action, a lower

bound on the total cost can be readily obtained from the isoiuwf the following Bellman equation:

=> J9p) (35)
¢
where
JO(p) = mi Muy =1 AT (p; b, 0) [pP]
()= min ({ug =1} (Zp Ti(p +c;p)
‘HI{W_O}ZP)\ (p; b, £) +ZpP JO (e n) (36)
i=1
Note that if we can solve the equation above;fm& e;foralli € {1,...,m}, thenitis straightforward

to find the solution for all other values @f We therefore focus on specifying the value function atéhos
points. Since this is the case, we further simplify our riotatand usel’(i, ¢) and A(4,¢) as shorthand
for T'(e;;4,¢) and \(e;), respectively. We can see that a lower bound on the valuditmof sensor
can be obtained as a solution to the following minimizatioabtem overu:

J® (e;) = min {/\(b, O)T(b, 0); (b, 0)Ty (b, £) + CZ[ebP]i} + Z [eyPl; T O (e;) (37)

i=1
Equation [(3V) together witH (B5) define a lower bound on thal texpected cost. To further tighten

the bound we can now optimize over a matfixfor every value ofc, whereA(c) is anm x n matrix
with the (i, ¢) entry equal toA(s, ¢), i.e., A(c) = {\(i,¢)}. Hence

n

J(ep) = max (min {)\(b, OT (b, £); A(b,£)T1 (b, £) + ci[ebP]i} + i [eyP); T) (38)
i=1

Ae) i=1
subjectto A1, =1,

where1l,, is a column vector of all ones of length.
The inner recursion can be solved to obtain a closed formtisaldor .J()(e,) as:

= Z Z min {[eij]i)\(i, 0OT1(i,0) + cZ[eij+1]k ; [es PPN (i, 0)T (i, 5)} (39)

§=0 i=1 k=1
Since the problem is only constrained across the differensars, we obtain a lower bound from the

solution of the following optimization problem,

Zmaxzz ebPJ min ((1,0)T1 (3, 2) +CZ[62‘P]/<: ; A(i,ﬁ)T(i,@) (40)

leO k=1

21

subject to

n

DAGO =1 Vi=1,...,m

=1

We observe that for everywe are maximizing a concave piecewise linear function(iiy /). We pose
an equivalent convex optimization problem by realizingt tie minimum of a set of concave functions
is also concave. Since affine functions are concave, we galy #pe technique here. Since the problem
is unconstrained across thiedimension we focus on solving the max-min problem for a fixedhe
final solution can then be obtained by summing the objectivetion form subproblems.

For each/ = 1,...,n add a variablet, to the optimization problem. Also for ever§ append2
constraints to the optimization problem. The constraitétesthe minimization ovet, implicitly, by
requiring that(i, £)T1(¢,¢) + ¢ [Pl > t; and \(¢,¢)T'(i,£) > t,. The modified problem is

therefore:

mMaximize,(; ¢ ¢,:¢—1,. Z b,

subject to ZA(z’,E) <1
(41)

A(ng)Tl(ng) + CZ[elp]k > th
k=1

NG, O)T (i, 0) > t, (=1,....n

which can be readily solved using standard convex optiieizaechniques [23].

IV. RESULTS AND SIMULATIONS

In this section, we show experimental results illustrating performance of the proposed scheduling
policies for the different models considered in this papeeach simulation run, the object was initially
placed at the center of the network and the simulation rurclodied when the object reached the
absorbing state. We perform Monte Carlo runs to compute the average traciird) energy costs for
different values of the energy parametefor the planning phase in case of point-based policiegfsel
are sampled by simulating multiple object trajectoriestigh the sensor network. Each trajectory starts
from a random state sampled from the initial belief, pickengfions at random, until the target leaves
the network.

First, we consider the simple model in Section1I-A with aelim network of41 sensors. Figurg] 3(a)
shows the tradeoff curve between the number of active serar unit time and the tracking error

per unit time using the point-based and thgiR policies. The figure also shows a lower bound on

22

Tradeoff between the number of awake sensors and tracking cost (simplistic model)

- A - point-based
—w— QMDP
----- LB

Avg value for all beliefs

IS
S

w
S

N
S

=
1S

0 4
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
061 N 1 time time

Tracking errors
o
o

.
number of hyperplanes
&

Policy changes
IS
8
3

. e 0
0 o5 1 15 2 25 5 35 4 ast 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Sensors awake time time
200 beliefs, 16 sampled actions

(a) Energy-tracking tradeoff (b) Convergence results

Fig. 3: Simplistic model

MMM

Fig. 4: A sensor network with overlapping sensing rangess@i#sors and 20 object locations). An edge

connects a sensor to a given location if this location falithiw the sensing range of that sensor.

the optimal performance (see Sectlon 1ll-D). It is cleartthath policies lead to tradeoffs that closely
approach the lower bound. Thg,gb policy gets even closer to the lower bound at small trackimgre
since the observable-after-control assumption is moreningtul in this regime. In Fig[13(b) we show
convergence results for the point-based algorithm withuced control space minimization. The top left
subplot displays the convergence of the sum cost of all thiefgaoints in P; the top right shows the
expected cost averaged over many trajectories; the bo#firaubplot shows the number of hyper-planes
constituting the value function as a function of time; thetdm right subplot shows the number of
policy changes versus time, i.e., the number of belief goiat which the optimal action changed over
2 consecutive iterations of the algorithm.

Figure[5 displays the tradeoff curves for the network in Blgvith a probabilistic observation model.

The network is composed of 12 sensors and 20 object locatithghe shown connectivity such that the

23

1F — 1
7’ s 0.9 — QMDP
091 ’ - - = Point-based
.
0.8F - o 08
£
'_
g 0.7F = 0.7
4
= =)
[/
= 06l ’ 5 06
S Q \
® 05 \
g 057 S \
o T \
% , Wooa4r N
o 04f 7 o
) ’ £ \
X
o 03 N
0.3 <] N ‘<
F o2 N
0.2F N
0.1} AR
0.1
i i i i o i i i i
0 0.1 0.2 0.3 0.4 0.5 0 1 2 3 4 5
[Sensors Awake per Unit Time

Fig. 5: Overlap model

observation range for the different sensors overlap. Sinedracking error for this model is inherently
coupled across sensors, the global point-based policylgleatperforms the learning-baseq,g» policy.
Next, we consider a network di0 sensors where object locations are located on integers froon
21. The observation for each sensor is continuous aslin (6)e¥@ry object state and every scheduling
action in the reduced control space, we samifileobservations to construct estimates of the weight
probabilities and compute the aggregate observation laviesd Up to32 actions are sampled from the
reduced control space. In this setup, the belief set cansi$il0 sampled belief vectors and we assume a
Hamming error cost. Fig.]6 shows the performance of thermiffepolicies for the continuous observation
model. It is shown that the point-based scheduling polidpedorms the @pp policy. We further show
a lower bound on the optimal performance tradeoff. The lob@und is loose especially in the high
tracking error regime since the derived bound on per-senacking errors assumes all other sensors are
awake. However, we can exactly compute the saturation gointhe optimal scheduling policy since
every policy has to eventually meet the all-asleep perfocaaurve, shown in Fig] 6a, when the energy
cost per sensor is high. At that point, all sensors are wa&nd hence the target estimate can only be

based on prior information.

V. CONCLUSIONS

In this paper we studied the problem of tracking an objectimpvandomly through a dense network

of wireless sensors. We devised approximate strategiexfaduling the sensors to optimize the tradeoff

24

Total cost versus ¢ (continuous observation model)
ir . : Tradeoff between number of awake sensors and tracking cost (continuous observation model)

@ @ i @ i @
0.9F

0%, SREPREFREIREIRT NI +=4= | ower bound
*— Qupp

= A - point-based

0.8

o
3
T

o
)
T

Total cost per unit time
) o
S «n
T

Tracking cost per unit time

o
w
T

4

HMQ-H"

o
N

= * = Lower bound

——0Q

MDP

04, —&— Point-based

@ All asleep ik Alhd Fommmmmm s b
o i i i i i i i i N N 0 i i i I I I I I I i
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 1 2 3 4 5 6 7 8 9 10
Energy cost per sensor (c) Average number of awake sensors
(a) (b)

Fig. 6: Continuous observation model: (a) Total cost veeusrgy cost per sensor, (b) Energy-tracking

tradeoff

between tracking performance and energy consumption foida vange of models. First, we proposed
policies that rely on an observable-after-control assionp{Qypp policies). Key to this solution is
the decoupling of the optimization problem into per-sensabproblems combined with simulation-
based learning of individual tracking costs for each sublemm. Second, we developed point-based
sensor scheduling strategies which optimize the valuetimmver a small set of reachable beliefs
within the belief simplex. Based on the belief support ane $parsity of the transition models, we
developed a methodology to sample actions from reducedratospaces. This was combined with
observation aggregation to address the complexity of tleemfation space for continuous observations
models. In some cases we derived lower bounds on the optied®dff curves. While being suboptimal,
the generated scheduling policies often provide closaeptimal energy-tracking tradeoffs. Developing
distributed scheduling strategies when no central cdetraé available is an area for future research.

Another interesting challenge is when the statistics fgeatmovement are unknown or partially known.

REFERENCES

[1] J. A. Fuemmeler and V. V. Veeravalli, “Smart sleepingipi@ls for energy efficient tracking in sensor networktEEE
Trans. Signal Processingol. 56, no. 5, pp. 2091-2101, May 2008.

25

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

David A. Castanon, “Approximate dynamic programming f@nsor management,” 86th conference on decision and
control (CDC) 1997, pp. 1202-1207.

Jason L. Williams, John W. Fisher, and Alan S. Willsky, p@roximate dynamic programming for communication
constrained sensor network managemetEEE Transactions on Signal Processjngl. 55, 2007.

C. Kreucherm, K. Kastella, and A. Hero, “Sensor managanusing an active sensing approact2EE Transactions on
Signal Processingvol. 85, no. 3, pp. 607-624, March 2005.

Juan Liu, Reich, and Feng Zhao, “Collaborative in-natwprocessing for target tracking,Journal on Applied Signal
Processingvol. 4, pp. 378-391, 2002.

Ying He and Edwin K.P. Chong, “Sensor scheduling for &rgacking: A monte carlo sampling approacbjgital Signal
Processingvol. 16, no. 5, pp. 533 — 545, 2006, Special Issue on DASP .2005

G.E. Monahan, “A survey of partially observable markacibion processes: theory, models, and algorithidsihagement
Sciencevol. 28, pp. 1-16, 1982.

M. Hauskrecht, “Value-function approximations for pally observable markov decision processe¥jurnal of Artificial
Intelligence Research (JAIRyol. 13, pp. 33-94, 2000.

J. Pineau, G. Gordon, and S. Thrun, “Point-based vakration: An anytime algorithm for POMDPSs,” the International
Joint Conference on Artificial Intelligence (IJCABO03, pp. 1025-1032.

M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “leimg policies for partially observable environments: Isga
up,
M. T. J. Spaan and N. Vlassis, “Perseus: Randomizedtibaised value iteration for POMDPsJournal of Artificial
Intelligence Research (JAIRYol. 24, pp. 195-220, 2005.

J. M. Porta, N. Vlassis, M. T. J. Spaan, and P. Poupanjritbased value iteration for continuous POMDP3Xjurnal of
Machine Learning Researchkol. 7, pp. 2329-2367, 2006.

Dimitri P. Bertsekas Dynamic programming and optimal controhthena Scientific, 2001.

E. J. Sondik,The Optimal Control of Partially Observable Markov ProcessPh.D. thesis, Stanford University, 1971.
H. T. Cheng,Algorithms for partially observable Markov decision preses Ph.D. thesis, University of British Columbia,
1988.

in Twelfth International Conference on Machine Learnid§95, pp. 362—370.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Pténg and acting in partially observable stochastic dosyain
Artificial Intelligence vol. 101, pp. 99-134, 1998.

A. Cassandra, M. L. Littman, and N. L. Zhang, “Incrensnpruning: A simple, fast, exact algorithm for partially
observable markov decision processes, Thirteenth Annual Conference on Uncertainty in Artificiatdlligence 1997,
pp. 54-61, Morgan Kaufmann.

L. P. Kaelbling, M. L. Littman, and A. Moore, “Reinforagent learning: A survey,”Journal of Artificial Intelligence
Researchvol. 4, pp. 237-285, 1996.

N. Roy and G. Gordon, “Exponential family PCA for bel@mpression in POMDPsJh Advances in Neural Information
Processing Systemsol. 15, 1995.

Jesse Hoey and Pascal Poupart, “Solving pomdps withirtaus or large discrete observation spaces,’lJBAI'05:
Proceedings of the 19th international joint conference atifidial intelligence San Francisco, CA, USA, 2005, pp.
1332-1338, Morgan Kaufmann Publishers Inc.

H. Vincent Poor, An Introduction to Signal Detection and Estimation (2nd)edpringer-Verlag New York, Inc., New
York, NY, USA, 1994.

26

[22] Bernard C. Levy,Principles of Signal Detection and Parameter Estimati@pringer Publishing Company, Incorporated,
2008.
[23] Stephen Boyd and Lieven Vandenbergi@anvex OptimizatianCambridge University Press, New York, NY, USA, 2004.

27

	I Introduction
	II Scheduling Problem
	II-A Simple sensing, observation and cost models
	II-B Overlapping sensors with discrete observations models
	II-B1 Overlapping sensors with simple sensing
	II-B2 Overlapping sesnors with probabilistic sensing

	II-C Continuous observation, continuous state and arbitrary cost models
	II-D Optimal scheduling policy

	III Approximate Solutions and Lower bounds
	III-A Approximate solutions
	III-B QMDP based scheduling policies
	III-C Point-based approximate policies
	III-C1 Sampling actions based on the support of the belief
	III-C2 Observation aggregation

	III-D Lower bounds

	IV Results and Simulations
	V Conclusions
	References

