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Abstract—It is accepted knowledge that inner functions
and outer functions in complex analysis correspond, re-
spectively, to all-pass filters and signals of minimum phase.
The knowledge, however, has not been justified for general
inner and outer functions. In digital signal processing the
correspondence and related results are based on studies of
rational functions. In this paper, based on the recent result on
positivity of phase derivatives of inner functions, we establish
the theoretical foundation for all-pass filters and signals of
minimum phase. We, in particular, deal with infinite Blaschke
products and general singular inner functions induced by
singular measures. A number of results known for rational
functions are generalized to general inner functions. Both the
discrete and continuous signals cases are rigorously treated.

Index Terms—Hilbert transform, analytic signal, Hardy
space, Hardy-Sobolev space, all-pass filter, inner function,
outer function, Blaschke product, amplitude-phase represen-
tation of signal, instantaneous frequency, minimum phase
signal,

EDICS: DSP-TFSR, DSP-BANK

I. INTRODUCTION

N signal processing, it is well known that any rational

system function F' may be decomposed into a min-
imum phase system function H and an all-pass system
function G as F' = HG ([17]). There is an ample amount
of studies of minimum phase systems and all-pass systems
that are based on the above mentioned decomposition ([2],
[31, [9], [13], [14], [15]). In [17] a minimum phase system
is restricted to a system of finite order, and is defined in
terms of locations of poles and zeros of the system. There
are equivalent definitions through phase-lag function or
group delay. The group delay is defined to be —¢’z(w),
where F(e™) = |F(e)|e*?F (), The definition via group
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delay amounts to say that a minimum phase system has
a minimum group delay. The phenomenon of minimum
group delay, however, is based on the fact that all-pass
systems have positive group delay, i.e. —¢; > 0. By
definition positivity of group delay means negativity of the
phase derivative. Thus the whole theory rests on the fact
that suitably defined phase derivatives of all-pass systems
are negative. To our knowledge, before the study in [23],
the proofs of negativity of phase derivatives of all-pass
systems were valid only for finite Blaschke products ([17],
[5]). In [23] it is proved that all inner functions have
positive phase derivatives (using variable z to replace 1/2),
where inner functions are identical with all-pass system
functions in which finite Blaschke products are particular
cases. Those particular cases are what practical signal
analysis mainly concerns. Based on the positivity of phase
derivatives of all-pass system functions, we can obtain that
any causal and stable system function (a function in the
Hardy space) can be factorized into a product of an all-
pass system and a minimum phase system. In the present
paper, we call signals corresponding to all-pass system
functions all-pass filters, and signals corresponding to
minimum-phase system functions minimum phase signals.
The purpose of the paper is to give a systematical study
on the all-pass filters and signals of minimum phase in
both the discrete and continuous signals cases based on
the mentioned phase derivative results. The theory for the
discrete signals case may be said to have been partially
formulated, while that for the continuous signals case is
essentially new. For both cases we provide full details.
The theory of the functions being boundary limits of
functions in the Hardy spaces has important applications
to all-pass filters and signals of minimum phase (Section
III). In the complex and harmonic analysis terminology,
the Z—transforms of all-pass filters in discrete case are
inner functions, and the Z—transforms of minimum phase
signals are outer functions; in the continuous case, all-
pass filters are distributional Fourier transforms of the
boundary limits of inner functions, and signals of min-
imum phase are L2-Fourier transforms of the boundary
limits of outer functions. The relevant results in all-pass
and minimum phase analysis are interplays between the
two types of analytic functions. A series of papers by



Kumaresan et al, including [13], [14] and [15] study
minimum/maximum/all-pass decompositions in the time
and frequency domains mainly for periodic analytic signal
of finite bandwidth.

Comprehensive views of analytic signals and instanta-
neous frequencies with applications are contained in [2],
[6], [5], [19]. The literature [27] contains a fundamental
study on analytic signals with non-negative analytic in-
stantaneous frequencies.

Instantaneous frequency is a fundamental concept in
signal analysis. Its rigorous mathematical definition, how-
ever, has not been well agreed by signal analysts. The
divergent understandings, as a matter of fact, have cre-
ated many of the controversies ([6]). It is accepted that
instantaneous frequency of a signal is its phase derivative
with respect to the time variable (see [4], [20]). The
question is how to uniquely determine a phase, and,
once it is determined, in case the phase function is non-
smooth, how to define a “phase derivative”. For n > 0, it
would be ambiguous to decide that both the signals sin nt
and cosnt have the same phase function nt, and thus
have the same frequency n. Signal analysts would write
sinnt = cos(nt — 7/2) and then determine that sinnt
has the same instantaneous frequency n. The background
idea of transferring sin to cos would be traced back to
Gabor. Until 1946, Gabor raised the concept analytic
signal that is composed by a real-valued signal s and its
Hilbert transform Hs in the pattern As = s + iHs (see
below), called the analytic signal associated with s. The
analytic instantaneous frequency of a real-valued signal is
then defined to be the phase derivative of the associated
(complex-valued) analytic signal in its natural amplitude-
phase, or quadrature, representation As(t) = p(t)e'#(®)
(see [10]), viz. ¢'(t), provided that the latter exists as a
measurable function. It should then be called the analytic
phase derivative or analytic instantaneous frequency.

On the other hand, any complex-valued signal s, includ-
ing real-valued signals, or analytic, or non-analytic signals,
has its natural quadrature representation, s(t) = p(t)e*?(*)|
called quadrature amplitude-phase representation, or sim-
ply amplitude-phase representation, and the phase deriva-
tive ' (t) is defined to be the quadrature instantaneous
frequency, or simply the instantaneous frequency, if exists.
Therefore, the analytic instantaneous frequency of a real-
valued signal s is the quadrature instantaneous frequency
of the (complex-valued) analytic signal As. In this termi-
nology, n is the analytic instantaneous frequency of both
cosnt and sin nt, obtained, respectively, as the quadrature
instantaneous frequency of e’* and that of e*("*~=7/2),

The above introduced method of determining phase via
the associated analytic signal is applicable to both real-
valued and complex-valued signals. In general, a signal s

of finite energy is decomposed into a sum of two signals
of which one is boundary limit of a holomorphic function
in the Hardy space of the upper-half plane, and the other is
boundary limit of one in the Hardy space of the lower-half
plane, viz.

1 1
st 4+s7 = §(s+iH5)+ i(sfiHs)

1 1
= A" —A” 1.1
gATs+ S A, (L1)
where A*s = s+ iHs are the upper- and lower- analytic
signals associated with s (See Section II). The Hilbert
transformation H on the line is defined through

1
Hs(t) £ = lim Lu)du.
Te=0Jjpu>et —U

(1.2)

Under the extra condition wé(w) € L2(IR), meaning
that s is in the Sobolev space, s and s~ both have
certain smoothness and thus possess the non-tangential
analytic boundary derivatives st and s’ ([8]). These
allow to further formulate the so called Hardy-Sobolev
phase derivative (see [7]):
4 —
() = {Im [%} if st (t)+ s (t) # 0,
0 if st(t)+s(t)=0.
1.3)
We similarly define Hardy-Sobolev derivatives of s and
p, denoted by s* and p*, respectively. We prove in [7]
that when the derivatives ¢'(t),s'(¢) and p/(t) exist in
the classical sense, then the Hardy-Sobolev derivatives
©*(t), s*(t) and p*(t) coincide with them. A large number
of relations for smooth signals are extendable to general
functions in the Sobolev space by using Hardy-Sobolev
derivatives ([7]). The frequency spectra or inverse Fourier
transforms, respectively for the discrete or continuous all-
pass filters and signals of minimum phase, are themselves
analytic signals. Their Hardy spaces decompositions then
satisfy s~ = 0. This will be regarded as the “one-sided”
case. In the case the Hardy-Sobolev derivatives are reduced
to one-sided, too, namely

#0) = T li((f;] ,

called non-tangential analytic phase derivative or, in brief,
analytic phase derivative. Although inner functions do
not belong to the Sobolev space, their properties still
guarantee the existence of the phase derivative. For signals
of minimum phase the Sobolev space assumption should
be added to ensure existence of such phase derivative.
In Section 2 we provide more details for non-tangential
analytic phase derivative.



The writing plan of the paper is as follows. In §2 we
discuss non-tangential analytic phase derivatives for inner
and outer functions in the unit disc and in the upper-half
complex plan. In §3 we study the properties of all-pass
filters and signals of minimum phase for both discrete
and continuous signals.

II. GENERALIZED AMPLITUDE AND PHASE
DERIVATIVES

The quadrature amplitude and phase derivatives of a
given real- or complex-valued signal s(t) = p(t)e’#®,
— 00 < t < 00, at the time moment ¢ are defined to be
the classical derivatives p’(t) and ¢’(¢), when exist, where
p(t) and o(t) are defined through

p(t) = |s(®)|

By definition, for a complex number z, arg z is any real
number that satisfies the relation

and o(t) = arg

y = |Z|eiargz7
while Argz is the branch of argz in (—m, 7], called the
principal value of argz. This shows that the mapping
s — ¢ is not unique, and ¢ is, in fact, “set-valued.”
The function Args is uniquely defined, but it may not
be differentiable. For a general square-integrable function
one does not expect p(t) and p(t) to be differentiable.

We note that if s(t) = p(t)e’*®) and s(t), p(t) and
©(t) are differentiable and p(t) # 0, then differentiation
of composed function gives

<0 /(0
e S0

Our task is to define the phase derivatives for general
square-integral signals.
The Fourier transform of s € L*(IR) is

A A 1 > —itw
S(w) = E[me s(t)dt.

If § is also in L'(IR), then the inversion formula holds,
that is

s(t) = 8V (t) 2 \/% /:)O e““’é(w)dw, a.e. (2.6)

' (t) =Im

p'(t) = p(t) (2.4)

(2.5)

Due to the Plancherel Theorem

1313 = lIsll3, s € L'(IR) N L*(IR),

both the Fourier transformation and its inverse can be
extended, through a density argument, to L?(IR), in which
the Plancherel Theorem and the inversion formula remain
to hold. The formulas (2.5) and (2.6) are valid for s €

L?(IR), keeping in mind that convergence of the integrals
are taken to be of the LQ(]R)—norm sense.

The Hardy spaces decomposition refers to the decom-
position of a signal s € L?(IR) into s = s* + s~, where
sT = (1/2)(s+iHs) € H?>(C*). Note that the mappings
from H2(C¥) to their boundary values HZ(IR) C L?(IR)
are isometric isomorphisms. The Hardy-functions s are
given by

(oo}
i) = +1 s(u) du

2mi J_ o u— 2

B V%r / T @) ), 2.T)

where z = t + iy € C*. The last equal relation is a
consequence of the Plancherel Theorem and the relation

(w) =

+v2mix 4 (w)e® e v,

z=ux+1y, £y >0, 2.8)

where Y+ = Yg+, IRT = (0,+00) and R~ = (—o0,0).
In general, xr denotes the characteristic function of the
Lebesgue measurable set E that takes value 1 on E; and
0 otherwise. If either s or s~ is the zero function, then
s belongs to the one-sided category; and otherwise two-
sided. From now on we concentrate in the one-sided case.
The task of the rest part of this section is to define phase
and amplitude derivatives of the non-tangential boundary
values of some functions in the Hardy HP? spaces ([11],
[12]). We will treat both the unit disc and a half complex
plane cases.

(i) The unit disc context If s € H?(ID), then s(z) has a
non-tangential boundary value at almost all points on the
boundary. We denote the limit function by s, that is

lim s(re) = s(e™).

r—1—

(2.9)

The Hardy space theory asserts that the limit does exist for
almost all ¢, and the limit function s belongs to LP(0ID).
The boundary values of HP(ID) form a closed subspace
of the LP(ID). For p = 2 the mapping is isometrically iso-
morphic (see [11]). The Nevanlinna Factorization theorem
plays an important role in the phase-amplitude derivative
theory.

Theorem 2.1: ([11]) If s € H?(ID), p > 0, then, apart
from unimodular constants in the factors, s(z) has a unique
factorization representation

s(z) = cO(2)B(2)S(z)

where ¢ is a constant and |¢| = 1, B(z) is a Blaschke
product, S(z) is a singular inner function, and O(z) is an



outer function in HP(ID). They have the representations

B(z) =2z" H
\

Zk,‘¢0

—Zk 2 — 2k

— 2.10
|Zk| 1 —sz’ ( )

where m is a positive integer, z;’s are the zeros of s(z)
in the unit disk ID that satisfy > (1 — |zx|) < oc;

T e 4 2
et — z

5(z) = exp{—

—T

di(0)}, @.11)
where di)(0) is a positive Borel measure singular to df;
and
™ i0
i +z
Ins(e)| "2 dp
n Js(e")| S de),

1
O(z) = exp{%/ (2.12)

where for 1 < p < oo, there holds In|s(e??)| € L'(9ID).
For an analytic function s : ID — C, writing it in the
form s(re’) = p.(t)e’*r® r < 1, and taking partial
derivative with respect to ¢ and then dividing the both
sides by s(re'!), we obtain

%%(t) — Re (z i((j))> , (2.13)
and
g0 =ntom(:55). e

Note that these relations may be extended to e*o, if s is
analytic at the point *0. In the case s(e'') = p;(t)e*1(®),
where (¢ is the continuous continuation of ¢,,r < 1.
Then ,'(tp) is the phase derivative of s at e’®. For
a general point z = e, at which the function may
not have an analytic continuation, a generalized phase
derivative is defined through the non-tangential limit of the
quantity given by (2.13). Throughout the paper whenever
we concern boundary limit we always mean non-tangential
boundary limit from inside of the domain (see [11]).

Definition 2.2: Let s : I/D — C be analytic, and { €
OD. If the limit lim,_, ¢ %ﬁz)) exists, then we denote

Dys(¢) = lim Rezj(g),
and
zs'(2)

Dis(€) = = lim Js(2)m 2 2.
and call them, respectively, the phase derivative and am-
plitude derivative of s at (. Note that for a given ¢, D,s(¢)
or D,s(¢) or both of them may not exist, and when exist,
may happen to be f00, or co. For ¢ = e, s = pe’#, the
notation D,s(¢) and D,s(¢) are also denoted ¢’(¢) and
p'(t). If s has an analytic continuation to ¢, then D,s and

D,s coincide with the classical derivatives of the phase
and amplitude.

As a direct consequence of Definition 2.2 we have

Theorem 2.3: If 5,5’ € U,~oH"(ID), then both D,s
and D,s are well defined measurable functions, and their
function values are a.e. finite and non-zero.

Proof Since each of s and s’ is in some Hardy space,
their boundary values are a.e. finite and non-zero (Page
65, Corollary 4.2, [11]). The result follows.

[23] proves the positivity of phase derivatives of inner
functions through the Julia-Wolff-Carathéodory’s Theorem
([21] or [16]), stated as follows.

Theorem 2.4: If s is a non-trivial inner function, then
D,(s)(t) > 0 and D,(s)(t) = 0, a.e. Moreover, if s has
analytic continuation across an open interval containing
¢ = e'c € 9D, then with the angular parametrization
s(e') = €™ the phase function 6(t) is differentiable at
t=te, and 0 < 6'(tc) = Dy(s)(e¢) < +oo0.

The preceding proofs of positivity of the phase deriva-
tives of the boundary values of inner functions are only
available for finite Blaschke products and for singular
inner functions induced by finite linear combinations of
shifted Dirac point measures ([5]).

It may be observed that for outer functions its boundary
phase derivatives are sometimes positive and sometimes
negative. As example, we consider a fractional linear
transform that maps the unit disc to a disc that does
not contain the origin. It is an outer function mapping
the unit circle to the boundary of the disc in the same
orientation. It follows that the phase is increasing in an
open interval of the t variable, and then decreasing in
an adjacent interval. The fact that the wending number
being zero implies that the phase derivative has zero mean
property. The following theorem concerns outer functions
in a more general context.

Theorem 2.5: ([23]) Let s be an outer function in some
HP space for 0 < p < oo, and the analytic function s'/s
belong to the Hardy H'(ID) space. Then the boundary
limits s’ and s’/s both exist and are finite a.e., and s'/s
is integrable with

2w ol it
/ ) gy g 2.15)
0 s(e”)
As consequence,
2
D,s(e™)dt = 0. (2.16)

0

Theorem 2.5 addresses the fact that in general an outer
functions has positive phase derivatives in a measurable set
of positive measure, and has negative phase derivatives in
a measurable set of positive measure as well.

(ii) The Upper- and Lower half complex planes context



The theory for a half complex plane is analogous with
that for the unit disc. We only deal with the upper-half
complex plane case.

Denote by  the Cayley transformation that maps the
upper-half complex plane conformally onto the disc ID
and the mapping continuously and in one to one manner
extends to their boundaries:

k:Ct — D, w:n(z):z,_z,
1+ z
1 1 —w
z=kK (W)=21+w7 (i) =0, k(o) =-1
On the boundaries,
it:Z:—87 s:il—e%t)
i+s 1+ et
k((—o00,00]) = {e : —m <t < T},
and
t 2 ds 1 4t
s =tan—, t=2arctans, — = ——, — = —sec” —.
2 ds 1+s2" dt 2 2

In the references [11] and [12] it is pointed out that

g(w) € HP(ID) if and only if F(2) = 7 g(w(2)) €
HP(C*"). There is also a factorization theorem in
HP(CH).

Theorem 2.6: ( [12]) If F € H"(CT), r > 0, then
F(z) has a unique decomposition

F(z) = CB(2)S(2)0(z)

where |C| = 1, B(z) is a Blaschke product, S(z) is
a singular function, and O(z) is an outer function in
H"(C™T). They can be represented as following:

II ¢

|2k |70

mkz—zk
Z—Ek’

B(z) = (2.17)

where {z;} are zeros of F(z) in the C* satisfying
> 1+1\/7§k\2 < 00, 2k = X + iy, and {ag} are selected
so that e?@* =2k > ();

1—Zk

T 1+ 2t
S(z) = exp{—;/

oo T

(2.18)

where the measure do(t) is positive and singular to dt,

and satisfies [~ dfft(;) < 005
T 14 2t
0] = — In|F(t)|——————=-dt}. (2.19
(Z) eXp{,/T/_OO Il| (>|(th)(1+t2) } ( )

Similar to the unit disc case, we also have

Theorem 2.7: If F, F' € U,~oH"(C"), then both
D,F and D, F' are well defined measurable functions and
finite a.e., where

) &t ()

-1 (I; (f))) (2.20)
DoF(s) 2 mm(z)f{e(ﬁ;((;))

— |F( )|Re(1;'((;)>, ae. (221)

There is an alternative way to define the phase derivative
of the non-tangential boundary value F'(s): We proceed by
converting it to the unit disc. That is to map everything in
the upper-half complex plane, through the Cayley transfor-
mation, to the unit disc. Note that Cayley transformation
preserves complex analyticity and is of monotonicity when
restricted to the boundaries. The phase derivative of F' may
be defined by D(Forfl)(n(s))%. We now prove that the
phase derivatives defined by the two methods are identical.

Theorem 2.8: Let F' be an analytic function in CT.
Denote by Dy the phase derivative defined by Definition
2.2 for the unit circle. There follows

/

%DD(FO £71)((s)) = lim Im];((j)). (2.22)
Proof of Theorem Let F(z) = F(s+1iy), y > 0, we
have

dt
T Dp(F ok 1)(k(s))
. —1\/ .
2 e ) ok (s + i)
L+s2 y—ot (For)(k(s +iy))
. / . 71 / .
2 ekl ) (st i) (s + i)
1+ 82 y—o+ F(s+iy)
i .
_ lim Re—F(st1y)
y—0+ F(s+1y)
F'(z2)
= limI . O
aos R (2)

Note that % is always finite and positive, and Dp(F o
k1) (k(s)) = Dpf(e). Taking into account that the
Caylay transformation maps inner functions in the upper-
half complex plane to inner functions of the same type
(the Blaschke product type or the singular inner function
type) in the unit disc, and vise versa, we obtain
Theorem 2.9: If F' is an inner function in the upper-
half complex plane, then D, F' > 0 a.e. Moreover, if I has
an analytic extension across an open interval containing s,
then with the angular parametrization F(s) = ¢'(*) the



phase function ¢(s) is differentiable at s, and 0 < ¢'(s) <

+00.
Theorem 2.10: Let F' be an outer function in the
F/

upper-half complex plane, and the analytic function

belong to the Hardy H'(CT) space. Then the boundary
limits 7 and that of £~ both exist and are finite a.e., and

] F
the function I;((SS)) is integrable on IR with
F/
/ () ds = 0.
r F(s)

In particular,
/ D,F(s)ds = 0.
R

III. ALL-PASS FILTERS AND SIGNALS OF MINIMUM
PHASE

In this part we discuss all-pass filters and signals of
minimum phase and energy in the two contexts: the
discrete and the continuous signals. The discrete signals
{z(n)} or continuous signals f(s) we deal with are of
finite energy, that is,

+oo +o0
S ) < oo or / 1£(s)2ds < +o0. (3.23)

A. Discrete signals

Definition 3.1: (i) A discrete signal {h(n)} is said
to be physically realizable if {h(n)} € [ and

h(n) =0, ifn<D0.

(i) The Z-transform of a physically realizable signal
{h(n)} is

H(z)=> h(n)z".
n=0

Since {h(n)} € I2, it is easy to verify that H(z) is
well defined as an analytic function, and, in fact, an
H?-function in the unit disc. As consequence, it has
non-tangential boundary values on JID, denoted by
H(e™), called the frequency spectrum of {h(n)}. In
both the L?- and the pointwise- convergence sense
(Carleson’s Theorem on pointwise convergence of
Fourier series), we have

H(e™) =" h(n)e™.

n=0

(3.24)

(iii)

A discrete signal is said to be a pure phase signal
or all-pass filter if it is physically realizable, and

Ge)] = [S259(m)e™] = 1, ac.

(iv) The phase derivative D, H of the frequency spec-
trum H (e™) of a physically realizable signal {h(n)}
is also called the phase derivative of {h(n)}.
(v) Let {h1(n)} be a fixed physically realizable signal.
It
D,H > D, Hj,

whenever ‘ ‘
|H(e")] = [Hi(e")],

where H and Hi, are, respectively, the Z-transforms
of {h(n)} and {h1(n)}, then {hi(n)} is said to be
a minimum-phase signal.
In accordance with the Nevanlinna Factorization The-
orem, in the non-tangential boundary limit sense, for
¢ = e,

H(C)

cO(¢)B(¢)S(¢)

= Cpo(w)eieo(w)eiQB(w)eies(w)’

where O, B and S are the corresponding outer, Blaschke
product and the singular inner functions (unique up to
unimodular constants), and po = |O]. In the following
proposition we discuss the existence of the boundary phase
derivatives of H((¢), O(¢), B(¢) and S(¢).
Proposition 3.2: Let H € U,~oH?(ID), ¢ € 0D.
(i) fH' € U,5oH"(ID), and D, B((), D,S(¢) are a.e.
finite, then D,H(¢), D,O({) exist and are finite
a.e.
(i) If O(Q) satisfies the conditions of Theorem 2.5, then
D, O(¢) exists and is finite a.e.; and D, H(¢) exists
a.e.
We omit the proof of the proposition and refer it to
the results of §II. Under the condition of (i) or (ii) of
Proposition 3.2, by invoking Theorem 2.4, we have

D) = Retp
00 BO) L (50
= Ro TRB TR
— D,0(0) + D,B(O) + D,5(C)
> D,0(0). (3.25)

We thus conclude that outer functions are minimum-phase
signals. It amounts to say that of all physically realizable
signals with the same amplitude spectrum |H (¢)|, outer
functions determined by the formula (2.12) are of mini-
mum phase.

If f(2) is in the Hardy H?(ID), and its boundary value
f(e) is in L™(0ID), then f(z) is in H"(ID) (Chapter
II, Corollary 4.3, [11]). Using this assertion to r = oo
and f(z) = H(z), where H(z) is the Z-transform of a
physically realizable signal, we conclude that H(z) is an
inner function if and only if the physically realizable signal



associated with H(z) is an all-pass filter. To summarize,
we have the following

Theorem 3.3: (i) All-pass filters have a.e. positive
phase derivatives. (ii) The discrete signals corresponding
to outer functions are minimum-phase signals.

Now we prove a sufficient and necessary condition for
minimum-phase signal.

Theorem 3.4: Let {hq(n)} be a physically realizable
signal of finite energy, and its amplitude spectrum is
|H1(e®)|. Then {hq(n)} is a minimum-phase signal if and
only if, for any h and the corresponding H (¢, whenever
|Hy(e™)| = |H(e™)| we have

hi(n) = ePho(n), (3.26)
where [ is a real constant, {ho(n)} is identical with
an outer function Oy (Z) generated from the amplitude
spectrum |H (e')| by using formula (2.12).

Proof of Theorem By definition, {h;(n)} is a minimum-
phase signal if and only if for any physically realizable
signal {h(n)} with amplitude spectrum |H;(e')| the
phase derivative D,H > D,H;. We need to show
D,H, = D,0, where O is the outer function in the

Nevanlinna decomposition H = ¢OBS. On one hand,
O(z) itself is such a H(z), therefore, D,O > D,H;.
On the other hand, since |Hi| = |O|, and the phase

derivatives of B and S are a.e. positive (Theorem 2.4),
we have D,H; > D,O. Therefore, D,0 = D,H;.
The inner function part of H;, therefore, is a constant.
The latter is equivalent to H;(e™) = e*?Opy(e™), or
hi(n) = €Pho(n). Hence, {hi(n)} is a minimum-phase
signal if and only if hy(n) = ePho(n). O

All-pass filters play a significant role in signal analysis
also because of the total energy invariant and the energy
delay properties. Those properties are not directly related
to the positive phase derivative issue. Nevertheless, we
provide the statements of the results for the completeness.
The theory of discrete all-pass filters and discrete signals
of minimum energy may be said to have been partially
formulated (Ch. 9, §4, [5]). We decide to provide all the
proofs of the propositions in the rest part of this section for
two reasons. The principal reason is that some proofs are
not valid in the literature (Theorem 3.5). The next reason
is to make the existing proofs (of Theorem 3.6, 3.7) to
be available in English (Ch. 9, §4, [5]) and thus the paper
becomes self-containing.

Theorem 3.5: A physically realizable filter {g,,} is an
all-pass filter if and only if the total energy is invariant
when any signal passes the filter {g,}, that is, for any
physically realizable input signal {z,}, and the output

signal {yn}: Yn = gn * Ty = ZZ:OE kTn—_1, there holds

+oo +o0
STzl =" Iyl (3.27)
n=0 n=0

Proof Let X and G denote, respectively, the frequency
spectrum of {z,,} and {g,}. The relation (3.27) is equiv-
alent with

1 (" - 1 /"
|X (e™))?dw = —

iw 2X w2
[ 1GE)PIX () d,

g -7 —T
or i

| (- i6eR) X ~o
where X is any function in the Hardy space HZ?(ID).
The “only if” part is trivial. We now prove the “if” part

from some particular choices of the test function X (e).

Substituting X (™) with X,.(e™) = =5 %, 0<r<
1,t € [—m, 7], we have
" ; 1—1r2
1 —|G(e™ 2 dw = 0.
/_ﬂ( Gl )‘)172rcos(t7w)+r2 Y

Letting » — 1, since Poisson kernel is an approximation
to identity ([25]), we have, pointwisely,

li X (1—|GP) x P.(t) =1—|G(e")]* =0, ae.
We thus conclude that |G| = 1 a.e. and so {g,} is an
all-pass filter. [

We define the N-partial energy of physically realizable
signal {z,,} to be ZZLO |, |2. For an all-pass filter {g,, },
we have

N +oo N
S lwal = Y [als where G = Y 2rgn s (328)
n=0 n=0 7=0
Since
+oo n n
Yn = ZgTz7l—T = ngxn—f = Zngn—T? (3.29)
7=0 7=0 7=0
we obtain

Un = Yn, when n < N. (3.30)

Theorem 3.6: Let {g,, } be a physically realizable filter
with the unit energy. Then {g,,} is an all-pass filter if and
only if for any physically realizable input signal {x,,}, the
N-partial energy of the output {y,} : yn = gn * Ty, is
delayed, that is, for any N > 0,

N N
S laal? =Dyl
n=0

n=0

(3.31)



Proof We assume that {g,} is an all-pass filter. For any
physically realizable input signal {z,}, we have
N +o0 N N
Dol =D 15l 2 Y Nl =D vl N >0
n=0 n=0 n=0 n=0
where 7,, and y,, are defined by (3.28) and (3.29).

We will prove the converse result by contradiction.
Assume G(e™) # 1. Take the input signal with the
frequency spectrum X (e’) satisfying

p 2 if |G(e™)]?2—-1>0
‘X(e“’d)|2= 1 | (6‘ )‘ >0, (3'32)
1 if |G(e®)2—1<0.
Since 1 .
| 1GE)Pdo =1,
then
1 T w2 w2 1 T w2
— | |GEe)F[X(e™) dw > — [ [X(e"™)["dw,
2 J_, 2 J_,
and

+oo +o00
Z lyn® > Z |z,
n=0 n=0

therefore there must exist some Ny > 0 such that
Zgio lyn|? > nyio |z,,|?, contradictory with (3.31).
O

Theorem 3.7: Assume that the input {z,} is physi-
cally realizable, and the filter {g,} is an all-pass filter.
Denote the output by {y,, }. Then for some N the equality

N N
STlzal? =3 lyal? (3.33)
n=0 n=0

holds if and only if the Z-transform of the all-pass filter
{gn} is of the form

Z + ... A

To+ 1124+ ...+ 3}]\/'ZN7
where the denominator of G(Z) has no zero in the closure
of the unit disc.
Proof We first assume (3.33) and will show (3.34). For
the signal {z,} = {z1,...,2n,0,0,...}, by (3.30), there
holds

(3.34)

N

N
Sl = 3 lil

n=0 n=0

Comparing it with (3.28), we conclude that ¢, = 0 when
n > N + 1. Then the Z-transform of {g,} is

YN(Z) = Go+inZ+. . +nZN = yotyi Z+. . AynZV,
while the Z-transform of {z,}’ is

XN(Z) Zxo—‘rl‘lZ—F—FZ‘NZN

By Yn(Z2) = G(Z2)Xn(Z), we conclude (3.34). Since
{gn} is an all-pass filter, G(Z) is a H°-function in ID,
and thus there is no singularity on the closed unit disc ID.

Conversely, assume that (3.34) holds. Take the in-
put signal to be {z,} whose Z-transform is X(Z) =
Zg:o 2, Z™. Then the output under the filter {g,, } is {yn }
whose Z-transform is Y (Z) = 22[:0 ynZ™. Invoking
Proposition 3.5, we get the equality (3.33). O

In digital signal processing, although minimum energy
delay signal and minimum phase signal are two different
concepts, they, in fact, are the same. Minimum energy de-
lay signal is from the view of energy delay, and minimum
phase signal is from the view of time delay.

B. Continuous Signal

Definition 3.8: (i) A signal of finite energy f(t) is
said to be physically realizable if it satisfies f(t) =
0, t<O0.

(i) The frequency spectrum of a physically realizable
signal f(t) is defined to be the inverse Fourier
transformation f(w) of f(t).

In fact, the frequency spectrum f (w) of a physically
realizable signal f(t) is the non-tangential boundary value
function of the H?(C™)-function

Fe) =By s f@) = [ BOFw -t 2 =wti,
where P, (t) = 1 i is the Poisson kernel of the upper-
half complex plane (Chapter II, Corollary 3.2, [11]). In the
sequel, we regard f(z) as the H2(C*)-function associated
with f(t). In view of the formulas in (2.7) we also have
. 1 [~ f
i) = = [ g,

2m J_u— =z

_ \/% /Ooei“te_ytf(t)dt. (3.35)
™ Jo

Definition 3.9: Let f1(¢) be a physically realizable
signal. If for all physically realizable signals f(¢) such
that | f(w)| = |fi(w)| we have Drf > Drfi, then we
say that f1(t) is a minimum-phase signal.

The Fourier transformation of a temperate distribution
T is defined by the relation

(T,¢) =(T,d), ¢E€S,

which coincides with the traditional definitions of Fourier
transformations for functions in LP(IR), 1 < p < 2.
Denote by S’ the set of temperate distributions.

Set

o 2 {pe CF(R)

the Schwartz class,

: supp ¢ C [0,00)}



and

d” £ {pe C(R) : supp ¢ C (—00,0]}.

The following theorem characterizes, in terms of Fourier
spectrum, the boundary values of functions in the complex
Hardy spaces HP(C*t), 1 < p < oo. The case p = o0
plays an important role in the all-pass filter theory for
continuous signals.

Theorem 3.10: (see [22]) f is the non-tangential
boundary value of a function in H?(CT), 1 < p < oo, if
and only if f € LP(IR) and (f,¢) =0 for all ¢ € &~

Theorem 3.11: (see p23, [26]) For u € S’ and ¢ € S,
the convolution u * ¢ is the function f, whose value at
z € Ris f(z) = u(r,p), where 7, denotes the variable
translation operator by x, and ¢(z) = p(—x). Moreover, f
belongs to the class C*° and it, as well as all its derivatives,
are slowly increasing.

Definition 3.12: Let g be a temperate distribution with
supp g C [0,00). We call g an all-pass filter if its inverse
Fourier transformation ¢ is the non-tangential boundary
value of an inner function in the C*.

(From Theorem 3.10 and Definition 3.12, we conclude
that a temperate distribution g with supp g C [0,00) is
an all-pass filter if and only if ¢ is a bounded analytic
function satisfying

lg(w)] =1, a.e.

Below for an all-pass filter g, the input signals are
restricted to be physically realizable f(t) € S, and the
output signals are h(t) = (f x g)(t), owing to Theorem
3.11, are physically realizable signals belonging to C°°.

According to the Factorization Theorem 2.6, any H2-
function f(z) has the representation:

f(z) = cO(2)B(2)5(2)

= o y(w)ei¢0,y(w)emsB,y(w)ei(bS,y(W)’
z=w+1y, y >0,

where O, B,S are the corresponding outer function,
Blaschke product and singular inner function parts of f,
where O(2) = 1o, (w)e?ov@) B(z) = e*Bv(@) and
S(z) = s,

Similarly to the discrete case, we study boundary phase
derivatives of f(z), B(z), S(z) and O(z).

Proposition 3.13: Let f(2) € U,~oH"(C1).

(i) If f'(2) € UpsoH"(Ct), and DrB(w), DrS(w)
are not equal to +oo on IR ae., then
Drf(w), DRO(w) exist, and are finite a.e.

(i) If O(z) satisfies the conditions of Theorem 2.10,
then DrO(w) exists and is finite a.e.; and D f(w)
exists a.e.

Under the conditions of (i) or (i7) of Proposition 3.13,
there follows

Drf(w) = Im?(:j;
O (w) B'(w) S’ (w)
= 0w TMBw) TS
= DrO(w)+ DrB(w) + DrS(w)
> DrO(w). (3.36)

Thus O(t), corresponding to the outer function O(z), is
the minimum phase signal. It is to say that of all physically
realizable signals with the same amplitude function, the
one being the outer function is the minimum phase signal.

Theorem 3.14: Let f;(t) be a physically realizable
signal. Then f;(¢) is a minimum-phase signal if and only
if

filw) = €ePO(w), (3.37)

where (3 is a real constant, O is an outer function formed
from the boundary value |f;| by using (2.19).

In the continuous case, all-pass filters also have the same
characteristic energy preserving property as for the discrete
case.

Theorem 3.15: Assume that ¢ is a temperate distri-
bution with supp g C [0,00) whose inverse Fourier
transform §(w) is a bounded measurable function. Then
g is an all-pass filter if and only if

/O Lf(®)] dt:/o \h(t)|dt.

where f(s) is any physically realizable input signal in S,
and h(t) = (g f)(t) is the output signal.

Proof of Theorem By the Plancherel Theorem, (3.38)
holds if and only if

| Ve = [

That is,

(3.38)

|f(@)g(w) duw.

(3.39)
If ¢ is an all-pass filter, that is, |§(w)| = 1, a.e., then

/0 £ dt:/O (g = £)(t)]2dt.

We now show that the converse also holds. Assume
that (3.40) holds. Let F'(t) be a function in the Schwartz
class that has compact support in [0, +00). Let Fy(t) =
F(_ty)e_itua Fl(t) = F(_t)7 F2(t) = \/%7(F1 *F)(t>7
and F3(t) = e "Fy(—ty), where y > 0, u €

(3.40)




(—00,400). Since Fy(t) is also in the Schwartz class and
has compact support in [0, +00), we have

/.

We note that

[Fo(@)*(1 = [g(w)[*)dw = 0.

—c0 Y Y

In using the approximation to identity result (see p13, [26])
of the dilated convolution to the test function 1—|g(w)|? €
L>(IR), we have

1. u—w

0 =t [ A0 )P
= (1 Jgw)?) / T Bwde,  ae
Since -
| A= [~ IF@Pw £
we have

1—|gw))*=0, ae O

We regard f0N|f(t)|2dt as the N-partial energy of
the physically realizable signal f(¢). Denoting fxn(t) =
X(o,n](t) f(t), for any all-pass filter g, from Theorem 3.15,
there holds

N 00
[ iswpa= [T is@pa can
0 0

where

hn(t) = (fn*g)(t) = (9(-), In(t=")) = (g(t—"), [N ().
On the other hand,
h(t) = (f*g)(t) = (g(), f(t =) = (g(t =), f(-)).
Thus

hy(t) = h(t), t<N. (3.42)

The following theorem tells us that the partial energy
delay property is also the characteristic property of all-pass
filters in the continuous signals case.

Theorem 3.16: (i) If g is an all-pass filter, then for any
N > 0, there holds

N N
A\ﬂmﬁzélmmﬁ,

where f(t) is any physically realizable input signal in S
and h(t) = (g * f)(t) is the corresponding output signal.

(ii) Let g be a temperate distribution with supp g C [0, 00)
and the inverse Fourier transform of g be a measurable

function, satisfying £ [ ‘i’f}j dw = 1. If for any N >
0,

N N
/0 Lf(®)] dtz/o |h(t)|?dt,

where f(t) is any physically realizable input signal in S
and h(t) = (g * f)(t) is the corresponding output, then g
is an all-pass filter.

Proof of Theorem 3.16 (1) From (3.41) and (3.42) we

have
N [e%s)

R h 2d

|urwrae = [P

N N
A|meﬁzﬁwmw

(2) We will prove the assertion by introducing a con-
tradiction. Assume |j(w)| # 1, a.e.

(3.43)

2dt.

\%

Let
2, if |g 251
\F(w)|2 _ 9 1 |g(w)|2 > ) (344)
1, if |g(w)]* < 1.
Since
o0 | x 2 [e%s) 1
l/ 9(w)l dwzlzl/ ——dw,
T J_oo 1 +w? T ) o 1+ w?
we have L% s > 4
i =
T ) o 14 w?
g e F(w)P
. 2 w
— -1 di .
- R - > 0
Let
. F(w
Fw) = )L
vVitw
then o
|G - i@ o,
and

e} o0

/o:o [h(w)|dw = /_Oo |9(w) f (@) [dw > /_Oo |f(w)|2dw.

+oo +o00
2 2
A vm»ﬁ>A S0P

So we can select Ny such that

No No
A mwwﬁ>A ()Pt

which is contradictory with (3.43). Hence, |g(w)
1 ae O

Thus



The following theorem tells that if there is some N
that makes the equality holds in the inequality (3.43), then
the all-pass filter will have to be a Blaschke product of a
special structure.

We need the following definition.

Definition 3.17: If the zeros zp,k = 1,2,..., of a
Blaschke product B defined in (2.17) do not have a finite
accumulation point on the line, then B is said to be sparse.

It can be easily shown that if B is sparse on the line,
then limy_, o |2x| = 0.

We recall the Paley-Wiener class of analytic functions
in the complex plane:

PW(N) £ {f : fisan entirefunction,

flr € L*(R), suppf C [-N, N}
The Paley-Wiener Theorem asserts that

PW(N) = {f : fisan entire function,
flr € LA(R), |f(2)| < O}

= {f : f is an entire function,

flm € LA(R), |f(2)] < Cee™FIEL e > 0}

For a proof of the theorem see [24] or [26].
Theorem 3.18: Let g be an all-pass filter. Then there
exist some f € S and N > 0 such that for h = g * f,

N N
2 _ 2
/0 ()Pt = / Ih(t) Pt

if and only if g(z) is a Blaschke product whose zeros,
including the multiplicities, are zeros of an entire function
belonging to the Paley-Wiener class PW (N). In the case
the Blaschke product is sparse.

Proof of Theorem 3.18 We first prove the “only if” part.
We assume that (3.45) holds for some f € S and some
N > 0, and we are to show that the inner function g(z)
is a Blaschke product, and

fn(2)g(2) = hn,

where iy € PW(N), as desired. Using the same notation
as in the proof of Theorem 3.16, we have

/ e (1)]2dt = 0,
N

and thus conclude that iy has compact support in [0, N],
and therefore hy € PW(N). We are to show that g is
a Blaschke product. Note that both fy and hy are H2-
functions in the upper-half complex plane. Owing to the
Paley-Wiener Theorem, both can be analytically extended
to become entire functions in the whole complex plane.
By the Nevanlinna factorization Theorem, in the self-
explanatory notation, we have

COfNBfNSfN . BgSg = CIOBNBFLNSBN’

(3.45)

where |¢] = || = 1. Now we show that du; = 0.
Temporarily accepting this, we have duy, = dug =0

and then

S P Sg,8 i
are all unimodular constants, and thus
g = Bj.

Now, since hx has analytic continuation across any
finite interval on the real line, both its inner and outer
factors have analytic continuation across finite intervals.
This fact is proved in Theorem 6.3, Chapter II of [11],
through proving the sparseness of the Blaschke product
part and the triviality of the singular inner function part,
where the latter stands for dpuj, = 0.

Next we prove the “if” part. We assume that §(z) is a
Blaschke product whose zeros, including their multiplici-
ties, form part or all zeros of some entire function h N in
PW(N). Let

a Z — Qg
-~ _ Tag
g(2) kl;[l e’ —— o
Consider the expression

Fu(2) = [T e 2= by (2).
k=1

zZ — ag

we show that fx € L?(IR) and suppfx C [0, N]. To this
end, as in [1], define

—2yn —iap p—tant if t<0,
ou(t) =4 I e =0, 546
0 if t>0,
where a,, = =y, + ty,. Then
e—z‘anw;a” . fLN(w) = (T,hy) (w), (3.47)
W — ay
where
Tohy = 0p xhy + € "“"hy. (3.48)

Now we show that T,hy € L'(IR) N L?(R), and
suppT,,hy C [0, N].

Since o, is in L' and hy is in L'NL?%, we have T,,hn €
L' N L?. Because
W—0n

. hN(w)

e_ian
W — an
is the boundary value of a function in the Hardy H? space,
its Fourier transform, viz. T, hy, is supported in [0, c0).
Now, a direct estimate gives

lemion 279 f o (2)] < eIl 5 g,

Z = Gn
that implies (T,,hn)” € PW(N), we conclude that T}, hy
is supported in [0, V].



Repeating this process we obtain
F,=T,0T, 10---0T1hy

that belongs to L' N L? and vanishes outside [0, N]. Note
that Blaschke products are unimodular. By Lebesgue’s
dominated convergence theorem,

lim Fn = fN

in the L'-norm. By taking a subsequence we get that fn
vanishes almost everywhere outside [0, N]. The Paley-
Wiener Theorem then guarantees that fyy € PW(N).
Since the transformation from hy to fy is norm preserv-
ing, we finally have

N N
24 — 2
/0 |£(t)] dt—/o |h(t)|2dt,

as desired. The proof is complete.

Example The following is an adaptation of the argument
in the proof of Theorem XXIX in [18], combined with the
argument on page 114 (30.51) of the same book . Take
ap=0,a_, = —an, and

belongs to L2, if restricted to IR, with the property
hy(ay) =0, and supphy C [0, N].
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