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Abstract

Takens’ Embedding Theorem remarkably established thatatenating) previous outputs of a
dynamical system into a vector (calleddalay coordinate mgpcan be a one-to-one mapping of a low-
dimensional attractor from the system state space. How&akens’ theorem is fragile in the sense that
even small imperfections can induce arbitrarily large extia this attractor representation. We extend
Takens’ result to establish deterministic, explicit anch+asymptotic sufficient conditions for a delay
coordinate map to form atable embeddingn the restricted case of linear dynamical systems and
observation functions. Our work is inspired by the field ofn@wessive Sensing (CS), where results
guarantee that low-dimensional signal families can be sthpueconstructed if they are stably embedded
by a measurement operator. However, in contrast to typi&lr&3ults, i) our sufficient conditions are
independent of the size of the ambient state space, andnig |ystem and measurement pairs have
fundamental limits on the conditioning of the embedding.(ihow close it is to an isometry), meaning
that further measurements beyond some point add no furipeifisant value. We use several simple
simulations to explore the conditions of the main resufis|uding the tightness of the bounds and the
convergence speed of the stable embedding. We also prasertimple task of estimating the attractor
dimension from time-series data to highlight the value abkt embeddings over traditional Takens’

embeddings.
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. INTRODUCTION

Of the many types of data confronting signal processingameders, time series data is perhaps one
of the most common. While there are many possible ways toyaea time series, one of the most
important tasks in many areas of science and engineering characterize (or predict) the state of
a dynamical system from a stream of its output data [2, 3]s Thpe of state identification can be
particularly challenging because the internal (possibyhtdimensional) system state(t) € RV is
often only indirectly observed via a one-dimensional tineeies of measurements produced through an
observation functions(t) = h(z(t)), whereh : RY — R.

Surprisingly, when the dynamical system has low-dimeraistructure because the state is confined
to an attractotM of dimensiond (d < N) in the state space, Takens’ Embedding Theorem [4, 5] shows
that complete information about the hidden state of thisesgsan be preserved in the time series output
datas(t). Indeed, many systems of interest do have this type of sire¢6], and a variety of algorithms
for tasks such as time series prediction and attractor difoenestimation exploit Takens’ result [3].
Specifically, Takens defined ttdelay coordinate mag : RV — RM as a mapping of the state vector
x(t) to a point in thereconstruction spacéR?) by taking M uniformly spaced samples of the past time

series (with sampling interval;) and concatenating them into a single vector,
F(x(t)) = [s(t) s(t — Ts) s(t —2T%) -+ s(t — (M = 1)TL))". 1)

Takens’ main result [4] (later refined in [5]) states thatdena few conditions off; discussed later) for
almost every smooth observation functibft), the delay coordinate map is @mbedding of the state
space attractaM when M > 2d. In other words, despite the state being hidden from dirbseovation,
the topology of the attractor that characterizes the dyoahsiystem can be preserved in the time series
data when it is arranged into a delay coordinate map.

In the absence of imperfections such as measurement onsystise, Takens’ result indicates that a
delay coordinate map should be as useful for characteriggstem as direct observation of the hidden
system state. However, in the presence of noise, a onedoraipping may not be sufficient to guarantee
the robustness of any processing performed in the recatistnuspace (e.g., dimensionality estimation).
The main underlying problem is that while Takens’ theorerargatees the preservation of the attractor's

topology it does not guarantee that tgeometryof the attractor is also preserved. For example, Takens'’

1An embeddings a one-to-one immersion



result guarantees that two points on the attragtordo not map to the same point in the reconstruction
space, but there are no guarantees that close points ontthet@t remain close under this mapping
(or far away points remain far away). Consequently, reddyismall imperfections could have arbitrarily
large effects when the delay coordinate map is used in agijits.

In the signal processing community, recent work has higitdid the importance of well-conditioned
measurement operators to ensure the geometry of a low-diorei signal family is preserved. Consider
a signal class\l with intrinsic dimensiond residing inRY and measurement operatﬁr: RN — RM,

We call F to be astable embeddingf the signal class\ if for all distinct pairs of pointse,y € M

their pairwise distances are preserved by satisfying

|1F(z) = F(y)l3

C(1—96) < (P 2 <C(1+9). )

The scaling constantC could be absorbed intd’ and theconditioning numbef < § < 1 bounds how
much pairwise distances between signals(\Nimcan change when mapped ﬁy(i.e., how nearF’ is to

an isometry). The Johnson-Lindenstrauss (JL) lemma [7iM&sgan example of a stable embedding of
a signal class\ consisting of a point cloud of = \.K/(v\ distinct points inRY. In this result, a random
measurement matrik’ with M = O(log(d)) rows ensures that (2) holds with high probability for allnsai
of points in the point cloud\1. Another example is the recent work in the fieldaampressed sensing
(CS) [9,10], where the canonical results show that simitardom matricest” satisfy theRestricted
Isometry PropertyRIP) with high probability whem\/ = O(dlog(N/d)) [11,12]. The RIP guarantees
that (2) holds for all pairs ofl-sparse signals (i.e., the signal famM is comprised of signals on the
union of all d-dimensional subspaces withit!¥). Beyond extending the concept of the JL lemma from
a finite point cloud to an infinite signal family, the CS resusthow the value of stable measurement
operators by also making guarantees about efficient andgtsilynal recovery from these measurements.
The notion of a stable embedding has also been extendeddogigmal models [13], including manifold
signal families [14, 15]. The latter can be seen as an exiardi Whitney’s Embedding Theorem [16];
while Whitney’s Embedding Theorem ensures a one-to-onepingpof a manifold M with dimension

d for almost any smooth projection functidn given thatM > 2d, the results in [14] further guarantee

that (2) holds over this signal family for a givérwith high probability when\/ = O(dlog(N)) and F



is a random orthoprojectdr.

While the notion of embedding the state of a dynamical systeay seem far removed from the
CS results, there is actually a close connection. It is wedwn that Takens’ Embedding Theorem can
be viewed as a special case of Whitney’s Embedding Theorearemie measurement operaﬂéris
restricted to forming a delay coordinate map (ifé\.,: F) andM is taken to be the state space attractor
(i.e., M = M) [3]. The main contribution of this paper is to further thesmnections by establishing
sufficient conditions whereby the delay coordinate map igble embedding of the state space attractor
for linear systems with linear observations functions.eled, the main technical result of this paper
establishes deterministic, explicit and non-asymptatificent conditions for the delay coordinate map
to be a stable embedding with a given conditioningNVe also explore the meaning of these conditions
for characterizing systems via delay coordinate maps. hicpdar, the results of this exploration are
interesting because they contrast with the standard C&seésuwo principle ways{(i) the conditioning
of the operator cannot always be improved by taking more oreagents, as some system/observation
pairs will have a fundamental limit in how well the system gmry can be preserved, arnd) the
necessary number of measurements scales with the dimeofsiba attractord but is independent of the
dimension of the ambient spacdé.

Due to the importance of nonlinear systems, a similar gérstadle embedding result for nonlinear
dynamical systems is obviously of great interest. Lineateayps have a wealth of tools available for their
analysis and the language of “attractors” is uncommon whedyig these relatively simple systems
(despite the notion of an attractor being technically vpelsed for the restricted class of linear systems
we study here). Therefore, beyond just contributing a nest for linear systems analysis and design
(as demonstrated in the example of Section IV-C), our ptesesults are perhaps most valuable for
elucidating some of the unique issues that arise when trigngfabilize the embeddings of dynamical

systems, helping to pave the way for extensions to nonlingstems.

[I. BACKGROUND AND RELATED WORK

In this section we will briefly review some preliminariescinding a precise statement of Takens’

theorem, attractors of linear systems, and related workaibls embeddings of attractors and manifolds.

2The required number of measurements in [14] also depends on some properties of the manifold ,(¢hg maximum
curvature). Clarkson [15] later improved updd to remove the dependence on the ambient dimendioand reduce the
dependence on certain properties of the manifold.



A. Linear Systems and Delay Coordinate Maps

Let a dynamical system be defined by the differential equoatio

a(t) = W (x(t)), (3)

wherez(t) € RY is the system state at timg and ¥ : RV — R¥ is a smooth function. As stated
earlier, in this paper we will restrict our examination toleddings of linear dynamical systems where
¥ ¢ RV*N is a matrix. Before going on, our discussion of these systaitigequire us to establish a
basic notation for complex vector spaces. kot [u; --- uy]? € CV, we denote the complex variable
by j, the (element-wise) complex conjugate %% and the Hermitian transpose by’ = (u*)7.

Given the system matri¥y and the definition of a dynamical system (3), knowing theesttsome
fixed timet, is equivalent to knowing the path that the system takes tofeord that state (called the
flow). Classic results in linear systems theory [17] show thatehplicit solution for this path is given
by a matrix multiplication(tq +t) = eVt (tg) = ®.z(to), whered, = ¥ is theflow matrix Note that
this solution is valid for positive or negative valuestpidescribing the flow both forward and backward
from time ¢.

Delay coordinate maps that embed points on the attractor dreamical system are intimately
connected with the flow of the system approaching that p&inparticular, forming a delay coordinate
map of a specific point in the state space requires collestmgples of the system flow backward in time
from that point at regular interval§;. To enable mathematical descriptions of this sampling atjmr
along the flow, we suppress the implicit dependence on thelgzgntime 7, and define the compact
notation for the flow matrix a® = ®_r, so thatxz(t — Ts) = ®z(¢). The delay coordinate map with
M delays given in (1) for the case of linear dynamical systentslmear observation functioris € RY

can then be written as & x N matrix;
F=h|0Th| - | (@MHTh)". (4)

To ensure that the linear dynamical systems under considietaave non-trivial steady-state behavior
(i.e., oscillations rather than convergence to a fixed poimé restrict our study to the class of systems

A(d) described in the following definition.

Definition 11.1. We say that a linear dynamical systemRf defined by(3) is of Class .A(d) for d < %

if the system matrixV is real, full rank and has distinct eigenvalues. Moreowkrhas onlyd strictly



imaginary’ conjugatepairs of eigenvalues and the rest of its eigenvalues have real onens strictly
less than 0. The strictly imaginary conjugate pairs of eigdues are called thed-eigenvalues and they
can be expressed a{&tj@i}gl:l where#,,--- 6, > 0 are d distinct numbers. The corresponding unit-
norm A-eigenvectors are vy, v1*, - -+ ,vg,v4". The corresponding eigenvalues of the flow matiare

called the As-eigenvalues, and are given by{e=/%7:}34_

Furthermore, we defind = diag (j#y,—j61,...,704, —j04) as the diagonal matrix composed of the
A-eigenvalues and” = (vy | v1* | -+ | vq | vg*) € CV*24 as the concatenation of thé-eigenvectors
into a matrix withrank(V) = 2d. Since® is the matrix exponential of, it is well-known that they
share the same eigenvectors [18]. Therefore, if we defote D_; = ¢ T as the diagonal matrix
comprised of theds-eigenvalues, then we hadel = V' D.

In order to have a meaningful notion of an embedding, the ayca system must have its state
trajectory confined to a low-dimensional attractor in thatestspace. Even if the system has transient
characteristics from a given starting point, the embeddihg system is only considered in steady-state
when these transients have disappeared. Consideringethdysstate dynamics of the system, we make

explicit the notion of arattractor through the following definition.

Definition 11.2. Let a linear dynamical system be of clag$d) and letzy = Voo € RY for some
oy € C?? be an arbitrary initial state of the systetnWe define thettractor of this linear dynamical

system to beVl = {z e RN |z = Velag , t € R}.

It is easy to see that lives in the span oi/. Also, the attractor of the system clearly depends on the
initial state of the system. Because the main results ofghjser do not depend on the choice of initial
state, we will simply refer to the fixed attractor A8 and suppress the implicit dependence on the initial
state. Additionally, one can check that this definition maée fundamental notion of an attractor, i.e.,
that any point on the attracto¥! when projected backwards (or forward) in time fywill remain on
M. Specifically, for anyr € M, we can writex = Va,, wherea, = eMte oy for somet, € R. Then
we see that for som® (the diagonal matrix comprised of thég-eigenvalues as defined earlier) and
anyk € Z, ®*z = ®*V o, = V DFa,, meaning that: remains on the attractor even when it is projected
forward or backward in time. Finally, while we will not shoi$ in detail due to space constraints, one

3A number z is strictly imaginary if Re{z} = 0. This condition ensures that the system modes corresppridirthese
eigenvectors have persistent oscillation in the steaalgsesponse.

“We only need to consider, in the span of the columns &f because any orthogonal components vanish in steady-state.
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Fig. 1. Examples of attrac(to)rs of linear dynamical systems of cl4g$) in RN (fgr N = 2 andd = 1 with
sampling intervall; = 1. (a) A system attractor wheéh= 7 andv = %[1, 41T This results in a circular attractor
where the system progresses at an angular speed deternyifeql) A system attractor whefh = 7 andv =
[0.8165 + 0.40825, —0.40824]T. Here the system also progresses at the same angular spegu httractor is now
an ellipse.
can show that for eachthe statez(¢) is moving in an elliptical orbit on the span & {v;} andIm {v; }
with angular speed proportional tyT.

For clarity and to build intuition, we give two brief examplevhere N = 2, d = 1 and T, = 1.
For the first example, consider a dynamical system of cl4&$) with A-eigenvaluet = 7 and A-
eigenvectorv = %[1, 4]7. Shown in Figure 1(a) is the resulting circular attractortiois system,
along with the real and imaginary components of thesigenvector and a pair of states separated in
time by 75 (which corresponds to a separation &f; in angle). For the second example, consider a
dynamical system of clasd(d) with the same parameters except that theigenvector is now defined
asv = [0.8165 + 0.40825, —0.40825]”. Shown in Figure 1(b) is the resulting elliptical attractod
state time samples, illustrating that the angular speeddbanged af 7. In both of these examples, the
elongation of the ellipse is determined by the inner prodisttveenRe {v} andIm {v}, which governs
how well the attractors fill the dimensions of the state sphe¢ it occupies. While this is intuitive to
visualize in the present case df= 1, for generald > 1 this elongation is determined by the ratio
between the smallest and largest eigenvaludg’ét/, denotedA; and A, respectively. Whem; = A,,
the system state revolves around a circle when projectemleatth of the subspaces spannediley{ v, }
andIm {v,} for p=1,--- ,d, and the resulting attractor is a product of these circuthit® However
when A, > A;, the projection of the attractor onto some (or all) of thesbspaces will be a highly

elongated ellipse, therefore not equally filling the dimens of the state space that it occupies.



B. Attractor Embeddings

The following theorem is an extension of Takens’ originauk [4], and gives a lower bound on the
number of measuremenfd sufficient to ensure that a delay coordinate nfamefined as in (1) is a

one-to-one mapping from the state space attractor to thsung@ment (reconstruction) space.

Theorem 11.1 (Takens’ Embedding Theorem [5JAssume the dynamical system converges to an attractor
M of dimensiond and pick a sampling intervdly > 0. Let M > 2d and supposeéV has a finite number

of equilibria, no periodic orbits of of periodT; or 2T, and at most finitely many periodic orbits of
period kT for k = 3,--- , M. Then for almost every smooth functibnthe delay-coordinate map' is

one-to-one onM.

The notion of “almost every” used in the theorem above isnaxi (see [5] for details), but is consistent
with the heuristic notion that out of all possible functiolismost will indeed work.

In this paper we consider the question of when the one-topooperty described in Theorem II.1 can
be improved to become a stable embedding wtiéis (nearly) an isometry that preserves the geometry

of M. Specifically, we introduce the following definition to foatize the notion of a stable embedding.

Definition 11.3. Suppose we have a dynamical systeniRih that converges to an attractoh and a
linear mapF : RV — RM. We say thatF is a stable embeddingf M with conditioningé if for all

z,y € M and for somescaling constan€’, we have

|F'(x) — F(y)I3

C(1-10) < 2 < O(1+0). (5)
lz —yl3

Note that smaller values éfin the above definition imply a more stable embedding bechuygsarantees
that the map is closer to an isometry. We also note that pratien of Euclidean distances also implies
that the geodesic distances between points on the attractopreserved [14]. Because Taken’s result
only tells us that the delay coordinate mAps a one-to-one mapping, it does not guarantee any specific
value of the conditioning, meaning thatcould be arbitrarily close to 1 and the embedding could be
highly unstable.

To see why Takens’ Embedding can be insufficient, we presentlsstrative example where the
conditioning of the embedding can be made arbitrarily bagmh is the minimum number of delays
necessary to satisfy the sufficient conditions of Theorefin Tonsider a linear system of clad$1) with

N =2, T, =1, A-eigenvalued = 0.03 and .4-eigenvectorn = %[1, 4]T. This system has a circular
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Fig. 2. Examining the conditioning of Takens’ embeddings. (a) Ergé (blue) circle shows the attractor of the linear
system. The (black) diamond and (red) circle markers shoifférent pointsx, y that we pick on the opposite ends
of the attractor. The arrow depicts the measurement fumétie). (b) The graph show®@(x,y) for the pointse,y in
Figure 2(a) over a range of valuesedfrom 0.01 to 0.1. The number of measuremenitss fixed at 3, the minimum
required by Takens’ theorem. (c) Hepéx, y) is plotted forM ranging from 3 to 400 (with fixed at 0.1), suggesting
a near isometry foF' asM increases.

attractor as depicted in Figure 2(a). We set the observdtination to beh = \/%[ﬁ, VI—¢T5
Given a particular pair of points, y on opposite ends of the circular attractor (shown in Figyeg)2we
examine the rati@)(z,y) = W whereF is the delay coordinate map given in (4). Note that if
F is a perfect isometry the@(x,y) = 1, and we must havé)(z,y) > 0 for F' to be one-to-one. Fixing
the number of measurements/dt = 3 (the minimum required by Takens’ theorem), Figure 2(b) show
the behavior of)(z,y) for this pair of points as a function ef We see that while meeting the sufficient
conditions of Takens’ Theorentim._,o Q(z,y) = 0. Stated another way, by adjusting the parameter
the conditioning ofF' can be made arbitrarily bad for this pair of points. To seé this is not simply

a bad pairing of the measurement function to the system, thatefor any admissible choice &f there
would exist a pair of points that would behave the same W&y.explore this example further, Figure
2(c) plotsQ(z,y) with e = 0.1 and varyingM from 3 to 400. We see that with increasidd, the
ratio Q(z, y) increases, oscillates and converges to a valu€ ef 1. This provides evidence suggesting
that asM increases, the conditioning @f improves because the distance between this pair of points is
preserved with increasing fidelity. This effect is not poteld by Theorem II.1, but will be shown in our
main results in Section IlI-B.

5As will be described in Theorem I11.2, the observation fimatis normalized so that we have scaling constanCof 1
regardless of\/.

%0One can imagine this by rotating the pointsy by an angle equivalent to the angle between the new measnréumetion
and the giver.



C. Related Work

Independently but at nearly the same time as Takens’ otigiogk, Aeyels [19] looked at the same
problem from a control theory standpoint. He showed thatdbky-coordinate map is related to the
observability criteria and that given any systemNindimensions (not just one confined to an attractor), a
generic choice of observation functidrguarantees that the system is observable as lodg as2N +1.
Similar to the idea of a stable embedding, the authors in {R8jeloped a robustness measure for the
observability of dynamical systems. Stated in the langudigielay coordinate maps and sampled systems,
they defined a system abservable with precisiofk, 9) if for any two statesc,y on a trajectory in the
state space|F(z) — F(y)|l2 < e implies ||z — y||2 < 4. In addition to Takens’ original investigation of
attractor embeddings [4], significant advances were mad8auer et al. [5] to extend these results to
include attractors of non-integer dimensions (i.e., gfeaattractors) and to make the definition of “almost
every” more in line with notions of an event that occurs wittolgability one. Our preliminary results
showing conditions for a stable embedding for linear systefnclass.4(1) were reported in [1].

There has also been significant prior work related to emimgddianifolds (or fractal sets), which
has important implications for attractor embeddings. 8jpadly, embedding results for manifolds were
derived by Whitney [16] and later expanded on by Sauer eGhl.These results show that if a manifold
has dimensior, then almost every smooth function mapping iRt with M > 2d will be an embedding
of the manifold. Baraniuk & Wakin [14] extended these restdtshow that for manifolds with dimension
d embedded irR", random orthoprojections int®* provide a stable embedding of the manifold as
long asM scales linearly withd and logarithmically withN (depending also on various properties of
the manifold, such as the maximum curvature). Clarkson [d&}r improved on the required number of
measurementd/ by removing the dependence dhand certain worst case properties of the manifold. We
note that these stable embedding results have been usealtdhst manifold learning and dimensionality
estimation algorithms can be performed in the compressadeswith nearly the same accuracy as they
could be performed in the original space [21]. The main dibn between these manifold embedding
results and Takens’ theorem is that these results acduinedependent observations of each single point
on the manifold, whereas Takens’ result requires the replegplication of a single observation function
to a system having its own internal time variations. In essethe delay coordinate map relies on the
system dynamics to provide measurement diversity when ltisergations are restricted to a single fixed
function h.

One of the principle benefits of a stable delay coordinate magld be resilience to noise and other
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imperfections. The effect of noise on the reconstructiostafe space attractors has also been previously
considered by several researchers apart from the notiorsiaitde embedding. In [22] the authors looked
at a modified embedding theorem for systems corrupted byrdipad noise, considering specifically
embeddings using multivariate time series system outpddaking more measurements than is typically
required for a delay-coordinate map. In [23], the authowslgtthe effects of observational noise via
statistical methods, showing how the choice of delay-cioatés (i.e., the choice of observation function
h and sampling timel’; with respect to the system dynamics) affects the ability skenpredictions. In
particular, they showed that poor reconstruction amplifiese and increases estimation error.

In related work, there has also been considerable researtteahoice of the optimal sampling interval
T, for the construction of the delay coordinate map (typicdlythe study of chaotic dynamical systems).
In particular, one of the more successful techniques is €hgd’; to minimize the mutual information
between any two time series samples separated;d24]. The resulting reconstructed attractor usually
makes the quantitative and qualitative study of the chalytimmics easier as the reconstructed trajectories
tends to be unfolded to maximally fill the reconstructionapadn contrast, our goal is to characterize
conditions on the system and observation functions (incfubut not limited tdZ’;) such that the geometry

of the attractor is faithfully represented in the reconsinn space.

I1l. STABLE EMBEDDINGS FORLINEAR DYNAMICAL SYSTEMS

In this section we present our main technical results. We firesent a preliminary result in Sec-
tion IlI-A that gives explicit sufficient conditions on thegstem and observation functions to guarantee
that the delay coordinate map is a one-to-one map of the spatee attractor. This is akin to Takens’
Embedding Theorem, and we present it here to highlight tleeip differences that arise under our
restrictions (linear systems and measurement functiomgwahen seeking explicit conditions on system
and measurement pairs (as opposed to the conditions forrigesleservation functions in Takens’
theorem). We then present our main technical contributioiséction IlI-B, giving explicit conditions
on the system and observation function for the delay coatdimap to be a stable embedding of the

attractor with specific guarantees on the conditioning nemd$ the embedding.

A. Takens’ Embeddings

The following theorem gives conditions on the system andtbgervation function such that the delay
coordinate mapf’ is a one-to-one mapping. This is analogous to Theorem Il.théncontext of linear

dynamical systems and linear observation functions.
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Theorem IIl.1 (Linear Takens’ Embedding [1])Assume a linear dynamical system of clagsl) in RY
that is in steady state. Choo&g > 0 to be the sampling intervah € RY to be the observation function,
and denote by the delay-coordinate map with/ delays as defined i(4). Suppose thad/ > 2d, the
Ag-eigenvaluege*7%1-} are distinct and strictly complekandv’h # 0 for all i = 1,--- ,d. Then for

all distinct pairs of pointse,y € M, F satisfies(5) for some constant§’ and ¢ < 1.

Proof: The proof of this theorem can be found in Appendix A.

To explore the differences that arise in our specific settifiginear systems and linear observation
functions, we compare the conditions of this theorem witit thf Takens’ theorem. First, we notice that
the conditions on the measurement operation are very siriileorem Ill.1 requires\/ > 2d, which is
similar to Takens’M > 2d and likely only different because of the specific structufe@ur attractors.
There is also a close correspondence with the other conditiothe measurement functiarf 1 # 0.
This requirement is an explicit condition on the relatidpdbetween the system and observation function
ensuring that the observation function can capture sonoenvition from every dimension of the attractor.
We note that (Lebesgue) almost-evéryg R will satisfy this condition, and so we find that this is just
a more explicit version of Takens’ result that “almost-gvel ensures an embedding.

Next, we compare our conditions on the system with those segdy Takens’ theorem. Theorem Il1l.1
requires that thedg-eigenvalues are distinct and strictly complex, which igiealent to having:/%7: +£
et9T: (distinct) ande’?T> £ +1 (strictly complex) for allp # ¢ andp,q = 1,---,d. While this
requirement impliés that M does not have periodic orbits of perigdl, for £ = 1,---,2d (thus
satisfying Takens’ condition), our condition is actuallyora stringent than this restriction on periodic
orbits (likely due to our restricted class of linear obséinrafunctions). We note that sinc@, }¢_, are
distinct by definition, this condition is dependent on theick of sampling interval’;. One can verify

that choosindl’s < ﬁ{e} is sufficient (but not necessary) to meet the condition ofttiemrem.

"We say that a number is strictly complexif Tm {z} # 0.

8This implication can be shown by contradiction. Pick any k < 2d and suppose thabt has at least a periodic orbit of
¥ with period k7. This would be equivalent to saying thelf’»*™s = (e""lffs)]c = 1 for all p, meaning that for each from 1
to d the quantitye*’%»"s is uniquely one of the: roots of unity. However this is impossible as there 2dedistinct and strictly
complex values ofe*7%7:} and there are only: < 2d roots of unity (including+1 which are not allowed), and hence we
have a contradiction.
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B. Stable Takens’ Embeddings

Before presenting our main result giving conditions forabt embedding of a dynamical system in a
delay coordinate map, it will be useful to define and understhe following quantities that characterize
how well-behaved the system and measurement process arentdintidually and jointly. First, we define
K1 = minjeg a4y {%} and ky = max;e(i,..qy {HT:—”T} characterizing the minimum and maximum
projection of the (normalized) observation function on tHeeigenvectors. Roughly speaking, these
guantities are an indication of the disparity between thmedisions of the system attractor that are
best and worst matched to the observation function. One dvexpect that a measurement system is
most efficient when it observes all parts of the attractoraflgisuch that<; =~ 5. Second, we define
Ay, Ay as the smallest and largest eigenvalues/éfV/, respectively. As we discussed at the end of
Section II-A, these quantities describe how well the systtractor fills the dimensions of the state
space that it occupies (i.e., whefy > A; the attractor is very elongated in the state space). Again,
we would expect that a system will be most amenable to obSenvevhen it fills the space such that
A~ As.

Finally, we definev := gljg{ysm(ep:rs)rl, sin (W)‘_l sin (W)‘_l} which will
also bound the constants associated with the stable enmgeddiotice that the first term is large 8,7
is small for somep (or thaté,T; ~ kr for some integerk), meaning that the system state proceeds
in the span ofRe {v,} andIm {v,} at a slow pace, thus not producing much diversity in condezut
measurements of the system along these dimensions. Thedseam is large if6, T — 6,7 is small
(or nearkwr) for somep # ¢ andp,q = 1,--- ,d, implying that the system state is proceeding in the
subspaces spanned B¢ {v,},Im {v,} andRe {v,},Im {v,} at almost the same rate. This condition
would be unfavorable because the system will take an extyeloreg time to display enough diversity to
determine that it is actually traveling on two separate pabss instead of one. The third term is similar
to the second term if we writé, 7 + 0,7 = 6,1 — (—0,15). Thus if 0,7 ~ —6,T, then the system
is again proceeding on two subspaces at almost the samealtieugh the system is proceeding in one
of the subspaces in the “opposite” direction).

Armed with these definitions, we now present our main resulhg deterministic, explicit and non-

asymptotic guarantees on the conditioning of the delaydinate map.

Theorem 111.2 (Stable Linear Takens’ Embedding)ssume a linear dynamical system of clafg) in

RY that is in steady state. Choodg > 0 to be the sampling intervah € R to be the observation
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function such thaf|h|j3 = Qﬁ, and denote by the delay-coordinate map with/ delays as defined in

(4). Suppose that/ > ((2d -1 ﬁfz% y), the Aq-eigenvalues{e*i%7:} are distinct and strictly

complex, andb’h £ 0 for all i = 1,--- ,d. Then for all distinct pairs of points,y € M, F satisfies
(5) with constants” := d (Z—i + Z—%) andé := oo + 61 (M), where:
Agk3 — A1K3 (2d — 1)v 253
0y = —F— 0n(M) = . 6
" Agﬁ% + Al’%%’ 1( ) M AQK/% + Au%% ( )

Proof: The proof of this theorem can be found in Appendix A.

We first note that the sufficient conditions of this theorera #re same as those in Theorem Ill.1,
except that the required number of measurements is largersiare specific guarantees on the conditioning
numbers (i.e.d < 1). Also, note that this theorem requires an observationtionavith a particular norm
A3 = Q—Aj. This normalization is to remove froi any dependence on the number of measurements
and the dimension of the attractdd (sincex? andx3 both scale inversely witl). The normalization
plays no other significant role in the proof (and thereforaldde eliminated without losing generality,
but at the expense of clarity).

To understand the implications of Theorem IIl.2, we exantireebehavior of the conditioning number
0 as it is the main quantity of interest. In the theorem statendeis a sum ofj, (which does not depend
on M) andd; (M) which is positive for allAM and for whichlimp, o 61 (M) = 0. Thus, we see that by
taking more observations one could drive the conditioningrgntee for the mapping t= ¢y, but not
below In other words, some system and measurement pairs willdaleteau preventing the conditioning
guarantee for the delay coordinate map from improving bdy®fundamental limit. This is in contrast
with CS results where the conditioning can be continuallyproved by taking more measurements.
Indeed, in order to get arbitrarily good conditioning we \Wbneedd, = 0, which happens if and only
if Agk2—A1x2 =0 & ﬁ—f = z—g = 1. Recall thatd; = A, implies that the attractaM maximally fills
the subspace spanned byandx; = k3 means that the observation functibrprojects equally onto the
A-eigenvectors. Thus even with an infinite number of measantsn the delay coordinate map can only
be guaranteed to be an exact isometry=(0) when the system and observation function maximally fill
and measure the subspace containing the attractor.

The quantitys, (M) can be used to determine the number of measurements ngcessasure that the

conditioning numbeb is within e of the optimal value’,. To find the required number of measurements
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to meet this targeﬂ//f(e), we setd; (M) = e and solve (6) forM to get

— (2d — 1)v 2A9k3
M(e) = :
() € Ag/{% + Am%

(7)

A] :‘{%

By multiplying the numerator and denominator % and noting that < % < 1, we can deduce

that @ < M(e) < w. One immediate application of this fact is that we can caleuthe
number of measurements necessary to guarantee a stablddingpéor the delay coordinate map with

a specified conditioning € (g, 1), which is made precise in the following corollary.

Corollary 11l.1. Suppose we have a linear system of clagd), observation functiorh and sampling
time 7, such that the conditions of Theorem I11.2 are satisfied. Gleoany0 < € < (1 — ¢p). If the delay
coordinate mapF' defined in(4) has a number of delayd/ chosen to satisf\/ > w, thenF is

a stable embedding o with conditioningd < dp + .

The proof of this corollary is not shown, but follows immeigily from Theorem 111.2. While the linear
scaling withd seen in this result is in line with state-of-the-art CS resulve see that in contrast to
typical CS resultsZ\/Z(e) does not depend on the ambient dimensiénAlso note that]\?(e) depends
strongly on theA-eigenvalues via the quantity. In contrast, the interactions of th&-eigenvectors and
the observation function determine the lower bound on the conditionifigas evidenced by the roles

played by the quantitiesl;, A2 and k1, k2 in the formula ford.

IV. SIMULATION EXPERIMENTS

While the main result in Theorem Ill.2 is encouraging, it eens to be shown thdt) the theoretical
quantities actually reflect the salient embedding charstites seen in system and measurement combi-
nations, andii) having a stable embedding actually improves our abilitynferi information about a
hidden attractor. For example, it is important to know if thadamental limits on the embedding quality
d(M) are artifacts of our proof technique or are empirically obed. If these limits on the embedding
quality are actually present, it is also important to knowvthié related bounds are tight, both in their
asymptotic values and in terms of their convergence speéd exreases. Finally, for a stable embedding
to be a valuable goal, we need to demonstrate that achidvisgadal results in improved performance in
specific tasks performed in the reconstruction space. Huso will use a series of simple simulations
to explore these aspects of our theoretical results.

As a general approach, each simulation in Sections 1V-A &8l below involve creating an observation
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function h and a test system of dimensiagW = 50 in class.A(d) (defined by.4-eigenvalues ant4-
eigenvectors) so that the conditions of Theorem IIl.2 atesfsad. We choose the arbitrary initial point
xo defining the attractor such thay = [1, ---, 1]7 andzy = Vg, and we assume a sample time of
T, = 1. For a single trial, we generate a random pair of points onatt@actorz andy by choosing
uniform random numbers;, ¢, from (0, 10000) and assigning: = Velteag andy = VerMvag. In other
words, we start the system from the (arbitrary) initial citiod and stop it after a random amount of
time to get a single point on the attractor. We then vafyfrom 1 to 200, and run 1000 trials for each
M (renormalizingh for eachM as per Theorem I11.2). For each trial we calculate the ggatlitthe
conditioningQ(z,y) = W and for eachM record the largest and smallest value(@fz, y)
(denotedmax{Q} and min{Q}, respectively) as a way to quantify how the conditioningrdes with
the number of measurements. In the subsequent plots theddotes represent'(1 + &y), showing the
theoretical asymptotic bounds on the conditioning quality;, ), and the dashed lines are the theoretical

bounds on the conditioning'(1 &+ 6(M)) given by Theorem 111.2.

A. Bounds on the embedding quality

One of the fundamental characteristics of Theorem Ill.2 & tn general, the bound on the embedding
quality 5(M) approacheg, # 0 as M increases rather than approaching zero as is typical in 8 8tse
The first question to ask is whether pairs of systems and wadéen functions can actually display such a
plateau as predicted, or whether the conditioning insteadirrually improves with more measurements.
To demonstrate this effect, we generate a simulation asridedcabove withd = 3, choosing the
A-eigenvalueg6; }¢_, uniformly at random from(0, ), and taking care to ensure that the resultifig-
eigenvalues are distinct and strictly complex to satisgyabnditions of Theorem Ill.2. We then create the
A-eigenvectors by letting; = %(622‘_1 + jea;), where{e;} are the canonical basis vectorsR?'. This
choice of A-eigenvectors ensures thdt = A,. To generate a generic observation functignwe first
create a vector € RY such that = Zle((l +wai—1) Re {v; } + (1 +w9;) Im {v;}), where the{w, } are
i.i.d. Gaussian random variables of zero mean and varieric& husc is a (random) linear combination
of the vectors that form the subspace of the attractor. Foh @& we leth = h(M) = Q—Ajﬁ SO
that ||h||3 = 2¢ to meet the conditions of Theorem II1.2. Note that the smaliance of{w;} produces

{|vffh|?/||n||3} centered tightly around 1, making small (due toA; = A; and k1, k2 both close to
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Fig. 3. Simulations exploring the asymptotic bounds on the coaudlitig of the delay coordinate map. Plotted are the
largest and smallest value @f x,y) (depicted bymax{Q} andmin{Q} respectively) attained by the 1000 pairs of
x,y for eachM . The dotted (red) lines represent the value€'6f + §,) andC, and the dashed (black) lines are the
theoretical values af'(1 + 6(M)). (a) In this simulationA; = As butk, # ks, thus a plateau on the conditioning
is seen. (b) In this simulatioml; = As andk, = k4. AS expected, the conditioning number asymptotically hes®
asM grows. (c) In this simulationd, # A, andk; # ko and the predicted asymptotic values of the conditioning are
not tight.

1).° The specific parameters in this simulation are shown in Thble

Index s 1 2 3
0; (rad) 2.3129| 0.1765]| 1.4861
[vER?/||R]3 | 0.8346] 1.1637| 1.0017
N (VEV) 1 1 1
TABLE |

Parameters for the simulation shown in Figure 3(a). In tageahe relevant quantities ate = A, =1,
k1 = 0.8346, ko = 1.1637, v = 5.6954 anddy, = 0.1647.

The results for this simulation are shown in Figure 3(a). We 8om the behavior ofhax{Q} and
min{Q@} that the embedding does indeed reach a fundamental limitemie conditioning does not
improve with more measurements. Furthermore, we see irc#isis that this plateau is correctly captured
by the valueC(1 + dy) as described in Theorem 11I.2. Additionally, the bourdgl + 6(M)) do contain
max{Q} andmin{Q} as expected from the theorem, and the characteristic sHahes® curves seems
to qualitatively reflect the empirically observed converge of the conditioning number.

As confirmation, we also verify the implication of Theorerh2lthat system and measurement combi-
nations can be constructed where the conditioning can be mdutrarily good with more measurements
(akin to the more typical CS results). To show this, we creatather system with the sameeigenvalues
and A-eigenvectors as in the previous simulation, with the faieplying that A; = A,. For the

2d ¢ as

observation function, we first defire= V[1, --- , 1]7, and for each\/ we leth = h(M) = Mol

The random variable§w; } are used to ensure that, - are close to, but not exactly equal to 1. The case where k2 = 1
is considered in the simulation in Figure 3(b).
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before. One can verify this choice results|iff h|/|| k|2 = 1 for all 7, and thusx; = k2. The parameters

of this experiment are summarized in Table II.

Index s 1 2 3 4 | 5 6

0; (rad) 2.3129| 0.1765| 1.4861| — | — | —

[vT R /]R3 1 1 1 | —|—|—

N (VEV) 1 1 1 11111
TABLE I

Parameters for the simulation shown in Figure 3(b). The syt was chosen such that = A, = 1 and
K1 = kg = 1, So thabty = 0. As theA-eigenvalues are the same as in the previous experimeapains ab.6954.

With this choice of parameters such thit = A, andx; = k9, Theorem IIl.2 indicates that = 0 so
thatlim ;. 6(M) = 0. Figure 3(b) shows the results of running the simulatiorhim $ame manner as
before. The values ahax{Q} andmin{Q} clearly converge t@' as expected, showing that in this case
the conditioning of the embedding can indeed be made arhjitigood by taking more measurements.

Although Theorem III.2 indicates that a finite limit on thenclitioning number is always reached
when eitherA; # Ay or k1 # kg, this bound is not always tight and the predicted plateaelle¥
C(1 £ 0p) may be conservative. To show this, we construct a similaukition as above, now setting
the A-eigenvectors to be; = m(ai + jb;), where{a;, b;} are randomly constructed vectors
in RY whose entries are i.i.d. zero-mean Gaussian random vesiatith a variance of. We keep the
A-eigenvalues the same and generaia the same manner as the first simulation shown in Figure 3(a)
The specific parameters for this simulation are shown in €l where we see that indeed; # A,
and k1 # ko. Figure 3(c) shows the results of running the simulationhie same manner as before.
We see that although a limit on the conditioning number iched as predicted by Theorem I111.2, the
predicted plateau level af'(1 + dy) is not tight and the conditioning can be better than that ipted
by ég.

Index i 1 2 3 4 5 6
0; (rad) 2.3129| 0.1765| 1.4861| — — —
[vER|2/||R||7 | 1.8138] 1.2064| 1.1318] — — —
N(VEV) 1.5316| 1.3058| 1.1294| 0.8372| 0.7644| 0.4315
TABLE Il
Parameters for the simulation shown in Figure 3(c). We saeAth= 0.4315, A, = 1.5316, k, = 1.1318 and

k2 = 1.8138. Since theA-eigenvalues are the same as in the first simulation showiginé-3(a), remains the
same ab.6954. We also calculaté, = 0.7010.
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Fig. 4. Examining the effect of thel-eigenvalues on the convergence speed of the conditiof@htn this simulation,

d=1andwe test = 55, 155 and ;. As expected, the closéris tor /2, the faster the rate of convergence 0¥/ )

tody. (b) In this simulationd = 3 and we vary between 3 sets.dfeigenvalues with different valuesof As expected,
the set of eigenvalues that gives the smallestovides the fastest rate of convergencé(df) to 6, and vice versa.

B. Convergence Speed

In the simulations of the previous section we concentratedhe conditioning limits predicted by
Theorem IlI.2, ignoring issues of the speed of convergeonciadse limits. Examining the formula for
51 (M) in Theorem 111.2, we see that thd-eigenvalues (via the paramete) affect the convergence
speed of§ (M) to its asymptotic value ofy. In particular, the convergence speed scales With which
is also demonstrated in (7) where the number of measurenﬁ(ﬂ*,a necessary to get the conditioning
d within e of the best possible valu@) is proportional tov.

For ease of analysis, we first consider the case wHere 1, meaning thaty = |sin(#)|~! (since
T, = 1), where+; are the soled-eigenvalues. In this casksin(f)|~! > 1 with the minimum attained
whend = 7 + k= for any integerk. The closem is to 5 + km, the faster the convergence &f\) to do.
This is illustrated by the following simulation where theeigenvectors are chosen such thgt= A,,
and the observation function is chosen randomly as in theraxgnt shown in Figure 3(a) (except with
d = 1). Figure 4(a) plotsmax{Q} andmin{Q} for 0 = 75, 155 and g5, showing that Theorem lIl.2
correctly captures that the convergence speed to the astimpalue ofC'(1 £ dy) varies inversely with
the value off.

Whend > 1, the joint relationship of thed-eigenvalues (not just their individual values) determsing
and subsequently the convergence speed. One can seeéuiiti the definition ofv that. A-eigenvalues
which are maximally spread out should produce favorableve@ence speeds. To illustrate this, we
generate a simulated system with= 3, choosing the4-eigenvectors such that; = A,, and generating

an observation functioh randomly (as in the experiment in Figure 3(a)). We also chdbsee sets of
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Fig. 5. Examining the predicted number of measurements necessagth a specified conditioning level. (a) Plotted
is the upper-half of Figure 3(a), also indicati6gl + do + €) with e = 0.2. (b) In this simulation, we explore how
M () (for a fixede = 0.1) varies with theA-eigenvalues for the system defined in Figure 4(a). We piottiboretical

values of M (€) (given in (7)) for 6 varying from0 to /2 together with its actual values (as described in the text)
obtained by running experiments for edch

A-eigenvalues: two uniformly random sets, and one set thatskght perturbations of equally spaced
points around the unit circle according ég = dp—fl (the choices ob),, and their respective are given
in Table 1V)1° Figure 4(b) shows the results of the simulation, with thex{Q} and min{Q} curves

showing clearly that’ indeed controls the speed of convergencé(dfl) as predicted.

b1 2 03 v
Set 1 (nearly equal spacing)0.7836| 1.5864| 2.3566| 2.6619
Set 2 (random) 0.0491| 1.5737| 2.3490| 20.3851
Set 3 (random) 0.0212| 1.5684| 2.3549| 47.1388
TABLE IV

Choice of{8;} (in radians) for the experiment in Figure 4(b) and their ezsppev value.

Given that Theorem Ill.2 seems to be correctly capturingabevergence speed dependenceron
the last facet of the problem to explore is the tightness ©f blound. Specifically, given a system of
class.A(d) and an observation functioh, it is often of interest to estimate the minimum number of
measurement{]\//f(e)) needed to ensure that for ady’ > M the conditioning numbed(M’) is at
most e above the asymptotic level @ (such an estimate is given in (7)). To examine this, we refer
back to the simulation shown in Figure 3(a) with parametarsrgin Table I. Fixinge = 0.2, Figure 5(a)
re-plotsmax{Q} together with the line”(1 + dy + €). Using the given parameters and (7) we calculate

that ]/\4\(6) ~ 166. Note that this value is also the intersection of the cué#@ + 6(M)) with the

10The slight perturbation is used for plotting conveniencalbthree curves converge to the same asymptotic value alftx
equally spaced eigenvalues are used, the attractor is ednopiformly and the convergent value will be insid&1 + o),
making comparative plots difficult.
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line C(1 + dp + €). Figure 5(a) shows thahax{@} actually met this tolerance with only around 30
measurements. Thus, although the theoretical vaquh(?(xf) given by (7) is correct, it is pessimistic in
at least this particular case.

To demonstrate that the linear dependencd\/ﬂfe) on v is correctly captured in the theorem, we
restrict ourselves tal = 1. Recall that whend = 1, v = |sin(#)|~! (since T, = 1) where +j0 are
the soleA-eigenvalues. We repeat the simulation shown in Figure, 4(@& time using 100 values of
6 equally spaced betwedi, 7/2). Fixing ¢ = 0.1, for each value of we note the value o/ where
for all M’ > M, max{%w} -1, 1- %@’} < g + €. We call this value the “actual?\/i(e), in
contrast to the “theoreticaW(e) given by (7). Figure 5(b) shows these actual and theoretiglales of
]\/4\(5) as a function of). This comparison shows that while the theoreti@ae) captures the same trend
as the actuaJ\/Z(e), the theoretical estimate can be pessimistic comparectteripirical values (though

it is not clear if the theoretical bounds are achieved by seystems).

C. Stable Embeddings for Dimension Estimation

To demonstrate the value of stable Takens’ embeddingssditigon will explore a simulated task esti-
mating the dimensionality of an attractor. Tberrelation dimensions a measure of attractor dimension
often applied to strange attractors of chaotic systems, [@h]ch corresponds to the actual geometric
dimension of regular objects such as the circles and efliggen in linear system attractors [3]. To be
precise, we first define theorrelation sumof tolerancee for a set of points{z;} lying on a subset\

and temporally related via the flow (i.ez;, = ®*z) as

K K
Cle.K) = ey 0 2 Ol [1F(w) — Flay)l) ®)

p=1g=p+1

where F' is the delay coordinate map artd(-) is the Heaviside step functiodefined as9(z) = 0 if

Adlog C(e,K)

x <0andO(x) =1if = > 0. Thecorrelation dimensions defined ad) = lim,_,¢ limx DTog <

This makes intuitive sense as in the limit of smaland large X, we expectC(e, K) to scale like

C(e, K) o< e P, where D is the dimension of the subsg! in question. Theoretically, one way to
estimate correlation dimension is to plot the grapHafC (e, K') againstloge for a large value ofi,

then simply read off the gradient for small valuesl@f e. In the absence of noise and with a topology
preserving Takens’ embedding (il > 2d), this estimate should be as good as if one had access to the
hidden system state. However, when noise is present, s@lakks oflog e will be capturing the noise

characteristics and overestimating the attractor dineengh common approach in this case is to plot the
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Fig. 6. Estimating the correlation dimension of a circular atact!t of a linear system of clasd(1). (a) The
conditioning of the stable embedding decreases with iisingaiumber of measuremerits. (b) The graphs oD (e)
for the variousM considered are plotted agaiihst e. The correlation dimension estimate can be read off the plet
in these graphs. These plateau regions become more distthdhcreasing\l (improving conditioning), and appear
to converge to a value near the true dimension of 1.

local gradientD(e) = %&’K)

againstlog(e) for a large value of’ and read off an estimate of the
correlation dimensiorD from a plateau in the graph, preferably in the regime of small

In this section, we use the above approach to estimate threlation dimension of linear system
attractorsM in the reconstruction spad@ . For this simulation construct a linear dynamical system of
classA(1) with N = 100, A-eigenvalued = ;%= and.A-eigenvecton = [1, j]7 (resulting inA; = A,
and a circular attractor). We also chodse- [1, 1]7, implying thatx; = k2 and subsequently, = 0.
Figure 6(a) shows that the actual conditiorlthgf F approaches zero as we incredsge To simulate
noisy measurements, we corrupt the resulting time seriesefd by » by adding white gaussian noise
with zero mean and standard deviatior= 0.05 (to give an SNR of about2dB).

Figure 6(b) shows the plots dp(e) againstlog(e) with a number of delayd/ = 3,73, 153, 223. For
the graph corresponding t = 223, a plateau is easily seen betweeh < log e < 0, and corresponding
to a correct dimension estimate of approximately 1. We ofgstrat by taking more measurements (i.e.,
improving the conditioning of the embedding), the estimatéhe correlation dimension also improves.
Moreover, the width of the plateau region where we read a@fdbrrelation dimension estimate increases
with increasingM, thus making its estimate more precise. Note that when we ttek minimum number
of measurement8/ = 3 required by Takens’ Theorem, there is no discernible plategion in Figure

6(b) for us to estimate the correlation dimension, and elienntost reasonable estimate nkaye = 1

is less accurate than with the estimates produced by the dslintges with better conditioning.

1By actual conditioning, we mean the empirical valie: max {% —1,1— %} for Q defined in Section IV.
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V. CONCLUSION

The main result of this paper has established that a delaydicate map (using linear observation
functions) can form a stable embedding for all pairs of oot the attractor of a linear dynamical system
of class.A(d). The explicit, deterministic and non-asymptotic suffitieanditions we give for this stable
embedding yield several observations about the embedtialj and favorable properties of system and
measurement pairs. For example, for many system and measuarepairs, the conditioning number
d(M) reaches a non-zero asymptotic valuedgfwith increasing)/. This “plateau effect” is in contrast
with typical CS results where the conditioning of the stadebedding can be continually improved by
increasing the number of measurements. Furthermore, theegence speed of the embedding quality
to this limit is governed by the joint relationship of the ®m® eigenvalues, which capture the relative
speed with which the system explores the different dimerssiof the state space (i.e., more diversity
in these speeds results in faster convergence). Finallalse see that the minimum number of delays
M of the delay coordinate map scales linearly with the atradimension but is independent of the
system dimension. This is again in contrast with typical @Sults, where the number of compressive
measurements also scales logarithmically with the sysiamanksion (but interestingly does parallel recent
improvements in these bounds for the stable embedding offoids [15]).

While the comparisons with standard CS results reveal tivgeeesting and non-intuitive technical
differences between the results in each case, these disarieg actually point to a much deeper difference
in the problem setups that must be appreciated when emtzpdtimactors of dynamical systems. Perhaps
the easiest way to see this is to consider that in the presss# of delay coordinate maps, while
the number of measurements doesn't scale with the ambietéraydimension, the total number of
measurements may in fact have to be larger than the systeendiom ((/ > N) in order to make a
particular conditioning guarantee. In the typical CS c#sis,would of course be a ridiculous proposition.
If the RIP property required/ > N) random measurements (e.g., due to very large constankein t
typical sufficient conditions), one would likely abandoretlS strategy and simply tak®¥ uncoded
measurements (e.g., in the canonical basis). Howevergigdke of delay coordinate maps for dynamical
systems, this luxury is simply not available. For exampte, dbbservers often do not have any control
over the choice of observation functién and in these cases cannot simply change the way the system
is measured. But, more importantly, even if we were given gete control over, it is only a “seed”
that is used in producing the whole measurement processcameiew the entire set of measurements

as being generated by repeatedly forcing this observationtion through the dynamics of the system
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(seen explicitly in writing the delay coordinate map in (4Paid another way, because there is only a
single observation function for the system, the total mesment process for a delay coordinate map is
beholden to the dynamics of the system itself to provide @sfit diversity to make the measurements
informative. Therefore, even with complete control over tbservation function, delay coordinate maps
represent a highly restricted total measurement procedscdmnot be completely controlled (without
access to and control over the system that is hidden and ith ofemeasurement).

Characterizing the delay coordinate map embeddings foaicattrs of linear dynamical systems with
linear observation functions is a subset of the more gempeddlem of characterizing these embeddings
for attractors of nonlinear systems and general observétioctions. From the results here, we conclude
that there is reason to be optimistic that similar stabitigults can be obtained for this more general
case of interest. Furthermore, these results also lead amnttude that there are several issues that differ

from standard CS results and will need to be carefully carsid in any generalization.

APPENDIX A

PROOF OFSTABLE TAKENS' EMBEDDING THEOREM

Because Theorems Ill.1 and lll.2 are very similar in streetwe will essentially lay out the proof
approach for both of them together in this section and th@arseely establish the necessary details for
each result. Before proceeding with the specific proofs, Weimroduce some notation and preliminary

results that will be useful.

A. Notation and preliminaries

1) Frame theory:Drawing on some terminology from the field fshme theorywe say that a sequence
of vectors{g;}4, in CX, M > K, forms aframe [26] for CX if there exists two real constants
0 < By < By < oo such that for alla € C¥, By|lal} < M, (g, )2 = |G|} < Bylall3, where
GH = (g1 g2] -+ | gu) € CEXM the concatenation of th¢g;}},, is called theframe analysis
operatorand By, B are called thdrame boundsThe frame bounds can be definedBs= M\, and
By = Amax, Where,i, and\,., are the minimum and maximum eigenvaluesf G € CK* X,

2) Linear delay coordinate map€ecause the attracto¥! is contained in the span of the columns of
V, foranyz,y € M we can writex = Va, andy = Vo, for some complex coefficients,, a, € Cc2,
Using F' to denote the delay coordinate map for a linear system with fltatrix & and observation

functionh as described in (4), the-th row (fork = 1,--- , M) of the vectorF'(xz) — F(y) can be written
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BT (®F Yz —y)) = AT (" 'V (ap — o)) = RT (VD Yoy — o)) = (gk, 0w — a), Where
9}?: hTVDk—l _ [(U{h)e-j(k—l)elTs’ (U{{h)ej(k_l)elTS, s (,U;Zl“h)e-j(k—l)Gde ( Hh)ej(k 1)04T, (9)

and D is the diagonal matrix comprised ofs-eigenvalues as defined in Section II-A. Thus, we have:
1F(z) — FW)|3 = S0, gk, (0w — ) = |G — ay))||2, whereG € CM*2? s the concatenation
of {gr} as described above. In this following; is fixed to be this matrix given here.

3) Eigenvalue boundsit will be important in the following proofs to determine bads on the
extreme eigenvalues of the matr”’G. To that end, we first introduce the well-known Gershgorin

Circle Theorem, which we state here for notational converge

Theorem A.1 (Gershgorin Circle Theorem [18])The eigenvalues of & x K matrix A all lie in the
union of the Gershgorin disks ad. The Gershgorin diskD; for ¢ = 1,--- | K, is defined asD; =
{zreC : |z—-C| <7}, wherer; := Zlevj# |(A); ;| is the radius, and’; := (A),; is the center of
the i-th disk. Thus\(4) ¢ X, D;, whereA(4) = {\;,--- , Ak}, and {)\;} are the eigenvalues of.

To apply the Gershgorin Circle Theorem to obtain the extreiganvalues o3 G, we introduce the

following useful lemma that gives values for centérsand radiir; of the Gershgorin disk®; of GHG.

Lemma A.1l. Fori=1,--- ,d, the centers of the Gershgorin disks@¥ G are Ca;_1 = Co; = [v/ h|> M

sin(M,T.) (+Zp 1p#|th||th| sin(M (0, —0,)T/2) 4

while their radii are 79,1 = 72; = [vh|? T sm((e AT

d sin(M(0;46,)Ts/2)
Z:u=1,p7éz’ ’”Hthzljh‘ sin((0; +0,)T=/2) ‘

Proof: We can writeGH G = Zk 1 gkgk , where we recall thagy, is defined as in (9). Thus the, ¢)
entry of GG can be expressed a&3 (), , = ch‘il 91:(p)gx(q)*, wheregi(p) denotes the-th entry
of the vectorg,.. As such, the formation af'*/ G involves the calculation of sum of complex trigonometric
polynomials due to the complex exponentigfe™/*~1%7:1) appearing in the terms of eagh. A few
separate cases need to be considered because of the diffeierthe ever2p) and odd £p—1) numbered
rows of GHG for all p. We first consider the even numbered rows. The diagonal tewchsally have

a fairly simple form:(GG)apop = 3oty g1(2p)gk(2p)* = Sat, [vlTh)? = M|vh[?. The adjacent

term to the left is given by(GH G)apap 1 = M5! (b7 h)e k0T % — (o )2 ML (e=3200 T ) —
(v Th)z%e JM=1)0,T. "where the last expression follows from the standard foanfat a finite

geometric sum, pulling out common exponential factors, @sidg Euler’'s formula. The other cross terms
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for all p,q € {1,...,d} such thatp # ¢ can be derived similarly as:

(@ Dpay = (WM TG (2057) = (e gy e O

(@ Chper = WENCTW TR (HCFIT) = (0T Sl le MV,

The relevant quantities for the odd numbered rows are giurailasly as

(GHG)2p-r,2p-1 = (GT G)zp2p = M]vy %,
2Sin(M9st)ej(M—1)est
sin(6,7T) ’

B . B sin (M (0, +0,)T5/2) ; 9440 \ .
(G Gap-1,20 = (GMCsgpor = (v W)(wy W)= Tt S I ST,

o sin (M (6, — 0,)Ts/2) =0 \p
(GHG)2p 1,2¢—1 = (Ufh)(vgh) (0, —0,)To/2) oI (M~ ()T ‘

(GHG)ZP—L?P = (GHG)Spr—l = (U;J;Ih)

Finally we note that many of the above complex quantitiey differ in their phase because of symmetry
in the summations, making their magnitudes equal when Izding the radii of the Gershgorin disks. The
expressions fo€; andr; in the lemma are obtained simply by applying the notationhef Gershgorin

Circle Theorem to the calculated magnitudes of the entrie§6G. |

B. General proof approach

Using the preliminaries above, we can now sketch out the rgeg@proach for the proof of both

theorems below. Essentially, the theorems result fromgu&in establishing) the following three facts:

1) If GHG € C?¥*24 js established to be full rank, thefy,}1Z, form a frame inC??. Thus there

exists) < B; < By < oo such thatB; < W < B, holds for all distinct pairs of points

A — 0y |3
x,y € M. In particular, to establish conditioning guarantees, ae let B; and B, be the smallest
and largest eigenvalues 6f7 G (respectively) and determine bounds on those importamitiiees.
2) Next, we use the fact thdr — y||3 = (o — o) "VHV (a, — o) to getA; < ”(|)|;§:Z|\§Hg < A,

where A; and A, are the smallest and largest eigenvalue¥ 8fi/ ¢ C2?*2¢ respectively. By the

definition of V- we know thatl’ # V' is well-defined and full rank, meaning that< 4; < Ay < oo.

3) Putting the 2 previous steps together, we(get 5 < W < £ < o0, where the bounds
& and& can be manipulated to get the scallng cons@rmind condltlonanS in (5). Specifically,
we can seC = 1 (ﬁ; +%) ands = 1 — #.
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C. Proof of Theorem Ill.1

Proof: For Theorem Ill.1, we follow the three steps detailed in Apgig A-B, where we only need
to show thatG¥ G is indeed full rank given the conditions of the theorem. Gaesfirst the case when
M = 2d, where showingG* G is full rank is equivalent to showindet(G*G) = det(G)? > 0. The

matrix G can be expressed in terms of a product of a Vandermonde naatd>xa diagonal matrix:

vih (0)
1 1 1 1 vEh,
e 901Ts  i01Ts ... =i0qTs  gi0gTs 1 ~p o~
G = : : : : - M"H,
e—i2d01Ts j2d01Ts | ,—i2d0,Ts j2d04Ts vih
(0) vih

where M is the Vandermonde matrix with thelp-eigenvalues as its parameters aHdis a diag-
onal matrix whose diagonal elements are made up of the pimjeof h onto the .A-eigenvectors.
Thus, det(G) = det(M) det(H). One of the conditions of Theorem IIl.1 ensures that f&/%7:}d_

are distinct, which implies that the determinant of this aaguVandermonde matrix [27, Ch 0] obeys
| det(M)| > 0. Also sincev/’h £ 0 forall i = 1,- - - ,d, we also know thatdet(H)| > 0. Therefore for
M = 2d, rank(G"G) = 2d. Since adding vectors to a frame does not change the radk’a¥ (i.e.,
frame bounds cannot be lowered by adding more vectors torémeed, it follows that ifA > 2d then

rank(G* @) = 2d and the proof of Theorem IlI.1 is complete. [ |

D. Proof of Theorem I11.2

Proof: To prove Theorem I111.2, we again follow the three steps dmtiain Appendix A-B, this
time establishing specific guarantees on the frame bouhd3d/) and B2(M) appearing in the first
step. From Lemma A.1, we first observe that for allve can bound the Gershgorin disk radii by
Fai_1 = Ty < (|Uﬁh|2 + 00 B Rl R+ |Uﬁh||v5h|) v < (2d—1)x2||h|3v. Noting
that ||h||3 = %, we see that for each, the Gershgorin disks oG G satisfy Dyi_1 = Dy C
[lvEh>M — ||h||3(2d — 1)vk3, [vE R[> M + ||h||3(2d — 1)vk3]. Then applying the Gershgorin Circle The-
orem, we get\(GG) c ' D; C [2dr} — 24(2d — 1)vk3, 2dr3 + 24(2d — 1)vk3]. By choosing
Bi(M)=2d ( 2 %) andBy(M) = 2d (FL% + W) and applying step 2 in Section A-B,
we arrive at:

BiM) _ [F(@) = Fw)l _

Bu(M)
PR P n (10)

for all distinct pairs of points,y € M and for all M.
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Now as M — oo, B1(M) — 2dx? and Ba(M) — 2dk3. Thus in the limit of largeM, the lower

and upper bounds of the inequality (10) approac?—%% and fol'jg, respectively. We define the scaling

. _2d (K | K3
constanC' as the average of the asymptotic values of these lower angf bppindsC' := ¢ (A—2 + A—l).

Also define the conditioning numbé()/) for a given M as the maximum deviation of the lower and

upper bounds of (10) fron€, normalized byC: §(M) := max{l ~ 500 B0 1}. Now 1 —
B,(M) 1 2d(k2—(2d—1)vk2 /M) Asr3—A1k24+2A,(2d—1)vk2 /M and B2 (M) 1= 2d(k3+(2d—1)vk2 /M)
oA, = LT @Az (A A)) — ARt AT , cn L= @A ARt i)

2 __ 2 _ 2 . 2_ 2
1 = Ao Alfziéﬁfl?:? Drs/M - Since Ay < Ay, we have thats(M) = Béf) -1= 732’:%?1:% +

A;‘;j’fm% @41 We can then definé, and 5, (M) as the first and second term of the sum above.

Notice thatd(M ) represents a worst case bound on the deviation {fgras we maximized over upper
Bi(M

and lower bounds that may not be the same magnitude (i.eenerglC(1 — §(M)) # A—)).

Finally, we recall that for the embedding conditioning nento be valid, we must have< §(M) < 1.
The first conditiony(M) > 0 is achieved by construction. The upper bound is equivatetti¢ condition

for M required by the theorem statement, thus completing thefproo [ |
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